
 249

Journal of ICT, 20, No. 2 (April) 2021, pp: 249–276

How to cite this article:
Kumar, S., Ratnoo, S., & Vashishtha, J. (2021). Hyper heuristic evolutionary approach
for constructing decision tree classifiers. Journal of Information and Communication
Technology, 20(2), 249-276. https://doi.org/10.32890/jict2021.20.2.5

Hyper-Heuristic Evolutionary Approach for
Constructing Decision Tree Classifiers

Sunil Kumar, Saroj Ratnoo & Jyoti Vashishtha

Department of Computer Science and Engineering
Guru Jambheshwar University of Science and

Technology, India

skvermacse@gmail.com
ratnoosaroj; jyoti.vst@gmail.com

Received: 7/7/2020 	 Revised: 28/10/2020 Accepted: 1/11/2020 Published: 23/2/2021

ABSTRACT

Decision tree models have earned a special status in predictive
modeling since these are considered comprehensible for human
analysis and insight. Classification and regression tree (CART)
algorithm is one of the renowned decision tree induction algorithms
to address classification as well as regression problems. Finding
optimal values for the hyper parameters of a decision tree construction
algorithm is a challenging issue. While making an effective decision
tree classifier with high accuracy and comprehensibility, there is a
need to address the question of setting optimal values for its hyper
parameters like the maximum size of the tree, the minimum number
of instances required in a node for inducing a split, node splitting
criterion, and the amount of pruning. The hyper parameter setting

http://e-journal.uum.edu.my/index.php/jict

JOURNAL OF INFORMATION AND
COMMUNICATION TECHNOLOGY

250

Journal of ICT, 20, No. 2 (April) 2021, pp: 249–276

influences the performance of the decision tree model. As known
by researchers, there is no single setting of hyper parameters that
works equally well for different datasets. A particular setting
that gives an optimal decision tree for one dataset may produce a
sub-optimal decision tree model for another dataset. In this paper,
a hyper-heuristic approach was presented for tuning the hyper
parameters of recursive and partition trees (Rpart), which is a typical
implementation of CART in statistical and data analytics package R.
The study employed an evolutionary algorithm as hyper-heuristic
for tuning the hyper parameters of the decision tree classifier. The
approach was named as hyper-heuristic evolutionary approach with
recursive and partition trees (HEARpart). The proposed approach was
validated on 30 datasets. It was statistically proven that HEARpart
performed significantly better than WEKA’s J48 algorithm in terms
of error rate, F-measure, and tree size. Furthermore, the suggested
hyper-heuristic algorithm constructed significantly comprehensible
models as compared to WEKA’s J48, CART, and other similar
decision tree construction strategies. The results showed that the
accuracy achieved by the hyper-heuristic approach was slightly less
as compared to the other comparative approaches.

Keywords: Machine learning, evolutionary algorithms, hyper-
heuristic, decision trees, classification, CART.

INTRODUCTION

Decision trees, a class of supervised learning algorithms, are widely
used for addressing classification problems in data mining and machine
learning. A decision tree classifier is built from the training data of
class-labeled instances. Subsequently, the classifier is used to predict
the class labels for new instances. Decision trees have come to be one
of the most widely used predictive modeling algorithms due to their
reasonable accuracy and high comprehensibility. Since Quinlan first
proposed the decision tree induction algorithm (Quinlan, 1986), many
variants of decision trees such as C4.5, C5.0, chi-square automatic
interaction detection (CHAID), and classification and regression tree
(CART), algorithm CART have appeared for addressing predictive
modeling tasks (Han et al., 2011; Witten & Frank, 2011).

 251

Journal of ICT, 20, No. 2 (April) 2021, pp: 249–276

The classical methods create decision tree models by following a top-
down greedy induction approach. Initially, the root node contains all
the data. The data at the root node is partitioned into sub-nodes based
on the values of an attribute selected for the split. The same process
repeats recursively for each sub-node in a hierarchical manner until a
stopping criterion is met. There are many criteria in the literature for
the selection of the splitting attributes. Some of the popular ones are
entropy, information gain, and Gini index (Han et al., 2011; Witten &
Frank, 2011).

A decision tree is constructed in two phases: i) a learning phase and ii)
a pruning phase. The learning phase constructs the tree in a top-down
recursive manner as described in the previous paragraph. Since the
initial decision tree could be large and complex, the pruning phase
applies heuristics to reduce the complexity of the tree. Therefore,
all decision tree algorithms adopt pruning to avoid overfitting of the
model (Esposito et al., 1997). Determining the amount of pruning is
a complex issue. If a tree is not pruned enough, it tends to capture
the noise in the training data. Such an overfitted model has less
generalization power and higher variance. Over-pruning may result in
a model with higher bias and poor accuracy.

Breiman et al. (1984) introduced classification and regression tree,
which is abbreviated as CART. The decision tree algorithms C4.5
and C5.0 use entropy as a measure of impurity while splitting nodes,
whereas CART employs the Gini index, which is a generalization of
binomial variance. Therefore, CART can have only binary splits as
compared to other decision tree algorithms that allow multiway splits.
While most of the decision tree algorithms are meant for classification
problems, CART can be used for classification and regression modeling
with equal ease and efficiency. The CART algorithm is implemented
with slight variations using R package, named as recursive and
partition tree (Rpart). One of the variations is that Rpart is allowed
to have either information gain or Gini index as the splitting criterion
(Therneau et al., 2019).

The hyper parameters such as the size of neighborhood for k-nearest
neighbor classifiers, choice of kernel function for support vector
machines, and splitting criterion for decision trees cannot be
determined from the training data. These have to be determined
externally by the machine learning practitioners or researchers who

252

Journal of ICT, 20, No. 2 (April) 2021, pp: 249–276

tune these parameters experimentally. Almost all machine learning
algorithms have one or more hyper parameters that directly influence
their generalization power and predictive performance. Determining
the appropriate values for hyper parameters is a challenging issue.
Any ad hoc approach for setting these parameters results in the sub-
optimal performance of the learning algorithms. No single hyper
parameter setting works equally well across different datasets. A
particular hyper parameter setting may produce an accurate classifier
for a specific dataset, but it may fail in doing so for other datasets.

Like other machine learning algorithms, for optimal performance
of decision tree classifiers, there is a need to set its several hyper
parameters, such as the maximum depth of the tree, the minimum
number of instances at a node for inducing a split, the splitting
criterion, and the complexity parameter that controls the amount
of pruning. From the same training data, many predictive models
could be constructed depending on the choice of values of different
hyper parameters. Obtaining a decision tree model with the highest
possible accuracy and simplicity is not at all a trivial task and, in fact,
finding an optimal decision tree model for classification is a complex
combinatorial optimization problem. The decision tree model with
high accuracy and comprehensibility cannot be obtained without
addressing the question of setting optimal values for its various hyper
parameters.

Evolutionary algorithms (EAs) work with a population of candidate
solutions to optimization problems. Over subsequent generations,
better solutions are evolved through fitness proportionate selection,
recombination, and mutation operators (Michalewicz, 1996; Yu &
Gen, 2010). Besides, these are effective hyper-heuristic methods for
automatically designing decision tree models (Barros et al., 2012).

This paper proposes a hyper-heuristic evolutionary approach for
constructing accurate and comprehensible decision tree models
using the recursive and partition tree (Rpart) algorithm for a variety
of datasets. The proposed algorithm is named as hyper-heuristic
evolutionary approach with recursive and partition trees (HEARpart).
A genetic algorithm (GA) is used as a hyper-heuristic to find optimal
decision tree models for each dataset from the search space of all
possible decision trees. The suggested approach tunes the four
hyper parameters of recursive partitioning and regression tree: i) the

 253

Journal of ICT, 20, No. 2 (April) 2021, pp: 249–276

minimum number of instances that must exist in a node for a split; ii)
maximum depth of the tree; iii) splitting criteria; and iv) complexity
parameter to control the amount of pruning.

The motivation of this experimental research is to improve accuracy
and reduce the size of the decision trees classifier. This paper compares
the decision tree models produced by the proposed hyper-heuristic
evolutionary approach with the ones generated by Rpart with its
hyper parameters set to their default values and with the other similar
research works. The tuning of hyper parameters for each data domain
exclusively during the learning phase of decision tree models has
been successful in achieving statistically higher comprehensibility
without a significant compromise on the predictive performance.
The main contribution of the suggested approach is toward building
decision tree models that are optimal for each dataset individually
in terms of accuracy and comprehensibility. While Rpart is used for
construction of decision trees, the approach can easily be migrated to
other machine learning algorithms.

