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ABSTRACT

Grey wolf optimization (GWO) is a recent and popular swarm-based
metaheuristic approach. It has been used in numerous fields such as
numerical optimization, engineering problems, and machine learning.
The different variants of GWO have been developed in the last five
years for solving optimization problems in diverse fields. Like other
metaheuristic algorithms, GWO also suffers from local optima and
slow convergence problems, which result in degraded performance.
An adequate equilibrium among exploration and exploitation is a
key factor to the success of metaheuristic algorithms, especially for
optimization tasks. In this paper, a new variant of GWO, called inertia
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motivated GWO (IMGWO), was proposed. The aim of IMGWO
was to establish better balance between exploration and exploitation.
Traditionally, artificial neural network (ANN) with backpropagation
(BP) depends on initial values and in turn, attains poor convergence.
The metaheuristic approaches are better alternatives instead of BP. The
proposed IMGWO was used to train ANN to prove its competency
in terms of prediction. The proposed IMGWO-ANN was applied
for medical diagnosis tasks. Several benchmark medical datasets
including heart disease, breast cancer, hepatitis, and Parkinson’s
disecases were used for assessing the performance of IMGWO-
ANN. The performance measures were described in terms of mean
squared errors, classification accuracies, sensitivities, specificities,
the area under the curve, and receiver operating characteristic curve.
It was found that IMGWO outperformed three popular metaheuristic
approaches including GWO, genetic algorithm, and particle swarm
optimization. Results confirmed the potency of IMGWO as a viable
learning technique for an ANN.

Keywords: Metaheuristic, medical diagnosis, grey wolf optimization,
artificial neural network, multilayer perceptron, particle swarm
optimization.

INTRODUCTION

The process of medical diagnosis becomes easier and faster if a
decision support system assists the doctors because machines do
not suffer from fatigue or boredom. Numerous tests are involved
in a disease diagnosis that can make the process complicated. High
performance is desirable in the medical diagnosis process as a little
difference in accuracy may lead to a substantial change in prediction
(Li et al., 2017). Continuous efforts are put in this direction to
improve the performance of the diagnosis process through machine
learning methods like support vector machine (SVM) by Akay (2009)
and Maglogiannis et al. (2009). Das et al. (2009), Lin and Chuang
(2010), and Yan et al. (2006) developed artificial neural network
(ANN)-based models for medical diagnosis. Such other methods
are also reported in the literature of medical data mining. Among
all of these methods, ANNs are assumed as universal methods for
approximation and generic classifiers. In 1943, McCulloch-Pitts
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developed a model called ANN and gained much popularity in the
field of artificial intelligence and machine learning. ANN effectively
modeled the different problems related to computational intelligence,
optimization, function approximation, and complex predictive system.
Three fundamental architectures for ANN are reported including
single-layer feedforward network, multilayered feedforward network,
and recurrent networks. Furthermore, neural network identifies
six learning tasks such as pattern association, pattern recognition,
function approximation, control, filtering, and beam forcing (Haykin,
1994). ANN is further described by patterns of connections between
the neurons, methods for determining the weights of communications,
and its activation functions (Amirsadri et al., 2018).

Apart from the abovementioned merits, the training process of ANN
through backpropagation has been criticized in many studies, due to
its slow convergence and poor performance (Brent, 1991; Gori &
Tesi, 1992). The poor performance is due to dependence on initial
values, whereas trapped in local minima is responsible for causing
slow convergence. Metaheuristic algorithm-based training of ANN
is a possible substitution of backpropagation learning and existing
studies support the aforementioned claim (Ojha et al., 2017). There
are various ways to integrate the metaheuristic techniques with ANN,
such as: (1) setting the architecture of the network: a network structure
is defined by the number of layers and number of neurons per layer; (ii)
managing weight and bias by a metaheuristic technique: any proposed
metaheuristic technique is used to adjust the weight and bias of the
connections established between neurons of different layers, either
called the learning of weight and bias or the training of an ANN; and
(ii1) tuning different learning parameters: it is kind of a hybridization
in which a metaheuristic approach is used to adjust some important
parameters such as learning rate and momentum in a gradient descent-
based learning method (Mirjalili et al., 2012).

The performance of multilayered perceptron (MLP) was deeply
investigated in Seiffert (2001). A study adopted artificial bee colony
(ABC) algorithm to train ANN and it performed better than genetic
algorithm (GA) as well as backpropagation (BP) (Karaboga et al.,
2007). Gudise and Venayagamoorthy (2003) found that particle
swarm optimization (PSO) is a fast-learning algorithm with non-
linear function for feedforward neural network and supersede
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backpropagation in terms of speed. Blum and Socha (2005) applied
ant colony optimization (ACO) algorithm to train a feedforward
neural network, and improved classification results were obtained
using benchmark medical datasets including breast cancer, diabetes,
and heart disease.

Grey wolf optimization (GWO) is a recent swarm-based metaheuristic
technique developed by Mirjalili et al. (2014), inspired through social
hierarchy and the hunting process of grey wolves. GWO proved its
competence in terms of fast convergence and better global search
capabilities and provides competitive results for a wide variety of
optimization problems (Long et al., 2017; Qais et al., 2018; Saremi
et al., 2015). Zhang et al. (2019) found that GWO is comparatively
a new and more capable technique among other swarm-based
optimization algorithms for solving numerical optimization. A binary
version of GWO has also been used for feature selection in various
medical datasets downloaded from University of California Irvine
(UCI) machine learning repository (Emary et al., 2016). GWO is also
used for prediction of medical data by Sahoo and Chandra (2017).
Furthermore, the classification of cervical cancer is predicted through
GWO and a significant discrimination is produced between benign and
malignant lesions. Khairuzzaman and Chaudhury (2017) used GWO
for multilevel thresholding in image segmentation. Some recent studies
also applied GWO with ANN for prediction tasks (Djema et al., 2019;
Mirjalili, 2015; Nosratabadi et al., 2020; Turabieh, 2016). Due to the
diverse applicability of GWO, several drawbacks are also associated
with the GWO algorithm like other population-based metaheuristic
algorithms. These drawbacks include local optima entrapment at the
end of the optimization process and slower convergence during the
later part of the evolution process. Moreover, it is easily entrapped
in local optima with complex multimodal tasks (Long et al., 2018;
Zhang et al., 2019). Long et al. (2018) stated that a proper balance
between exploration and exploitation is needed to achieve global
optima solution in case of population-based stochastic methods. They
proposed a new non-linear control variable d and modification in the
position updating equation inspired by PSO.

