
351

Journal of ICT, 19, No. 3 (July) 2020, pp: 351-379

How to cite this article:

Mohammed, A. J., Ghathwan, K. I., & Yusof, Y. (2020). A hybrid least squares support 
vector machine with bat and cuckoo search algorithms for time series forecasting. Journal 
of Information and Communication Technology, 19(3), 351-379.

A HYBRID LEAST SQUARES SUPPORT VECTOR MACHINE 
WITH BAT AND CUCKOO SEARCH ALGORITHMS FOR TIME 

SERIES FORECASTING

1Athraa Jasim Mohammed, 1Khalil Ibrahim Ghathwan & 
2Yuhanis Yusof 

1Computer Science Department, University of Technology, Iraq
2School of Computing, Universiti Utara Malaysia, Malaysia

10872, 110039@uotechnology.edu.iq; yuhanis@uum.edu.my

ABSTRACT

Least Squares Support Vector Machine (LSSVM) has been 
known to be one of the effective forecasting models. However, 
its operation relies on two important parameters (regularization 
and kernel). Pre-determining the values of parameters will 
affect the results of the forecasting model; hence, to find the 
optimal value of these parameters, this study investigates the 
adaptation of Bat and Cuckoo Search algorithms to optimize 
LSSVM parameters. Even though Cuckoo Search has been 
proven to be able to solve global optimization in various areas, 
the algorithm leads to a slow convergence rate when the step 
size is large. Hence, to enhance the search ability of Cuckoo 
Search, it is integrated with Bat algorithm that offers a balanced 
search between global and local. Evaluation was performed 
separately to further analyze the strength of Bat and Cuckoo 
Search to optimize LSSVM parameters. Five evaluation metrics 
were utilized; mean average percent error (MAPE), accuracy, 
symmetric mean absolute percent error (SMAPE), root mean 
square percent error (RMSPE) and fitness value. Experimental 
results on diabetes forecasting demonstrated that the proposed 
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BAT-LSSVM and CUCKOO-LSSVM generated lower MAPE 
and SMAPE, at the same time produced higher accuracy and 
fitness value compared to particle swarm optimization (PSO)-
LSSVM and a non-optimized LSSVM. Following the success, 
this study has integrated the two algorithms to better optimize 
the LSSVM. The newly proposed forecasting algorithm, termed 
as CUCKOO-BAT-LSSVM, produces better forecasting in terms 
of MAPE, accuracy and RMSPE. Such an outcome provides an 
alternative model to be used in facilitating decision-making in 
forecasting.

Keywords: Machine learning, data mining, time series forecasting, least 
squares support vector machine, particle swarm optimization.

INTRODUCTION

Time Series Forecasting is a machine learning field, where it uses historical data 
to build a model before utilizing it to predict future observations. Technically, 
it can be defined as “A time series is a set of observations xt, each one being 
recorded at a specific time” (Brockwell & Davis, 2002). Least squares support 
vector machine termed as LSSVM is a machine learning technique that is widely 
used in forecasting. LSSVM is different from support vector machine (SVM); 
SVM offers quadratic programming with inequality constraints, in contrast, 
LSSVM exhibits a system of a linear equations with equality constraints 
(Suykens, Gestel, Brabanter, Moor, & Vandewalle, 2002). The performance of 
LSSVM is related to two important parameters: regularization parameter (Y) 
and kernel parameter (σ2). LSSVM is susceptible to a problem (of over fitting 
or under fitting) when the selection of parameters is inadequate. In literature, 
optimizing LSSVM hyper parameters encompasses two approaches: cross 
validation (CV) and theoretical technique. The first approach is incompetent 
due to the comprehensiveness of the parameters search whereas, the second 
approach embraces meta-heuristic search algorithms that perform well in most 
cases (Mustaffa, Yusof, & Kamaruddin, 2014).
	 Based on the literature, meta-heuristic algorithms comprise two 
categories: local search-based meta-heuristic and population search-based 
meta-heuristic. Local search-based meta-heuristic algorithm focuses on a single 
solution and iterates to improve it, such as Simulated Annealing (Hu, Wang, 
& Ma, 2015) and Tabu Search (Yao, Hu, Zhang, & Jin, 2014). On the other 
hand, population search-based meta-heuristic algorithm randomly generates 
a set of solutions and chooses the optimal solution by evaluating them using 
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certain objective function(s). Examples include evolutionary programming 
(Xin Yao, Yong Liu, & Guangming Lin, 1999), Genetic Algorithm (McCall, 
2005), and swarm algorithms (nature-inspired algorithms) such as particle 
swarm optimization (PSO) (Ho, Shiyou Yang, Guangzheng Ni, & Wong, 
2006), Cuckoo Search (CS) (Hegazy, Soliman, & Abdul Salam, 2015) and 
Bat algorithm (Hegazy et al., 2015).
	 Meta-heuristic algorithms are efficient in providing current and global 
best solutions in search space, where they have proven to be successful in 
different fields (Sood, Verma, Panchal, & Kavita, 2018). For example, the 
CS algorithm has been successfully applied in numerous problems (Shehab, 
Khader, & Laouchedi, 2018; Shehab, Khader, Laouchedi, & Alomari, 2019). 
However, CS suffers from low convergence rate and global optimization 
problem. On the other hand, another swarm algorithm, that is the Bat algorithm, 
has a balanced capability in searching (i.e. global and local search). Thus, 
the reason of hybridizing CS with Bat algorithm is to increase the prediction 
accuracy for diabetes forecasting so that better diagnosis can be provided 
by medical/health officers. In addition, the dependency of LSSVM on the 
appropriate initialization of its hyper parameters puts the forecasting accuracy 
at risk. Hence, having an optimized LSSVM will be more beneficial.
	 In this study, a total of four algorithms are introduced; hybrid Bat 
algorithm with LSSVM (BAT-LSSVM), hybrid CS with LSSVM (CUCKOO-
LSSVM), hybrid Bat algorithm with CS to optimize LSSVM (BAT-CUCKOO-
LSSVM), and hybrid CS with Bat algorithm to optimize LSSVM (CUCKOO-
BAT-LSSVM). Comparisons between the algorithms are made by analyzing 
the performance metrics for the outcome of diabetes forecasting. This paper is 
structured as follows: related work of LSSVM and meta-heuristic algorithms 
(i.e., Bat algorithm, CS and PSO) utilized in forecasting, technical sections that 
present the proposed algorithms, experimental setup, results and discussion 
and the conclusion including some future directions of the study.

