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ABSTRACT
 
Decision tree models have earned a special status in predictive 
modeling since these are considered comprehensible for human 
analysis and insight. Classification and regression tree (CART) 
algorithm is one of the renowned decision tree induction algorithms 
to address classification as well as regression problems. Finding 
optimal values for the hyper parameters of a decision tree construction 
algorithm is a challenging issue. While making an effective decision 
tree classifier with high accuracy and comprehensibility, there is a 
need to address the question of setting optimal values for its hyper 
parameters like the maximum size of the tree, the minimum number 
of instances required in a node for inducing a split, node splitting 
criterion, and the amount of pruning. The hyper parameter setting 
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influences the performance of the decision tree model. As known 
by researchers, there is no single setting of hyper parameters that 
works equally well for different datasets. A particular setting 
that gives an optimal decision tree for one dataset may produce a  
sub-optimal decision tree model for another dataset. In this paper, 
a hyper-heuristic approach was presented for tuning the hyper 
parameters of recursive and partition trees (Rpart), which is a typical 
implementation of CART in statistical and data analytics package R. 
The study employed an evolutionary algorithm as hyper-heuristic 
for tuning the hyper parameters of the decision tree classifier. The 
approach was named as hyper-heuristic evolutionary approach with 
recursive and partition trees (HEARpart). The proposed approach was 
validated on 30 datasets. It was statistically proven that HEARpart 
performed significantly better than WEKA’s J48 algorithm in terms 
of error rate, F-measure, and tree size. Furthermore, the suggested  
hyper-heuristic algorithm constructed significantly comprehensible 
models as compared to WEKA’s J48, CART, and other similar 
decision tree construction strategies. The results showed that the 
accuracy achieved by the hyper-heuristic approach was slightly less 
as compared to the other comparative approaches.

Keywords: Machine learning, evolutionary algorithms, hyper-
heuristic, decision trees, classification, CART.

INTRODUCTION

 
Decision trees, a class of supervised learning algorithms, are widely 
used for addressing classification problems in data mining and machine 
learning. A decision tree classifier is built from the training data of 
class-labeled instances. Subsequently, the classifier is used to predict 
the class labels for new instances. Decision trees have come to be one 
of the most widely used predictive modeling algorithms due to their 
reasonable accuracy and high comprehensibility. Since Quinlan first 
proposed the decision tree induction algorithm (Quinlan, 1986), many 
variants of decision trees such as C4.5, C5.0, chi-square automatic 
interaction detection (CHAID), and classification and regression tree 
(CART), algorithm CART have appeared for addressing predictive 
modeling tasks (Han et al., 2011; Witten & Frank, 2011). 
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The classical methods create decision tree models by following a top-
down greedy induction approach. Initially, the root node contains all 
the data. The data at the root node is partitioned into sub-nodes based 
on the values of an attribute selected for the split. The same process 
repeats recursively for each sub-node in a hierarchical manner until a 
stopping criterion is met. There are many criteria in the literature for 
the selection of the splitting attributes. Some of the popular ones are 
entropy, information gain, and Gini index (Han et al., 2011; Witten & 
Frank, 2011). 

A decision tree is constructed in two phases: i) a learning phase and ii) 
a pruning phase. The learning phase constructs the tree in a top-down 
recursive manner as described in the previous paragraph. Since the 
initial decision tree could be large and complex, the pruning phase 
applies heuristics to reduce the complexity of the tree. Therefore, 
all decision tree algorithms adopt pruning to avoid overfitting of the 
model (Esposito et al., 1997). Determining the amount of pruning is 
a complex issue. If a tree is not pruned enough, it tends to capture 
the noise in the training data. Such an overfitted model has less 
generalization power and higher variance. Over-pruning may result in 
a model with higher bias and poor accuracy. 

Breiman et al. (1984) introduced classification and regression tree, 
which is abbreviated as CART. The decision tree algorithms C4.5 
and C5.0 use entropy as a measure of impurity while splitting nodes, 
whereas CART employs the Gini index, which is a generalization of 
binomial variance. Therefore, CART can have only binary splits as 
compared to other decision tree algorithms that allow multiway splits. 
While most of the decision tree algorithms are meant for classification 
problems, CART can be used for classification and regression modeling 
with equal ease and efficiency. The CART algorithm is implemented 
with slight variations using R package, named as recursive and 
partition tree (Rpart). One of the variations is that Rpart is allowed 
to have either information gain or Gini index as the splitting criterion 
(Therneau et al., 2019).

