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ABSTRACT

Forecasting is a challenging task as time series data exhibit 
many features that cannot be captured by a single model. 
Therefore, many researchers have proposed various hybrid 
models in order to accommodate these features to improve 
forecasting results. This work proposed a hybrid method 
between Empirical Mode Decomposition (EMD) and Theta 
methods by considering better forecasting potentiality. Both 
EMD and Theta are efficient methods in their own ground 
of tasks for decomposition and forecasting, respectively. 
Combining them to obtain a better synergic outcome deserves 
consideration. EMD decomposed the training data from each of 
the five Financial Times Stock Exchange 100 Index (FTSE 100 
Index) companies’ stock price time series data into Intrinsic 
Mode Functions (IMF) and residue. Then, the Theta method 
forecasted each decomposed subseries. Considering different 
forecast horizons, the effectiveness of this hybridisation was 
evaluated through values of conventional error measures found 
for test data and forecast data, which were obtained by adding 
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forecast results for all component counterparts extracted from 
the EMD process. This study found that the proposed method 
produced better forecast accuracy than the other three classic 
methods and the hybrid EMD-ARIMA models.

Keywords: Forecasting stock price, empirical mode decomposition, intrinsic 
mode functions, theta method, time series.

INTRODUCTION

The challenging task of time series forecasting is a very active as well as an 
important research area. In many phenomena, the past, present, and future events 
are correlated intrinsically with various degrees of randomness. Nevertheless, 
some events are highly unpredictable, whereas some are relatively easy to 
predict (Makridakis, 1986). Both capturing data characteristics and fitting 
data with appropriate methods according to characteristics are the methods 
for better forecasting. Nowadays, there are many statistical as well as machine 
learning models for time series forecasting. However, hybrid models are also 
up-and-coming in many cases, and this work proposes an Empirical Mode 
Decomposition (EMD)-Theta hybrid model. 
	 Choosing or finding the best model for a particular or similar type of 
time series data is a challenging but essential consideration. Chatfield (1988) 
discussed competitive effectiveness encompassing the strengths as well 
as weaknesses of models and approaches regarding aspects of judgmental, 
univariate, multivariate, automatic, and non-automatic forecasting with a 
focus on forecasting competitions. It contributed to draw a significant scenic 
landscape of the contemporary forecasting research works along with a future 
indication of better forecasting model finding approaches. 
	 There is still much scope and importance of improving forecasting in 
the field of econometrics and finance where hybridisation can be of particular 
consideration. In this article, the potential EMD-Theta hybrid model is 
presented with an evaluation of five Financial Times Stock Exchange 100 
Index (FTSE 100 Index) companies along with a comparison of performance 
with some other classical methods as well as the hybrid EMD-Autoregressive 
Integrated Moving Average (ARIMA) method. It was evident that the 
proposed model performed better than other models. This research work 
found that EMD-Theta overcame limitations and performed over the demerits 
of other employed models. One potential demerit or limitation of the EMD-
Theta model is that EMD can be inapplicable for some time series suffering 
from end effect and mode mixing, which can be remedied by considering its 
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improved variants. Therefore, EMD-Theta hybridisation has the robustness 
of better forecasting, which indicates its potential furtherance in research and 
applications. 

LITERATURE REVIEW

Time series forecasting belongs to many research fields where financial and 
economic types hold a broad and widespread concern and application. The 
early model developed in time series forecasting is the Autoregressive (AR) 
model and Moving Average (MA) model. Then, a more developed combined 
approach of ARIMA was introduced, which is notably followed by the Box-
Jenkins approach (Box & Jenkins, 1970; Cholette, 1982). Later on, more 
modifications evolved and many other models were developed. ARIMA 
is a superior version of Autoregressive Moving Average (ARMA), which 
came out of further works (Wold, 1938; Whittle, 1951) as a suitable method 
for stationary series. ARMA is a consequential combination of two other 
methods, AR, introduced by Yule (1927) and MA, a work of Slutzky (1937). 
The method is better written as ARIMA (p,d,q) where p, d, and q stand for or 
are related to the number of autoregressive terms, the order of integration, and 
the number of moving average terms, respectively. The value of d is obtained 
by taking differences of the terms one or more times until the series turns to 
be stationary. 

Then, the series is applied for the ARMA process, which can be generally 
written as in Equation 1: 

                           (1)

where     and     are past values and past deviations or errors, respectively. 
Using lag operator       that operates as                      Equation (1) can be written 
as Equation 2:

                                                                                        (2)
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for resource prediction on Kubernetes, an open-source cluster management 
software. One of the merits of ARIMA is that it performs quite satisfactorily 

 

 

 
The challenging task of time series forecasting is a very active as well as an important research area. In 
many phenomena, the past, present, and future events are correlated intrinsically with various degrees of 
randomness. Nevertheless, some events are highly unpredictable, whereas some are relatively easy to predict 
(Makridakis, 1986). Both capturing data characteristics and fitting data with appropriate methods according 
to characteristics are the methods for better forecasting. Nowadays, there are many statistical as well as 
machine learning models for time series forecasting. However, hybrid models are also up-and-coming in 
many cases, and this work proposes an Empirical Mode Decomposition (EMD)-Theta hybrid model.  

Choosing or finding the best model for a particular or similar type of time series data is a challenging 
but essential consideration. Chatfield (1988) discussed competitive effectiveness encompassing the 
strengths as well as weaknesses of models and approaches regarding aspects of judgmental, univariate, 
multivariate, automatic, and non-automatic forecasting with a focus on forecasting competitions. It 
contributed to draw a significant scenic landscape of the contemporary forecasting research works along 
with a future indication of better forecasting model finding approaches.  

There is still much scope and importance of improving forecasting in the field of econometrics and 
finance where hybridisation can be of particular consideration. In this article, the potential EMD-Theta 
hybrid model is presented with an evaluation of five Financial Times Stock Exchange 100 Index (FTSE 100 
Index) companies along with a comparison of performance with some other classical methods as well as the 
hybrid EMD-Autoregressive Integrated Moving Average (ARIMA) method. It was evident that the 
proposed model performed better than other models. This research work found that EMD-Theta overcame 
limitations and performed over the demerits of other employed models. One potential demerit or limitation 
of the EMD-Theta model is that EMD can be inapplicable for some time series suffering from end effect 
and mode mixing, which can be remedied by considering its improved variants. Therefore, EMD-Theta 
hybridisation has the robustness of better forecasting, which indicates its potential furtherance in research 
and applications.  