In this paper, a new variant of GWO called inertia motivated GWO
(IMGWO) is proposed to act as a training algorithm for multilayered
perceptron (MLP), a kind of ANN. The new training technique
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IMGWO is a noticeable and significant extension of the study carried
out by Long et al. (2018). The current study extends the work of Long
et al. (2018) by introducing a new equation for non-linear adjustment
of the control parameter @. However, the position updating equation
remained the same as suggested by Long et al. (2018). Significant
improvements are obtained in simulation results by the proposed study
while the training of MLP is considerably improved and found to be
better than GA, PSO, and GWO. The four well-known real-world
medical datasets are taken from the UCI machine learning repository.
The evaluation measures like MSE, convergence curve, accuracies,
sensitivities, specificities, and receiver operating characteristic
(ROC) are considered for evaluating the results of IMGWO-ANN
and compared with three well-known metaheuristic algorithms, i.e.,
GWO, GA, and PSO.

The structure of the paper is described as follows: related works
including metaheuristic algorithms and diagnosis systems are reviewed
in the second section. The third section discusses the proposed
methodology and also includes basic concepts of MLP, GWO, PSO,
exploration and exploitation, and hybridization of metaheuristic with
ANN. The fourth section explains the proposed study in depth. The
experimental results are presented in the fifth section. Section six
presents the conclusion and future scope of the work.

RELATED WORKS

The literature on metaheuristic algorithm-based training and
optimizing of ANN is very rich and profound base. The metaheuristic
algorithms can be categorized into: (i) single-solution-based, (ii)
multiple-solutions-based, (iii) evolutionary algorithms (EA), (iv)
nature-inspired algorithms (NIA), and (v) swarm intelligence (SI)-
based optimization. Many of the EA and NIA algorithms are considered
as swarm-based optimization like GA and GWO. Metaheuristic
algorithms such as EA, NIA, and SI are multiple-solutions-based
methods. Simulated annealing, a single-solution-based metaheuristic
was used to optimize ANN in a work by Sarkar and Modak (2003)
and it performed better than traditional methods. The metaheuristic
methods that are based on multiple solutions can be found to be more
capable of avoiding local optima problems (Mirjalili, 2015). Recent

217



Journal of ICT, 20, No. 2 (April) 2021, pp: 213—248

literature also confirmed that SI, NIA, and EA have better exploration
capabilities than single-solution-based metaheuristic algorithms
to train ANN (Ojha et al., 2017). Nevertheless, according to the
No Free Lunch theorem, there is no universal metaheuristic-based
training algorithm for ANN. Therefore, various metaheuristic-based
algorithms have been applied to train ANN (Amirsadri et al., 2018).

Recent studies showed that GA outperforms conventional
backpropagation to train ANN for some real-world applications (Ding
et al., 2011; Tong & Mintram, 2010). Slowik (2011) incorporated an
advanced differential evolution technique to train neural networks,
and claimed that simulation results proposed that the technique was
better than EA and traditional backpropagation methods. Several
studies explored the capabilities of PSO for weight optimization of
ANN (Mendes et al., 2002; Green et al., 2012; Zhang et al., 2007;
Gudise & Venayagamoorthy, 2003). A recent study optimized the
weight, structure, and activation function of ANN using PSO (Das et
al., 2015). ABC with backpropagation was used to optimize the weight
of ANN and it was observed that ABC and BP integration improved
the slow convergence rate issues (Sarangi et al., 2014). ABC was
successfully applied to optimize the weight and structure of ANN in
Garro et al. (2011). ACO was effectively used for the training purpose
of ANN by Blum and Socha (2007), and some other studies also
applied ACO to train the ANN model to solve prediction, scheduling,
and image recognition problems (Irani & Nasimi, 2011; Shariati et al.,
2019). Several studies adopted other metaheuristics methods to train
ANN for different applications. Teaching-learning based optimization
was applied to train ANN for estimating the energy consumption
problem (Uzlu et al., 2014). Harmony search-based neural network
was used to classify UCI datasets including breast cancer and thyroid
disease (Kulluk et al., 2012). The biogeography-based optimizer
(BBO) was also used to train MLP and further applied to classify
breast cancer and heart disease datasets (Mirjalili et al., 2014). A
social-spider optimization algorithm was employed to train MLP for
medical datasets (Pereira et al., 2014).

Metaheuristic optimization techniques have been in practice for
more than a decade especially for medical data classification. These
techniques improved the results of different machine learning methods
used for medical diagnosis. Some of these are discussed in Pham and
Triantaphyllou (2009) and Muhaideb and Menai (2014).
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Breast cancer is one of the leading causes of death in the world and
many studies are reported on breast cancer literature. However, earlier
symptoms of breast cancer are not easily identified (Das et al., 2020;
Pham & Triantaphyllou, 2009). If a woman lives for 85 years and
does not have a family history of breast cancer, then there is also a
0.12 probability of being a breast cancer patient (Bhardwaj & Tiwari,
2015). Metaheuristic based algorithms like fruit fly optimization,
homogeneity-based algorithm, genetic programming, and PSO are
extensively adopted for breast cancer prediction and it is observed
that good results were achieved by the aforementioned algorithms
(Brameier & Banzhaf, 2001; Chen et al., 2011; Huang et al., 2019;
Pham & Triantaphyllou, 2009; Shen et al., 2016).