The rest of the paper is organized as follows. The second section
presents a review of the earlier research works carried out for
constructing decision tree predictive models using meta or hyper-
heuristic approaches. The third section describes the components of
the hyper-heuristic approach proposed in this paper. The experimental
design consisting of the research methodology is given in the fourth
section. A discussion and analysis of results are presented in the fifth
section. The last section concludes the research and points toward the
novel research directions.

RELATED WORKS

This section reviews the related research works to contextualize the
present work. The section intends to include only the benchmark
and the most cited works. The review focuses on the application
of metaheuristic and hyper-heuristic approaches for decision tree
construction. In the world of machine learning and predictive analytics,
decision trees are one of the most popular prediction methods. Many
decision tree algorithms such as ID3, C4.5, C5.0, CART, and CHAID
have been developed (Han et al., 2011; Witten & Frank, 2011). The
decision tree models follow a greedy strategy for growing from top to
bottom, which often results in local optimal predictive models.

254

Journal of ICT, 20, No. 2 (April) 2021, pp: 249–276

Researchers have proposed various methods to address the problems
posed by the top-down recursive greedy strategy of decision tree
construction. Two of these methods are ensemble learning and the
use of metaheuristics and hyper-heuristics for constructing optimal
decision tree models. In ensemble learning, many trees are grown,
and the outcome of the model is predicted through voting amongst
all the trees included in the ensemble. The accuracy of ensemble
methods is higher than the models based on a single decision tree.
However, in ensemble learning, the comprehensibility of a single
decision tree model is compromised. Therefore, ensembles are
not a good choice for domains such as disease and fault diagnosis
where the interpretability of classifier is critical for decision-making
(Cutler et al., 2012; Polikar, 2012). The aim of metaheuristics and
hyper-heuristics approaches is to maintain the high accuracy as well
as comprehensibility of decision tree models. The EAs fall under the
category of metaheuristic algorithms and perform a comprehensive
search in the search space of all the possible decision tree classifiers to
arrive at the global optimal solution. The EAs also tackle the problem
of attribute interaction, whereas greedy methods of decision tree
construction fail to do so (Barros et al., 2012).

The EAs have been used mainly in three ways for the construction of
decision tree models. In the first approach, researchers have tried to
construct an optimal decision tree classifier by combining the portions
of the existing decision trees by using evolutionary operators. In
the second approach, metaheuristics have been applied for building
decision tree models from scratch. In the third approach, meta or
hyper-heuristic algorithms have been applied to automatically design
decision tree algorithms by optimizing the hyper parameters such
as node splitting criterion, complexity of decision tree, selection
of features, selection of appropriate training and test data, or a
combination of these.

Fue et al. (2003) followed the first approach and applied a GA for
obtaining an accurate decision tree classifier. In their work, the initial
population of trees was generated using C4.5. Later, the components
of various trees were combined to obtain better decision tree
classifiers using GA operators. There have been attempts to arrange
decision rules in the hierarchical form to reduce redundancy and
increase comprehensibility (Bharadwaj & Saroj, 2009; 2010). The
authors applied GAs to discover classification rules at multiple levels
of abstraction. Liu and Fan (2014) employed a GA to optimize the

 255

Journal of ICT, 20, No. 2 (April) 2021, pp: 249–276

classification rules obtained from the C4.5 decision tree algorithm for
classifying mobile users. The research was shown to achieve higher
accuracy and comprehensibility as compared to the simple decision
tree and support vector machine classifiers. All the above approaches
optimize the existing classifiers. However, these approaches only
combine the portions of existing decision trees or classification rules
to arrive at classifiers with improved performance. Such approaches
fail to find the optimal classifier in case the essential components to
form it are missing in the existing population of decision trees.

In the second approach, the decision trees are constructed right from
scratch using metaheuristic approaches. In this direction, Cha and
Tappert (2009) devised encoding and decoding schemes for decision
trees to be used with metaheuristic methods. Pacheco et al. (2012)
suggested a greedy randomized adaptive search procedure (GRASP)
for constructing binary classification trees to produce accurate
yet simple decision tree models. The authors modified the search
procedure for determining the best splitting attribute at each node of
the decision tree construction process. Instead of selecting the single
best splitting attribute based on some impurity reduction measure,
GRASP randomly selected one of the best splitting attributes from a
set of feasible ones. The process grew several trees and the decision
tree with the least complexity was selected. The focus of this work
was on discovering the most comprehensible decision tree classifiers
for a predetermined level of accuracy. Hemmateenejad et al. (2011)
combined the ant colony optimization algorithm and crossover and
mutation operators from GA to improve the performance of CART
predictive models. The hybrid approach was shown to have achieved
better predictive performance for modeling the melting points of a
large number of chemical compounds.

Further, in the sequence, a significant contribution came from Otero
et al. (2012) for constructing decision trees by combining the strategy
of classical tree induction techniques with the ant colony optimization
(ACO) algorithm. The authors did extensive experimentation with
the help of 22 publicly available datasets from the UCI machine
learning repository. Their work showed that the predictive accuracy
achieved by their approach was significantly higher than the accuracy
of C4.5 and CART. Decision tree classifiers based on GAs have
achieved competitive accuracy for network intrusion detection and
fault diagnosis (Karabadji et al., 2014, 2012; Stein et al., 2005).
Recently, Adibi (2019) suggested a GA-based optimal decision tree

256

Journal of ICT, 20, No. 2 (April) 2021, pp: 249–276

construction method to improve the performance of decision tree
classifiers for single and multi-output datasets. The authors presented
a bi-level discrete-continuous GA to simultaneously select effective
features and construct an optimal tree.

The main advantage of evolving decision tree classifiers from scratch
by using metaheuristic approaches such as EA and ACO is to escape
from the local optimal solutions. The literature review shows that
the metaheuristic approaches are less prone to sub-optimal solutions
and can find optimal decision tree classifiers with high accuracy and
comprehensibility. Nevertheless, the metaheuristic approaches are
not without limitations. Domain-specific and particular heuristic and
metaheuristic methods do not often perform well when applied to
diverse problem domains without significant modification. Therefore,
hyper-heuristics approaches have recently gained increased attention
of machine learning researchers as a third approach for constructing
optimal decision tree classifiers.

Hyper-heuristics are search methods that operate on a lower level of
heuristics and have emerged as a way to enhance the generalization
capabilities of machine learning algorithms. In this direction, an
outstanding contribution came about in the form of a hyper-heuristic
evolutionary algorithm (HEAD-DT) for the automatic designing of
decision tree algorithms (Barros et al., 2012; Barros et al., 2014).
The automatically designed decision tree algorithms were devised
by combining building blocks of heuristics through an evolutionary
algorithm. The building blocks included splitting genes, stopping
criteria genes, missing value genes, and pruning genes. This hyper-
heuristic approach surpassed the traditional decision tree construction
methods like C4.5 and CART on account of accuracy and F-measure.
Mantovani et al. (2016) explored different hyper parameter tuning
techniques for WEKA’s J48 decision tree algorithm. The authors
used grid search, GA, particle swarm optimization, and estimation
of distribution algorithm as the three metaheuristic techniques for
tuning of hyper parameters of J48 algorithm. The results showed that
all the tuning techniques were at par with each other, but performed
significantly better as compared to the decision tree models generated
by simply using the default hyper parameters of J48 algorithm.
Karabadji et al. (2017) proposed an evolutionary scheme (ES) for
identifying the best training and test sets, and other parameters to pull
out the optimal decision tree. The authors showed that their approach
outperformed the classical decision tree construction methods in
terms of accuracy and simplicity. Since hyper-heuristic methodologies

 257

Journal of ICT, 20, No. 2 (April) 2021, pp: 249–276

provided domain-independent solutions, the researchers continued to
develop hyper-heuristic methods that applied to a range of different
problems (Drake et al., 2020; Yafrani et al., 2018; Sabar et al., 2017).

The experimental research conducted in this paper is an attempt to
improve the accuracy and comprehensibility of the Rpart decision
tree classifier by tuning its hyper parameters using a GA that is a
promising evolutionary optimization technique. This study intends to
discover the optimal decision tree classifiers that are well fitted to the
datasets across different domains. The research presented in this paper
falls within the third approach of automatically discovering optimal
decision tree classification models.