 
RELATED WORK

Forecasting can be defined as a utilization of historical data to predict or 
estimate future events or trends and it is useful in making decisions. Forecasting 
methods are classified into three approaches: statistical, artificial intelligence 
and machine learning (Chan, Dillon, & Chang, 2013). The statistical approach 
is a traditional method which can be further categorized into univariate and 
multivariate. Univariate statistical approach predicts y from trends alone, while 
multivariate statistical approach predicts y from trends and other variables. 
The univariate approach includes the use of filtering techniques such as 
Kalman filtering (Louka et al., 2008) and exponential filtering (Chan, Dillon, 
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Singh, & Chang, 2012) whereas Autoregressive Integrated Moving Average 
(Lee & Tong, 2011), K-nearest neighbor (Fan, Guo, Zheng, & Hong, 2019) 
and Bayesian (Thompson & Miller, 1986) are examples of the multivariate 
approach. Despite the statistical approach yielding acceptable estimates, 
they do not address the nonlinear characteristics of forecasting (Chan et al., 
2013). Thus, artificial intelligence approaches such as Neural Network (NN) 
has been presented to overcome this shortcoming. NN has been employed in 
many fields and proven successful in generating high accuracy. Despite this, 
NN is very complicated as it requires estimation and may be trapped into local 
minima. To overcome this problem, there has been studies on integrating NN 
with metaheuristic algorithm (Ozerdem, Olaniyi, & Oyedotun, 2017).

On the other hand, machine learning offers the ability for learning 
computers without explicit programming (Samuel, 1959). Among the methods 
offered by machine learning are the SVM and LSSVM. SVM is a large margin 
algorithm that works to separate training samples into two classes by maximum 
margin hyper plane between classes. It is a powerful tool for large dimensional 
data. Since SVM is very effective, it has been used in many application 
domains. In SVM, two important parameters (i.e. the regularization and the 
kernel parameters) need to be correctly determined in order to minimize 
generalization error. Different parameter settings will affect the results of 
the prediction model (Mustaffa et al., 2014). The computational process of 
standard SVM relies on quadratic programming solvers which are difficult 
to perform and requires high computational cost. On the other hand, LSSVM 
approach solves a set of linear equations without quadratic programming 
solvers (Mustaffa, Sulaiman, Ernawan, & Noor, 2018; Mustaffa et al., 2014). 
LSSVM has good convergence and produces high accuracy which has led 
to its use in forecasting. However, LSSVM relies on the initialization of its 
parameters; regularization and kernel parameters, like SVM, so as to minimize 
generalization errors. Determining the best values for the parameters in order 
to generate the least error can be formulated as an optimization problem. Luo 
et al. (2008) proposed to tune the parameters of LSSVM by quantum-inspired 
evaluation algorithm (QEA) which is an example of evaluation algorithm 
used in various optimization applications. QEA can speed up the evolution 
by mutation steps that lead to diverse solutions. Hybrid models generate good 
accuracy as compared with LSSVM tuned by cross validation method with 
wavelet kernel and Gaussian kernel (Luo et al., 2008). Mustaffa et al. (2014) 
proposed LSSVM that is tuned by using Improved Artificial Bee Colony 
(IABC) for gasoline price forecasting. The MAPE and RMSPE results of 
the proposed method are better than LSSVM tuned by Artificial Bee Colony 
(ABC) and LSSVM tuned by Back-Propagation Neural Network.

There were also studies on the use of Bat algorithm to optimize LSSVM 
(Hegazy et al., 2015; Soliman & Salam, 2014; Wu & Peng, 2015). Soliman 
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and Salam (2014) proposed weekly stock price forecasting and the results 
indicated that their proposed method achieved better performance in terms of 
root mean squared error (RMSE), mean absolute error (MAE), SMAPE and 
percent mean relative error (PMRE) (Soliman & Salam, 2014). This is similar 
to Wu and Peng (2015) who proposed China wind power forecasting. Their 
results demonstrated higher accuracy and lower mean squared error (MSE), 
RMSE and MAE (Wu & Peng, 2015). A similar trend in results was obtained by 
Hegazy et al. (2015) where they compared five swarm algorithms namely Bat 
algorithm, Artificial Bee Colony, Flower Pollination algorithm, modified CS, 
and PSO to optimize LSSVM using stock historical data. The results showed 
that the Flower Pollination algorithm with LSSVM was a better method in 
terms of error rate (Hegazy et al., 2015).