The hyper parameters such as the size of neighborhood for k-nearest 
neighbor classifiers, choice of kernel function for support vector 
machines, and splitting criterion for decision trees cannot be 
determined from the training data. These have to be determined 
externally by the machine learning practitioners or researchers who 
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tune these parameters experimentally. Almost all machine learning 
algorithms have one or more hyper parameters that directly influence 
their generalization power and predictive performance. Determining 
the appropriate values for hyper parameters is a challenging issue. 
Any ad hoc approach for setting these parameters results in the sub-
optimal performance of the learning algorithms. No single hyper 
parameter setting works equally well across different datasets. A 
particular hyper parameter setting may produce an accurate classifier 
for a specific dataset, but it may fail in doing so for other datasets. 

Like other machine learning algorithms, for optimal performance 
of decision tree classifiers, there is a need to set its several hyper 
parameters, such as the maximum depth of the tree, the minimum 
number of instances at a node for inducing a split, the splitting 
criterion, and the complexity parameter that controls the amount 
of pruning. From the same training data, many predictive models 
could be constructed depending on the choice of values of different 
hyper parameters. Obtaining a decision tree model with the highest 
possible accuracy and simplicity is not at all a trivial task and, in fact, 
finding an optimal decision tree model for classification is a complex 
combinatorial optimization problem. The decision tree model with 
high accuracy and comprehensibility cannot be obtained without 
addressing the question of setting optimal values for its various hyper 
parameters.

Evolutionary algorithms (EAs) work with a population of candidate 
solutions to optimization problems. Over subsequent generations, 
better solutions are evolved through fitness proportionate selection, 
recombination, and mutation operators (Michalewicz, 1996; Yu & 
Gen, 2010). Besides, these are effective hyper-heuristic methods for 
automatically designing decision tree models (Barros et al., 2012). 

This paper proposes a hyper-heuristic evolutionary approach for 
constructing accurate and comprehensible decision tree models 
using the recursive and partition tree (Rpart) algorithm for a variety 
of datasets. The proposed algorithm is named as hyper-heuristic 
evolutionary approach with recursive and partition trees (HEARpart). 
A genetic algorithm (GA) is used as a hyper-heuristic to find optimal 
decision tree models for each dataset from the search space of all 
possible decision trees. The suggested approach tunes the four 
hyper parameters of recursive partitioning and regression tree: i) the 
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minimum number of instances that must exist in a node for a split; ii) 
maximum depth of the tree; iii) splitting criteria; and iv) complexity 
parameter to control the amount of pruning. 

The motivation of this experimental research is to improve accuracy 
and reduce the size of the decision trees classifier. This paper compares 
the decision tree models produced by the proposed hyper-heuristic 
evolutionary approach with the ones generated by Rpart with its 
hyper parameters set to their default values and with the other similar 
research works. The tuning of hyper parameters for each data domain 
exclusively during the learning phase of decision tree models has 
been successful in achieving statistically higher comprehensibility 
without a significant compromise on the predictive performance. 
The main contribution of the suggested approach is toward building 
decision tree models that are optimal for each dataset individually 
in terms of accuracy and comprehensibility. While Rpart is used for 
construction of decision trees, the approach can easily be migrated to 
other machine learning algorithms. 

The rest of the paper is organized as follows. The second section 
presents a review of the earlier research works carried out for 
constructing decision tree predictive models using meta or hyper-
heuristic approaches. The third section  describes the components of 
the hyper-heuristic approach proposed in this paper. The experimental 
design consisting of the research methodology is given in the fourth 
section. A discussion and analysis of results are presented in the fifth 
section. The last section  concludes the research and points toward the 
novel research directions.

 
RELATED WORKS

 
This section reviews the related research works to contextualize the 
present work. The section intends to include only the benchmark 
and the most cited works. The review focuses on the application 
of metaheuristic and hyper-heuristic approaches for decision tree 
construction. In the world of machine learning and predictive analytics, 
decision trees are one of the most popular prediction methods. Many 
decision tree algorithms such as ID3, C4.5, C5.0, CART, and CHAID 
have been developed (Han et al., 2011; Witten & Frank, 2011). The 
decision tree models follow a greedy strategy for growing from top to 
bottom, which often results in local optimal predictive models. 
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Researchers have proposed various methods to address the problems 
posed by the top-down recursive greedy strategy of decision tree 
construction. Two of these methods are ensemble learning and the 
use of metaheuristics and hyper-heuristics for constructing optimal 
decision tree models. In ensemble learning, many trees are grown, 
and the outcome of the model is predicted through voting amongst 
all the trees included in the ensemble. The accuracy of ensemble 
methods is higher than the models based on a single decision tree. 
However, in ensemble learning, the comprehensibility of a single 
decision tree model is compromised. Therefore, ensembles are 
not a good choice for domains such as disease and fault diagnosis 
where the interpretability of classifier is critical for decision-making 
(Cutler et al., 2012; Polikar, 2012). The aim of metaheuristics and  
hyper-heuristics approaches is to maintain the high accuracy as well 
as comprehensibility of decision tree models. The EAs fall under the 
category of metaheuristic algorithms and perform a comprehensive 
search in the search space of all the possible decision tree classifiers to 
arrive at the global optimal solution. The EAs also tackle the problem 
of attribute interaction, whereas greedy methods of decision tree 
construction fail to do so (Barros et al., 2012). 