THE PROPOSED HYPER-HEURISTIC APPROACH

This section presents the overall design of the proposed hyper-heuristic
approach (HEARpart). To begin with, the dataset was divided into
three parts: i) training dataset, ii) validation dataset, and iii) test dataset,
by using uniform random sampling without replacement. The data
partitions are shown in Figure 1. The hyper parameters of the Rpart
construction algorithm were tuned on the validation dataset by using
GA, specifically designed for this purpose. The GA routine returned
the set of optimal values for hyper parameters. Thereupon a decision
tree model was constructed on the training data by setting the hyper
parameters of Rpart to an optimal configuration. The performance of
the resulting model was evaluated on the test data. The overall design
of the proposed hyper-heuristic method is illustrated with the help of
a flow chart in Figure 2.

Figure 1

The Data Partitioning Scheme.

independent solutions, the researchers continued to develop hyper-heuristic methods that applied to a
range of different problems (Drake et al., 2020; Yafrani et al., 2018; Sabar et al., 2017).

The experimental research conducted in this paper is an attempt to improve the accuracy and
comprehensibility of the Rpart decision tree classifier by tuning its hyper parameters using a GA that
is a promising evolutionary optimization technique. This study intends to discover the optimal decision
tree classifiers that are well fitted to the datasets across different domains. The research presented in
this paper falls within the third approach of automatically discovering optimal decision tree
classification models.

THE PROPOSED HYPER-HEURISTIC APPROACH

This section presents the overall design of the proposed hyper-heuristic approach (HEARpart). To begin
with, the dataset was divided into three parts: i) training dataset, ii) validation dataset, and iii) test
dataset, by using uniform random sampling without replacement. The data partitions are shown in
Figure 1. The hyper parameters of the Rpart construction algorithm were tuned on the validation dataset
by using GA, specifically designed for this purpose. The GA routine returned the set of optimal values
for hyper parameters. Thereupon a decision tree model was constructed on the training data by setting
the hyper parameters of Rpart to an optimal configuration. The performance of the resulting model was
evaluated on the test data. The overall design of the proposed hyper-heuristic method is illustrated with
the help of a flow chart in Figure 2.

Figure 1. The data partitioning scheme.

Training data
70%

Data

Training data
70%

Validation data
30%

Test data
30%

258

Journal of ICT, 20, No. 2 (April) 2021, pp: 249–276

Figure 2

The Proposed System (HEARpart).

The tuning of the hyper parameter of a decision tree algorithm was
at the core of the HEARpart. For the hyper-heuristic approach, a GA
was designed to tune the hyper parameters of the Rpart for a variety
of datasets. This study chose the following four hyper parameters that
directly influence the performance of decision tree models.

Minimum split: It signifies the minimum number of instances that
must exist in a node for further splitting. The optimal value of this
parameter will depend on the number of instances in the dataset and
the distribution of the target variable.

Complexity: The role of this factor is to prune off the worthless splits
to enhance the overall fit of the model. The factor plays an important
role in avoiding the splits that tend to produce overfitted models and

Figure 2. The proposed system (HEARpart).

The tuning of the hyper parameter of a decision tree algorithm was at the core of the HEARpart. For
the hyper-heuristic approach, a GA was designed to tune the hyper parameters of the Rpart for a variety
of datasets. This study chose the following four hyper parameters that directly influence the
performance of decision tree models.

Minimum split: It signifies the minimum number of instances that must exist in a node for further
splitting. The optimal value of this parameter will depend on the number of instances in the dataset and
the distribution of the target variable.

Complexity: The role of this factor is to prune off the worthless splits to enhance the overall fit of the
model. The factor plays an important role in avoiding the splits that tend to produce overfitted models
and thus reduce the generalization power of the model. However, an over-pruned tree will not fit the

Yes No

Initialise a population of
chromosomes randomly

(each chromosome consists
of four design criteria genes)

Construct a population of Rpart
decision tree classifiers using

validation dataset

Evaluate the fitness of
chromosomes

(decision tree classifiers)

Apply selection crossover
and mutation operators to
create a new population of

chromosomes

Stopping
criterion?

Validation
data

Start

Tuning of hyper parameters
of Rpart through hyper-
heuristic evolutionary

approach

Fetch optimal set of values
of hyper design parameters

of Rpart

Construct decision tree
classifier model based on

optimal hyper design
parameters

HEARpart
decision tree classifier

Make predictions
for test data

Create confusion matrix
from predicted and actual

labels of test data and
measure the performance

metrics

Stop

Training
data

Test
data

 259

Journal of ICT, 20, No. 2 (April) 2021, pp: 249–276

thus reduce the generalization power of the model. However, an over-
pruned tree will not fit the training data and will be less accurate. The
setting up of an appropriate value for the complexity of the model is
of utmost importance.

Depth of the tree: This puts a maximum limit on the levels of the
decision tree from the root node to leaf nodes. The depth of a tree is
an indicator of the comprehensibility of the decision tree classifiers.
If two decision trees have the same accuracy, the smaller tree is more
desirable.

Splitting criterion: The choice of the splitting criterion is another
important issue in the construction of decision tree models. This
may vary from one dataset to another. The Rpart algorithm provides
information gain and Gini index as the two splitting criteria. The GA
can use either of the two.

The Genetic Algorithm Designs

This section elaborates on the GA design for finding the optimal values
for hyper parameters of the Rpart decision tree learning algorithm.

Encoding

Each chromosome in the GA population consisted of four genes
(minimum split, complexity, maximum depth of the decision tree,
and node splitting criterion), which have been explained earlier.
This research encoded each chromosome as a numeric string of four
genes, each one corresponding to the four criteria for decision tree
construction. Each gene was assigned values out of the supported
range of values for the respective criteria. The ranges of supported
values of the genes were ‘1 to 100’, ‘0.01 to 0.3’, ‘2 to 20’, and ‘0
or 1’, respectively. A typical chromosome is shown in the form of a
table.

The chromosome shown in Table 1 created an example decision tree
according to the above-specified values of the various genes. This
decision tree needed to have at least twenty examples for further
splitting at any node and its height could not exceed the seventh level
when the root of the tree was considered to be at level 0. The splitting
criterion was 1 for information gain and 0 for the Gini index. The

260

Journal of ICT, 20, No. 2 (April) 2021, pp: 249–276

value of complexity parameter 0.10 means that all those splits would
be pruned off, which would not enhance the fit of the model by 10%.

Table 1

Chromosome Structure

Minimum
split

Complexity
parameter

Maximum height
of tree

Splitting
criteria

20 0.10 7 1

Population Initialization

The population of the evolutionary algorithm was randomly initialized
with the values from the supported ranges of the respective genes.

Fitness Function

The choice of the fitness function was very important as it directed the
search toward the optimal solution. The GA used the accuracy of the
tree as fitness. The accuracy of a classifier model can be defined as the
percentage of correctly classified instances. The formula to calculate
accuracy is given in Equation 1 below:
			 				

(1)

where TP, FN, FP, and TN represent the number of True Positives,
False Negatives, False Positives, and True Negatives, respectively.
These are defined below:

TP: These are the number of instances that actually belong to the
positive class and also get predicted as positive by the classifier.

FN: These are the number of instances that actually belong to the
positive class but get predicted as negative by the classifier.

FP: These are the number of instances that belong to the negative
class but get predicted as positive by the classifier.

TN: These are the number of instances belong to the negative class
and also get predicted negative by the classifier.

The choice of the fitness function was very important as it directed the search toward the optimal
solution. The GA used the accuracy of the tree as fitness. The accuracy of a classifier model can be
defined as the percentage of correctly classified instances. The formula to calculate accuracy is given
in Equation 1 below:

)(

)(
FNFPTNTP

TNTPAccuracy



 (1)

where TP, FN, FP, and TN represent the number of True Positives, False Negatives, False Positives,
and True Negatives, respectively. These are defined below:

TP: These are the number of instances that actually belong to the positive class and also get predicted
as positive by the classifier.

FN: These are the number of instances that actually belong to the positive class but get predicted as
negative by the classifier.

FP: These are the number of instances that belong to the negative class but get predicted as positive by
the classifier.

TN: These are the number of instances belong to the negative class and also get predicted negative by
the classifier.

Genetic Operators

The genetic operators were used to modify or re-combine the genetic material of the GA population and
introduce new genetic material. The present study employed the following genetic operators.

