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ABSTRACT 

 

Extreme rainfall is one of the disastrous events that occurred due to massive rainfall overcome 

time beyond the regular rainfall rate. The catastrophic effects of extreme rainfall on human, 

environment, and economy are enormous as most of the events are unpredictable. Modelling the 

extreme rainfall patterns is a challenge since the extreme rainfall patterns are infrequent. In this 

study, a model based on descriptive indices to forecast extreme rainfall is proposed. The indices 

that are calculated every month are used to develop a Back Propagation Neural Network model 

in forecasting extreme rainfall. Experiments were conducted using different combinations of 

indices and results were compared with actual data based on mean absolute error. The results 

showed that the combination of six indices achieved the best performance, and this proved that 

indices could be used for forecasting extreme rainfall values. 

 

Keywords: Extreme event, back propagation neural network, forecasting model, extreme rainfall 

indices 

 

 

INTRODUCTION 

Floods are one of the most potent forces on Earth that have caused massive damages around the 

world. Statistics have shown that flood has a significant impact on the economy and human well-

being (Rana, 2013). Economic damage, ecosystem damage, and loss of cultural and historical 

values constitute the direct outcomes of floods. Flood also leads to adverse health effects on 

humans and causes loss of life (Rana, 2013). Knowledge of extreme rainfall is useful in 
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planning, especially when designing new infrastructures to withstand the impact of flood 

disasters (Nigatu, 2011). This is because rainfall is one of the primary sources of water for the 

hydrological cycle that can cause a severe impact on the water source, rain-related activities, and 

the environment. In the case where rainfall of one location significantly deviates from the natural 

condition, this can be considered that the event will be less likely to occur. The values above a 

certain threshold are considered extreme values, which are the values (event) that are not likely 

to happen (Gu & Wan, 2010).  

 

It is most common to appoint a percentile value as a threshold in identifying extreme rainfall 

events. Typically, intense rainfall occurrences in short temporal scales or persistent rainfall over 

a long period, often lead to massive floods (Syafrina et al., 2014). These floods represent one of 

the essential impacts of extreme climatic events, resulting in hazardous situations that cause 

adverse effects on humans and infrastructures. Due to its nature, extreme climate events is 

difficult to quantify (Ummenhofer & Meehl, 2017).  

 

The extreme rainfall events in Malaysia showed an increasing trend in recent years. It is one of 

the major causes of severe floods in Malaysia in the past ten years. The impacts of these floods 

are enormous, and the recovery cost reaches millions of Malaysian Ringgit (Syafrina et al., 2014; 

Abdullah, 2013).  Malaysia’s climate has the following characteristic features: copious rainfall, 

high humidity and uniform temperature. Winds are generally light. Located in the central area, 

even with periods of severe drought, it is a high rarity to have a full day without clouds. On the 

other hand, it is also rare to have a completely no sunshine for a stretch of a few days except 

during the northeast monsoon seasons (Fakaruddin et al., 2017). Malaysia experiences rain 

almost one all year long, and for some regions, it is more substantial. Rainfall in peninsular 

Malaysia is mainly affected by the seasonal monsoons; northeast and southwest monsoons (Tan, 

2018). 

 

The extreme flood event that happened between December 2006 and January 2007 in southern 

peninsular Malaysia, for example, resulted in economic losses for more than 500 million U.S. 

dollars involving more than 200,000 people and 16 deaths (Juneng et al., 2010). Another 

memorable extreme rainfall event occurred in Malaysia in December 2014.  The rainfall is 

causing massive flooding in several states in Malaysia where more than 200,000 peoples were 

affected (“Banjir di Kelantan…”, 2014).  For a developing country such as Malaysia which is 

prone to flood disaster having rainfall forecasting model is a very vital matter (El-Shafie et al., 

2011). STAtistical and Regional dynamical Downscaling of EXtremes for European regions 

(STARDEX) is one of the successful projects developed in the European region to deal with 

extreme events (STARDEX, 2005).  This study investigates and adapts STARDEX extreme 

rainfall indices into Malaysia’s context where the upstream rainfall data of the Timah Tasoh 

reservoir were used as the case study.   