The EAs have been used mainly in three ways for the construction of 
decision tree models. In the first approach, researchers have tried to 
construct an optimal decision tree classifier by combining the portions 
of the existing decision trees by using evolutionary operators. In 
the second approach, metaheuristics have been applied for building 
decision tree models from scratch. In the third approach, meta or 
hyper-heuristic algorithms have been applied to automatically design 
decision tree algorithms by optimizing the hyper parameters such 
as node splitting criterion, complexity of decision tree, selection 
of features, selection of appropriate training and test data, or a 
combination of these.

Fue et al. (2003) followed the first approach and applied a GA for 
obtaining an accurate decision tree classifier. In their work, the initial 
population of trees was generated using C4.5. Later, the components 
of various trees were combined to obtain better decision tree 
classifiers using GA operators. There have been attempts to arrange 
decision rules in the hierarchical form to reduce redundancy and 
increase comprehensibility (Bharadwaj & Saroj, 2009; 2010). The 
authors applied GAs to discover classification rules at multiple levels 
of abstraction. Liu and Fan (2014) employed a GA to optimize the 
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classification rules obtained from the C4.5 decision tree algorithm for 
classifying mobile users. The research was shown to achieve higher 
accuracy and comprehensibility as compared to the simple decision 
tree and support vector machine classifiers. All the above approaches 
optimize the existing classifiers. However, these approaches only 
combine the portions of existing decision trees or classification rules 
to arrive at classifiers with improved performance. Such approaches 
fail to find the optimal classifier in case the essential components to 
form it are missing in the existing population of decision trees. 

In the second approach, the decision trees are constructed right from 
scratch using metaheuristic approaches. In this direction, Cha and 
Tappert (2009) devised encoding and decoding schemes for decision 
trees to be used with metaheuristic methods. Pacheco et al. (2012) 
suggested a greedy randomized adaptive search procedure (GRASP) 
for constructing binary classification trees to produce accurate 
yet simple decision tree models. The authors modified the search 
procedure for determining the best splitting attribute at each node of 
the decision tree construction process. Instead of selecting the single 
best splitting attribute based on some impurity reduction measure, 
GRASP randomly selected one of the best splitting attributes from a 
set of feasible ones. The process grew several trees and the decision 
tree with the least complexity was selected. The focus of this work 
was on discovering the most comprehensible decision tree classifiers 
for a predetermined level of accuracy. Hemmateenejad et al. (2011) 
combined the ant colony optimization algorithm and crossover and 
mutation operators from GA to improve the performance of CART 
predictive models. The hybrid approach was shown to have achieved 
better predictive performance for modeling the melting points of a 
large number of chemical compounds.

Further, in the sequence, a significant contribution came from Otero 
et al. (2012) for constructing decision trees by combining the strategy 
of classical tree induction techniques with the ant colony optimization 
(ACO) algorithm. The authors did extensive experimentation with 
the help of 22 publicly available datasets from the UCI machine 
learning repository. Their work showed that the predictive accuracy 
achieved by their approach was significantly higher than the accuracy 
of C4.5 and CART. Decision tree classifiers based on GAs have 
achieved competitive accuracy for network intrusion detection and 
fault diagnosis (Karabadji et al., 2014, 2012; Stein et al., 2005). 
Recently, Adibi (2019) suggested a GA-based optimal decision tree 
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construction method to improve the performance of decision tree 
classifiers for single and multi-output datasets. The authors presented 
a bi-level discrete-continuous GA to simultaneously select effective 
features and construct an optimal tree.