Selection

The suggested GA design applied the tournament selection strategy for creating the mating pool for the
next generation. The tournament selection method avoided local convergence by keeping the selection
pressure in control. In a tournament selection, ‘K’ individuals were randomly selected from the
population and the individual with the best fitness was selected to become a parent. The same process
was repeated to select another parent. The value of K was set to 4.

Crossover

In the proposed GA design, a single point heuristic crossover operator was applied for creating offspring
from the real coded chromosomes. Out of the two parents P and Q, and assuming that Q was the better
fit parent, the heuristic crossover created offspring as given in Equations 2 and 3.

QPQO )(1  (2)

PQO)1(2   (3)

The symbol 𝛼𝛼 in the above equations is a random number between 0 and 1. The first offspring is a
projection, whereas the second one is a convex combination of the values of the two parents. For this

 261

Journal of ICT, 20, No. 2 (April) 2021, pp: 249–276

Genetic Operators

The genetic operators were used to modify or re-combine the genetic
material of the GA population and introduce new genetic material.
The present study employed the following genetic operators.

Selection

The suggested GA design applied the tournament selection strategy
for creating the mating pool for the next generation. The tournament
selection method avoided local convergence by keeping the selection
pressure in control. In a tournament selection, ‘K’ individuals were
randomly selected from the population and the individual with the
best fitness was selected to become a parent. The same process was
repeated to select another parent. The value of K was set to 4.

Crossover

In the proposed GA design, a single point heuristic crossover operator
was applied for creating offspring from the real coded chromosomes.
Out of the two parents P and Q, and assuming that Q was the better fit
parent, the heuristic crossover created offspring as given in Equations
2 and 3.

				 (2)

			
(3)

The symbol in the above equations is a random number between 0
and 1. The first offspring is a projection, whereas the second one is a
convex combination of the values of the two parents. For this reason,
the heuristic crossover operator maintained diversity in the population
as well as directed the search toward favorable zones of a search to
arrive at the optimal solution. The genes after the crossover point
were first modified according to Equations 2 and 3 and then these
were swapped between the two parents.

Mutation

This research applied a random mutation, i.e., the gene values of
chromosomes were randomly mutated within their respective ranges.
The mutation operator was essential for exploring the search space
of hyper parameters. The operator changed a small proportion of
genes of the chromosomes to maintain genetic diversity in the GA

The choice of the fitness function was very important as it directed the search toward the optimal
solution. The GA used the accuracy of the tree as fitness. The accuracy of a classifier model can be
defined as the percentage of correctly classified instances. The formula to calculate accuracy is given
in Equation 1 below:

)(

)(
FNFPTNTP

TNTPAccuracy



 (1)

where TP, FN, FP, and TN represent the number of True Positives, False Negatives, False Positives,
and True Negatives, respectively. These are defined below:

TP: These are the number of instances that actually belong to the positive class and also get predicted
as positive by the classifier.

FN: These are the number of instances that actually belong to the positive class but get predicted as
negative by the classifier.

FP: These are the number of instances that belong to the negative class but get predicted as positive by
the classifier.

TN: These are the number of instances belong to the negative class and also get predicted negative by
the classifier.

Genetic Operators

The genetic operators were used to modify or re-combine the genetic material of the GA population and
introduce new genetic material. The present study employed the following genetic operators.

Selection

The suggested GA design applied the tournament selection strategy for creating the mating pool for the
next generation. The tournament selection method avoided local convergence by keeping the selection
pressure in control. In a tournament selection, ‘K’ individuals were randomly selected from the
population and the individual with the best fitness was selected to become a parent. The same process
was repeated to select another parent. The value of K was set to 4.

Crossover

In the proposed GA design, a single point heuristic crossover operator was applied for creating offspring
from the real coded chromosomes. Out of the two parents P and Q, and assuming that Q was the better
fit parent, the heuristic crossover created offspring as given in Equations 2 and 3.

QPQO )(1  (2)

PQO)1(2   (3)

The symbol 𝛼𝛼 in the above equations is a random number between 0 and 1. The first offspring is a
projection, whereas the second one is a convex combination of the values of the two parents. For this

The choice of the fitness function was very important as it directed the search toward the optimal
solution. The GA used the accuracy of the tree as fitness. The accuracy of a classifier model can be
defined as the percentage of correctly classified instances. The formula to calculate accuracy is given
in Equation 1 below:

)(

)(
FNFPTNTP

TNTPAccuracy



 (1)

where TP, FN, FP, and TN represent the number of True Positives, False Negatives, False Positives,
and True Negatives, respectively. These are defined below:

TP: These are the number of instances that actually belong to the positive class and also get predicted
as positive by the classifier.

FN: These are the number of instances that actually belong to the positive class but get predicted as
negative by the classifier.

FP: These are the number of instances that belong to the negative class but get predicted as positive by
the classifier.

TN: These are the number of instances belong to the negative class and also get predicted negative by
the classifier.

Genetic Operators

The genetic operators were used to modify or re-combine the genetic material of the GA population and
introduce new genetic material. The present study employed the following genetic operators.

Selection

The suggested GA design applied the tournament selection strategy for creating the mating pool for the
next generation. The tournament selection method avoided local convergence by keeping the selection
pressure in control. In a tournament selection, ‘K’ individuals were randomly selected from the
population and the individual with the best fitness was selected to become a parent. The same process
was repeated to select another parent. The value of K was set to 4.

Crossover

In the proposed GA design, a single point heuristic crossover operator was applied for creating offspring
from the real coded chromosomes. Out of the two parents P and Q, and assuming that Q was the better
fit parent, the heuristic crossover created offspring as given in Equations 2 and 3.

QPQO )(1  (2)

PQO)1(2   (3)

The symbol 𝛼𝛼 in the above equations is a random number between 0 and 1. The first offspring is a
projection, whereas the second one is a convex combination of the values of the two parents. For this

262

Journal of ICT, 20, No. 2 (April) 2021, pp: 249–276

population. Every gene in the chromosomes had a small probability
to mutate.

Terminating Criterion

Genetic algorithms terminate either on the completion of a maximum
number of iterations or when the diversity of its population reaches a
pre-determined minimum. The GA was set to run for 100 generations;
however, it terminated earlier if there was no improvement in fitness
during the last 30 generations.

The real encoding of the chromosomes, the fitness function, and
the respective GA operators described above created successive
generations of decision tree classifiers based on different combinations
of hyper parameter values. All the components of the GA worked in
synergy and finally found an optimal set of hyper parameter values
that created an optimum decision tree classifier in terms of accuracy
and comprehensibility.

EXPERIMENTAL DESIGN AND RESULTS

This section describes the research methodology and presents the
experimental results. It also includes the interpretation of the results.

Datasets

The performance of decision tree classifiers generated by HEARpart
was tested on 30 datasets. The datasets were obtained from the UCI
and Kaggle machine learning repositories. These datasets are shown
in Table 2. The datasets were diverse in terms of the number of
instances, the number of attributes, and the number of classes.

Table 2

Description of Datasets for Constructing Decision Tree Classifiers

No. Dataset #Insts #Attribs # Classes No. Dataset #Insts #Attribs #Classes

1 Abalone 4177 8 28 16 Glass 214 10 6

2 Audiology 226 69 23 17 Hepatitis 80 20 2

 (continued)

 263

Journal of ICT, 20, No. 2 (April) 2021, pp: 249–276

No. Dataset #Insts #Attribs # Classes No. Dataset #Insts #Attribs #Classes

3 Bank
marketing

4521 17 2 18 Mushroom 5644 23 2

4 Banknote
authentication

1372 5 2 19 Nursery 12960 9 5

5 Breast cancer
Wisconsin

699 11 2 20 Parkinson’s 195 23 2

6 BEPS 1525 10 2 21 Primary
tumor

120 18 18

7 Breast cancer 286 10 2 22 Segment 2310 20 7

8 Bridge
version1

107 12 6 23 Sick 3103 28 2

9 Bupa liver 345 7 2 24 Sonar 208 61 2

10 Car 1729 7 4 25 Vote 232 17 2

11 Credit data 4455 14 2 26 Waveform
5000

5000 41 3

12 Cylinder
Bands

541 33 2 27 Wdbc-
mod2

569 31 2

13 Dermatology 366 35 6 28 Wine 178 14 3

14 Diabetes 769 9 2 29 Wine-white 4898 12 7

15 E. coli 337 8 8 30 Wine-red 1599 12 6

Tools

Classification tree models were constructed in R using rpart, ga, and
caret packages from the CRAN website (https://cran.r-project.org).
The ‘ga’ package in R provided many general-purpose functions
for optimization using GAs. It includes various flexible sets of
tools for solving continuous and discrete optimization problems. It
offers several kinds of encoding schemes, a large set of operators
for selection, recombination, and mutation steps for designing a GA.
A researcher only needs to simply embed the objective function for
the optimization problem at hand. The caret package was used for
measuring performance evaluation of the classifiers. It has a function
confusionMatrix() that takes the predicted and actual class labels and
outputs confusion matrix along with several other evaluation metrics.
This study also used WEKA for running the J48 decision tree classifier
algorithm.