 

This paper is organised as follows. Studies of extreme rainfall and its indices are presented in the 

second section, followed by the methodology section that describes the indices, datasets, and the 

temporal pattern segmentation process. The proposed model is described in Section 4, followed 

by the experimental results in Section 5. Concluding remark is presented in the final section. 
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LITERATURE REVIEW EXTREME RAINFALL AND INDICES 

In recent years an increased interest was shown in regards to the apparent increase in the 

frequency and severity for predicting extreme events for many countries around the world. The 

development of an accurate and timely extreme event monitoring and predicting system stands as 

one of the most critical ways for avoiding the potential impacts that climate variations and 

extreme weather pose (Zeng et al., 2011). The traditional techniques for forecasting of statistical 

weather include ARMA models, Multivariate Adaptive Regression Splines and Box-Jenkins 

Models. Later, when the machine learning became widespread, many attempts have been made 

to develop rainfall forecasting models which used feed-forward neural networks, recurrent neural 

networks, that include input delays and backpropagation neural network (BPNN). Many attempts 

were made to involve extra weather parameters in the rainfall forecasting model for better 

predictions (Htike & Khalifa, 2010). 

 

The extreme rainfall index is one of the outputs from the efforts ran by the European Union (EU) 

from 2001/02 to 2004/05 under the European Union Framework 5 Programme. This index is 

named as STAtistical and Regional dynamical Downscaling of EXtremes for European regions 

or in short STARDEX (STARDEX, 2005).  The purpose of these indices is to observe the 

changes in weather and climate extremes using uniform measurement. Most of the indices are 

based on thresholds defined using percentile values rather than fixed values. The STARDEX 

consists of six core indices for rainfall is shown in Table 1. The indices encompass frequency 

(e.g., days of heavy rainfall) and persistence (e.g., the most prolonged dry period) of extremes. 

The rainfall indices provide a right mix of measures of intensity, frequency and proportion of the 

total. All thresholds are percentile-based and so can be used for a wide variety of climates 

(Haylock, 2005). Some of the indices consider the properties of just the rain day distribution 

while the others use the entire distribution. The maximum five-day accumulated precipitation 

(PX5D) is to identify extreme events that could affect human life and the natural environment. 

Previous studies have indicated the importance of evaluating extreme precipitation events based 

on successive days of precipitation amounts (Zeng et al., 2011; Foresti et al., 2010). This is 

significant because the risk of flood increases after several days of precipitation. 

 

Table 1. 

STARDEX Extreme Rainfall Indices 

Index 

Name 
Details Description 

PQ90 90th percentile of rain day amounts (mm/day) Heavy rainfall threshold 

PX5D Most significant 5-day total rainfall (mm) Most significant 5-day rainfall 

(amount) 

PINT Simple daily rainfall intensity (rain per rainy day) Average wet-day rainfall 

(amount) 

PFL90 % of total rainfall from events>long-term 90th 

percentile 

Heavy rainfall proportion  

PNL90 Number of events>long-term 90th percentile of rain 

days 

Heavy rainfall days 

PXCDD Maximum number of consecutive dry days Longest dry period 

 



Journal of Technology and Operations Management, 14, No. 1 (July) 2019, pp: 28–42 

 

31 
 

STARDEX has been applied in various studies.  Gu & Wan (2010), for example, utilized 

STARDEX indices on Yangtze River’s daily precipitation.  Gu et al. develop an average extreme 

rainfall prediction model that is based on a BPNN. Stepwise regression analysis was applied to 

the six extreme precipitation indices (PX5D, PFL90, PNL90, PXCDD, PQ90, and PINT) to gain 

the main indicants. Results showed that the impact of PX5D, PFL90, PNL90, and PXCDD are 

significant in forecasting average extreme rainfall, while PINT and PQ90’s impact is 

insignificant. Wan et al. (2012) utilised the six STARDEX indices as an input for their extreme 

rainfall forecasting model.  The model employed BPNN as the intelligent classifier to learn the 

rainfall patterns in order to forecast the next year’s average extreme rainfall event.  Both Gu & 

Wan (2010) and Wan et al. (2012) have shown the importance of forecasting extreme rainfall 

using the six extreme rainfall indices as predictors. 