The main advantage of evolving decision tree classifiers from scratch 
by using metaheuristic approaches such as EA and ACO is to escape 
from the local optimal solutions. The literature review shows that 
the metaheuristic approaches are less prone to sub-optimal solutions 
and can find optimal decision tree classifiers with high accuracy and 
comprehensibility. Nevertheless, the metaheuristic approaches are 
not without limitations. Domain-specific and particular heuristic and 
metaheuristic methods do not often perform well when applied to 
diverse problem domains without significant modification. Therefore, 
hyper-heuristics approaches have recently gained increased attention 
of machine learning researchers as a third approach for constructing 
optimal decision tree classifiers.

Hyper-heuristics are search methods that operate on a lower level of 
heuristics and have emerged as a way to enhance the generalization 
capabilities of machine learning algorithms. In this direction, an 
outstanding contribution came about in the form of a hyper-heuristic 
evolutionary algorithm (HEAD-DT) for the automatic designing of 
decision tree algorithms (Barros et al., 2012; Barros et al., 2014). 
The automatically designed decision tree algorithms were devised 
by combining building blocks of heuristics through an evolutionary 
algorithm. The building blocks included splitting genes, stopping 
criteria genes, missing value genes, and pruning genes. This hyper-
heuristic approach surpassed the traditional decision tree construction 
methods like C4.5 and CART on account of accuracy and F-measure. 
Mantovani et al. (2016) explored different hyper parameter tuning 
techniques for WEKA’s J48 decision tree algorithm. The authors 
used grid search, GA, particle swarm optimization, and estimation 
of distribution algorithm as the three metaheuristic techniques for 
tuning of hyper parameters of J48 algorithm. The results showed that 
all the tuning techniques were at par with each other, but performed 
significantly better as compared to the decision tree models generated 
by simply using the default hyper parameters of J48 algorithm. 
Karabadji et al. (2017) proposed an evolutionary scheme (ES) for 
identifying the best training and test sets, and other parameters to pull 
out the optimal decision tree. The authors showed that their approach 
outperformed the classical decision tree construction methods in 
terms of accuracy and simplicity. Since hyper-heuristic methodologies 
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provided domain-independent solutions, the researchers continued to 
develop hyper-heuristic methods that applied to a range of different 
problems (Drake et al., 2020; Yafrani et al., 2018; Sabar et al., 2017). 

The experimental research conducted in this paper is an attempt to 
improve the accuracy and comprehensibility of the Rpart decision 
tree classifier by tuning its hyper parameters using a GA that is a 
promising evolutionary optimization technique. This study intends to 
discover the optimal decision tree classifiers that are well fitted to the 
datasets across different domains. The research presented in this paper 
falls within the third approach of automatically discovering optimal 
decision tree classification models.

 
THE PROPOSED HYPER-HEURISTIC APPROACH

This section presents the overall design of the proposed hyper-heuristic 
approach (HEARpart). To begin with, the dataset was divided into 
three parts: i) training dataset, ii) validation dataset, and iii) test dataset, 
by using uniform random sampling without replacement. The data 
partitions are shown in Figure 1. The hyper parameters of the Rpart 
construction algorithm were tuned on the validation dataset by using 
GA, specifically designed for this purpose. The GA routine returned 
the set of optimal values for hyper parameters. Thereupon a decision 
tree model was constructed on the training data by setting the hyper 
parameters of Rpart to an optimal configuration. The performance of 
the resulting model was evaluated on the test data. The overall design 
of the proposed hyper-heuristic method is illustrated with the help of 
a flow chart in Figure 2.

Figure 1

The Data Partitioning Scheme.
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Figure 2

The Proposed System (HEARpart).

The tuning of the hyper parameter of a decision tree algorithm was 
at the core of the HEARpart. For the hyper-heuristic approach, a GA 
was designed to tune the hyper parameters of the Rpart for a variety 
of datasets. This study chose the following four hyper parameters that 
directly influence the performance of decision tree models.

Minimum split: It signifies the minimum number of instances that 
must exist in a node for further splitting. The optimal value of this 
parameter will depend on the number of instances in the dataset and 
the distribution of the target variable.

Complexity: The role of this factor is to prune off the worthless splits 
to enhance the overall fit of the model. The factor plays an important 
role in avoiding the splits that tend to produce overfitted models and 
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thus reduce the generalization power of the model. However, an over-
pruned tree will not fit the training data and will be less accurate. The 
setting up of an appropriate value for the complexity of the model is 
of utmost importance.

Depth of the tree: This puts a maximum limit on the levels of the 
decision tree from the root node to leaf nodes. The depth of a tree is 
an indicator of the comprehensibility of the decision tree classifiers. 
If two decision trees have the same accuracy, the smaller tree is more 
desirable.