Heart disease is also considered in this work, as it is also a life-
threatening disease and common in old and middle-aged people.
Nevertheless, young people may also suffer from heart disease
especially in developing nations like India. A study showed that heart
disease is responsible for 24 percent of the total deaths that occur
due to non-communicable diseases in India. Heart disease is most
common in Asia Pacific and almost 17 million people die every year
worldwide due to heart-related problems (Latha & Jeeva, 2019). In
the United States (US), a person with Myocardial Infarction, a type
of heart disease, is detected in every 34 seconds and the probability
of death is 0.15 (Tay et al., 2014). Turabieh (2016) adopted the GWO
algorithm to train ANN for accurate prediction of heart disease and
observed that the root mean squared error (RMSE) was significantly
reduced as compared to standard ANN.

Parkinson’s disease (PD) and Alzheimer’s disease (AD) are two
common neurodegenerative diseases and millions of people are
suffering from these diseases throughout the world (Oliva & Hinojosa,
2020). PD is the second major neurodegenerative disease in the world
(Cai et al., 2018). A detailed analysis of PD using association rule
mining and metaheuristic algorithms was discussed in Altay and
Alatas (2020).

Liver is also an important organ of living beings and hepatitis is
one of major diseases associated with it. It has been found that the
diagnosis of hepatitis is a very difficult process as an expert does many
comparisons with previously identified cases. The hepatitis virus may
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be of different kinds such as HAV, HBV, HCV, HDV, HEV, HGV,
and over 1.5 million deaths worldwide occur due to this viral disease
per year (Sartakhti et al., 2012). The medical diagnosis of hepatitis
using SVM has been discussed in detail (Chen et al., 2011). Bascil and
Temurtas (2011) adopted ANN for the same purpose. It is observed
that ANN is widely adopted in the field of data mining for prediction
tasks. It is also noticed that various metaheuristic algorithms are
integrated with ANN for improving prediction results. Apart from
medical diagnosis, ANN is extensively applied for optimizing various
applications using metaheuristic methods (Mirjalili, 2015; Mirjalili et
al., 2012).

As per the extensive literature review, it is seen that GWO outperforms
other SI and EA techniques. Nevertheless, this algorithm suffers from
local optima entrapment and slow convergence rate. Long et al. (2018)
studied the reasons behind the aforementioned issues and highlighted
several reasons:

(i) In GWO, the control variable @ is linearly decreased while it
must decrease in a non-linear fashion so that better exploration
can be achieved during later optimization, and also to maintain
rich exploitation.

(i) To achieve global optima position, the update rule of classic
GWO needs some improvements because the best positions
achieved in the previous steps cannot be retained as GWO does
not have a memory concept. Therefore, GWO must remember
the previous best solution and attain the global optima.

Long et al. (2018) suggested the following solutions to the
abovementioned problems:

(i) Develop a non-linear control parameter @ that can manage
exploration and exploitation in a better way.

(i) A memory concept is introduced in GWO that must
remember the personal best component inspired through PSO.
Furthermore, the position of alpha wolf represents the global
best position, and in every iteration, the previous personal best
must be stored to achieve the global best position.

The current study proposed a new expression (Equation [26]) for
the control variable d (to provide an adequate balance of exploration
and exploitation) so that GWO could escape from local optima and
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slow convergence. Nonetheless, the study kept the position updating
rule (Equation [27]) unchanged from the study of Long et al. (2018).
The proposed optimization technique is termed as IMGWO since the
non-linear control variable dresembles the inertia of PSO in behavior
(Chatterjee & Siarry, 2006). IMGWO used MSE as fitness function
during the training of MLP and obtained a significant improvement in
the results as compared to other contemporary metaheuristic methods
(GA, PSO, and GWO).

BACKGROUND CONCEPTS
Multilayer Perceptron

ANN consists of three structures, such as single-layer feedforward,
multilayer feedforward neural network (FNN), and recurrent neural
network (RNN). Several other variants of the three structures are
also presented in the literature, viz., convolution neural network,
radial basis function, Hopfield network, Boltzmann machine, liquid
state machine, Kohonen networks, extreme learning machines,
and modular neural networks. However, this study considered the
multilayer perceptron (MLP) model. MLP is a kind of FNN with
one or more hidden layers between the input and output layers and
each node is associated with an activation function. It is assumed that
the activation function should be different for the hidden layer and
output layer. Nevertheless, this study considered the same activation
function for both layers. The activation function used in this study is
highlighted in Equation 1.

1
1-e~*

Sig(x) = (M

Assume that an input layer consists of n number of input neurons,
a hidden layer with h number of neurons, and an output layer with
onumber of neurons. The weighted sum of inputs for MLP can be
calculated using Equation 2.

§ =Ty X) =6, j=12.h Q)

W;; is the weight of connection from a neuron i in the input layer to
a neuron j in the hidden layer and ; is the bias associated with

221



Journal of ICT, 20, No. 2 (April) 2021, pp: 213—248

ith neuron in the hidden layer. X; denotes the input for ;th neuron. It

1s assumed that input layer neurons are passive; they simply pass the

information without being processed through the activation function

and bias unlike in the hidden and output layers. Neurons at the hidden
layer produce output using Equation 3.

Sum; = Sig(s;) = % j=12 .. h 3)

<1+e J ))

The output of the neurons can be described using Equation 4.