 

Studies by Junaida & Hirose (2012), Sulaiman et al. (2013a), and Sulaiman et al. (2014) utilised 

the PX5D index as the forecasting target. These studies focused on the modelling and forecasting 

of extreme rainfall in the Malaysian context, but they are limited to specific locations. In 

Malaysia, different states may have different characteristics, and the rainfall patterns may vary 

among the states.  Junaida & Hirose (2012) apply stepwise regression as the input variable 

selection (IVS) method, while the artificial neural networks (ANN) method was selected for 

model development. Based on the IVS results, it is revealed that average temperature, minimum 

temperature, and daily precipitation at previous one day and three days are the significant subset 

of input variables when predicting heavy precipitation. These inputs are then presented to the 

ANN models. The primary benefit that was found of IVS coupled with the ANN approach is that 

it identifies the minimum number of ANN input variables required in the prediction of heavy 

precipitation, without much loss of prediction accuracy.  

 

Sulaiman et al. (2014) developed ANNs model to forecast extreme monthly precipitation using 

past PX5D data and global climate indices such as the Southern Oscillation Index (SOI), Madden 

Julian Oscillation (MJO), and Dipole Mode Index (DMI) in Kuantan and Kota Bharu, Malaysia. 

Two statistical methods, multiple linear regression and ARIMA models, were developed using 

the sample data used in the ANN model, the Performance metric means Mean Absolute Error 

(MAE) and Root-Mean-Square Error (RMSE) were calculated and compared for all the models 

in order to evaluate the ANN developed model. Inline with previous studies, the STARDEX 

indices are adopted in this study.  These indices are used to represent the data for the rainfall 

forecasting model.  As discussed above, STARDEX is well known method for data 

representation especially for extreme rainfall event. 

 

 

METHODOLOGY 

In this study, upstream rainfall data of Timah Tasoh reservoir were obtained from the Malaysian 

Department of Irrigation and Drainage (DID) as a case study.  The rainfall data were collected 

through the gauging stations.  The Timah Tasoh reservoir is located in the state of Perlis, 

Malaysia, and it is one of the largest multi-purpose reservoirs in Northern Peninsular Malaysia. 

The reservoir serves as flood mitigation and is the only reservoir which has a gate structure that 

is operated based on human decisions.  Another reservoir in Malaysia operated based on both 

human decision and automatic water release or outflow.  The upstream Timah Tasoh gauging 

stations (Figure 1) are Padang Besar (PB), Tasoh (TS), Lubuk Sireh (LS), Kaki Bukit (KB), and 
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Wang Kelian (WK). These gauging stations record the volume of rainfall that falls and disperses 

into the river flows into the Timah Tasoh reservoir. The daily rainfalls data recorded at those 

stations from April 1998 until October 2013 were obtained from DID.   

These data were used to calculate the average of Timah Tasoh upstream daily rainfall.  The 

sample of the data is shown in Table 2.  

 

 

 
Figure 1. Location of Timah Tasoh Reservoir and Gauging Stations 

 

Table 2 

Sample of Data (In MM) 

Date PB TS LS KB WK Average 

16-Oct-06 35 55 50 0 49.5 37.9 

17-Oct-06 0 0 0 10 39.5 9.9 

18-Oct-06 0 0 0 0 29.5 5.9 

19-Oct-06 0 50 91 20 47.5 41.7 

20-Oct-06 0 0 2 11 2.5 3.1 

21-Oct-06 5.5 0 25 100 7.5 27.6 

22-Oct-06 25 43 9 20 4.5 20.3 

23-Oct-06 14.5 0 6 10 5.5 7.2 

 

The average daily rainfall was used to construct four datasets that are based on STARDEX 

indices, namely Dataset-A, Dataset-B1, Dataset-B2, and Dataset-B3. Dataset-A has the six core 

indices as predictors, and the target value is the PX5D value for the next month. Dataset-B1, 

Dataset-B2, and Dataset-B3 contain only the PX5D index value that is calculated based every 

month with different lag lengths. In this study, three different lag lengths experimented which are 

3 for Dataset-B1, 6 for Dataset-B2 and 12 for Dataset-B3.  The lag length was determined using 

the sliding window technique (Azahari et al., 2017; Mokhtar et al., 2016).   