 
 

LITERATURE REVIEW 
 

Time series forecasting belongs to many research fields where financial and economic types hold a broad 
and widespread concern and application. The early model developed in time series forecasting is the 
Autoregressive (AR) model and Moving Average (MA) model. Then, a more developed combined approach 
of ARIMA was introduced, which is notably followed by the Box-Jenkins approach (Box & Jenkins, 1970; 
Cholette, 1982). Later on, more modifications evolved and many other models were developed. ARIMA is 
a superior version of Autoregressive Moving Average (ARMA), which came out of further works (Wold, 
1938; Whittle, 1951) as a suitable method for stationary series. ARMA is a consequential combination of 
two other methods, AR, introduced by Yule (1927) and MA, a work of Slutzky (1937). The method is better 
written as ARIMA (p,d,q) where p, d, and q stand for or are related to the number of autoregressive terms, 
the order of integration, and the number of moving average terms, respectively. The value of d is obtained 
by taking differences of the terms one or more times until the series turns to be stationary.  

Then, the series is applied for the ARMA process, which can be generally written as in Equation 
(1):  

 
𝑥� = 𝛼�𝑥��� + 𝛼�𝑥��� + ⋯+ 𝛼�𝑥��� + 𝑒� + 𝛽�𝑒��� − 𝛽�𝑒��� − ⋯− 𝛽�𝑒���                           (1) 

 

 

 
where 𝑥� and 𝑒� are past values and past deviations or errors, respectively. Using lag operator 𝐿� that operates 
as 𝐿�𝑥� = 𝑥���, Equation (1) can be written as Equation (2): 
 

(1 − ∑ 𝛼�𝐿�)�
��� 𝑥� = (1 + ∑ 𝛽�𝐿�)�

��� 𝑒�                                                                                        (2) 
 

Along with obtaining the values of p, d, and q, and the fitted values for the coefficients of all terms 
for better or appropriate model selection and forecasting, the Box–Jenkins approach is followed through 
some necessary steps. Although the ARIMA method is a classic approach, it is still being applied in different 
new research areas like a recent work of Zhao et al. (2019) for resource prediction on Kubernetes, an open-
source cluster management software. One of the merits of ARIMA is that it performs quite satisfactorily for 
non-stationary time series, which can be easily and firmly transformed into stationary. However, its 
mentionable demerit is that ARIMA tends to fail for highly non-stationary and non-linear time series data, 
especially with turbulent characteristics and dynamic curvature.  

Smoothing methods for better data fitting as well forecasting were developed by the seminal works 
of Brown (1956), Holt (2004), and Winters (1960). Other mentionable contributions in this model were 
made by Gardner (1985) and Gardner (2006). Exponentially Weighted Moving Average (EWMA), a 
smoothing technique for time series data fitting, is a work developed by Brown (1956) that historically 
originated in the 17th century by Denis Poisson in dealing with his numerical analysis problem related to 
weighted averaging and exponential windowing. A general EWMA model is represented by Equations (3) 
and (4):  

 
𝐸� = 𝑥�                                                                                                                                           (3) 

 
𝐸� = 𝛼𝑥��� + (1 − 𝛼)𝐸���, 0 < 𝛼 < 1, 𝑡 ≥ 3                                                                               (4) 

 
where 𝛼, 𝑥�, and 𝐸� are respectively smoothing parameter, original sequence terms, and exponentially 
decreasing sequence terms, which are found by convex combinations with original terms. By recursive use, 
Equations (3) and (4) can jointly be rewritten as Equation (5): 
 

𝐸� = 𝛼∑ (1 − 𝛼)������
��� 𝑥��� + (1 − 𝛼)���𝐸�, 𝑡 ≥ 2                                                                      (5) 

 
Equation (5) reveals 𝑑(𝑡) = 𝛼(1 − 𝛼)�, which has exponential value decrease property towards 

distant past values. By adding all 𝑡smoothing weight, the related cumulative distribution function can be of 
the form 𝐶(𝑡) = 1 − (1 − 𝛼)�. For effective or optimal smoothing in the EWMA process, the best value of 
𝛼 is a requirement for least deviation or error of fitted data with original data. The Marquardt procedure and 
other conventional advanced search approaches, as well as manual tuning, are employed to obtain this value. 
Relevantly, the EWMA method was further developed for an extension for double and triple smoothing by 
Holt (1957) and Winters (1960).  

The Theta method was developed, introduced, and described along with background mathematics 
by Assimakopoulos and Nikolopoulos (2000) and Hyndman and Billah (2003). The scholars simplified and 
suggested different approaches for derivation with the same or similar result found. They claimed that the 
performance of the Theta method was similar to simple exponential smoothing (SES) with a drift. Some 
other research contributions involving the Theta method are works of Pagourtzi et al. (2008), Nikolopoulos 

 

 

 
where 𝑥� and 𝑒� are past values and past deviations or errors, respectively. Using lag operator 𝐿� that operates 
as 𝐿�𝑥� = 𝑥���, Equation (1) can be written as Equation (2): 
 

(1 − ∑ 𝛼�𝐿�)�
��� 𝑥� = (1 + ∑ 𝛽�𝐿�)�

��� 𝑒�                                                                                        (2) 
 

Along with obtaining the values of p, d, and q, and the fitted values for the coefficients of all terms 
for better or appropriate model selection and forecasting, the Box–Jenkins approach is followed through 
some necessary steps. Although the ARIMA method is a classic approach, it is still being applied in different 
new research areas like a recent work of Zhao et al. (2019) for resource prediction on Kubernetes, an open-
source cluster management software. One of the merits of ARIMA is that it performs quite satisfactorily for 
non-stationary time series, which can be easily and firmly transformed into stationary. However, its 
mentionable demerit is that ARIMA tends to fail for highly non-stationary and non-linear time series data, 
especially with turbulent characteristics and dynamic curvature.  

Smoothing methods for better data fitting as well forecasting were developed by the seminal works 
of Brown (1956), Holt (2004), and Winters (1960). Other mentionable contributions in this model were 
made by Gardner (1985) and Gardner (2006). Exponentially Weighted Moving Average (EWMA), a 
smoothing technique for time series data fitting, is a work developed by Brown (1956) that historically 
originated in the 17th century by Denis Poisson in dealing with his numerical analysis problem related to 
weighted averaging and exponential windowing. A general EWMA model is represented by Equations (3) 
and (4):  

 
𝐸� = 𝑥�                                                                                                                                           (3) 

 
𝐸� = 𝛼𝑥��� + (1 − 𝛼)𝐸���, 0 < 𝛼 < 1, 𝑡 ≥ 3                                                                               (4) 

 
where 𝛼, 𝑥�, and 𝐸� are respectively smoothing parameter, original sequence terms, and exponentially 
decreasing sequence terms, which are found by convex combinations with original terms. By recursive use, 
Equations (3) and (4) can jointly be rewritten as Equation (5): 
 

𝐸� = 𝛼∑ (1 − 𝛼)������
��� 𝑥��� + (1 − 𝛼)���𝐸�, 𝑡 ≥ 2                                                                      (5) 

 
Equation (5) reveals 𝑑(𝑡) = 𝛼(1 − 𝛼)�, which has exponential value decrease property towards 

distant past values. By adding all 𝑡smoothing weight, the related cumulative distribution function can be of 
the form 𝐶(𝑡) = 1 − (1 − 𝛼)�. For effective or optimal smoothing in the EWMA process, the best value of 
𝛼 is a requirement for least deviation or error of fitted data with original data. The Marquardt procedure and 
other conventional advanced search approaches, as well as manual tuning, are employed to obtain this value. 
Relevantly, the EWMA method was further developed for an extension for double and triple smoothing by 
Holt (1957) and Winters (1960).  