Splitting criterion: The choice of the splitting criterion is another 
important issue in the construction of decision tree models. This 
may vary from one dataset to another. The Rpart algorithm provides 
information gain and Gini index as the two splitting criteria. The GA 
can use either of the two.

The Genetic Algorithm Designs
 
This section elaborates on the GA design for finding the optimal values 
for hyper parameters of the Rpart decision tree learning algorithm. 

Encoding

Each chromosome in the GA population consisted of four genes 
(minimum split, complexity, maximum depth of the decision tree, 
and node splitting criterion), which have been explained earlier. 
This research encoded each chromosome as a numeric string of four 
genes, each one corresponding to the four criteria for decision tree 
construction. Each gene was assigned values out of the supported 
range of values for the respective criteria. The ranges of supported 
values of the genes were ‘1 to 100’, ‘0.01 to 0.3’, ‘2 to 20’, and ‘0 
or 1’, respectively. A typical chromosome is shown in the form of a 
table. 
 
The chromosome shown in Table 1 created an example decision tree 
according to the above-specified values of the various genes. This 
decision tree needed to have at least twenty examples for further 
splitting at any node and its height could not exceed the seventh level 
when the root of the tree was considered to be at level 0. The splitting 
criterion was 1 for information gain and 0 for the Gini index. The 
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value of complexity parameter 0.10 means that all those splits would 
be pruned off, which would not enhance the fit of the model by 10%.  
 
Table 1

Chromosome Structure

Minimum 
split

Complexity 
parameter

Maximum height 
of tree

Splitting 
criteria

20 0.10 7 1

Population Initialization

The population of the evolutionary algorithm was randomly initialized 
with the values from the supported ranges of the respective genes. 

Fitness Function

The choice of the fitness function was very important as it directed the 
search toward the optimal solution. The GA used the accuracy of the 
tree as fitness. The accuracy of a classifier model can be defined as the 
percentage of correctly classified instances. The formula to calculate 
accuracy is given in Equation 1 below: 
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These are defined below:

TP: These are the number of instances that actually belong to the 
positive class and also get predicted as positive by the classifier. 

FN: These are the number of instances that actually belong to the 
positive class but get predicted as negative by the classifier.

FP: These are the number of instances that belong to the negative 
class but get predicted as positive by the classifier.

TN: These are the number of instances belong to the negative class 
and also get predicted negative by the classifier.
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Selection  
 
The suggested GA design applied the tournament selection strategy for creating the mating pool for the 
next generation. The tournament selection method avoided local convergence by keeping the selection 
pressure in control. In a tournament selection, ‘K’ individuals were randomly selected from the 
population and the individual with the best fitness was selected to become a parent. The same process 
was repeated to select another parent. The value of K was set to 4. 
 
Crossover 
 
In the proposed GA design, a single point heuristic crossover operator was applied for creating offspring 
from the real coded chromosomes. Out of the two parents P and Q, and assuming that Q was the better 
fit parent, the heuristic crossover created offspring as given in Equations 2 and 3. 
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Genetic Operators
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population. Every gene in the chromosomes had a small probability 
to mutate.

Terminating Criterion

Genetic algorithms terminate either on the completion of a maximum 
number of iterations or when the diversity of its population reaches a 
pre-determined minimum. The GA was set to run for 100 generations; 
however, it terminated earlier if there was no improvement in fitness 
during the last 30 generations.

The real encoding of the chromosomes, the fitness function, and 
the respective GA operators described above created successive 
generations of decision tree classifiers based on different combinations 
of hyper parameter values. All the components of the GA worked in 
synergy and finally found an optimal set of hyper parameter values 
that created an optimum decision tree classifier in terms of accuracy 
and comprehensibility.

EXPERIMENTAL DESIGN AND RESULTS

This section describes the research methodology and presents the 
experimental results. It also includes the interpretation of the results. 

Datasets

The performance of decision tree classifiers generated by HEARpart 
was tested on 30 datasets. The datasets were obtained from the UCI 
and Kaggle machine learning repositories. These datasets are shown 
in Table 2. The datasets were diverse in terms of the number of 
instances, the number of attributes, and the number of classes.