 

Back Propagation neural network (BPNN) is a multilayer feedforward neural network that 

consists of three or more layers of neurons. It includes an input layer, hidden layer (middle layer) 

and output layer.  BPNN is one of the well known neural network models and has been deployed 
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in the various problem domain.  In this study, BPNN is run using the Levenberg-Marquardt 

algorithm. In time series forecasting, particularly in the climate domain, LM is seen as a common 

choice as a BPNN learning algorithm (Sulaiman et al., 2014; Mokhtar et al., 2016). Choosing the 

number of nodes (represented as circles) for each layer will depend on the problem NN is trying 

to solve, the types of data network it is dealing with, and the quality of data. The number of input 

and output nodes depends on the training set in hand. The number of hidden nodes is determined 

by an empirical approach, in which NN is retrained with varying numbers of hidden neurons, and 

the output error is observed as a function of the number of hidden units (Mokhtar et al., 2016). 

The algorithm used for the initialisation of BPNN weights is the Nguyen-Widrow weight 

initialisation algorithm. The Nguyen-Widrow method generates initial weights and bias values 

for a layer so that the active regions of the layers of neurons will be distributed approximately 

evenly over the input space (El-Shafie et al., 2012). 

 

Proposed Backprogation Neural Network Model 

 

Four experiments, namely Experiment-A, Experiment-B1, Experiment-B2, and Experiment-B3, 

have been conducted using the developed BPNN Model. Each experiment uses different 

combinations of inputs: Experiment-A applies the six extreme rainfall indices as predictors; in 

Experiment-B1, the values of PX5D for the previous three months are applied as predictors; for 

Experiment-B2, the previous six months of PX5D index values are applied as predictors; 

whereas in Experiment-B3, the values of PX5D for the last twelve months are used as predictors. 

The experiments’ target is the monthly maximum five consecutive days of rainfall amount 

(PX5D) index for one month ahead. Figure 2 shows the underlying architecture of the developed 

BPNN model.  BPNN consists of three layers: input, hidden and output layer. Time is 

represented as t, which mean current month, while t+1 means next month. 

 

 

 
 

Figure 2. Basic BPNN Architecture Diagram 

 

 

Experiment-A is developed using the six extreme rainfall core indices (outlined by STARDEX) 

of the current month (t) as inputs, while the output is the PX5D index value of the next month 

(t+1). The dataset used to train and test BPNN in this experiment is Dataset-A (Table 3). 

Dataset-A has been created to have the values of the six core indices in the predictor part. 
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Meanwhile, the target part has only one variable, which is the PX5D value of the next month 

(Figure 3). 

 

Table 3. 

Sample of Dataset A 

Predictors Target 

PQ90(t) PX5D(t) PINT(t) PFL90(t) PNL90(t) PXCDD(t) PX5D(t+1) 

28.00 77.00 15.73 6 0.21 1 45.50 

29.50 81.00 20.07 8 0.25 1 56.50 

24.60 68.00 11.94 4 0.30 2 34.00 

30.40 76.00 13.06 4 0.36 2 39.50 

30.70 75.00 12.55 4 0.41 2 85.25 

 

 

 
Figure 3. Initial BPNN Architecture for Experiment-A 

 

Experiment-B1 has been developed to forecast the maximum five consecutive days for a month 

ahead using the values of the PX5D of three months before. Dataset-B1 was used to train and test 

the BPNN of this experiment (Table 4). Dataset-B1 was created using a sliding window size of 3. 

The predictors of this model are the three-month delay of the PX5D values (t, t-1, t-2). The 

output is the PX5D index value of the next month (Figure 4). 

 

Table 4. 