264

Journal of ICT, 20, No. 2 (April) 2021, pp: 249–276

Performance Metrics

For comparison of the decision tree classifiers, this study used error
rate (1-accuracy), F-measure, and decision tree size. The total number
of nodes in it measured the size of a decision tree. The classification
accuracy of a classifier could be biased toward the majority class.
Therefore, it could be a misleading measure of the performance of a
classification algorithm, particularly for datasets with class skew, i.e.,
datasets with a small number of examples for the minority class as
compared to the majority class. This might be the case for the datasets
related to disease or fault diagnosis. Therefore, this research also
included F-measure for evaluating the performance of algorithms.

F-measure is the harmonic mean of precision and recall of a classifier.
Precision considers the percentage of instances that belong to the
positive class out of the total instances predicted as that of the positive
class. Recall, also known as sensitivity, measures the percentage of
instances that are predicted into the positive class out of the total
number of instances belonging to the positive class in the test data. It
is measured using Equations 4, 5, and 6.

(4)

where,

						 (5)

				 	 (6)

The tree size indicated the comprehensibility of the decision tree
classifiers. The lesser the size of the tree, the better the comprehensibility
of the classifier.

Sampling Scheme

The present study adopted a holdout random method as the sampling
scheme. The data were divided into training and test datasets in a
ratio of 0.7:0.3. The training data were further divided into training-
training and training-validation sets again in the ratio of 0.7: 0.3. The
proposed classifier algorithm used the training-training data for its

the positive class. Recall, also known as sensitivity, measures the percentage of instances that are
predicted into the positive class out of the total number of instances belonging to the positive class in
the test data. It is measured using Equations 4, 5, and 6.

SensitivityPrecision
Sensitivity(PrecisionMeasureF




)2

might be the case for the datasets related to disease or fault diagnosis. Therefore, this research also
included F-measure for evaluating the performance of algorithms.

F-measure is the harmonic mean of precision and recall of a classifier. Precision considers the
percentage of instances that belong to the positive class out of the total instances predicted as that of
the positive class. Recall, also known as sensitivity, measures the percentage of instances that are
predicted into the positive class out of the total number of instances belonging to the positive class in
the test data. It is measured using Equations 4, 5, and 6.

ySensitivitecision
ySensitivitecisionMeasureF





Pr

)(Pr2

 (4)
where,

FPTP
TPecision


Pr (5)

 (6)

The tree size indicated the comprehensibility of the decision tree classifiers. The lesser the size of the
tree, the better the comprehensibility of the classifier.

Sampling Scheme

The present study adopted a holdout random method as the sampling scheme. The data were divided
into training and test datasets in a ratio of 0.7:0.3. The training data were further divided into training-
training and training-validation sets again in the ratio of 0.7: 0.3. The proposed classifier algorithm used
the training-training data for its learning phase. The training-validation dataset was applied for tuning
the various hyper parameters of the decision tree algorithm, while the test dataset was used for
evaluating the resulting classifiers. Further, to balance out the influence of stochastic sampling error on
results, the HEARpart was run ten times with different random seeds. The results reported in this
research were based on the average values over the ten runs of the proposed algorithm. For Rpart and
J48 decision tree classifiers, no validation dataset was required. Therefore, the datasets were divided
simply into 67 percent and 33 percent as training and test data for these two classification algorithms.

Parameter Setting

The parameter setting for the GA is given in Table 3. A stopping criterion was also included such that
if there was no improvement in the solution for the last 30 generations, the GA automatically stopped
executing. The Rpart algorithm was run with its default values except for the four hyper parameters of
the decision tree construction process that were optimized by HEARpart.

Table 3

Parameter Setting for HEARpart

FN TP
TP Sensitivity




might be the case for the datasets related to disease or fault diagnosis. Therefore, this research also
included F-measure for evaluating the performance of algorithms.

F-measure is the harmonic mean of precision and recall of a classifier. Precision considers the
percentage of instances that belong to the positive class out of the total instances predicted as that of
the positive class. Recall, also known as sensitivity, measures the percentage of instances that are
predicted into the positive class out of the total number of instances belonging to the positive class in
the test data. It is measured using Equations 4, 5, and 6.

ySensitivitecision
ySensitivitecisionMeasureF





Pr

)(Pr2

 (4)
where,

FPTP
TPecision


Pr (5)

 (6)

The tree size indicated the comprehensibility of the decision tree classifiers. The lesser the size of the
tree, the better the comprehensibility of the classifier.

Sampling Scheme

The present study adopted a holdout random method as the sampling scheme. The data were divided
into training and test datasets in a ratio of 0.7:0.3. The training data were further divided into training-
training and training-validation sets again in the ratio of 0.7: 0.3. The proposed classifier algorithm used
the training-training data for its learning phase. The training-validation dataset was applied for tuning
the various hyper parameters of the decision tree algorithm, while the test dataset was used for
evaluating the resulting classifiers. Further, to balance out the influence of stochastic sampling error on
results, the HEARpart was run ten times with different random seeds. The results reported in this
research were based on the average values over the ten runs of the proposed algorithm. For Rpart and
J48 decision tree classifiers, no validation dataset was required. Therefore, the datasets were divided
simply into 67 percent and 33 percent as training and test data for these two classification algorithms.

Parameter Setting

The parameter setting for the GA is given in Table 3. A stopping criterion was also included such that
if there was no improvement in the solution for the last 30 generations, the GA automatically stopped
executing. The Rpart algorithm was run with its default values except for the four hyper parameters of
the decision tree construction process that were optimized by HEARpart.

Table 3

Parameter Setting for HEARpart

FN TP
TP Sensitivity




 265

Journal of ICT, 20, No. 2 (April) 2021, pp: 249–276

learning phase. The training-validation dataset was applied for tuning
the various hyper parameters of the decision tree algorithm, while the
test dataset was used for evaluating the resulting classifiers. Further,
to balance out the influence of stochastic sampling error on results, the
HEARpart was run ten times with different random seeds. The results
reported in this research were based on the average values over the
ten runs of the proposed algorithm. For Rpart and J48 decision tree
classifiers, no validation dataset was required. Therefore, the datasets
were divided simply into 67 percent and 33 percent as training and
test data for these two classification algorithms.

Parameter Setting

The parameter setting for the GA is given in Table 3. A stopping
criterion was also included such that if there was no improvement in
the solution for the last 30 generations, the GA automatically stopped
executing. The Rpart algorithm was run with its default values except
for the four hyper parameters of the decision tree construction process
that were optimized by HEARpart.

Table 3

Parameter Setting for HEARpart

Population
size

Number of
generations

Crossover
rate

Elitism Mutation rate

50 100 0.8 1 0.1

The parameter setting for J48 classification algorithm is given in
Table 4. The other parameters were kept at their default values. The
minimum number of objects required for further splitting a node was
20, which was also the default value for Rpart classifier in R. Since
HEARpart always produced binary splits while constructing decision
tree classifiers, the value for the binary split parameter of J48 was
set to true to make a fair comparison for the size of decision tree
classifiers.

266

Journal of ICT, 20, No. 2 (April) 2021, pp: 249–276

Table 4

Parameters Setting for WEKA J48

Binary split Confidence factor Min num objects Num fold Batch size

True 0.2 20 2 32

Comparative Study

This research compared the decision tree classifiers generated by
HEARpart with three benchmark research works in the related
field. The proposed approach was compared to the hyper-heuristic
evolutionary algorithm for the automatic designing of decision tree
algorithm (HEAD-DT) (Barros et al., 2012). The suggested algorithm
was also compared to the research work by Otero et al. (2012). In this
paper, the authors used the ACO algorithm for decision tree induction
in a top-down manner by probabilistically selecting attributes for node
splits based on the amount of pheromone and heuristic information.
A comparison was also made to the research work by Karabadji et al.
(2017), who employed a novel evolutionary strategy for identifying
the best parameter settings to construct optimal decision trees.