In previous work, researchers (Mustaffa et al., 2018; Ong & Zainuddin, 
2019; Sun & Sun, 2017) proved the success of the CS in different fields. Sun 
and Sun (2017) demonstrated the success of a hybrid model for concentration 
forecasting using Principle Component Analysis and LSSVM optimized by 
CS against LSSVM. Mustaffa et al. (2018) introduced a hybrid LSSVM with 
four swarm algorithms namely CS, Genetic Algorithm, Differential Evolution 
and Grey Wolf Optimizer for water level forecasting. All proposed algorithms 
were able to produce small MSE, RMSPE and high Theil’s U value. Ong and 
Zainuddin (2019) proposed an improved CS algorithm for optimizing wavelet 
Neural Network. Zheng et al. (2018) developed PSO with mutation operation 
to optimize the parameters of constructed wavelet LSSVM and used it for 
forecasting dissolved gas. Zhang, Tan and Yang (2012) proposed a hybrid 
method for predicting electricity price by combining wavelet transformed 
with auto-regressive integrated moving average (ARIMA) while LSSVM was 
optimized by PSO.

Due to the success of Bat and CS algorithms in earlier studies, 
investigations on how they can help to tune LSSVM parameters is worth 
conducting. Nevertheless, the slow convergence rate of CS algorithm needs 
to be resolved and since Bat algorithm offers a balanced search, integration of 
the two optimization algorithms may benefit machine learning methods such 
as LSSVM.

Least Squares Support Vector Machine

In LSSVM, suppose a set of M points {xj, yj}, where xj means the input values 
while yj refers to the output values. LSSVM estimation function for nonlinear 
regression is shown in Equation 1 (Suykens et al., 2002).
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Where: w means the weight vector, φ(xj) means nonlinear function, B means 
the bias term, ej means the error between the actual and the predicted output. 
The weight vector w and the bias term b can be realized using optimizing 
function which is displayed in the following Equation 2 (Suykens et al., 
2002).
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Where: w means the weight vector, φ(xj) means nonlinear function, B means 
the bias term, ej means the error between the actual and the predicted output. 
The weight vector w and the bias term b can be realized using optimizing 
function which is displayed in the following Equation 2 (Suykens et al., 
2002).
                               (2)

This equation is subject to equality constraints as defined in the following:
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Algorithm 1: Basic Bat algorithm (Yang, 2010)

Step 4   :  Generate new solution by adjusting frequency, update velocity, and    
  update position using Equations 8, 9, and 10

Step 5   :  If (rand > r)
Step 6   :  Generate a solution around the best solution
Step 7   :  End if
Step 8   :  If (rand<A & F(Xj) < F(X*))
Step 9   :  Replace the current solution with new solution
Step 10 :  Replace the current fitness with new fitness
Step 11 :  End if
Step 12 :  End while

Cuckoo Search

Prior to Bat algorithm, Yang (2010) has also designed an optimization algorithm 
inspired by the cuckoo species, with their obligated brood parasitism by laying 
their eggs in the nests of other species or hosts. There are three rules in which 
the CS algorithm is based; the first rule is that the appropriate place (i.e. the 
nest) for the egg is chosen randomly. Second, the bird puts only one egg at a 
time and finally, one of the best nests is chosen for the second generation. The 
next step is to determine the best nest and the best eggs to be used as input data 
for future generations.

The available bird nests of hosts is ascertained by a pre-determined 
value while the detection rate of the cuckoo’s egg(s) by host birds takes a 
probability [0; 1]. If an exotic egg is discovered, the host bird either eliminates 
the egg or leaves the nest and builds a new nest. The pseudo-code of basic CS 
is shown in Algorithm 2 (Hegazy et al., 2015; Shehab, Khader & Laouchedi, 
2018: Yang, 2010).

Algorithm 2: Basic Cuckoo Search (Yang, 2010)

Input   : Determine the initial population of (n), and the hosts’ nests (Xj),  
               objective function f(x)
Output: Return the best solution
Step 1  : While not stopping criterion do
Step 2  : For j = 1 to n do
Step 3  : Generate new solution by selecting a cuckoo randomly, generate a  
               solution and then evaluate it by objective function
Step 4 :  Randomly select a nest (i)
Step 5 :  If (Fj > Fi)

 

(continued)
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Algorithm 2: Basic Cuckoo Search (Yang, 2010)
 
Step 6 :  Update the solution with new one i 7: End if
Step 8: A rate (pa) of poor-quality nests are ignored and new nests are generated
Step 9: Find the best solution by ranking the solutions
Step 10: End while

Particle Swarm Optimization

PSO is the behavior studied in bird flocking. PSO was first introduced by Step 
Kennedy and Ebehart (1995) where each single solution represents a bird (it is 
called a particle) in search space. A particle has initial random position vector 
(Xi) and velocity (Vi) in search area. The best position is determined by the 
objective function that measures the cost of position. In each iteration, each 
particle updates the velocity of the particle at time (t) based on Equation 11 
and calculates a new position of the particle at time (t) depending on Equation 
12. The pseudo code of a basic PSO is shown in Algorithm 3 (Yang, 2010).