O = Xy Wi.Sumj — 0y, k=12,.....c 4)

Where Wy is the weight of the connection between J “hidden neuron
to k™™ output node and Okl is the bias at k™" output neuron.

Out, = Sig(0y) = k=12.... c (5)

1

(1+e=00))’
The output is further passed to the sigmoid function as in Equation 5.
A sigmoid function is a kind of squashing function that converts input
into an output range (0, 1). It is assumed that denotes distinct classes.

Grey Wolf Optimizer

Grey wolf optimization is inspired through the searching and hunting
behaviors of a special family of wolves, named as Canis lupus. The
searching mechanism of grey wolves follows a hierarchical system
that consists of alpha, beta, delta, and gamma wolves. All wolves
are found in a group of 5 to 12. However, for the implementation
point of view, wolves’ population can be defined in the range of 50 to
250. Furthermore, the alpha wolf acts as the leader of the group and
has the highest priority. The priority is computed using some fitness
functions. The alpha wolf consists of the best fitness value, while beta
and delta wolves contain the second best and third best fitness values,
respectively. The rest of wolves are known as omega (®) and follow
their superior when searching for the prey and encircling it. The prey
is the target solution (most optimal) and it can be explored during
the searching process. When the prey is discovered, then the search
begins and the iteration variable is set as t. Then, the top three wolves
(a, B, and d) lead the other wolves (®) to reach the target solution,
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i.e., the position of the prey. Each wolf must change its position after
every iteration to meet the target. At last, when the alpha attacks the
prey, GWO stops and returns the position of the alpha or prey as the
possible solution. The encircling mechanism is described through the
coefficients as given in Equations 8 to 10 and generic Equations 6 and
7 are used to update their positions around the top best three solutions,
i.e., alpha, beta, and delta.

D=|C.X,®) — X ()| (6)
X(®)=X,(t)-A.D (7)

The two important variables 4 and ¢ are responsible for exploration
and exploitation, and change as per the expressions A= 2dr, — d and
C = 2r,, where, 17 and 1, are the random values responsible for the
movement of wolves in multidimensional space. Equations 8 to 10
define the step size toward the best three solutions (Mirjalili et al.,
2014).

Dg=|Cy.Xq — X| ®)
D % - ©)
Ds=|C3. X5 — X| (10)

Equations 11 to 13 describe the three best solutions and the best
position is achieved through Equation 14. Thus, it is assumed that the
position of the prey is obtained through Equation 14.

X;=X4-A1.(Dy) an
X,=Xg-Az.(Dg) (12)
X3=X5-A3.(Ds) (13)
R(t+ 1)t Kt % (14)

3
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t represents the current iteration in the aforementioned equations
(Amirsadri et al., 2018). GWO is described in Algorithm 1.

Algorithm 1: GWO
Declaration 1:

pop is the population of the search agents

t is the iteration variable

max_iteration is the total number of iterations

A and C are necessary variables responsible for exploration and
exploitation

d is the control variable that changes from 2 to 0 during the course of
iterations

a is calculated asa(t) = 2 —

2t
max _iteration

Initialize pop, A, C and d
Initialize iteration variable t = 0
Input: pop, max_iteration,
Calculate the fitness for each of the search agents
o wolf =search agent with best fitness
S wolf = search agent with second best fitness
0 wolf = search agent with third best fitness
Assume all, other search agents as omega
while t<max_iteration
for i=1 to 1:pop
Calculate and update the position of the current search agent using
Equation 14
end for
Update A, C, and d
Calculate the fitness for all of the grey wolves
Update positions of o, ff and 6 wolves
t=t+1
end while
Output: return position of a as optimal solution

Particle Swarm Optimization

Like GWO, PSO is also an NIA optimization and it is one of the
popular optimization methods presented in the literature among
different SI techniques. The basic working of PSO is described
through personal thinking factor and collaborative thinking factors
as shown in Equation 15. The concept of inertia weight has gained
wide popularity especially in the case of PSO, which also proved
its importance for exploring optimum solution. Furthermore, PSO
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reported the best performance when inertia is in the range [0.9, 1.2]
(Shi & Eberhart, 1998).

Vig= Wit ¢ x rand; ) (pig — Xiq) + €2 * rand; ) (Pga — Xia)
PeronalThinking CollaberativeThinking 5)

Xig= XiaT Via (16)

v;41s the velocity of it participating particles, c;, ¢, are the positive
coefficients, while rand, () and rand, () functions generate random
numbers in the range [0,1]. The variables Pia and Pgadenotes the
personal best and global best positions of particles, respectively.
Chatterjee and Siarry (2006) suggested that a better balance between
exploration and exploitation can be achieved through Equation 17.

Vianew=Witeration Vidota) ™Wi(®0ia — Xia) Wy (®ga — Xia) (17)

Viq is the velocity vector for the iteration i, p;qand pgq are the personal
best and global positions as per classic PSO definitions. y; and y are
the weighting variables of stochastic nature for balancing private
thinking component and global thinking component.

The update in inertia Wi, qri0n 1S done through the updating rule
according to Equation 18 (Chatterjee & Siarry, 20006).

{iterationyq,—iteration}™

Witeration™ (p(iteration):{ }(Winitial — Wrina1) + Wrinal (18)

{iteration g }™

Where iteration,,,, denotes total iterations and iteration denotes
current iteration. It is assumed that inertia weight maintains a good
balance between exploitation and exploration using non-linear
modulation indexn. It becomes linear when it equals to 1. The inertia
weights are changed from Wipjtiq; t0 Wring; during successive iterations.
The integration of inertia weight concept into the PSO algorithm
reflects the non-linear behavior and also improves the simulation
results in a significant manner (Chatterjee & Siarry, 2006).