RESULTS AND ANALYSIS

Table 5 shows the comparative performance of HEARpart with
the simple Rpart algorithm and J48 of WEKA on 30 datasets. The
comparison of various decision tree classifiers was reported in terms
of error rate, F-measure, and size of decision tree classifiers. The best
values were highlighted in bold. Out of 30 the datasets, HEARpart had
less or at par error rate on 22 datasets as compared to other algorithms.
The WEKA-J48 results indicated less error rate for five datasets and
Rpart gave less error rate only on three datasets. Concerning F-measure,
HEARpart performed better or at par with the other algorithms again
in 22 datasets, whereas WEKA-J48 only won in 3 datasets. The results
of HEARpart appeared significant on comprehensibility as well.

 267

Journal of ICT, 20, No. 2 (April) 2021, pp: 249–276

Ta
bl

e
5

 Th
e

Pe
rf

or
m

an
ce

 E
va

lu
at

io
n

of
 th

e
Th

re
e

Al
go

ri
th

m
s

D
at

as
et

s
C

la
ss

ifi
ca

tio
n

er
ro

r
F-

m
ea

su
re

D
ec

is
io

n
tre

e
J4

8
R

pa
rt

H
EA

R
pa

rt
J4

8
R

pa
rt

H
EA

R
pa

rt
J4

8
R

pa
rt

H
EA

R
pa

rt
A

ba
lo

ne
0.

75
 (3

)
0.

76
 (1

.5
)

0.
76

 (1
.5

)
0.

23
 (3

)
0.

33
 (2

)
0.

34
 (1

)
16

9
(3

)
9(

2)
8(

1)
A

ud
io

lo
gy

0.
48

 (1
)

0.
48

 (1
)

0.
48

 (1
)

0.
43

 (3
)

0.
61

 (2
)

0.
68

 (1
)

7(
1)

9(
2.

5)
9(

2.
5)

B
an

k
m

ar
ke

tin
g

0.
10

 (1
.5

)
0.

09
 (3

)
0.

10
 (1

.5
)

0.
88

 (3
)

0.
92

 (1
.5

)
0.

92
 (1

.5
)

15
(2

)
23

(3
)

13
(1

)

B
an

kn
ot

e
au

th
en

tic
at

io
n

0.
02

 (1
)

0.
04

 (2
)

0.
05

 (3
)

0.
98

 (1
.5

)
0.

98
 (1

.5
)

0.
96

 (3
)

19
(2

.5
)

19
(2

.5
)

13
(1

)

B
re

as
t c

an
ce

r
W

is
co

ns
in

0.
05

 (3
)

0.
04

 (2
)

0.
03

 (1
)

0.
95

 (3
)

0.
96

 (2
)

0.
97

 (1
)

5(
1)

8(
3)

6(
2)

B
EP

S
0.

45
 (3

)
0.

43
 (2

)
0.

42
 (1

)
0.

54
 (3

)
0.

76
 (2

)
0.

77
 (1

)
27

(3
)

17
(2

)
5(

1)
B

re
as

t
ca

nc
er

0.
27

 (1
.5

)
0.

36
 (3

)
0.

27
 (1

.5
)

0.
69

 (3
)

0.
94

 (2
)

0.
95

 (1
)

5(
1.

5)
12

(3
)

5(
1.

5)

B
rid

ge
ve

rs
io

n1
0.

76
 (3

)
0.

56
 (2

)
0.

46
 (1

)
0.

20
 (3

)
0.

55
 (2

)
0.

64
 (1

)
3(

1)
5(

2)
7(

3)

B
up

a
liv

er
0.

36
 (3

)
0.

30
 (1

)
0.

31
 (2

)
0.

65
 (2

.5
)

0.
65

 (2
.5

)
0.

66
 (1

)
15

(2
)

23
(3

)
9(

1)
C

ar
0.

11
 (3

)
0.

07
 (1

.5
)

0.
07

 (1
.5

)
0.

89
 (3

)
0.

92
 (1

.5
)

0.
92

 (1
.5

)
37

(3
)

32
(2

)
29

(1
)

C
re

di
t d

at
a

0.
20

 (2
.5

)
0.

20
 (2

.5
)

0.
18

 (1
)

0.
79

 (3
)

0.
80

 (2
)

0.
82

 (1
)

15
(2

)
25

(3
)

9(
1)

C
yl

in
de

r b
an

ds
0.

44
 (3

)
0.

33
 (1

.5
)

0.
33

 (1
.5

)
0.

53
 (3

)
0.

67
 (2

)
0.

70
 (1

)
11

(2
)

14
(3

)
8(

1)
(c

on
tin

ue
d

268

Journal of ICT, 20, No. 2 (April) 2021, pp: 249–276

D
at

as
et

s
C

la
ss

ifi
ca

tio
n

er
ro

r
F-

m
ea

su
re

D
ec

is
io

n
tre

e
J4

8
R

pa
rt

H
EA

R
pa

rt
J4

8
R

pa
rt

H
EA

R
pa

rt
J4

8
R

pa
rt

H
EA

R
pa

rt

D
ia

be
te

s
0.

27
 (2

.5
)

0.
27

 (2
.5

)
0.

24
 (1

)
0.

73
 (1

.5
)

0.
73

 (1
.5

)
0.

72
 (3

)
19

(2
)

24
(3

)
13

(1
)

E.
 c

ol
i

0.
30

 (3
)

0.
22

 (2
)

0.
21

 (1
)

0.
66

 (3
)

0.
79

 (2
)

0.
81

 (1
)

11
(2

.5
)

11
(2

.5
)

10
(1

)
G

la
ss

0.
48

 (3
)

0.
37

 (1
)

0.
40

 (2
)

0.
49

 (3
)

0.
64

 (2
)

0.
65

 (1
)

7(
1)

13
(3

)
11

(2
)

H
ep

at
iti

s
0.

25
 (3

)
0.

23
 (2

)
0.

19
 (1

)
0.

64
 (3

)
0.

86
 (2

)
0.

90
 (1

)
1(

1)
2(

2)
3(

3)
M

us
hr

oo
m

0.
00

 (1
)

0.
00

 (1
)

0.
00

 (1
)

1.
00

 (1
)

1.
00

 (1
)

1.
00

 (1
)

11
(3

)
5(

1.
5)

5(
1.

5)
N

ur
se

ry
0.

04
 (1

)
0.

13
 (2

.5
)

0.
13

 (2
.5

)
0.

96
 (3

)
0.

88
 (1

.5
)

0.
88

 (1
.5

)
12

5(
3)

11
(1

.5
)

11
(1

.5
)

Pa
rk

in
so

n’
s

0.
22

 (3
)

0.
11

 (1
)

0.
14

 (2
)

0.
78

 (3
)

0.
89

 (1
)

0.
87

 (2
)

7(
2.

5)
7(

2.
5)

3(
1)

Pr
im

ar
y

tu
m

or
0.

81
 (3

)
0.

75
 (2

)
0.

71
 (1

)
0.

15
 (3

)
0.

34
 (2

)
0.

36
 (1

)
7(

2)
11

(3
)

4(
1)

Se
gm

en
t

0.
06

 (1
)

0.
08

 (2
.5

)
0.

08
 (2

.5
)

0.
94

 (3
)

0.
92

 (1
.5

)
0.

92
 (1

.5
)

33
(3

)
18

(1
)

20
(2

)
Si

ck
0.

06
 (1

.5
)

0.
07

 (3
)

0.
06

 (1
.5

)
0.

91
 (3

)
0.

94
 (2

)
0.

97
 (1

)
7(

1)
20

(3
)

8(
2)

So
na

r
0.

29
 (3

)
0.

24
 (2

)
0.

22
 (1

)
0.

70
 (1

)
0.

58
 (3

)
0.

62
 (2

)
9(

3)
8(

2)
5(

1)
Vo

te
0.

03
 (3

)
0.

02
 (1

.5
)

0.
02

 (1
.5

)
0.

97
 (3

)
0.

98
 (1

.5
)

0.
98

 (1
.5

)
3(

1)
3(

1)
3(

1)
W

av
ef

or
m

50
00

0.
24

 (1
)

0.
27

 (2
.5

)
0.

27
 (2

.5
)

0.
76

 (1
)

0.
73

 (2
.5

)
0.