Algorithm 3: Basic PSO (Yang, 2010) 

Input   : Determine the number of particles (n). Randomly, determine the  
               initialized position (Xn), Randomly; determine the initialized velocity    
               (Vn).
Output: Return the best solution
Step 1  : Evaluate each particle and find pbest and gbest
Step 2  : While not stopping criterion do
Step 3  : For i = 1 to number of particles do
Step 4  : Calculate the fitness function f
Step 5  : Update personal best and global best of each particle
Step 6  : Update velocity of the particle by using Equation 11
Step 7  : Update the position of the particle using Equation 12
Step 8  : End for
Step 9  : End while

 
PROPOSED METHODS

This section includes the discussion on the three optimized LSSVMs; BAT-
LSSVM, CUCKOO-LSSVM and PSO-LSSVM. The process flow and 
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performance comparisons among the three methods (i.e., BAT-LSSVM, 
CUCKOO-LSSVM and PSO-LSSVM) are presented and conducted, 
respectively. Then a detailed procedure in combining two algorithms (i.e., Bat 
and CS) to optimize LSSVM is presented. The purpose of this comparison is 
to evaluate and determine which combination yielded the highest accuracy. 
Performance is measured using five metrics; MAPE (Yusof et al., 2015) as 
shown in Equation 13, accuracy (Yusof, Kamaruddin, Husni, Ku-Mahamud, 
& Mustaffa, 2013) as shown in Equation 14, SMAPE (Soliman & Salam, 
2014) as shown in Equation 15 and RMSPE (Mustaffa et al., 2018) as shown 
in Equation 16, and best fitness as shown in Equation 17.
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and position. If a stopping criterion is satisfied, the best solution is obtained, 
where; it has the lowest MAPE. The process flow of proposed BAT-LSSVM 
is shown in Algorithm 4.
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Algorithm 4: Proposed BAT-LSSVM 

Input  :   Determine the number of Bats (n). Randomly, determine the initialized  
                 position (Xn), where, xi represents the hyper-parameters of LSSVM (σ,      
           γ). Randomly, determine the initialized velocity (Vn). Determine the  
                 frequencies Fn, pulse rate r, loudness A.
Output:   Return the best solution
Step 1  :   Initialize the LSSVM model using generated solution.
Step 2  :   Train the LSSVM model.
Step 3  :   Evaluate the LSSVM model using Equation 13 
Step 4   :   Frequencies, Fn, at xi is determined by objective function, f(xi):  

Step 5  :   Evaluate each Bat and find best F(X*)
Step 6  :   While not stopping criterion do
Step 7  :   For j = 1 to n do
Step 8  :   Generate new solution by adjusting frequency, update velocity, update  

     position using Equations 8, 9, and 10
Step 9  :   If (rand > r)
Step 10:   Generate a solution around the best solution
Step 11:   End if
Step 12:  Train the LSSVM model with new solution
Step 13:  Evaluate new solutions and update F(Xj)
Step 14:  If (rand<A & F(Xj) > F(X*))
Step 15:  Replace the current solution with new solution
Step 16:  Replace the best F(X*)
Step 17:  End if
Step 18:  End while

 
CUCKOO-LSSVM

In optimizing the hyper-parameters of LSSVM (σ, γ) using Cuckoo Search 
algorithm, the solutions of algorithm are depicted by a pair of parameters (σ, 
γ), where they represent the nest. In this study, each nest evaluates by objective 
function, where the MAPE is used as an objective function. In the beginning 
process of the CUCKOO-LSSVM, initial solutions are generated randomly; 
then, the solutions are trained by the LSSVM model and the LSSVM model 
is then evaluated using MAPE. If a stopping criterion is not satisfied, the 
generation of new solutions and evaluation continues until the conditions are 
met. After that, the best solution is chosen which holds the minimum value 
of MAPE (i.e. maximum value of fitness). The process flow of the proposed 
CUCKOO-LSSVM is shown in Algorithm 5.
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Equation 13, accuracy (Yusof, Kamaruddin, Husni, Ku-Mahamud, & Mustaffa, 2013) as shown in 

Equation 14, SMAPE (Soliman & Salam, 2014) as shown in Equation 15 and RMSPE (Mustaffa et al., 

2018) as shown in Equation 16, and best fitness as shown in Equation 17. 
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Algorithm 5: Proposed CUCKOO-LSSVM 

Input    :   Determine the initial population of (n), and the hosts’ nests (Xj), where,  
                     Xj represents the hyper-parameters of LSSVM (σ, γ). Determine the rate  
                 (pa), Randomly, generate a solution.
Output :   Return the best solution
Step 1   :   Initialize the LSSVM model using generated solution.
Step 2   :   Train the LSSVM model.
Step 3   :   Evaluate the LSSVM model using Equation 13
Step 4   :   Determine the fitness, Fn, at xj is determined by objective function, f(xj): 

Step 5   :   Evaluate each nest
Step 6   :   While not stopping criterion do
Step 7   :   Find best nest F(X*), which represents maximum value.
Step 8   :   Choose a nest randomly xi and avoid best nest.
Step 9   :   Train the LSSVM model, evaluate new nest by objective function, and  
                  find fitness F(xi)
Step 10 :   If (F(xi)>=F(X*))
Step 11 :   Replace the current solution with new solution
Step 12 :   Replace the best F(X*)
Step 13 :   End if
Step 14 :   If (rand>pa)
Step 15 :   Replace some of the worse nests.
Step 16 :   End if
Step 17 :   End while

PSO-LSSVM

In order to employ PSO in optimizing the hyper-parameters of LSSVM (σ, γ), 
the value of each pair of parameters (σ, γ) is determined by the value of swarm 
position in the search area. The position of each swarm changes as it depends 
on the velocity of each swarm and the change of best swarm (pbest) and global 
swarm (gbest). The evaluation of each position is based on objective function 
that is formulated using MAPE. The process of LSSVM model training 
continues using the new solutions (positions) until the stopping conditions 
are met. Then, the best solution is chosen and stored. The process flow of the 
proposed PSO-LSSVM is shown in Algorithm 6.