The Theta method was developed, introduced, and described along with background mathematics 
by Assimakopoulos and Nikolopoulos (2000) and Hyndman and Billah (2003). The scholars simplified and 
suggested different approaches for derivation with the same or similar result found. They claimed that the 
performance of the Theta method was similar to simple exponential smoothing (SES) with a drift. Some 
other research contributions involving the Theta method are works of Pagourtzi et al. (2008), Nikolopoulos 

 

 

 
where 𝑥� and 𝑒� are past values and past deviations or errors, respectively. Using lag operator 𝐿� that operates 
as 𝐿�𝑥� = 𝑥���, Equation (1) can be written as Equation (2): 
 

(1 − ∑ 𝛼�𝐿�)�
��� 𝑥� = (1 + ∑ 𝛽�𝐿�)�

��� 𝑒�                                                                                        (2) 
 

Along with obtaining the values of p, d, and q, and the fitted values for the coefficients of all terms 
for better or appropriate model selection and forecasting, the Box–Jenkins approach is followed through 
some necessary steps. Although the ARIMA method is a classic approach, it is still being applied in different 
new research areas like a recent work of Zhao et al. (2019) for resource prediction on Kubernetes, an open-
source cluster management software. One of the merits of ARIMA is that it performs quite satisfactorily for 
non-stationary time series, which can be easily and firmly transformed into stationary. However, its 
mentionable demerit is that ARIMA tends to fail for highly non-stationary and non-linear time series data, 
especially with turbulent characteristics and dynamic curvature.  

Smoothing methods for better data fitting as well forecasting were developed by the seminal works 
of Brown (1956), Holt (2004), and Winters (1960). Other mentionable contributions in this model were 
made by Gardner (1985) and Gardner (2006). Exponentially Weighted Moving Average (EWMA), a 
smoothing technique for time series data fitting, is a work developed by Brown (1956) that historically 
originated in the 17th century by Denis Poisson in dealing with his numerical analysis problem related to 
weighted averaging and exponential windowing. A general EWMA model is represented by Equations (3) 
and (4):  

 
𝐸� = 𝑥�                                                                                                                                           (3) 

 
𝐸� = 𝛼𝑥��� + (1 − 𝛼)𝐸���, 0 < 𝛼 < 1, 𝑡 ≥ 3                                                                               (4) 

 
where 𝛼, 𝑥�, and 𝐸� are respectively smoothing parameter, original sequence terms, and exponentially 
decreasing sequence terms, which are found by convex combinations with original terms. By recursive use, 
Equations (3) and (4) can jointly be rewritten as Equation (5): 
 

𝐸� = 𝛼∑ (1 − 𝛼)������
��� 𝑥��� + (1 − 𝛼)���𝐸�, 𝑡 ≥ 2                                                                      (5) 

 
Equation (5) reveals 𝑑(𝑡) = 𝛼(1 − 𝛼)�, which has exponential value decrease property towards 

distant past values. By adding all 𝑡smoothing weight, the related cumulative distribution function can be of 
the form 𝐶(𝑡) = 1 − (1 − 𝛼)�. For effective or optimal smoothing in the EWMA process, the best value of 
𝛼 is a requirement for least deviation or error of fitted data with original data. The Marquardt procedure and 
other conventional advanced search approaches, as well as manual tuning, are employed to obtain this value. 
Relevantly, the EWMA method was further developed for an extension for double and triple smoothing by 
Holt (1957) and Winters (1960).  

The Theta method was developed, introduced, and described along with background mathematics 
by Assimakopoulos and Nikolopoulos (2000) and Hyndman and Billah (2003). The scholars simplified and 
suggested different approaches for derivation with the same or similar result found. They claimed that the 
performance of the Theta method was similar to simple exponential smoothing (SES) with a drift. Some 
other research contributions involving the Theta method are works of Pagourtzi et al. (2008), Nikolopoulos 

 

 

 
where 𝑥� and 𝑒� are past values and past deviations or errors, respectively. Using lag operator 𝐿� that operates 
as 𝐿�𝑥� = 𝑥���, Equation (1) can be written as Equation (2): 
 

(1 − ∑ 𝛼�𝐿�)�
��� 𝑥� = (1 + ∑ 𝛽�𝐿�)�

��� 𝑒�                                                                                        (2) 
 

Along with obtaining the values of p, d, and q, and the fitted values for the coefficients of all terms 
for better or appropriate model selection and forecasting, the Box–Jenkins approach is followed through 
some necessary steps. Although the ARIMA method is a classic approach, it is still being applied in different 
new research areas like a recent work of Zhao et al. (2019) for resource prediction on Kubernetes, an open-
source cluster management software. One of the merits of ARIMA is that it performs quite satisfactorily for 
non-stationary time series, which can be easily and firmly transformed into stationary. However, its 
mentionable demerit is that ARIMA tends to fail for highly non-stationary and non-linear time series data, 
especially with turbulent characteristics and dynamic curvature.  

Smoothing methods for better data fitting as well forecasting were developed by the seminal works 
of Brown (1956), Holt (2004), and Winters (1960). Other mentionable contributions in this model were 
made by Gardner (1985) and Gardner (2006). Exponentially Weighted Moving Average (EWMA), a 
smoothing technique for time series data fitting, is a work developed by Brown (1956) that historically 
originated in the 17th century by Denis Poisson in dealing with his numerical analysis problem related to 
weighted averaging and exponential windowing. A general EWMA model is represented by Equations (3) 
and (4):  

 
𝐸� = 𝑥�                                                                                                                                           (3) 

 
𝐸� = 𝛼𝑥��� + (1 − 𝛼)𝐸���, 0 < 𝛼 < 1, 𝑡 ≥ 3                                                                               (4) 

 
where 𝛼, 𝑥�, and 𝐸� are respectively smoothing parameter, original sequence terms, and exponentially 
decreasing sequence terms, which are found by convex combinations with original terms. By recursive use, 
Equations (3) and (4) can jointly be rewritten as Equation (5): 
 

𝐸� = 𝛼∑ (1 − 𝛼)������
��� 𝑥��� + (1 − 𝛼)���𝐸�, 𝑡 ≥ 2                                                                      (5) 

 
Equation (5) reveals 𝑑(𝑡) = 𝛼(1 − 𝛼)�, which has exponential value decrease property towards 

distant past values. By adding all 𝑡smoothing weight, the related cumulative distribution function can be of 
the form 𝐶(𝑡) = 1 − (1 − 𝛼)�. For effective or optimal smoothing in the EWMA process, the best value of 
𝛼 is a requirement for least deviation or error of fitted data with original data. The Marquardt procedure and 
other conventional advanced search approaches, as well as manual tuning, are employed to obtain this value. 
Relevantly, the EWMA method was further developed for an extension for double and triple smoothing by 
Holt (1957) and Winters (1960).  