73
 (2

.5
)

14
3(

3)
19

(2
)

18
(1

)

W
bd

c-
m

od
2

0.
06

 (1
)

0.
11

 (3
)

0.
09

 (2
)

0.
94

 (1
)

0.
89

 (3
)

0.
91

 (2
)

7(
2.

5)
7(

2.
5)

3(
1)

W
in

e
0.

15
 (3

)
0.

05
 (2

)
0.

02
 (1

)
0.

84
 (3

)
0.

95
 (2

)
0.

98
 (1

)
7(

1)
7(

1)
7(

1)
W

in
e-

w
hi

te
0.

48
 (3

)
0.

47
 (1

.5
)

0.
47

 (1
.5

)
0.

49
 (3

)
0.

56
 (1

.5
)

0.
56

 (1
.5

)
20

5(
3)

11
(1

.5
)

11
(1

.5
)

W
in

e-
re

d
0.

44
 (3

)
0.

41
 (1

.5
)

0.
41

 (1
.5

)
0.

55
 (3

)
0.

60
 (1

.5
)

0.
60

 (1
.5

)
53

(3
)

19
(2

)
14

(1
)

Av
er

ag
e

ra
nk

s
2.

35
1.

75
1.

5
2.

62
1.

87
1.

42
2.

08
2.

23
1.

35

 269

Journal of ICT, 20, No. 2 (April) 2021, pp: 249–276

For further analysis, this study ranked the algorithms according to their
performance. The lowest rank was assigned to the best performing
algorithm. Wherever there was a tie between any two algorithms,
an average of the two ranks was assigned to both. The HEARpart
approach attained the lowest average rank for all three evaluation
metrics. The average ranks are given in the last row of Table 5.

To exclude the possibility of HEARpart being better by sheer chance
factors, the results were further analyzed with the help of the Friedman
Rank Sum test, which is a nonparametric test for comparing multiple
algorithms on multiple datasets (Demsar, 2006). The null hypothesis
in the Friedman test is that no algorithm performs significantly
differently. The results of the Friedman test for the three decision
tree classifier algorithms are summarized in Table 6. The results from
Table 6 rejected the null hypothesis for all three evaluation metrics.
This indicated that the performance of at least one of the algorithms
was significantly different from the others.

Table 6

Friedman Test Results

Accuracy F-measure Tree size (# nodes)

Friedman test

Ch-squared value=9.74

P-value=0.008

Outcome of the test: Null
hypothesis is rejected

Friedman test

Ch-squared value=17.65

P-value=0.00016

Outcome of the test: Null
hypothesis is rejected

Friedman test

Ch-squared value=14.97

P-value=0.0006

Outcome of the test: Null
hypothesis is rejected

Next, for the pair-wise comparison of algorithms, Nemenyi post-hoc
test by Demsar (2006) was applied and the results are summarized
in Table 7. Based on the resulting p-values from the Nemenyi test, it
can be said that HEARpart was a winner algorithm in several ways.
It could construct simpler decision tree classifiers with less error rate
and high F-measure as compared to other algorithms considered in
the study.

270

Journal of ICT, 20, No. 2 (April) 2021, pp: 249–276

Table 7

Pair-wise Comparison of the Performance of Decision Tree Classifiers

Evaluation
metric

Nemenyi test p-values Summary of the result

Accuracy J48 Rpart The HEARpart method is
significantly better than the
J48 classifier at a significance
level of 0.05 (5%).

Rpart 0.24 -
HEARpart 0.013 0.437

F-measure J48 Rpart The Rpart classifier is
significantly better than the
J48 classifier at a significance
level of 0.1 (10%).
The HEARpart method is
significantly better than the
J48 classifier at a significance
level of 0.05 (5%).

Rpart 0.084 -
HEARpart 0.00032 0.189

Tree size
(Total nodes)

J48 Rpart The HEARpart method is
significantly better than the
J48 classifier at a significance
level of 0.05 (5%).
The HEARpart method is
significantly better than
the Rpart classifier at a
significance level of 0.05
(5%).

Rpart 0.83
HEARpart 0.0184 0.003

Table 8

Comparison of HEARpart and HEAD-DT

Dataset Error F-measure Tree size

HEAD-DT HEARpart HEAD-DT HEARpart HEAD-DT HEARpart

Abalone 0.80 0.76 0.20 0.34 4068 8

Audiology 0.20 0.48 0.79 0.68 119 9

Bridges
version1 0.40 0.46 0.56 0.64 157 5

Car 0.02 0.07 0.98 0.92 172 32

Cylinder
bands 0.28 0.33 0.72 0.70 211 14

 (continued)

 271

Journal of ICT, 20, No. 2 (April) 2021, pp: 249–276

Dataset Error F-measure Tree size

HEAD-DT HEARpart HEAD-DT HEARpart HEAD-DT HEARpart

Glass 0.27 0.40 0.72 0.65 86 13

Segment 0.03 0.08 0.97 0.92 133 18

Sick 0.01 0.06 0.99 0.97 154 20

Wine-red 0.36 0.41 0.63 0.60 796 19

Wine-white 0.37 0.47 0.63 0.56 2526 11

Tables 9 and 10 report the performance comparison of HEARpart
to the research works of Otero et al. (2012) and Karabadji et al.
(2017). The results in Table 9 implied that the ant miner algorithm
for decision tree construction had less error rates. HEARpart evolved
comprehensible trees of smaller sizes across all datasets in comparison
to the ant miner. According to Table 10, the ES achieved less error
rate for most of the datasets. Going by F-measure, the performance
of HEARpart and ES was comparable since each of the algorithms
dominated in six datasets. HEARpart stood as a clear winner in terms
of the size of decision trees across all datasets.

Table 9

Comparison of HEARpart and Ant Miner

Dataset Classification error Tree size
ATM HEARpart ATM HEARpart

Breast cancer 0.27 0.27 10 5
Breast cancer Wisconsin 0.06 0.30 9 6
Credit data 0.14 0.18 30 9
Dermatology 0.06 0.06 21 11
E. coli 0.16 0.21 16 10
Glass 0.29 0.40 20 11
Hepatitis 0.18 0.19 8 3
Parkinson’s 0.08 0.14 8 3
Soybean 0.13 0.12 50 32
Vote 0.05 0.02 6 3
Wine 0.04 0.02 6 7

272

Journal of ICT, 20, No. 2 (April) 2021, pp: 249–276

Table 10

Comparison of HEARpart and ES for Decision Tree Construction

Dataset Error F-measure Tree size
ES HEARpart ES HEARpart ES HEARpart

Abalone 0.76 0.76 0.12 0.34 1245 8
Breast cancer
Wisconsin

0.01 0.03 0.98 0.97 25 8

Breast cancer 0.11 0.27 0.56 0.95 21 12
Dermatology 0.00 0.06 1.00 0.92 15 11
Diabetes 0.20 0.24 0.76 0.72 83 24
E. coli 0.12 0.21 0.49 0.81 11 11
Hepatitis 0.07 0.19 0.82 0.90 11 5
Parkinson’s 0.00 0.14 1.00 0.87 17 7
Primary tumor 0.61 0.71 0.18 0.36 83 11
Sonar 0.15 0.22 0.84 0.62 21 8
Soybean 0.07 0.12 0.85 0.89 89 32
Waveform 5000 0.21 0.27 0.78 0.73 429 19

CONCLUSION

Constructing optimal decision trees for datasets over different data
domains is an arduous task. The performance of a decision tree model
depends upon the settings of its hyper design parameters. A set of
values for hyper parameter that is successful for one dataset may
not give the expected performance on the other datasets. This paper
proposed a hyper-heuristic evolutionary approach (HEARpart) for
tuning hyper parameters of decision tree models to appropriate values
during the construction phase. The suggested approach tunes the four
important hyper parameters whose value may vary from one dataset
to another. These include the minimum number of instances required
at a node for inducing a split, depth of the tree, node splitting criterion,
and complexity factor to control the amount of pruning. These four
parameters control the structure of the decision tree models to a very
large extent. The present approach is capable of inherently finding a
decision tree classifier that is optimally tuned to the characteristics of
the underlying training data.