Exploration and Exploitation

All non-deterministic metaheuristic algorithms are described as
population-based algorithms. These algorithms consist of a natural
tendency to maintain the balance between exploration and exploitation
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to avoid local optima. Without the proper balancing between these
two processes, i.e., exploration and exploitation, the optimal solution
cannot be achieved for optimization problems. Exploration or
diversification generates the solution in a distant area with respect
to the current solution so that the generated solution proceeds to
the global solution. Whereas exploitation or intensification searches
the solution near to the current solution (Emary et al., 2018). For
all stochastic population-based metaheuristic methods, exploration
means to use the previously attained knowledge for finding better and
probably optimal solutions. Classic GWO clearly stated that candidate
solutions diverge (exploration) with respect to the target when
|APTand  converge (exploitation) toward the target when
|AI<1 and in turn, control parameter is decreased from 2 to 0 to emphasize
divergence and convergence during successive iterations (Mirjalili et
al.,2014). However, it is practically observed that a linear decrement of
does notreflect the actual search process due to complex and non-linear
nature of exploration and exploitation. Long et al. (2018) developed a
new variant of GWO that integrated PSO and GWO. The exploration
and exploitation processes were improved by mimicking the control
variable d as the inertia w concept (a weight alike parameter) of PSO.
The aim of inertia factor is to make PSO more effective in terms of
performance. Therefore, Long et al. (2018) developed a non-linear
control variable d@ that maintains the balance between exploration and
exploitation as well as an adjustment strategy that is adjusted through
a decay function (Long et al., 2018).

Learning of the MLP Using a Metaheuristic Technique

There are certain encoding schemes available for learning the weight
and bias parameters through metaheuristics (Zhang et al., 2007).

(i)  Vector Encoding Scheme: In this scheme, each search agent is
encoded in the form of a vector and this vector represents the
weights and biases of MLP as shown in Equation 19:

VSeach_Agem = {wt|wt: connectionweights , b|b: biases } =

[Wti,Pu' Wti,lhz' th',pu,,' ey Wti,pzl' th’,pzz’ vy th’,pzh Wti,pnh'
Wih 0,1 Weh o, = Wlh 0,0 o WER_0,0s WER 0,5 weoe - WER 0, s wen we voeee W 6
bhlvbh.Zl bhhl TR bOl' boz, boo ] (19)
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Where wt are the weights of different connections between the input
layer and hidden layer; and the weights of different connections
between the hidden layer and the output layer. For example, wt; ,,  is
the weight of the connection from node 1 in the input layer to node
1 in the hidden layer, and wty ,,, is the weight of the connection
from node 2 in the hidden layer to node 1 in the output layer. Bias
is associated with the neurons of the hidden and output layers only.
Bias by is associated with the first node in the hidden layer and
bpp is the bias associated with the last node in the hidden layer.
Similarly, b;, and b, are the biases for the first and last nodes in the
output layer. The architecture of MLP is n — h — o,where n is the number
of neurons in the input layer, his the number of neurons in the hidden
layer, and is the number of neurons in the output layer.

The search agent matrix for vector encoding scheme can be described
using Equation 20:

Search_Agent_Matrix=[Search Agent (1); Search_ Agent (2) ...... Search
Agent (M)] (20)
Where M describes the population of search agents or size of the swarm.

(i1) Matrix Encoding Scheme: In this encoding, each search
agent is encoded in the form of matrices. For a given MLP with
structure , the matrices can be represented as:

_Wti_hn Wti_h21 Wti_hnl
wty = : : :
_Wti_hlh Wti_hzh wti_hnh (21)
(Wtho,, Wtho, - Witho,,
wty = : : :
[ Wihon, ~ Wlhon, Wthop, (22)
0,
O _1|:
hidden Qh (23)
0,
Ooutput = |
’ I . (24)

The structure of the search agent using the matrix encoding scheme
can be represented as:

Search agent (:s > i):[th, Ohnidden Wté, Qoutput] (25)
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The matrices wt; and wt; are the weight matrices for the hidden layer
and the transpose of the output layer, whereas Op;gqen and 0 gy pye are
the bias matrices for the hidden layer and output layer, respectively.
Variable i can vary from 1 to any population size M Typically,
population size can vary in the range of 50 to 500 depending on the
type of problems being solved.

(ii1)) Binary Encoding Scheme: It is a kind of encoding scheme,
where each search agent can be either 0 or 1 and the weight
for MLP training can be described through a series of zeros
and ones. The cost of the encoding scheme is comparatively
high for training purposes; however, this encoding is good for
feature selection tasks.

The abovementioned encoding schemes are used to represent the
population of metaheuristic algorithms with ANN, specifically for
MLP. Equations 19 and 20 are vector representations of weights and
biases, while Equations 21 to 25 represent the weights and biases in
matrix form.

INERTIA MOTIVATED GREY WOLF OPTIMIZATION

In this section, the new swarm optimization algorithm named IMGWO
1s discussed and further, IMGWO is used to train an MLP.