The Theta method was developed, introduced, and described along with background mathematics 
by Assimakopoulos and Nikolopoulos (2000) and Hyndman and Billah (2003). The scholars simplified and 
suggested different approaches for derivation with the same or similar result found. They claimed that the 
performance of the Theta method was similar to simple exponential smoothing (SES) with a drift. Some 
other research contributions involving the Theta method are works of Pagourtzi et al. (2008), Nikolopoulos 

 

 

 
where 𝑥� and 𝑒� are past values and past deviations or errors, respectively. Using lag operator 𝐿� that operates 
as 𝐿�𝑥� = 𝑥���, Equation (1) can be written as Equation (2): 
 

(1 − ∑ 𝛼�𝐿�)�
��� 𝑥� = (1 + ∑ 𝛽�𝐿�)�

��� 𝑒�                                                                                        (2) 
 

Along with obtaining the values of p, d, and q, and the fitted values for the coefficients of all terms 
for better or appropriate model selection and forecasting, the Box–Jenkins approach is followed through 
some necessary steps. Although the ARIMA method is a classic approach, it is still being applied in different 
new research areas like a recent work of Zhao et al. (2019) for resource prediction on Kubernetes, an open-
source cluster management software. One of the merits of ARIMA is that it performs quite satisfactorily for 
non-stationary time series, which can be easily and firmly transformed into stationary. However, its 
mentionable demerit is that ARIMA tends to fail for highly non-stationary and non-linear time series data, 
especially with turbulent characteristics and dynamic curvature.  

Smoothing methods for better data fitting as well forecasting were developed by the seminal works 
of Brown (1956), Holt (2004), and Winters (1960). Other mentionable contributions in this model were 
made by Gardner (1985) and Gardner (2006). Exponentially Weighted Moving Average (EWMA), a 
smoothing technique for time series data fitting, is a work developed by Brown (1956) that historically 
originated in the 17th century by Denis Poisson in dealing with his numerical analysis problem related to 
weighted averaging and exponential windowing. A general EWMA model is represented by Equations (3) 
and (4):  

 
𝐸� = 𝑥�                                                                                                                                           (3) 

 
𝐸� = 𝛼𝑥��� + (1 − 𝛼)𝐸���, 0 < 𝛼 < 1, 𝑡 ≥ 3                                                                               (4) 

 
where 𝛼, 𝑥�, and 𝐸� are respectively smoothing parameter, original sequence terms, and exponentially 
decreasing sequence terms, which are found by convex combinations with original terms. By recursive use, 
Equations (3) and (4) can jointly be rewritten as Equation (5): 
 

𝐸� = 𝛼∑ (1 − 𝛼)������
��� 𝑥��� + (1 − 𝛼)���𝐸�, 𝑡 ≥ 2                                                                      (5) 

 
Equation (5) reveals 𝑑(𝑡) = 𝛼(1 − 𝛼)�, which has exponential value decrease property towards 

distant past values. By adding all 𝑡smoothing weight, the related cumulative distribution function can be of 
the form 𝐶(𝑡) = 1 − (1 − 𝛼)�. For effective or optimal smoothing in the EWMA process, the best value of 
𝛼 is a requirement for least deviation or error of fitted data with original data. The Marquardt procedure and 
other conventional advanced search approaches, as well as manual tuning, are employed to obtain this value. 
Relevantly, the EWMA method was further developed for an extension for double and triple smoothing by 
Holt (1957) and Winters (1960).  

The Theta method was developed, introduced, and described along with background mathematics 
by Assimakopoulos and Nikolopoulos (2000) and Hyndman and Billah (2003). The scholars simplified and 
suggested different approaches for derivation with the same or similar result found. They claimed that the 
performance of the Theta method was similar to simple exponential smoothing (SES) with a drift. Some 
other research contributions involving the Theta method are works of Pagourtzi et al. (2008), Nikolopoulos 



536

Journal of ICT, 19, No. 4 (October) 20200, pp: 533-558

for non-stationary time series, which can be easily and firmly transformed into 
stationary. However, its mentionable demerit is that ARIMA tends to fail for 
highly non-stationary and non-linear time series data, especially with turbulent 
characteristics and dynamic curvature. 
	 Smoothing methods for better data fitting as well forecasting were 
developed by the seminal works of Brown (1956), Holt (2004), and Winters 
(1960). Other mentionable contributions in this model were made by Gardner 
(1985) and Gardner (2006). Exponentially Weighted Moving Average 
(EWMA), a smoothing technique for time series data fitting, is a work 
developed by Brown (1956) that historically originated in the 17th century 
by Denis Poisson in dealing with his numerical analysis problem related to 
weighted averaging and exponential windowing. A general EWMA model is 
represented by Equations 3 and 4: 
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and approaches participated in M3-Competition, they showed the performance 
of the Theta method. The work of Spiliotis et al. (2019) embroiled valuable 
conceptual insight from the Theta method for decomposition, which was 
extended to non-linear trend and by modifying and improving to a better 
hybrid model. They presented promising results with the M3-Competition 
data. 
	 Papacharalampous et al. (2018) applied automatic forecasting methods 
to the monthly time series data of temperature as well as precipitation. 
They compared predictability, where the Theta method was an insignificant 
position among the other models. A different perspective of the Theta method 
encompassing application and theoretical concepts were discussed and 
explained by Nikolopoulos and Thomakos (2019), which was wholly dedicated 
for the Theta method. Since Theta is one of the winners and significant part of 
forecasting competitions or M-Competitions, a recent brief historical sketch of 
Hyndman (2020) contained this model. The Theta method (Assimakopoulos 
& Nikolopoulos, 2000) is an approach for local curvature modification for 
time series, where the second difference of a newly derived series is related 
to the second difference of the original series with a scale factor of change or 
modification. The name of the method is adopted from the related Greek letter           
   (Theta) used in the model equation. A time series                               of original 
data and Theta method-based new time series                             are related by 
the following second-order difference equation as in Equation 6:
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For least square error, by minimisation of Equation 8, Equations 9 and 10 are 
derived:
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Averaging both sides of Equation (7) will produce Equation (11): 
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Putting the value of 𝑎 from Equation (10) into Equation (11), 𝑦�(𝜃) = 𝑥̅ . Therefore, curvature change 
through the Theta method does not change the mean of time series dataset. 