Table 2 

Description of Datasets for Constructing Decision Tree Classifiers

No. Dataset #Insts #Attribs # Classes No. Dataset #Insts #Attribs #Classes

1 Abalone 4177 8 28 16 Glass 214 10 6

2 Audiology 226 69 23 17 Hepatitis 80 20 2

 (continued)
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No. Dataset #Insts #Attribs # Classes No. Dataset #Insts #Attribs #Classes

3 Bank
marketing

4521 17 2 18 Mushroom 5644 23 2

4 Banknote 
authentication

1372 5 2 19 Nursery 12960 9 5

5 Breast cancer 
Wisconsin

699 11 2 20 Parkinson’s 195 23 2

6 BEPS 1525 10 2 21 Primary
tumor

120 18 18

7 Breast cancer 286 10 2 22 Segment 2310 20 7

8 Bridge 
version1

107 12 6 23 Sick 3103 28 2

9 Bupa liver 345 7 2 24 Sonar 208 61 2

10 Car 1729 7 4 25 Vote 232 17 2

11 Credit data 4455 14 2 26 Waveform 
5000

5000 41 3

12 Cylinder
Bands

541 33 2 27 Wdbc-
mod2

569 31 2

13 Dermatology 366 35 6 28 Wine 178 14 3

14 Diabetes 769 9 2 29 Wine-white 4898 12 7

15 E. coli 337 8 8 30 Wine-red 1599 12 6

Tools

Classification tree models were constructed in R using rpart, ga, and 
caret packages from the CRAN website (https://cran.r-project.org). 
The ‘ga’ package in R provided many general-purpose functions 
for optimization using GAs. It includes various flexible sets of 
tools for solving continuous and discrete optimization problems. It 
offers several kinds of encoding schemes, a large set of operators 
for selection, recombination, and mutation steps for designing a GA. 
A researcher only needs to simply embed the objective function for 
the optimization problem at hand. The caret package was used for 
measuring performance evaluation of the classifiers. It has a function 
confusionMatrix() that takes the predicted and actual class labels and 
outputs confusion matrix along with several other evaluation metrics. 
This study also used WEKA for running the J48 decision tree classifier 
algorithm.
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Performance Metrics
 
For comparison of the decision tree classifiers, this study used error 
rate (1-accuracy), F-measure, and decision tree size. The total number 
of nodes in it measured the size of a decision tree. The classification 
accuracy of a classifier could be biased toward the majority class. 
Therefore, it could be a misleading measure of the performance of a 
classification algorithm, particularly for datasets with class skew, i.e., 
datasets with a small number of examples for the minority class as 
compared to the majority class. This might be the case for the datasets 
related to disease or fault diagnosis. Therefore, this research also 
included F-measure for evaluating the performance of algorithms.

F-measure is the harmonic mean of precision and recall of a classifier. 
Precision considers the percentage of instances that belong to the 
positive class out of the total instances predicted as that of the positive 
class. Recall, also known as sensitivity, measures the percentage of 
instances that are predicted into the positive class out of the total 
number of instances belonging to the positive class in the test data. It 
is measured using Equations 4, 5, and 6.

(4)

where,
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learning phase. The training-validation dataset was applied for tuning 
the various hyper parameters of the decision tree algorithm, while the 
test dataset was used for evaluating the resulting classifiers. Further, 
to balance out the influence of stochastic sampling error on results, the 
HEARpart was run ten times with different random seeds. The results 
reported in this research were based on the average values over the 
ten runs of the proposed algorithm. For Rpart and J48 decision tree 
classifiers, no validation dataset was required. Therefore, the datasets 
were divided simply into 67 percent and 33 percent as training and 
test data for these two classification algorithms.

Parameter Setting

The parameter setting for the GA is given in Table 3. A stopping 
criterion was also included such that if there was no improvement in 
the solution for the last 30 generations, the GA automatically stopped 
executing. The Rpart algorithm was run with its default values except 
for the four hyper parameters of the decision tree construction process 
that were optimized by HEARpart.

Table 3

Parameter Setting for HEARpart

Population 
size

Number of 
generations

Crossover 
rate

Elitism Mutation rate

50 100 0.8 1 0.1

The parameter setting for J48 classification algorithm is given in 
Table 4. The other parameters were kept at their default values. The 
minimum number of objects required for further splitting a node was 
20, which was also the default value for Rpart classifier in R. Since 
HEARpart always produced binary splits while constructing decision 
tree classifiers, the value for the binary split parameter of J48 was 
set to true to make a fair comparison for the size of decision tree 
classifiers.
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Table 4

Parameters Setting for WEKA J48

Binary split Confidence factor Min num objects Num fold Batch size

True 0.2 20 2 32

Comparative Study

This research compared the decision tree classifiers generated by 
HEARpart with three benchmark research works in the related 
field. The proposed approach was compared to the hyper-heuristic 
evolutionary algorithm for the automatic designing of decision tree 
algorithm (HEAD-DT) (Barros et al., 2012). The suggested algorithm 
was also compared to the research work by Otero et al. (2012). In this 
paper, the authors used the ACO algorithm for decision tree induction 
in a top-down manner by probabilistically selecting attributes for node 
splits based on the amount of pheromone and heuristic information. 
A comparison was also made to the research work by Karabadji et al. 
(2017), who employed a novel evolutionary strategy for identifying 
the best parameter settings to construct optimal decision trees. 