Inertia Motivated Grey Wolf Optimization

Through the literature, it is observed that the exploration and
exp101tat10n processes of GWO depend on the behavior of control
variable d,since it determines the vectors A and ¢ (using Equations
6 and 7) that can affect the final solution. The current study focuses
on the non-linear behavior of control variable and enhances the non-
linearity of by proposing Equation 26.

t
d(t) = dim- - (dim- — &ﬁn) X <($) X (emax_iteration — 1)) (26)

Consider that t denotes the current iteration, max_iteration denotes the
total number of iterations, d;,; and dr;,, denote the initial and final
values of control variable d, respectively. The non-linear decay of the
control variable is expressed through Equation 26 and also manages
the balance between exploitation and exploration in an effective
manner. This study uses the rule for updating the position of grey wolf
that is mentioned in Equation 27 (Long et al., 2018).
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X(t+ 1):W-W+C1-T3~(Xpbest - )?)Jrcz_.m X — )?) (27)
Where tis the current iteration,ry, r,are some random variables in the
range of 0 to 1. Further, c¢; and ¢, represent the individual memory
coefficient and population communication coefficient in the range
of [0, 1], respectively. denotes the personal best position during
successive iteration. is considered as the global best solution of
position of o (alpha wolf) and is the weight similar to inertia weight
in PSO. The value of variable changes from an initial value to as
per Equation 28 with respect to iteration variable (Long et al., 2018).
W=f(t) — tr:ax,ite'zratiotn_ tX(Wf _ WO) + Wf (28)
max _iteration
Where tyax iteration 1S the total number of iterations specified in the
algorithm.

Several findings can be highlighted as follows: (i) The variable w can
increase the speed for exploitation; (ii) random variables 73,1, are
responsible for improving the degree of randomness and exploration;
and (iii) coefficients c¢; and c, are responsible for better balancing
among exploration and exploitation. The aim of the proposed study
is to enhance the balance between exploration and exploitation by
introducing a non-linear control variable d as expressed in Equation
26.The study used the position updating rule as expressed in Equation
27 that determines the global best position. Finally, the abovementioned
improvements are incorporate into the GWO algorithm and proposed
to train MLP, as during the training process, MLP is often trapped in
local optima. The summary of IMGWO is described in Algorithm 2.
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Algorithm 2: IMGWO

Declaration 2:
pop is the population of the search agents
t is the iteration variable
max_iteration is the total number of iterations
A and C are necessary variables responsible for exploration and
exploitation
Q is the control variable that changes according to Equation 26,
Initialize pop, A, C and @
Initialize iteration variable t = 0
Input: pop, max_iteration
Calculate the fitness for each of the search agents using Equations 30 and 31
o wolf =search agent with best fitness
S wolf = search agent with second best fitness
0 wolf = search agent with third best fitness
Assume all, other search agents as omega w
while t<max_iteration
for i=1 to I:pop
Calculate was per Equation 28
Update the position of the current search agent using Equation 27
end for .
Update A.C, and @
Recalculate the fitness for all of the grey wolves using Equations 30 and 31
Update positions of a, f§ and 6 wolves
t=t+1
end while
Output: return position of a as optimal solution

Training of MLP using IMGWO

This section discusses the IMGWO-based training algorithm for
MLP. IMGWO attained promising results during the experimental
setup and attracted the attention for solving the weight optimization
problem of ANN. The algorithm managed better trade-off between the
divergence and convergence processes, which is one of the essential
steps to obtain competitive results using metaheuristic techniques.
The current study focuses on optimizing the weights and biases
during the training of MLP using IMGWO. Furthermore, the vector
encoding scheme (already discussed in the background concepts) is
adopted to represent the weights and biases of MLP for search agents
(wolves) (a, B, 8, and ®). The weight and bias vectors (as shown in
Equation 19) represent the dimensions or variables for IMGWO.
The variables should be optimized to obtain maximum classification
accuracy. Classification or prediction accuracy also depends on
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another important measure, i.e., MSE. MSE can be considered as an
objective function for evaluating classifier performance.

The training of MLP is also considered as a challenging problem
due to large search space and gradient descent nature of weight and
bias. To meet the aforementioned challenges of MLP, the proposed
IMGWO-MLP framework can be described in Algorithm 3.

Algorithm 3: IMGWO-MLP

Declaration 3:
i-h-o is the structure of neural network where
i is the number of neurons in input layer
h is the number of neurons in hidden layer
0 is the number of neurons in output layer
Dimensions are the number of weights and biases expressed in Equation 19
MSE is the mean squared error also known as average training error
expressed in Equation 30
Calculate the number of dimensions as per formulate given in Equation 29
Initialize all the dimensions in a suitable range
Input: training samples of a medical dataset, and set of weights and
biases (dimensions)
for each training sample
Apply Algorithm 2 (IMGWO) to each of the dimensions to obtain MSE
and optimum values of weights and biases
Use the optimum weights and biases to classify the sample
end for

Output: MSE, and set of optimum weights and biases

Dimensions = NeuronSp;qgen (Neuronsmput + Neuronswwm) + BiaseSpiqaen + Blases utpus (29)

In the IMGWO algorithm, the fitness of search agents is computed
using Equations 30 and 31. For simplicity, an MLP with one hidden
layer is considered in the proposed study. The input layer consists
of n neurons, whereas number of neurons in the hidden layer is i .It
is assumed that the input dataset contains ¢ number of training patterns
and each pattern could be classified in m number of classes. Therefore,
the total neurons in the output layer are set to m. The output can be
described in terms of average training error (Avgg,-)for a given input
unit i and patternp"pattern as follows:
m p P2

Avgp,, = Z=1M (30)
Where ob? and exp? are the observed and expected outputs of the input
unit ; with respect to pth training pattern.
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Finally, the IMGWO-based training of MLP can be formulated as a
minimization problem for the variables defined in Equation 19. The
average training error Avgg,., is described using Equation 31, which
acts as a fitness function for all search agents.

Min. (F (vSeach_Agent = Avggrr)) GD

EXPERIMENTAL STUDY

The four benchmark medical datasets were taken from the UCI
machine learning repository and a description of these datasets is
given in Table 1. All datasets had two classes; therefore, the medical
data classification problem could be interpreted as a two-class problem
or binary classification.