It can be and is shown by the authors that �� [𝑦�(𝜃, ℎ) + 𝑦�(2 − 𝜃,ℎ)] = 𝑥�, since 𝑎� + 𝑎��� = 0 
and 𝑏� + 𝑏��� = 0. Considering 𝜃 = 0 in this method as per the authors, ℎ-step forecast regarding a time 
series with 𝑛-data is 𝑥�(ℎ) = �

� [𝑦�(0,ℎ) + 𝑦�(2,ℎ)], where 𝑦�(0,ℎ) is found through linear extrapolation 
and 𝑦�(2,ℎ) is through simple exponential smoothing. Hyndman and Billah (2003) found the equivalent or 
same result as Assimakopoulos and Nikolopoulos (2000). One expected merit on behalf of the Theta method 
is that it can capture local curvature occurring due to a new vibration of underlying time series. A possible 
demerit of this approach is that it may not embroil global average curvature, which in many cases contributes 
towards the measuring trend. 

The seminal work of Huang et al. (1998) introduced the widely applicable Empirical Mode 
Decomposition (EMD) method as a contribution to signal processing, which later on was applied in 
diversified fields of research including economics, finance, meteorology, demography, etc. For important 
indication and inspiration of EMD in financial time series, the work of Huang et al. (2003) occupied an 
essential place for general guidelines. For the conceptual understanding and explanation of EMD, Rilling 
and Flandrin (2008) contributed along with insightful illustrations. IMFs, which are a vital part of EMD or 
Hilbert-Huang transform in the extended case that was emphasized, focused on the concern of the adaptive 
approach for data analysis in the work of Wang et al. (2010). EMD, an adaptive decomposition, has a close 
connection with other theoretical methods, namely Fourier transforms and Hilbert transforms. The EMD 
process divides a signal or sequence of dataset into some sub-signals or sub-sequences of the original data, 
and these decomposed components are known as Intrinsic Mode Functions (IMF), whereas the last one is 
called the residue. The number of these components are at most equal to or less than 𝑙𝑜𝑔�(𝑁), 𝑁 being the 
total quantity of data.  

IMFs are produced through the algorithmic process named sifting process, which follows the basic 
concept of Hilbert transforms. Therefore, the decomposed or components are of the same size and form an 
orthogonal family of sub-signal datasets virtually. In the EMD sifting process, local mean modal values or 
empirical modes are found through averaging the upper envelope and the lower envelope, which are cubic 
splines fitted above and below the original signal. Obtaining mean envelops and subtracting them from the 
immediate remainder dataset are continued in the sifting process until the process ends by satisfying any of 
the stopping criteria, namely standard deviation (SD), Tracking of Energy Difference, Threshold Method, 
and S-Number Criterion. Consequently, IMFs are extracted sequentially by following algorithmic steps.  

For any signal, let 𝑒� and 𝑒�be the upper and lower cubic spline envelops, then their mean envelope 
is obtained from Equation (12):  
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To present the sifting process, let 𝑥(𝑡) be a signal and 𝑚1 the mean envelope. The following are 

steps implemented in the process (using Equations (13) – (16)): 
 

(a) Obtaining mean envelope 𝑚1, the process calculates the current remainder by subtracting 𝑚1 from 
𝑥(𝑡): 
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is that it can capture local curvature occurring due to a new vibration of underlying time series. A possible 
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indication and inspiration of EMD in financial time series, the work of Huang et al. (2003) occupied an 
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IMFs are produced through the algorithmic process named sifting process, which follows the basic 
concept of Hilbert transforms. Therefore, the decomposed or components are of the same size and form an 
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(b) In the second step, current remainder ℎ1 is treated as the data, and by applying a similar procedure 
of upper and lower cubic splines, new mean envelope 𝑚11 is found from ℎ1: 
ℎ11 = ℎ1 −𝑚11                                                                                                                          (14) 
 

(c) The process is implemented repeatedly, say, k times, until ℎ1𝑘, which is satisfied with stopping 
criterion (Equation (17)):  
ℎ1𝑘 = ℎ1(𝑘 − 1) −𝑚1𝑘                                                                                                             (15) 
 

(d) When ℎ1𝑘 satisfies the stopping criterion, it is regarded the first IMF component of the original 
data, which can be denoted by 𝑐1 = ℎ1𝑘. Then, separate 𝑐1 from the original data: 𝑥(𝑡) − 𝑐1 =
 𝑟1. This process is performed repeatedly to extract all possible or say, n IMFs and 𝑟𝑗:  
𝑟1 − 𝑐2 =  𝑟2, . . . . , 𝑟𝑛 − 1 −  𝑐𝑛 =  𝑟𝑛                                                                                    (16) 

 
The stopping criterion based on SD is formulated as follows: 
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The sifting process is stopped if 𝑆𝐷� has a value less than a pre-set minimum value. 

Time series has a similarity with signal processing encompassing patterns, noise along with non-
stationarity and non-linearity in some cases. Huang et al. (1998) applied and explained the use of EMD in 
financial time series. Later on, many works of literature followed the approach and focused on the 
application of EMD to analyse and hence forecast time series data in many research areas. Although EMD 
is a powerful decomposition approach, it has some limitations like end effect and mode mixing for which it 
may not be applied on every time series, but there are improved EMD variants to overcome these limitations. 

Many researchers have recommended the hybridisation of EMD with different combinations of 
models. One such work is of Wang et al. (2014), where their work was on the EMD-ARIMA combined 
approach for predicting traffic speed in the short-term forecast horizon. Then, the work of Abadan and 
Shabri (2014) was aimed for rice price forecasting by EMD-ARIMA hybridisation. Later, the work of Nava 
et al. (2018) was performed on EMD-Support Vector Regression (SVR) for forecasting financial time series 
of Standard and Poor 500 Index. Meanwhile, Awajan et al. (2017) worked on EMD-MA to forecast the 
daily stock market index. Next, Nai et al. (2017) had a focus on the EMD-SARIMA-based model for 
forecasting air traffic. For short-term speed prediction of vehicle-type specific traffic, Wang et al. (2016) 
applied a hybrid EMD–ARIMA framework. Recently, Zhong et al. (2020) worked on EMD-ARIMA to 
predict Service Invention Patents in Agricultural Machinery. 