Sample of Dataset B1 

Predictors Target 

PX5D(t-2) PX5D(t-1) PX5D(t) PX5D(t+1) 

56.00 90.00 140.00 64.00 

90.00 140.00 64.00 110.00 

140.00 64.00 110.00 76.00 

64.00 110.00 76.00 18.00 

110.00 76.00 18.00 123.00 
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Figure 4. Initial BPNN Architecture for Experiment-B1 

 

 

Dataset-B2 (Table 5) is developed to fit the BPNN architecture of Experiment-B2 (Figure 5). 

This dataset has been created to have the values of the previous six months in the predictor part. 

Dataset-B2 was created using the sliding window technique with a window size of 6. The values 

of the PX5D index of a six-month delay is set to be introduced to the BPNN of this model as 

inputs, and the target is the PX5D value of the next month.  

 

Table 5. 

Sample of Dataset B2 

Predictors Target 

PX5D(t-5) PX5D(t-4) PX5D(t-3) PX5D(t-2) PX5D(t-1) PX5D(t) PX5D(t+1 

76.00 39.50 87.00 56.00 90.00 140.00 64.00 

39.50 87.00 56.00 90.00 140.00 64.00 110.00 

87.00 56.00 90.00 140.00 64.00 110.00 76.00 

56.00 90.00 140.00 64.00 110.00 76.00 18.00 

90.00 140.00 64.00 110.00 76.00 18.00 123.00 

 

 

 

 
Figure 5. Initial BPNN Architecture for Experiment-B2 
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Experiment-B3 has been developed using the values of the PX5D index of the past year (12 

months) to forecast the PX5D value of the next month (t+1). Dataset-B3 was created to train and 

test the BPNN of Experiment-B3 (Table 6). Dataset-B3 was created using the sliding window 

technique with a window size of 12. In order to obtain the values of the PX5D index for the last 

twelve months in the predictor part of the dataset.  

Whereas the target part of this dataset is the same as other datasets, which is the PX5D index 

value for the next month (Figure 6). 

 

Table 6 

Sample of Dataset B3 

Predictors Target 

PX5D(t-11) PX5D(t-10) PX5D(t-9) PX5D(t-8) PX5D(t-7) PX5D(t-6) PX5D(t-5) PX5D(t-4) PX5D(t-3) PX5D(t-2) PX5D(t-1) PX5D(t) PX5D(t+1) 

38.5 52 73 78 223 82.5 91 172 62 32 131 77 45.5 

52 73 78 223 82.5 91 172 62 32 131 77 45 44 

73 78 223 82.5 91 172 62 32 131 77 45.5 44 61 

78 223 82.5 91 172 62 32 131 77 45.5 44 61 38.2 

223 82.5 91 172 62 32 131 77 45.5 44 61 38.2 71 

 

 

 
Figure 6. Initial BPNN Architecture for Experiment-B3 

 

 

 

RESULT 

 

Results of the four BPNN experiments are compared to find which experiment has the lowest 

error rate. The mean absolute error formula (Equation 1) is applied to calculate the error between 

the network output and the target of each experiment. 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑡𝑘 −  𝑦𝑘|𝑛

𝑘=1           (1) 

 

Where n is the number of the output, to represents the target value, while yk represent the BPNN 

output. Experiment-A has been developed using Dataset-A. The number of input units is six. The 
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number of hidden units has been determined using the heuristic approach by training BPNN with 

different numbers of hidden units. The selection criterion was the model output’s MAE. It was 

found that when the number of hidden units is three, and the error is the lowest. The MAE value 

for this experiment is 31.62.  The final BPNN architecture for Experiment-A with three hidden 

nodes is shown in Figure 7. 

 

 
Figure 7. Final BPNN Architecture for Experiment-A (6-3-1) 

 

 

Experiment-B1 was developed using Dataset-B1. This means Experiment-B1’s BPNN has three 

units in the input layer. The number of hidden units has been determined by training BPNN with 

different numbers of hidden units and then selecting the network with the lowest MAE. It was 

found that when the network was trained with eleven units in the hidden layer, the network 

output error was the lowest, equal to 33.44.  The final BPNN architecture for Experiment-B1 

with eleven hidden nodes is shown in Figure 8. 