Table 1

Database Descriptions

Database #input #Instances Missing values Structure of MLP (I-H-O)

Heart 13 303 No 13-27-1
disease
Breast 9 699 Yes 9-19-1
cancer
Hepeatitis 19 155 Yes 19-39-1
Parkinson’s 22 195 No 22-45-1

The second column denotes the total number of attributes, whereas
the third column indicates the total number of samples. The fourth
column provides the information regarding the presence of missing
values in the datasets. The last column describes the structure of MLP.
In the MLP structure, ‘I’ denotes the total number of input nodes in
the input layer, ‘H’ denotes the total number of nodes in the hidden
layer, and ‘O’ indicates the total number of nodes in the output layer.
The MLP structure contains a single hidden layer for all datasets.
For every MLP structure, the total number of neurons in the hidden
layer is calculated as 2*n+1, where n is the number of neurons in the
input layer. The missing values are replaced with mean values of the
corresponding attributes and normalization can be performed through
the mapminmax() function.
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The heart disease dataset consists of 303 data instances, 13 attributes,
and one class attribute. Originally, it has 76 attributes, however,
most of the irrelevant attributes (e.g., ID, social security number,
etc.) were removed during the pre-processing task. All attributes
are numeric and the name of class attribute is num, which is either 0
or more than 0. However, it will always be less than 1.0 that stands
for the absence of heart disease, whereas a value near to 1 has the
worst situation. Breast cancer data is a medium-size data, named
Breast Cancer Wisconsin (original) (BCW) dataset and it contains a
total of 9 attributes (ID number is omitted) and 699 data instances.
The tenth attribute is the class attribute that is represented through
either benign (non-cancerous) or malignant (cancerous). The hepatitis
dataset contains a small number of data instances (total 155) as
given in Table 1, despite having a large number of attributes (total
19). Out of 19 attributes, 13 attributes are of binary type while other
attributes contain numeric values. The class attribute has two distinct
values, i.e., ‘die’ and ‘live’. The Parkinson’s disease (PD) dataset is
a medium-size data and has 22 attributes and one class attribute. The
PD dataset consists of 195 subjects. The class attribute discriminates
the patients as either PD-affected or the healthier one. The disease
identification in PD is associated with the differences observed when
pronouncing the vowels.

Experimental Setup

IMGWO is a modified metaheuristic computational approach that
was applied to refine the classification results of ANN. MSE could
be considered as a fitness function for IMGWO and it should be
minimized in successive iteration for attaining optimal solution.
The simulation results of IMGWO -MLP classifier was compared
with ANN-based classifier using three well-known metaheuristic
techniques, namely GA, PSO, and GWO.

Each dataset was partitioned into training and testing sets, whereby
the partitioning ratio was 70:30, i.e., 70 percent of the data were used
for training the network and the rest of the data was used to obtain
the classification results using IMGWO-MLP. Three other competent
metaheuristics-based classification (GWO, PSO, and GA) techniques
were compared with IMGWO for performance evaluation. The
implementation details of the proposed IMGWO-MLP and other three
techniques (GWO, PSO, and GA) are given in Table 2.
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Table 2

Implementation Details

Parameters IMGWO GWO PSO GA
Population 250 250 250 250
Max. Iteration 500 500 500 500
Other d=decreased linearly d=decreased c1=1  Probabilitycrossover
Technique- from2toOover linearly from2to  c=1 =1
Specific course of the iteration, 0 over course of =0 3 FTOPabUitYmutation

Parameters w=2, ¢1 =1, co=1 the iteration

The experiments were implemented in MATLAB software tool
(version 2018) and all user-defined parameters were set prior to
executing the experiments. The total number of iterations was set to
500 and the population of search agents was set to 250. In GWO,
dwas initially set to 2, and it changed linearly during the successive
iterations and reached 0. In IMGWO, the initial value of d was 2, and
reached 0 during the successive iterations; however, it decreased non-
linearly. In IMGWO, a new parameter was w proposed and initially,
the value of w was set to 2. In PSO, w was set to 0.3, and the personnel
learning coefficient ¢; and social learning coefficients c,were set to 1.
In GA, the single point probability of crossover was set as 1, while the
mutation uniform probability was set as 0.01.

Result and Discussion

This section presents the discussion on the simulation results obtained
through the MLP classification model trained by IMGWO and the
other techniques, namely GWO, GA, and PSO. The study included
four benchmark medical datasets, i.e., heart disease, breast cancer,
hepatitis, and Parkinson’s disease for implementation tasks. All
datasets were partitioned into two sets as training and testing sets
in the ratio of 70:30. The first phase constructed a model using the
training set for each medical dataset and further, optimal weights and
biases were computed using the IMGWO technique. In the second
phase, model usage was described through the testing set for each
medical dataset. The proposed models (IMGWO-MLP, GWO-MLP,
PSO-MLP, and GA-MLP) executed ten different runs for each medical
dataset. Tables 3—7 present the simulation results of all MLP models
using all medical datasets. The results are presented as arithmetic
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mean of ten different independent runs. The convergence rates of
the training task using IMGWO, GWO, GA, and PSO are shown in

Figures 1-4.
Figure 1

Convergence Curve for Heart Disease.
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Figure 2

Convergence Curve for Breast Cancer.
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It was observed that the convergence rate of IMGWO was better
than all other metaheuristic techniques (GWO, GA, and PSO) used
for comparisons. It could be achieved by balancing the exploration
and exploitation processes of GWO through control variable @ and
position updates of wolves.
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Figure 3

Convergence Curve for Hepatitis.
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Convergence Curve for Parkinson's Disease.
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The framework of IMGWO used a new expression for Equation 26
and a position updating rule Equation 27. These two improvements
enhanced the convergence rate of IMGWO in a significant manner.
The other significant improvement, i.e., avoidance of entrapment in
local optima, could not be directly seen in the recorded parameter, but
was also improved as IMGWO obtained better convergence rate and
reduced MSE.