10 
 

Step 6: While not stopping criterion do 
Step 7: For j = 1 to n do 
Step 8: Generate new solution by adjusting frequency, update velocity, update position using 

Equations 8, 9, and 10 
Step 9: If (rand > r) 
Step 10: Generate a solution around the best solution 
Step 11: End if 
Step 12: Train the LSSVM model with new solution 
Step 13: Evaluate new solutions and update F(Xj) 
Step 14: If (rand<A & F(Xj) > F(X*)) 
Step 15: Replace the current solution with new solution 
Step 16: Replace the best F(X*) 
Step 17: End if 
Step 18: End while 
 

 

CUCKOO-LSSVM 

 

In optimizing the hyper-parameters of LSSVM (σ, γ) using Cuckoo Search algorithm, the solutions of 

algorithm are depicted by a pair of parameters (σ, γ), where they represent the nest. In this study, each 

nest evaluates by objective function, where the MAPE is used as an objective function. In the 

beginning process of the CUCKOO-LSSVM, initial solutions are generated randomly; then, the 

solutions are trained by the LSSVM model and the LSSVM model is then evaluated using MAPE. If a 

stopping criterion is not satisfied, the generation of new solutions and evaluation continues until the 

conditions are met. After that, the best solution is chosen which holds the minimum value of MAPE 

(i.e. maximum value of fitness). The process flow of the proposed CUCKOO-LSSVM is shown in 

Algorithm 5. 

 
Algorithm 5: Proposed CUCKOO-LSSVM  

Input: Determine the initial population of (n), and the hosts’ nests (Xj), where, Xj represents the 
hyper-parameters of LSSVM (σ, γ). Determine the rate (pa), Randomly, generate a solution. 
Output: Return the best solution 
Step 1: Initialize the LSSVM model using generated solution. 
Step 2: Train the LSSVM model. 
Step 3: Evaluate the LSSVM model using Equation 13 
Step 4: Determine the fitness, Fn, at xj is determined by objective function, f(xj): 

)1/(1)( ii MAPExf   
Step 5: Evaluate each nest 
Step 6: While not stopping criterion do 
Step 7: Find best nest F(X*), which represents maximum value. 
Step 8: Choose a nest randomly xi and avoid best nest. 
Step 9: Train the LSSVM model, evaluate new nest by objective function, and find fitness F(xi) 
Step 10: If (F(xi)>=F(X*)) 
Step 11: Replace the current solution with new solution 
Step 12: Replace the best F(X*) 
Step 13: End if 
Step 14: If (rand>pa) 
Step 15: Replace some of the worse nests. 
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Algorithm 6: Proposed PSO-LSSVM 

Input       :    Determine the number of swarm (n). Randomly, determine the initialized  
             position (Xn), where, xi represents the hyper-parameters of LSSVM  
                 (σ, γ). Randomly, determine the initialized velocity (Vn).
Output:   Return the best solution
Step 1   :  Initialize the LSSVM model using generated solution.
Step 2   :  Train the LSSVM model.
Step 3   :   Evaluate the LSSVM model using Equation 13
Step 4   :   Frequencies, Fn, at xi is determined by objective function, f(xi):         
                                              
 
Step 5   :  Evaluate each swarm and find pbest and gbest
Step 6   :  While not stopping criterion do
Step 7   :  For j = 1 to n do
Step 8   :  Update personal best and global best of each swarm
Step 9   :  Update velocity of the particle by using Equation 11
Step 10 :  Update the position of the particle using Equation 12
Step 11 :  Train the LSSVM model with new solution.
Step 12 :  Evaluate new solutions, and calculate the fitness function f
Step 13 :  Update personal best and global best of each swarm
Step 14 :  End while

 
 
BAT-CUCKOO-LSSVM

In this integration, two algorithms are used to optimize LSSVM hyper-
parameters (σ, γ). First, the Bat algorithm is employed, and its outcome is used 
as the input for CS. The value of each pair of parameters (σ, γ) is a potential 
solution in the search area with restricted boundaries, where, the frequency 
of each bat is represented by objective function (i.e., MAPE). The objective 
function is used to evaluate solutions which are randomly generated. This is 
followed by determining the best bat (i.e., the one with minimum frequency). 
New solutions are produced by adjusting the frequency, velocity, and position 
of the bats. The process is repeated until the stopping criterion is fulfilled 
(i.e., the smallest MAPE). The solutions produced by the Bat algorithm are 
passed to CS as initial solutions, where each of the solution is considered 
as a nest. Each nest is evaluated using the objective function (also based on 
MAPE). Then, the solutions are trained by LSSVM where the model with the 
smallest MAPE is stored for prediction purposes. Similarly, it all relies on 
the achievement of the stopping criterion. Generations of new solutions and 
evaluations continue until the stopping condition is met. The process flow of 
the proposed BAT-CUCKOO-LSSVM is shown in Algorithm 7.

13 
 

CUCKOO-BAT-LSSVM 

 

As for the CUCKOO-BAT-LSSVM, the operation starts with CS. Cuckoo Search solutions are 

depicted by a pair of parameters (σ, γ), that indicates the nest. Each nest is evaluated using objective 

function (i.e., MAPE). Similar to the earlier process in BAT-CUCKOO-LSSVM, initial solutions are 

generated randomly. Then, they are trained by LSSVM and evaluated using MAPE. If the stopping 

criterion is not met, generations of new solutions and evaluations continue. After that, the solutions 

(i.e., the ones with the smallest MAPE) will be used to represent potential solutions in the search area 

of Bat algorithm. The standard Bat operation is then followed until the stopping criteria is fulfilled. 

The process flow of the proposed CUCKOO-BAT-LSSVM is shown in Algorithm 8. 