RESULTS AND ANALYSIS

Table 5 shows the comparative performance of HEARpart with 
the simple Rpart algorithm and J48 of WEKA on 30 datasets. The 
comparison of various decision tree classifiers was reported in terms 
of error rate, F-measure, and size of decision tree classifiers. The best 
values were highlighted in bold. Out of 30 the datasets, HEARpart had 
less or at par error rate on 22 datasets as compared to other algorithms. 
The WEKA-J48 results indicated less error rate for five datasets and 
Rpart gave less error rate only on three datasets. Concerning F-measure, 
HEARpart performed better or at par with the other algorithms again 
in 22 datasets, whereas WEKA-J48 only won in 3 datasets. The results 
of HEARpart appeared significant on comprehensibility as well.
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For further analysis, this study ranked the algorithms according to their 
performance. The lowest rank was assigned to the best performing 
algorithm. Wherever there was a tie between any two algorithms, 
an average of the two ranks was assigned to both. The HEARpart 
approach attained the lowest average rank for all three evaluation 
metrics. The average ranks are given in the last row of Table 5.

To exclude the possibility of HEARpart being better by sheer chance 
factors, the results were further analyzed with the help of the Friedman 
Rank Sum test, which is a nonparametric test for comparing multiple 
algorithms on multiple datasets (Demsar, 2006). The null hypothesis 
in the Friedman test is that no algorithm performs significantly 
differently. The results of the Friedman test for the three decision 
tree classifier algorithms are summarized in Table 6. The results from 
Table 6 rejected the null hypothesis for all three evaluation metrics. 
This indicated that the performance of at least one of the algorithms 
was significantly different from the others.

Table 6

Friedman Test Results

Accuracy F-measure Tree size (# nodes)

Friedman test 

Ch-squared value=9.74

P-value=0.008

Outcome of the test: Null 
hypothesis is rejected

Friedman test

Ch-squared value=17.65

P-value=0.00016

Outcome of the test: Null 
hypothesis is rejected

Friedman test

Ch-squared value=14.97

P-value=0.0006

Outcome of the test: Null 
hypothesis is rejected

Next, for the pair-wise comparison of algorithms, Nemenyi post-hoc 
test by Demsar (2006) was applied and the results are summarized 
in Table 7. Based on the resulting p-values from the Nemenyi test, it 
can be said that HEARpart was a winner algorithm in several ways. 
It could construct simpler decision tree classifiers with less error rate 
and high F-measure as compared to other algorithms considered in 
the study. 



270        

Journal of ICT, 20, No. 2 (April) 2021, pp: 249–276

Table 7

Pair-wise Comparison of the Performance of Decision Tree Classifiers

Evaluation
metric

Nemenyi test p-values Summary of the result

Accuracy J48 Rpart The HEARpart method is 
significantly better than the 
J48 classifier at a significance 
level of 0.05 (5%).

Rpart 0.24 -
HEARpart 0.013 0.437

F-measure J48 Rpart The Rpart classifier is 
significantly better than the 
J48 classifier at a significance 
level of 0.1 (10%).
The HEARpart method is 
significantly better than the 
J48 classifier at a significance 
level of 0.05 (5%).

Rpart 0.084 -
HEARpart 0.00032 0.189

Tree size 
(Total nodes)

J48 Rpart The HEARpart method is 
significantly better than the 
J48 classifier at a significance 
level of 0.05 (5%).
The HEARpart method is 
significantly better than 
the Rpart classifier at a 
significance level of 0.05 
(5%).