In the EMD-ARIMA hybrid method, all of the extracted IMFs along with residue are forecasted 
using the ARIMA approach, and all these component forecasts are added to produce the forecast results for 
the original time series. Both EMD and ARIMA are as efficient as their essence. Therefore, sometimes 
EMD-ARIMA (presented by the procedural diagram in Figure 1 and Algorithm 1) can be a suitable 
forecasting hybrid method to gain better accuracy. Nevertheless, when they are not in well-accordance for 
the intrinsic property of underlying time series, especially in weak stationarity cases of IMFs, their 
hybridisation can be less satisfactory. 
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Figure 1. Procedural diagram of EMD-ARIMA model.
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THE PROPOSED METHOD 
 

In this work, the = proposed hybrid method was implemented as well as other conventional ones including 
EMD-ARIMA (Abadan & Shabri, 2014; Wang et al., 2016; Zhong et al., 2020). The hybrid model was 
performed on daily stock closing price data of Royal Dutch Shell (RDSB), AstraZeneca (AZN), Unilever 
(ULVR), Reckitt Benckiser Group (RB), and Smith & Nephew (SN) all of which are in the FTSE 100 Index. 
This study utilises 1,111 data for each of the companies (from January 01, 2015, to April 05, 2019) where 
the first 1,100 data were separated as training data and the remaining as test data. The 11 test data were also 
divided into six different forecast horizons of 1, 3, 5, 7, 9, and 11 days. In order to obtain a primary picture 
of datasets, basic descriptive measures of statistics are presented in Table 1, which encompass mean, 
median, minimum, maximum, coefficient of variation (COV), skewness, and kurtosis of stock price training 
data for all the five companies. Since visualisation aids the quick acquisition of data pattern, time series are 
also presented here in Figure 2.  
 
Table 1 
 
Descriptive statistics 
 

Stock Mean Median Min Max COV Skew Kurt Count 
AZN 4833.491 4748.5 3774 6525 0.127 0.608 -0.362 1100 
RB 6534.615 6538.5 5110 8108 0.096 0.213 -0.811 1100 

RDSB 2144.377 2172.5 1277.5 2841 0.153 -0.307 -0.586 1100 
SN 1254.123 1241 1051 1545 0.086 0.254 -1.011 1100 

ULVR 3600.016 3691.25 2524 4548.5 0.166 -0.161 -1.518 1100 
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Figure 2. Graphs of all datasets.

Proposed EMD-Theta Method

EMD is very useful in dissecting time series data into some nearly orthogonal 
subseries of different characteristic frequency densities where high-frequency 
subseries are generally stationary, and low-frequency subseries tend to be non-
stationary. Therefore, EMD gives sequential decomposed components. On the 
other hand, the Theta method has a combined approach of averaging linear 
trend and simple exponential smoothing following through some Theta values 
location to location in a view to modify curvature but not mean of the time 
series data, which can be very useful in some cases. Therefore, hybridisation 
between EMD and Theta methods, briefly the EMD-Theta model presented 
in Figure 3 with procedural diagram and Algorithm 2, is a potentially useful 
approach in time series forecasting. After splitting datasets, this study applied 
EMD on training sets for IMFs extraction along with the residue and then 
applied the Theta method on all IMFs as well as the residue for fitting and 
forecasting to a forecast horizon   . Upon completion of forecast on all 
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For a brief illustration of a typical EMD output, EMD components of AZN training data are shown in Figure 
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Accuracy Measures Used for Forecast Performance Comparison

Better accuracy means less error in conducting forecasting. Although one 
significant accuracy measuring tool can be essential, other complementary and 
supplementary tools extend the scope of assurance. Error metrics used in this 
work are Root Mean Squared Error (RMSE) (Equation 18), Mean Absolute 
Error (MAE) (Equation 19), Root Mean Squared Relative Error (RMSRE) 
(Equation 20), Mean Absolute Percentage Error (MAPE) (Equation 21), and 
Mean Absolute Scaled Error (MASE) (Equation 22) (Hyndman & Koehler, 
2006; Shcherbakov et al., 2013; Despotovic et al., 2015). The definitions of 
this accuracy measures are presented below: 

(i) RMSE                                                                                                      (18)

(ii) MAE                                                                                                       (19)

(iii) RMSRE                                                                                                 (20)

(iv) MAPE                                                                                                   (21)

(v) MASE                                                                                                    (22)

where                          is time sequence and    is total number of data.

RESULTS AND DISCUSSIONS

This section contains the forecasting results (Tables 2–7) of the five time series 
produced by methods ARIMA (Box & Jenkins, 1970; Cholette, 1982), EWMA 
(Brown, 1956), Theta (Assimakopoulos & Nikolopoulos, 2000; Hyndman & 
Billah, 2003; Nikolopoulos & Thomakos, 2019), EMD-ARIMA (Abadan & 
Shabri, 2014; Wang et al., 2016; Zhong et al., 2020), and the proposed EMD-
Theta in six different forecast horizons (h=1, 3, 5, 7, 9, and 11). Error measures 
RMSE and MAE present comparative performances with absolute errors, 
while RMSRE, MAPE, and MASE show relative accuracy of methods. 
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& Shabri, 2014; Wang et al., 2016; Zhong et al., 2020), and the proposed EMD-Theta in six different 
forecast horizons (h=1, 3, 5, 7, 9, and 11). Error measures RMSE and MAE present comparative 
performances with absolute errors, while RMSRE, MAPE, and MASE show relative accuracy of methods.  
 
Table 2 
 
Accuracy for forecast horizon, h=1 
 

Dataset Models RMSE MAE RMSRE MAPE MASE 
 
 

AZN 

ARIMA 174 174 0.027 0.027 ----- 
EWMA 173.99 173.99 0.027 0.027 ----- 
Theta 174.755 174.755 0.028 0.028 ----- 
EMD-ARIMA 34.035 34.035 0.005 0.005 ----- 
EMD-Theta  139.573 139.573 0.022 0.022 ----- 

 
 

RB 

ARIMA 130 130 0.02 0.02 ----- 
EWMA 127.453 127.453 0.02 0.02 ----- 
Theta 127.698 127.698 0.02 0.02 ----- 
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Table 2