 
Algorithm 8: Proposed CUCKOO-BAT-LSSVM  

Input: Determine the initial population of (n), and the host nests (Xj), where, Xj represents the hyper-
parameters of LSSVM (σ, γ). Determine the rate (pa). Randomly, generate a solution. 
Output: Return the solutions that include the best one. 
Step 1: Initialize the LSSVM model using generated solution. 
Step 2: Train the LSSVM model. 
Step 3: Evaluate the LSSVM model using Equation 13 
Step 4: Determine the fitness, Fn, at xj is determined by objective function, f(xj):  

)1/(1)( ii MAPExf   

Step 5: Evaluate each nest 
Step 6: While not stopping criterion do 
Step 7: Find best nest F(X*), which represents maximum value. 
Step 8: Choose a nest randomly xi and avoid best nest. 
Step 9: Train the LSSVM model, evaluate new nest by objective function, and find fitness F(xi) 
Step 10: If (F(xi)>=F(X*)) 
Step 11: Replace the current solution with new solution 
Step 12: Replace the best F(X*) 
Step 13: End if 
Step 14: If (rand>pa) 
Step 15: Replace some of the worse nests. 
Step 16: End if 
Step 17: End while 
 
Input: Determine the number of Bats (n). Determine the initialized position (Xn), where, xi represents 
the hyper-parameters of LSSVM (σ, γ) that is gained from the Cuckoo algorithm. Randomly, 
determine the initialized velocity (Vn). Determine the frequencies Fn, pulse rate r, loudness A. 
Output: Return the best solution 
Step 1: Evaluate each Bat and find best F(X*) 
Step 2: While not stopping criterion do 
Step 3: For j = 1 to n do 
Step 4: Generate new solution by adjusting frequency, update velocity, update position using 

Equations 8, 9, and 10 
Step 5: If (rand > r) 
Step 6: Generate a solution around the best solution 
Step 7: End if 
Step 8: Train the LSSVM model with new solution. 
Step 9: Evaluate new solutions and update F(Xj) 
Step 10: If (rand<A & F(Xj) > F(X*)) 
Step 11: Replace the current solution with new solution 
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Algorithm 7: Proposed BAT-CUCKOO-LSSVM 
Input    :    Determine the number of Bats (n). Randomly, determine the initialized  
             position (Xn), where, xi represents the hyper-parameters of LSSVM  
                     (σ, γ). Randomly, determine the initialized velocity (Vn). Determine the    
                    frequencies Fn, pulse rate r, loudness A.
Output  :    Return the solutions that include the best.
Step 1    :    Initialize the LSSVM model using generated solution.
Step 2    :    Train the LSSVM model.
Step 3    :    Evaluate the LSSVM model using Equation 13
Step 4    :    Frequencies, Fn, at xi is determined by objective function, f(xi):      

Step 5    :    Evaluate each Bat and find the best F(X*)
Step 6    :    While not stopping criterion do
Step 7    :    For j = 1 to n do
Step 8   :    Generate new solutions by adjusting frequency, update velocity,  

        update position using   Equations 8, 9, and 10
Step 9    :   If (rand > r)
Step 10  :   Generate a solution around the best solution
Step 11  :   End if
Step 12  :   Train the LSSVM model with new solutions.
Step 13  :   Evaluate new solutions and update F(Xj)
Step 14  :   If (rand<A & F(Xj) > F(X*))
Step 15  :   Replace the current solution with new solution
Step 16  :   Replace the best F(X*)
Step 17  :   End if
Step 18  :   End while

Input     :  Determine the initial population of (n), and the host nests (Xj), where,  
                  Xj represents the hyper-parameters of LSSVM (σ, γ) that gained from   
                  the Bat algorithm. Determine the rate (pa)
Output  :  Return the best solution
Step 1    :  Nests equal gained solutions.
Step 2    :  Evaluate each nest
Step 3    :  While not stopping criterion do
Step 4    :  Find best nest F(X*), which represents maximum value.
Step 5    :  Choose a nest randomly xi and avoid best nest.
Step 6    :  Train the LSSVM model, evaluate new nest by objective function, and  
                  find fitness F(xi)
Step 7    :  If (F(xi)>=F(X*))
Step 8    :  Replace the current solution with new solution
Step 9    :  Replace the best F(X*)
Step 10  :  End if
Step 11  :  If (rand>pa)
Step 12  :  Replace some of the worse nest.
Step 13  :  End if
Step 14  :  End while

13 
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Step 9: Train the LSSVM model, evaluate new nest by objective function, and find fitness F(xi) 
Step 10: If (F(xi)>=F(X*)) 
Step 11: Replace the current solution with new solution 
Step 12: Replace the best F(X*) 
Step 13: End if 
Step 14: If (rand>pa) 
Step 15: Replace some of the worse nests. 
Step 16: End if 
Step 17: End while 
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CUCKOO-BAT-LSSVM

As for the CUCKOO-BAT-LSSVM, the operation starts with CS. Cuckoo 
Search solutions are depicted by a pair of parameters (σ, γ), that indicates the 
nest. Each nest is evaluated using objective function (i.e., MAPE). Similar to 
the earlier process in BAT-CUCKOO-LSSVM, initial solutions are generated 
randomly. Then, they are trained by LSSVM and evaluated using MAPE. If 
the stopping criterion is not met, generations of new solutions and evaluations 
continue. After that, the solutions (i.e., the ones with the smallest MAPE) will 
be used to represent potential solutions in the search area of Bat algorithm. 
The standard Bat operation is then followed until the stopping criteria is 
fulfilled. The process flow of the proposed CUCKOO-BAT-LSSVM is shown 
in Algorithm 8.
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Output: Return the best solution 
Step 1: Evaluate each Bat and find best F(X*) 
Step 2: While not stopping criterion do 
Step 3: For j = 1 to n do 
Step 4: Generate new solution by adjusting frequency, update velocity, update position using 

Equations 8, 9, and 10 
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EXPERIMENTAL SETUP

Implementation of BAT-LSSVM, CUCKOO-LSSVM, PSO-LSSVM, BAT-
CUCKOO-LSSVM, and CUCKOO-BAT-LSSVM are conducted using 
LSSVM lab toolbox (Pelkmans et al., 2002). The parameter setting of these 
experiments is presented in Table 1.