Rpart 0.83
HEARpart 0.0184 0.003

Table 8

Comparison of HEARpart and HEAD-DT

Dataset Error F-measure Tree size

HEAD-DT HEARpart HEAD-DT HEARpart HEAD-DT HEARpart

Abalone 0.80 0.76 0.20 0.34 4068 8

Audiology 0.20 0.48 0.79 0.68 119 9

Bridges 
version1 0.40 0.46 0.56 0.64 157 5

Car 0.02 0.07 0.98 0.92 172 32

Cylinder 
bands 0.28 0.33 0.72 0.70 211 14

 (continued)
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Dataset Error F-measure Tree size

HEAD-DT HEARpart HEAD-DT HEARpart HEAD-DT HEARpart

Glass 0.27 0.40 0.72 0.65 86 13

Segment 0.03 0.08 0.97 0.92 133 18

Sick 0.01 0.06 0.99 0.97 154 20

Wine-red 0.36 0.41 0.63 0.60 796 19

Wine-white 0.37 0.47 0.63 0.56 2526 11

Tables 9 and 10 report the performance comparison of HEARpart 
to the research works of Otero et al. (2012) and Karabadji et al. 
(2017). The results in Table 9 implied that the ant miner algorithm 
for decision tree construction had less error rates. HEARpart evolved 
comprehensible trees of smaller sizes across all datasets in comparison 
to the ant miner. According to Table 10, the ES achieved less error 
rate for most of the datasets. Going by F-measure, the performance 
of HEARpart and ES was comparable since each of the algorithms 
dominated in six datasets. HEARpart stood as a clear winner in terms 
of the size of decision trees across all datasets.

Table 9

Comparison of HEARpart and Ant Miner

Dataset Classification error Tree size
ATM HEARpart ATM HEARpart

Breast cancer 0.27 0.27 10 5
Breast cancer Wisconsin 0.06 0.30 9 6
Credit data 0.14 0.18 30 9
Dermatology 0.06 0.06 21 11
E. coli 0.16 0.21 16 10
Glass 0.29 0.40 20 11
Hepatitis 0.18 0.19 8 3
Parkinson’s 0.08 0.14 8 3
Soybean 0.13 0.12 50 32
Vote 0.05 0.02 6 3
Wine 0.04 0.02 6 7
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Table 10

Comparison of HEARpart and ES for Decision Tree Construction

Dataset Error F-measure Tree size
ES HEARpart ES HEARpart ES HEARpart

Abalone 0.76 0.76 0.12 0.34 1245 8
Breast cancer
Wisconsin

0.01 0.03 0.98 0.97 25 8

Breast cancer 0.11 0.27 0.56 0.95 21 12
Dermatology 0.00 0.06 1.00 0.92 15 11
Diabetes 0.20 0.24 0.76 0.72 83 24
E. coli 0.12 0.21 0.49 0.81 11 11
Hepatitis 0.07 0.19 0.82 0.90 11 5
Parkinson’s 0.00 0.14 1.00 0.87 17 7
Primary tumor 0.61 0.71 0.18 0.36 83 11
Sonar 0.15 0.22 0.84 0.62 21 8
Soybean 0.07 0.12 0.85 0.89 89 32
Waveform 5000 0.21 0.27 0.78 0.73 429 19

CONCLUSION

Constructing optimal decision trees for datasets over different data 
domains is an arduous task. The performance of a decision tree model 
depends upon the settings of its hyper design parameters. A set of 
values for hyper parameter that is successful for one dataset may 
not give the expected performance on the other datasets. This paper 
proposed a hyper-heuristic evolutionary approach (HEARpart) for 
tuning hyper parameters of decision tree models to appropriate values 
during the construction phase. The suggested approach tunes the four 
important hyper parameters whose value may vary from one dataset 
to another. These include the minimum number of instances required 
at a node for inducing a split, depth of the tree, node splitting criterion, 
and complexity factor to control the amount of pruning. These four 
parameters control the structure of the decision tree models to a very 
large extent. The present approach is capable of inherently finding a 
decision tree classifier that is optimally tuned to the characteristics of 
the underlying training data. 



    273      

Journal of ICT, 20, No. 2 (April) 2021, pp: 249–276

Empirical evidence obtained in this paper showed that the HEARpart 
technique generated more accurate and comprehensible decision tree 
classifiers as compared to Rpart and WEKA’s J48. When compared 
to other similar research works, HEARpart produced significantly 
comprehensible decision tree models, which resulted in a slight 
compromise on accuracy. It is understandable given that accuracy and 
comprehensibility are two conflicting criteria. The contribution of the 
proposed approach is that it liberates the research field from changing 
the important hyper parameters for decision tree construction of each 
dataset individually in obtaining optimal classifiers. The approach 
suggested in this study can also be tested for constructing regression 
trees in the future. Since accuracy and comprehensibility are the two 
competing performance metrics, a multi-objective hyper-heuristic 
approach for constructing decision trees needs to be investigated.
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