Table 3 illustrates the simulation results using MSE using all four
models. It showed that IMGWO-MLP achieved a low MSE rate
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except for GWO (minimum MSE for hepatitis disease in the testing
phase).

Table 3

Mses Over Ten Runs for Different Datasets

Medical Training MSE (Avg.) Testing MSE (Avg.)

Dataset IMGWO GWO GA PSO IMGWO GWO GA PSO
Heart

disease 0.037 0.038 0.041 0.155 0.028 0.032 0.033 0.135
Breast

cancer 0.030 0.037 0.039 0.039 0.030 0.038 0.037 0.053

Hepatitis 0.031 0.052 0.032 0.035 0.031 0.030 0.032 0.040

Parkinson’s
disease 0.037 0.104 0.126 0.137 0.030 0.099 0.119 0.112

Table 4

Accuracies Over Ten Runs for Different Datasets

Medical Training Accuracies (Avg.) Testing Accuracies (Avg.)
Dataset IMGWO GWO GA PSO IMGWO GWO GA PSO
Heart

disease 84.91 83.962 83.02 81.13 90.11 79.12 85.71 81.32

Breast
cancer 95.92 9449 93.67 91.84 92.82 79.43 79.9 78.47

Hepatitis ~ §9.91 87.156 84.4 81.65 84.78 80.43 82.61 73.91

Parkinson’s
disease 80.29 77372 7591 76.64 82.76 75.86 77.59 68.97

The average accuracy of all models is presented in Table 4. The
results claimed that IMGWO-MLP had a better accuracy rate in
comparison to GWO, GA, and PSO. IMGWO-MLP also achieved
better accuracies during the training phase. The best mean accuracies
achieved by the IMGWO-MLP model were 90.11 percent, 92.82
percent, 84.78 percent, and 82.76 percent with all medical datasets.
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Table 5

Sensitivities Over Ten Runs for Different Datasets

Medical Training Sensitivities (Avg.) Testing Sensitivities (Avg.)
Dataset IMGWO GWO GA PSO IMGWO GWO GA PSO
Heart
disease 8421 83.16 82.11 7895 9545 70.45 90.91 79.55
Breast
cancer 9444 9333 9222 88.89 9508 81.97 80.33 77.05

Hepatitis 7826 7391 69.57 6522 7178 66.67 88.89 55.56
Parkinson’s
disease 67.57 6216 59.46 67.57 8182 63.64 7273 54.55

Table 6

Specificities Over Ten Runs for Different Datasets

Medical Training Specificities (Avg.) Testing Specificities (Avg.)
dataset IMGWO GWO GA PSO IMGWO GWO GA PSO

Heart
disease 85.47 84.62 83.76 8291 85.11 87.23 80.85 82.98

Breast
cancer 96.77 95.16 94.52 93.55 91.89 78.38 79.73 79.05

Hepatitis 9302 907 8837 86.05 8649  83.78 81.08 78.38
Parkinson’s
disease  g500  83.00 82.00 80.00 82.98 7872 76.6 72.34

The simulation results of sensitivities and specificities parameters
are also presented in Tables 5—6 and the best values are highlighted
in bold. For designing an expert system for medical diagnosis, it is
necessary to compare true-positive rate (sensitivity) and true-negative
rate (specificity).

ROC curves were also computed as shown Figures 5-6. It is also
considered as an important measure in the field of medical data
mining. The ROC curve gave true positive classification rate at the
cost of false-positive classification rate. The area under the curves
(AUQC) is also illustrated in Table 7. It was found that better AUC
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values were obtained by IMGWO for all datasets and the AUC values
were also near to 1, which showed the significance of the proposed
IMGWO-MLP model.

Table 7

AUC for Different Datasets

Medical Training AUC

dataset  piGwo GwoO

Testing AUC
GA PSO IMGWO GWO GA PSO

Heart
disease 0.89

Breast
cancer 0.936

Parkinson’s
disease 0.802

0.867

0.927

0.836

0.782

0.863 0.842 0.881 0.782 0.845 0.786

0.915 0.899 0.921 0.81 0.788 0.779

0.811 0.805 0.847 0.798 0.819 0.734

0.779 0.783 0.789 0.756 0.752 0.699

Figure 5

ROC Curve for IMGWO for Heart Disease .
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Figure 6

ROC Curve for IMGWO for Parkinson s Disease.
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Conclusion and Future Scope

In this study, a new metaheuristic algorithm, IMGWO, was developed
for training the MLP model. Furthermore, the searching (exploration
and exploitation) capability of GWO was enhanced with the concept
of time-variant inertia. The proposed method proved its performance
in terms of convergence. The four benchmark medical datasets
were considered to evaluate the performance of the IMGWO-MLP
model and results were compared with three popular MLP models.
IMGWO can effectively optimize weight and bias, and in turn,
improves the performance in terms of convergence rate as well
reduces MSE. Some other performance measures like accuracy,
sensitivity, specificity, ROC, and AUC were also computed to signify
the performance of IMGWO-MLP using all datasets. It is found that
the proposed method supersedes most of the datasets as compared
to the rest of the models. The key points of the IMGWO-based
training algorithm are highlighted as follows: (i) IMGWO has better
management of exploration and exploitation; (ii) It is a well-defined
model inspired through mathematical formulations that can make it
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easy to comprehend and implement; and (iii) No technique-specific
parameters adjustment is done, only some common parameters of
population-based metaheuristic methods are adjusted.

Finally, it can be concluded that the proposed IMGWO technique
is a better alternative solution with respect to many contemporary
metaheuristic methods including GA, PSO, and GWO to train the
neural network, especially for medical data classification. Future
work may incorporate other neural network techniques such as deep
neural networks or RNN and investigate the performance of IMGWO.
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