Table 1

Experimental Setup of the Proposed Methods

Bat algorithm CS PSO 

Number of bats (n) 100 Initial  
population (n) 100 Number  

of swarm (n) 100

Pulse rate (r) 0.5 Rate (pa) 0.25 w 1

Loudness (A) 0.25 c1, c2 1.5

Algorithm 8: Proposed CUCKOO-BAT-LSSVM 

Input  :  Determine the number of Bats (n). Determine the initialized position (Xn),  
               where, xi represents the hyper-parameters of LSSVM (σ, γ) that is gained  
               from the Cuckoo algorithm. Randomly, determine the initialized velocity  
               (Vn). Determine the frequencies Fn, pulse rate r, loudness A.
Output: Return the best solution
Step 1 :  Evaluate each Bat and find best F(X*)
Step 2 :  While not stopping criterion do
Step 3 :  For j = 1 to n do
Step 4 :  Generate new solution by adjusting frequency, update velocity, update    

   position using Equations 8, 9, and 10
Step 5 :  If (rand > r)
Step 6 :  Generate a solution around the best solution
Step 7 :  End if
Step 8 : Train the LSSVM model with new solution.
Step 9 : Evaluate new solutions and update F(Xj)
Step 10 : If (rand<A & F(Xj) > F(X*))
Step 11 : Replace the current solution with new solution
Step 12 : Replace the best F(X*)
Step 13 : End if
Step 14 : End while
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Data Description

In this study, real datasets, named Diabetes Dataset (Dua & Graff, 2017), was 
obtained from UCI repository which was utilized to test the effectiveness of 
the forecasting. The samples covered were from 10 October 1989 to 21 April 
1991. Table 2 shows the descriptive statistics of the dataset which includes 
1683 cases and four variables. The variables are: date, time, code and value of 
diabetes mellitus. Before utilizing the data, the dataset was divided into three 
sub-datasets, 70% for training, 15% for validation and 15% for testing.

Table 2

Descriptive Statistics of Data

Variable N Minimum Maximum Mean Std. Deviation

Date 1683 14901 14902 - -

Time 1683 3600 85500 49624.53 19334.380

Code 1683 33 65 44.64 12.777

Value 1683 0 393 82.82 97.012

Data Normalization

In order to simplify the training task and produce better results, data 
normalization was performed using min-max normalization (Yusof et al., 
2015) and is expressed in Equation 18.
                                   

(18)

Where, x is the normalized data, x is the original data, xmin refers to minimum 
value in dataset while xmax refers to maximum value.

RESULTS

The forecasted values for the testing dataset (i.e., values for attribute diabetes) 
generated by BAT-LSSVM, CUCKOO-LSSVM, PSO-LSSVM, LSSVM, 
CUCKOO-BAT-LSSVM and BAT-CUCKOO-LSSVM were compared among 
each other against the actual values (Figure 1). It showed that the forecasted 
values of CUCKOO-BAT-LSSVM and BAT-CUCKOO-LSSVM were close 
to the original.
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Figure 1. The outcome of the forecasted values of BAT-LSSVM,  
CUCKOO-LSSVM, PSO-LSSVM, LSSVM, CUCKOO-BAT-LSSVM and 
BAT-CUCKOO-LSSVM.

Table 3

Average Results of Three Optimized Methods BAT-LSSVM, CUCKOO-LSSVM, 
and PSO-LSSVM with LSSVM

Method MAPE 
Test Accuracy SMAPE 

Test
RMSPE

 Test
Best 

Fitness

LSSVM 26.84089 73.15911 24.55659539 0.418034693 0.016658599

CUCKOO-
LSSVM 21.36823 78.63177 18.20837469 0.413055088 0.035003629

PSO-
LSSVM 24.7515 75.2485 22.76379234 0.408215635 0.019302678

BAT-
LSSVM 21.26162 78.73838 18.26129948 0.407197641 0.03434636

A comparison of the results among the three optimized methods, 
BAT-LSSVM, CUCKOO-LSSVM, and PSO-LSSVM, and non-optimized 
LSSVM are presented in Table 3. It is noted that BAT-LSSVM generated the 
lowest MAPE i.e. 21.26162 (as highlighted in Table 3) which is smaller than 
CUCKOO-LSSVM which is 21.36823, PSO-LSSVM is 24.7515 and LSSVM 
is 26.84089. Figure 2 shows the change in MAPE for the four methods.
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Figure 2. MAPE test of LSSVM, CUCKOO-LSSVM, PSO-LSSVM, & 
BAT-LSSVM.

Figure 3. Accuracy of LSSVM, CUCKOOLSSVM, PSOLSSVM, and 
BATLSSVM.
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Further, the average Accuracy for the four methods: LSSVM, 
CUCKOO-LSSVM, PSO-LSSVM, and BAT-LSSVM are presented in Table 
3. The highest score can be seen in the BAT-LSSVM (as highlighted in Table 
3 which is 78.73838) whereas the lowest is produced by the non-optimized 
LSSVM. In contrast to the MAPE, the larger the value for accuracy, the better 
the method. Figure 3 illustrates the difference in the predicted accuracy.