 

 

 
Figure 8. Final BPNN Architecture for Experiment-B1(3-11-1) 
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Experiment-B2’s BPNN has been developed to forecast the maximum five consecutive days of 

rainfall amount of one month by using Dataset-B2. The best MAE of this model output was 

32.95 when the network was trained with seven units in the hidden layer.  The final BPNN 

architecture for Experiment-B2 with seven hidden nodes is shown in Figure 9. 

 

 

 
Figure 9. Final BPNN Architecture for Experiment-B2 (6-7-1) 

 

Experiment-B3 has been developed using the values of the PX5D index of the past year 

(Dataset-B3) to forecast the PX5D value of the next month. This model has twelve units in the 

input layer, nine units in the hidden layer, and one unit in the output layer. The number of units 

in the hidden layer has been determined by training BPNN with different numbers of hidden 

units. The best MAE obtained from the Model-B3 output was 33.82.  The final BPNN 

architecture for Experiment-B3 with nine hidden nodes is shown in Figure 10. 

 

 

 
Figure 10.  Final BPNN Architecture for Experiment-B3 (12-9-1) 
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The main aim of developing four experiments is to find which input combination would give a 

better forecasting accuracy. MAE evaluation metric was calculated for the test period of each 

experiment separately. Table 7 shows the obtained MAE values and the BPNN model from each 

experiment. The results are illustrated as a graph as in Figure 7. As can be seen in Figure 7, using 

the descriptive indices of extreme rainfall contributes to making the forecasting error lower than 

when using only the lagged value of the PX5D index. Experiment-A has outperformed 

Experiment-B1, Experiment-B2, and Experiment-B3 in extreme rainfall forecasting.  

Table 7 

Summary of the Results 

Experiment MAE 
Number of Units in BPNN 

Input Hidden Nodes Output 

A 31.62 6 3 1 

B1 33.44 3 11 1 

B2 32.95 6 7 1 

B3 33.82 12 9 1 

 

 

 

 
 

Figure 7. MAE values of the four BPNN model experiments 

 

Experiment-A, which was developed using BPNN and the six extreme rainfall indices as 

predictors, has outperformed the other developed models. Using the six extreme rainfall indices 

as predictors have contributed in obtaining a lower forecasting error rate than using the value of 

only one index. Utilising BPNN in forecasting extreme rainfall based on the six extreme rainfall 

indices as predictors led to having a lower error rate. This proves that adding more descriptive 

indices helps in obtaining lower error measurements.  An equivalent statistical model to the 

BPNN model in Experiment-A is also developed as a comparison. The statistical model is a 

multiple regression model. The same data series used to train and test Experiment-A BPNN has 

been used to calculate the multiple regression model. Figure 9 shows the comparison of MAE for 

the BPNN model (from Experiment-A) and the multiple regression model.  As shown in the 
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figure, the MAE for the multiple regression model is 34.15  higher compared to the BPNN 

model.   

This means the BPNN model has better performance compared to the multiple regression model. 

 

 

 
Figure 9. Comparison of the BPNN with Multiple Regression 

 

 

 

CONCLUSIONS 

 

This study presented four different methods for extreme rainfall forecasting. Different 

forecasting models have been employed using different types of variables. All the models share 

the same goal: forecasting the maximum five consecutive days of rainfall amount of a month 

ahead. Using BPNN to forecast extreme rainfall events with six extreme rainfall descriptive 

indices as predictors produce a lower error measurement as compared to using the multiple 

regression model or applying one extreme rainfall index as a predictor. When a comparison was 

conducted between the BPNN model (Experiment-A), which uses the six core extreme rainfall 

indices, and the other BPNN experiments that used lagged values of the maximum five 

consecutive days of rainfall amount, it was found that Experiment-A produced the lowest error 

measurement. The extreme rainfall forecasting error can be reduced in order to develop a 

forecasting model with higher accuracy. Thus more variables can be combined with extreme 

rainfall indices to decrease the forecasting models' output error. Different lag lengths can be 

experimented to find the most significant period of previous months. 
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