Accuracy for forecast horizon, h=1

Dataset Models RMSE MAE RMSRE MAPE MASE

AZN

ARIMA 174 174 0.027 0.027 -----

EWMA 173.99 173.99 0.027 0.027 -----

Theta 174.755 174.755 0.028 0.028 -----

EMD-ARIMA 34.035 34.035 0.005 0.005 -----

EMD-Theta 139.573 139.573 0.022 0.022 -----

RB

ARIMA 130 130 0.02 0.02 -----

EWMA 127.453 127.453 0.02 0.02 -----

Theta 127.698 127.698 0.02 0.02 -----

EMD-ARIMA 323.777 323.777 0.051 0.051 -----

EMD-Theta 83.621 83.621 0.013 0.013 -----

RDSB

ARIMA 66.974 66.974 0.028 0.028 -----

EWMA 66.998 66.998 0.028 0.028 -----

Theta 67.381 67.381 0.028 0.028 -----

EMD-ARIMA 18.194 18.194 0.008 0.008 -----

EMD-Theta 64.115 64.115 0.027 0.027 -----

SN

ARIMA 26.5 26.5 0.018 0.018 -----

EWMA 25.51 25.51 0.017 0.017 -----

Theta 25.662 25.662 0.017 0.017 -----

EMD-ARIMA 52 52 0.035 0.035 -----

EMD-Theta 23.467 23.467 0.016 0.016 -----

ULVR

ARIMA 62.509 62.509 0.014 0.014 -----

EWMA 62.504 62.504 0.014 0.014 -----

Theta 63.39 63.39 0.015 0.015 -----

EMD-ARIMA 58.131 58.131 0.013 0.013 -----

EMD-Theta 16.567 16.567 0.004 0.004 -----
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Table 3

Accuracy for forecast horizon, h=3

Dataset Models RMSE MAE RMSRE MAPE MASE

AZN

ARIMA 147.474 145.333 0.023 0.023 4.765

EWMA 147.465 145.324 0.023 0.023 4.765

Theta 148.871 146.855 0.023 0.023 4.815

EMD-ARIMA 142.394 120.577 0.022 0.019 3.953

EMD-Theta 114.311 111.674 0.018 0.018 3.661

RB

ARIMA 172.365 167.667 0.027 0.026 2.02

EWMA 169.889 165.12 0.027 0.026 1.989

Theta 170.339 165.575 0.027 0.026 1.995

EMD-ARIMA 463.013 453.692 0.073 0.071 5.466

EMD-Theta 127.914 121.498 0.02 0.019 1.464

RDSB

ARIMA 73.728 73.482 0.031 0.031 5.763

EWMA 74.787 74.498 0.031 0.031 5.843

Theta 75.564 75.266 0.032 0.031 5.903

EMD-ARIMA 119.674 91.36 0.05 0.038 7.166

EMD-Theta 72.311 72 0.03 0.03 5.647

SN

ARIMA 28.016 27.5 0.019 0.018 2.619

EWMA 27.045 26.51 0.018 0.018 2.525

Theta 27.33 26.809 0.018 0.018 2.553

EMD-ARIMA 39.156 37.636 0.026 0.025 3.584

EMD-Theta 25.18 24.614 0.017 0.016 2.344

ULVR

ARIMA 56.385 55.509 0.013 0.013 5.287

EWMA 56.38 55.504 0.013 0.013 5.286

Theta 57.981 57.229 0.013 0.013 5.45

EMD-ARIMA 131.191 120.422 0.03 0.028 11.469

EMD-Theta 13.964 12.243 0.003 0.003 1.166
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Table 4

Accuracy for forecast horizon, h=5

Dataset Models RMSE MAE RMSRE MAPE MASE

AZN

ARIMA 137.585 126.8 0.022 0.02 1.974

EWMA 137.576 126.79 0.022 0.02 1.973

Theta 139.405 129.089 0.022 0.02 2.009

EMD-ARIMA 263.329 223.321 0.041 0.035   3.476

EMD-Theta 107.649 94.851 0.017 0.015 1.476

RB

ARIMA 164.352 161.2 0.026 0.025 3.622

EWMA 161.855 158.653 0.025 0.025 3.565

Theta 162.499 159.318 0.026 0.025 3.58

EMD-ARIMA 512.498 503.733 0.08 0.079 11.32

EMD-Theta 119.599 115.241 0.019 0.018 2.59

RDSB

ARIMA 76.469 76.111 0.032 0.032 5.437

EWMA 77.686 77.298 0.032 0.032 5.521

Theta 78.854 78.45 0.033 0.033 5.604

EMD-ARIMA 232.351 188.712 0.097 0.079 13.479

EMD-Theta 75.606 75.184 0.032 0.031 5.37

SN

ARIMA 26.687 25.6 0.018 0.017 2.048

EWMA 25.739 24.61 0.017 0.016 1.969

Theta 26.135 25.057 0.017 0.017 2.005

EMD-ARIMA 58.827 53.536 0.039 0.036 4.283

EMD-Theta 24.039 22.862 0.016 0.015 1.829

ULVR

ARIMA 48.147 43.905 0.011 0.01 2.281

EWMA 48.143 43.902 0.011 0.01 2.281

Theta 49.797 44.769 0.011 0.01 2.326

EMD-ARIMA 198.58 178.808 0.045 0.041 9.289

EMD-Theta 25.28 17.778 0.006 0.004 0.924
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Table 5

Accuracy for forecast horizon, h=7

Dataset Models RMSE MAE RMSRE MAPE MASE

AZN

ARIMA 230.987 197.143 0.037 0.032 1.814

EWMA 230.978 197.133 0.037 0.032 1.814

Theta 234.048 200.199 0.038 0.032 1.842

EMD-ARIMA 475.736 384.26 0.077 0.061 3.536

EMD-Theta 204.767 165.691 0.033 0.027 1.525

RB

ARIMA 153.072 147.143 0.024 0.023 3.222

EWMA 150.626 144.596 0.024 0.023 3.166

Theta 151.403 145.471 0.024 0.023 3.185

EMD-ARIMA 491.756 481.423 0.077 0.075 10.542

EMD-Theta 109.735 101.394 0.017 0.016 2.22

RDSB

ARIMA 68.306 66.166 0.028 0.028 4.436

EWMA 69.529 67.426 0.029 0.028 4.52

Theta 70.905 68.964 0.03 0.029 4.623

EMD-ARIMA 283.972 244.292 0.118 0.101 16.377

EMD-Theta 67.733 65.697 0.028 0.027 4.404

SN

ARIMA 22.738 19.714 0.015 0.013 1.955

EWMA 21.885 18.724 0.015 0.012 1.857

Theta 22.271 19.318 0.015 0.013 1.916

EMD-ARIMA 70.635 65.012 0.047 0.043 6.447

EMD-Theta 20.396 17.123 0.014 0.011 1.698

ULVR

ARIMA 43.044 37.075 0.01 0.009 1.816

EWMA 43.04 37.073 0.01 0.009 1.816

Theta 45.111 38.407 0.01 0.009 1.881

EMD-ARIMA 236.865 216.983 0.054 0.05 10.628

EMD-Theta 27.288 19.648 0.006 0.004 0.962
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Table 6