 273

Journal of ICT, 20, No. 2 (April) 2021, pp: 249–276

Empirical evidence obtained in this paper showed that the HEARpart
technique generated more accurate and comprehensible decision tree
classifiers as compared to Rpart and WEKA’s J48. When compared
to other similar research works, HEARpart produced significantly
comprehensible decision tree models, which resulted in a slight
compromise on accuracy. It is understandable given that accuracy and
comprehensibility are two conflicting criteria. The contribution of the
proposed approach is that it liberates the research field from changing
the important hyper parameters for decision tree construction of each
dataset individually in obtaining optimal classifiers. The approach
suggested in this study can also be tested for constructing regression
trees in the future. Since accuracy and comprehensibility are the two
competing performance metrics, a multi-objective hyper-heuristic
approach for constructing decision trees needs to be investigated.

ACKNOWLEDGMENT

This research received no specific grant from any funding agency in
the public, commercial, or non-profit sectors.

REFERENCES

Adibi, M. A. (2019). Single and multiple outputs decision tree
classification using bi-level discrete-continues genetic
algorithm. Pattern Recognition Letters, 128, 190–196. https://
doi.org/10.1016/j.patrec.2019.09.001

Barros, R. C., Basgalupp, M. P., de Carvalho, A. C. P. L. F., &
Freitas, A. A. (2012). A hyper-heuristic evolutionary algorithm
for automatically designing decision-tree algorithms. In
Proceedings of the Fourteenth International Conference on
Genetic and Evolutionary Computation Conference - GECCO
(pp. 1237–1244). https://doi.org/10.1145/2330163.2330335

Barros, R. C., Basgalupp, M. P., Freitas, A. A., & de Carvalho, A. C.
P. L. F. (2014). Evolutionary design of decision-tree algorithms
tailored to microarray gene expression data sets. IEEE
Transactions on Evolutionary Computation, 18(6), 873–892.
https://doi.org/10.1109/tevc.2013.2291813

Bharadwaj, K. K., & Saroj. (2009). Parallel genetic algorithm
approach to automated discovery of hierarchical production
rules. In J. Mehnen, M. Koppen, A. Saad, & A. Tiwari (Eds.),

274

Journal of ICT, 20, No. 2 (April) 2021, pp: 249–276

Applications of Soft Computing (pp. 327–336). Springer Berlin
Heidelberg. https://doi.org/10.1007/978-3-540-89619-7_32

Bharadwaj, K. K., & Saroj. (2010). A parallel genetic programming
based intelligent miner for discovery of censored production
rules with fuzzy hierarchy. Expert Systems with Applications,
37(6), 4601–4610. https://doi.org/10.1016/j.eswa.2009.12.048

Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984).
Classification and regression trees (31). CRC press.

Cha, S.-H., & Tappert, C. (2009). A genetic algorithm for constructing
compact binary decision trees. Journal of Pattern Recognition
Research, 4(1), 1–13. https://doi.org/10.13176/11.44

Cutler, A., Cutler, D. R., & Stevens, J. R. (2012). Random Forests.
In C. Zhang & Y. Ma (Eds.), Ensemble machine learning:
Methods and applications (pp. 157–175). Springer US. https://
doi.org/10.1007/978-1-4419-9326-7_5

Demsar, J. (2006). Statistical comparisons of classifiers over multiple
data sets. The Journal of Machine Learning Research, 7, 1–30.
https://dl.acm.org/doi/10.5555/1248547.1248548

Drake, J. H., Kheiri, A., Özcan, E., & Burke, E. K. (2020). Recent
advances in selection hyper-heuristics. European Journal
of Operational Research, 285(2), 405–428. https://doi.
org/10.1016/j.ejor.2019.07.073

El Yafrani, M., Martins, M., Wagner, M., Ahiod, B., Delgado, M.,
& Luders, R. (2018). A hyperheuristic approach based on
low-level heuristics for the travelling thief problem. Genetic
Programming and Evolvable Machines, 19(1–2), 121–150.
https://doi.org/10.1007/s10710-017-9308-x

Esposito, F., Malerba, D., Semeraro, G., & Kay, J. (1997). A comparative
analysis of methods for pruning decision trees. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
19(5), 476–491. https://doi.org/10.1109/34.589207

Fu, Z., Golden, B. L., Lele, S., Raghavan, S., & Wasil, E. A. (2003).
A genetic algorithm-based approach for building accurate
decision trees. INFORMS Journal on Computing, 15(1), 3–22.
https://doi.org/10.1287/ijoc.15.1.3.15152

Han, J., Pei, J., & Kamber, M. (2011). Data mining: Concepts and
techniques. Elsevier.

Hemmateenejad, B., Shamsipur, M., Zare-Shahabadi, V., & Akhond,
M. (2011). Building optimal regression tree by ant colony
system–genetic algorithm: Application to modeling of melting

 275

Journal of ICT, 20, No. 2 (April) 2021, pp: 249–276

points. Analytica Chimica Acta, 704(1–2), 57–62. https://doi.
org/10.1016/j.aca.2011.08.010

Karabadji, N. E. I., Khelf, I., Seridi, H., & Laouar, L. (2012). Genetic
optimization of decision tree choice for fault diagnosis in an
industrial ventilator. In T. Fakhfakh, W. Bartelmus, F. Chaari,
R. Zimroz, & M. Haddar (Eds.), Condition monitoring of
machinery in non-stationary operations (pp. 277–283).
Springer. https://doi.org/10.1007/978-3-642-28768-8_29

Karabadji, N. E. I., Seridi, H., Bousetouane, F., Dhifli, W., &
Aridhi, S. (2017). An evolutionary scheme for decision tree
construction. Knowledge-Based Systems, 119, 166–177. https://
doi.org/10.1016/j.knosys.2016.12.011

Karabadji, N. E. I., Seridi, H., Khelf, I., Azizi, N., & Boulkroune, R.
(2014). Improved decision tree construction based on attribute
selection and data sampling for fault diagnosis in rotating
machines. Engineering Applications of Artificial Intelligence,
35, 71–83. https://doi.org/10.1016/j.engappai.2014.06.010

Liu, D., & Fan, S. (2014). A modified decision tree algorithm
based on genetic algorithm for mobile user classification
problem. The Scientific World Journal, 2014, 1–11. https://doi.
org/10.1155/2014/468324

Mantovani, R. G., Horvath, T., Cerri, R., Vanschoren, J., & de
Carvalho, A. C. P. L. F. (2016). Hyper-parameter tuning of a
decision tree induction algorithm. In 5th Brazilian Conference
on Intelligent Systems (BRACIS) (pp. 37–42). https://doi.
org/10.1109/bracis.2016.018

Michalewicz, Z. (1996). Genetic algorithms + data structures =
evolution programs (3rd ed.). Springer-Verlag. https://doi.
org/10.1007/978-3-662-03315-9

Otero, F. E. B., Freitas, A. A., & Johnson, C. G. (2012). Inducing
decision trees with an ant colony optimization algorithm.
Applied Soft Computing, 12(11), 3615–3626. https://doi.
org/10.1016/j.asoc.2012.05.028

Pacheco, J., Alfaro, E., Casado, S., Gamez, M., & García, N. (2012).
A GRASP method for building classification trees. Expert
Systems with Applications, 39(3), 3241–3248. https://doi.
org/10.1016/j.eswa.2011.09.011

Polikar, R. (2012). Ensemble Learning. In C. Zhang & Y. Ma (Eds.),
Ensemble machine learning: Methods and applications (pp.
1–34). Springer US. https://doi.org/10.1007/978-1-4419-9326-7_1

276

Journal of ICT, 20, No. 2 (April) 2021, pp: 249–276

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning,
1(1), 81–106. https://doi.org/10.1007/BF00116251

Sabar, N. R., Turky, A., Song, A., & Sattar, A. (2017). Optimising deep
belief networks by hyper-heuristic approach. In IEEE Congress
on Evolutionary Computation (CEC) (pp. 2738–2745). https://
doi.org/10.1109/cec.2017.7969640

Stein, G., Chen, B., Wu, A. S., & Hua, K. A. (2005). Decision tree
classifier for network intrusion detection with GA-based
feature selection. In Proceedings of the 43rd Annual Southeast
Regional Conference - Volume 2 (pp. 136–141). https://doi.
org/10.1145/1167253.1167288

Therneau, T. M., Atkinson, E. J., & Foundation, M. (2019). An
introduction to recursive partitioning using the rpart routines.
60.

Witten Ian H., & Frank, E. (2011). Data mining: Practical machine
learning tools and techniques. Elsevier. https://doi.org/10.1016/
C2009-0-19715-5

Yu, X., & Gen, M. (2010). Introduction to evolutionary algorithms.
Springer-Verlag. https://doi.org/10.1007/978-1-84996-129-5