Accuracy for forecast horizon, h=9

Dataset Models RMSE MAE RMSRE MAPE MASE

AZN

ARIMA 251.812 222.222 0.041 0.036 2.096

EWMA 251.803 222.212 0.041 0.036 2.096

Theta 255.796 226.046 0.041 0.036 2.133

EMD-ARIMA 564.326 476.174 0.091 0.076 4.492

EMD-Theta 225.308 191.388 0.036 0.031 1.806

RB

ARIMA 150.902 146.111 0.024 0.023 3.238

EWMA 148.438 143.564 0.023 0.022 3.181

Theta 149.434 144.649 0.023 0.023 3.206

EMD-ARIMA 447.398 425.068 0.07 0.067 9.42

EMD-Theta 107.341 100.572 0.017 0.016 2.229

RDSB

ARIMA 60.822 55.307 0.025 0.023 3.831

EWMA 61.985 56.609 0.026 0.024 3.921

Theta 63.417 58.531 0.026 0.024 4.054

EMD-ARIMA 280.833 249.219 0.116 0.103 17.262

EMD-Theta 60.415 55.264 0.025 0.023 3.828

SN

ARIMA 20.131 16.167 0.013 0.011 2.086

EWMA 19.345 15.177 0.013 0.01 1.958

Theta 19.733 15.918 0.013 0.011 2.054

EMD-ARIMA 70.546 66.158 0.046 0.044 8.537

EMD-Theta 18.009 13.723 0.012 0.009 1.771

ULVR

ARIMA 38.045 29.781 0.009 0.007 1.41

EWMA 38.041 29.779 0.009 0.007 1.41

Theta 40.147 32.189 0.009 0.007 1.524

EMD-ARIMA 262.614 243.78 0.06 0.056 11.54

EMD-Theta 29.637 23.37 0.007 0.005 1.106
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Table 7

Accuracy for forecast horizon, h=11 

Dataset Models RMSE MAE RMSRE MAPE MASE

AZN

ARIMA 282.96 253.364 0.046 0.041 2.748
EWMA 282.952 253.354 0.046 0.041 2.748
Theta 287.892 257.955 0.047 0.042 2.798
EMD-ARIMA 646.209 558.56 0.105 0.09 6.058
EMD-Theta 256.844 223.201 0.042 0.036 2.421

RB

ARIMA 147.643 143.091 0.023 0.022 3.091
EWMA 145.177 140.544 0.023 0.022 3.036
Theta 146.371 141.838 0.023 0.022 3.063
EMD-ARIMA 404.896 352.454 0.063 0.055 7.612
EMD-Theta 104.228 97.761 0.016 0.015 2.111

RDSB

ARIMA 55.688 48.751 0.023 0.02 3.166
EWMA 56.701 49.816 0.024 0.021 3.235
Theta 57.936 51.354 0.024 0.021 3.335
EMD-ARIMA 257.654 221.377 0.106 0.091 14.375
EMD-Theta 55.275 48.681 0.023 0.02 3.161

SN

ARIMA 20.715 17.318 0.014 0.012 1.776
EWMA 19.895 16.328 0.013 0.011 1.675
Theta 20.509 17.217 0.014 0.011 1.766
EMD-ARIMA 67.116 62.932 0.044 0.042 6.455
EMD-Theta 18.705 15.022 0.012 0.01 1.541

ULVR

ARIMA 34.618 25.955 0.008 0.006 1.392
EWMA 34.615 25.955 0.008 0.006 1.392
Theta 36.316 26.488 0.008 0.006 1.42
EMD-ARIMA 277.411 260.547 0.063 0.059 13.97
EMD-Theta 33.401 27.615 0.008 0.006 1.481

It is noticeable from Table 3 until Table 7 that for the five forecast 
horizons h=3, 5, 7, 9, and 11, the proposed EMD-Theta performed better 
than the ARIMA, EWMA, Theta, and EMD-ARIMA hybrid methods. This 
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is true by considering relative error measures RMSRE, MAPE, and MASE 
in the cases of all five FTSE 100 Index companies closing price time series 
data. Although EMD-ARIMA performed best in case of h=1 (Table 2) for a 
few companies, it did not play a satisfactory role in other forecast horizons. 
Overall, the EMD-Theta method performed best of all other approaches. 

Intrinsic characteristics and external factor are always responsible for 
the shape of the data. Provided no uncertainty or external factors are involved, 
a method can produce relatively better forecast only when the method can 
capture all the intrinsic features of the dataset and can forecast or extrapolate 
to future horizons accordingly. The ULVR dataset (with MAPE 0.004, 0.003, 
0.004,0.004, 0.005, and 0.008, respectively for h=1, 3, 5, 7, 9, and 11) was 
best forecastable and RDSB (with MAPE 0.027, 0.03, 0.031,0.027, 0.023, 
and 0.02, respectively for h=1, 3, 5, 7, 9, and 11) was least forecastable by 
the proposed method as well as all other methods except the EMD-ARIMA 
method for h=1. EMD-ARIMA performed best of all other methods in the 
forecast horizon h=1 with the least MAPE in case of only two companies, 
i.e. AZN (0.005) and RB (0.008). In h=1, EMD-ARIMA also forecasted 
better than other methods for the company ULVR (0.015), but not better 
than EMD-Theta, in which MAPE for ULVR was 0.013.

As per the proposed method, for forecast horizon , the 
forecastability of the method based on MAPE could be put according to 
order for the five datasets from best to worst (with from less to much error 
values) as ULVR<RB< SN<AZN<RDSB, where the starting one (ULVR) of 
the sequence was the best case, and the ending one (RDSB) was the worst 
case among them. As per values of MAPE, the forecastability order for other 
forecast horizons h=3, 5, 7, 9, and 11 were ULVR < SN<AZN< RB <RDSB, 
ULVR < SN<AZN< RB <RDSB, ULVR < SN < RB<RDSB<AZN, ULVR < 
SN < RB <RDSB<AZN, and ULVR < SN < RB <RDSB<AZN, respectively. 
The overall result tends to indicate that EMD-ARIMA can be the right choice 
for only single point immediate forecast horizon h=1. However, beyond the 
single point forecast, EMD-Theta is best of all other models considering the 
relative accuracy measures.

CONCLUSION

With all the results and discussion in this study, it is evident that the proposed 
EMD-Theta hybrid method performed better considering all the five non-
linear and non-stationary time series datasets and six different forecast 
horizons based on five types of error or accuracy measures. The ULVR 
dataset was best forecastable, and RDSB was least forecastable. Future 
uncertainty and involvement of external factors are primarily responsible 
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for poor forecast results in time series, mainly from short term high-
frequency data. Therefore, different data bear different messages of their 
varying degree of forecastability and some of these phenomena are shown 
through the selected time series datasets. Nevertheless, for all the five time 
series datasets, the synergised performance of the EMD and Theta method 
was better than other methods as capturing, fitting, and forecasting were 
useful for such data pattern and characteristics. In future, it is expected for 
further works of forecasting to be extended to machine learning as well as 
deep learning tools. It is suggested for future studies to focus on unexplored 
classical model-based hybridisation.
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