In addition, the data in Table 3 also includes information on SMAPE 
for the four LSSVM methods. The average SMAPE test of BAT-LSSVM 
is 18.26129948, CUCKOO-LSSVM is 18.20837469, PSO-LSSVM is 
22.76379234, and LSSVM is 24.55659539. The CUCKOO-LSSVM has the 
smallest SMAPE compared with the other methods. Illustration of the change 
is shown in Figure 4.

	

Figure 4. SMAPE test of LSSVM, CUCKOO-LSSVM, PSO-LSSVM, 
and BAT-LSSVM.

From Table 3, it can also be observed that the RMSPE value for BAT-
LSSVM is the smallest. Figure 5 shows the change in RMSPE test values 
for all methods under analysis. Besides the error rate, Table 3 also shows the 
fitness value for the methods, LSSVM, CUCKOO-LSSVM, PSO-LSSVM, 
and BAT-LSSVM. The average fitness of BAT-LSSVM is 0.03434636 which 
is similar to CUCKOO-LSSVM (i.e., 0.035003629). While, the fitness for 
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PSO-LSSVM is 0.019302678, which is closer to the one obtained by LSSVM 
(i.e., 0.016658599). Nevertheless, CUCKOO-LSSVM is a better method as it 
generated the strongest fitness. Illustration of the results is provided in Figure 
6 and based on these results (i.e. error rates, accuracy and fitness), it is noted 
that the two strong methods are BAT-LSSVM (i.e. the best in MAPE, accuracy 
and RMSPE) and CUCKOO-LSSVM (i.e. the best in terms of SMAPE and 
fitness).

	

Figure 5. RMSPE test of LSSVM, CUCKOO-LSSVM, PSO-LSSVM, and 
BAT-LSSVM.
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Figure 6. Best fitness of LSSVM, CUCKOO-LSSVM, PSO-LSSVM, 
and BAT-LSSVM.

 
Table 4

Average Results of CUCKOO-LSSVM, BAT-LSSVM, CUCKOO-BAT-LSSVM 
and BAT-CUCKOO-LSSVM

Method MAPE 
Test Accuracy SMAPE 

Test
RMSPE 

Test
Best 

Fitness
CUCKOO-

LSSVM 21.36823 78.63177 18.20837469 0.413055088 0.035003629

BAT-LSSVM 21.26162 78.73838 18.26129948 0.407197641 0.03434636
CUCKOO-

BAT-LSSVM 21.2158 78.7842 18.33347682 0.40304565 0.033579709

BAT-
CUCKOO-

LSSVM 21.2943 78.7057 18.29575524 0.407233212
0.034490449
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Experimental results using two algorithms to optimize the LSSVM 
are shown in Table 4. Data in Table 4 compares the outcome of four 
methods: CUCKOO-LSSVM, BAT-LSSVM, CUCKOO-BAT-LSSVM, 
and BAT-CUCKOO-LSSVM. Investigation on the effectiveness of using 
two optimizers has shown that CUCKOO-BAT-LSSVM is better than BAT-
CUCKOO-LSSVM. The average MAPE for CUCKOO-BAT-LSSVM is 
21.2158 in contrast to the BAT-CUCKOO-LSSVM which generated a higher 
value, i.e. 21.2943. Figure 7 shows the change in MAPE values for four of 
the methods.

Figure 7. MAPE test of CUCKOO-LSSVM, BAT-LSSVM, CUCKOO-BAT-
LSSVM and BAT-CUCKOO-LSSVM.

As CUCKOO-BAT-LSSVM produced the smallest MAPE and RMSPE 
(Figure 10), hence, it also generated the highest forecasting accuracy (i.e., 
CUCKOO-BAT-LSSVM with 78.7842% and BAT-CUCKOO-LSSVM 
with 78.7057%). Figure 8 shows the change in accuracy values for four of 
the methods. However, the best fitness (on average) was produced by the 
CUCKOO-LSSVM which was 0.035003629 as compared with CUCKOO-
BAT-LSSVM which produced the worst (i.e., 0.033579709). The change in 
the results is presented in Figure 11. Nevertheless, CUCKOO-BAT-LSSVM 
is still the best method as the difference is not significant.
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Figure 8. Accuracy of CUCKOO-LSSVM, BAT-LSSVM, CUCKOO-BAT-
LSSVM and BAT-CUCKOO-LSSVM 

	

Figure 9. SMAPE test of CUCKOO-LSSVM, BAT-LSSVM, CUCKOO-
BAT-LSSVM and BAT-CUCKOO-LSSVM 
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CONCLUSION

This study focuses on how to optimize the hyper-parameters of LSSVM, one 
of the efficient models in machine learning. LSSVM was optimized using three 
swarm intelligence algorithms; Bat, CS and PSO. The methods were evaluated 
on medical data which was to predict the value of diabetes. The success of the 
CS algorithm in finding solutions for global optimization problems in different 
fields and the strength of the Bat algorithm in exploration and exploitation 
have yielded good results. The experimental results have demonstrated that 
BAT-LSSVM has proven to be a good forecasting model in terms of MAPE, 
accuracy, and RMSPE, whereas CUCKOO-LSSVM is better in terms of 
SMAPE and fitness value. In addition, the use of the two swarm algorithms 
(i.e., Bat and CS) to optimize LSSVM have increased LSSVM performance. 
A lower error rate and higher accuracy have been obtained by both the 
optimizers. The experimental results also showed that the hybrid CUCKOO-
BAT-LSSVM produced better results than the hybrid BAT-CUCKOO-LSSVM 
in terms of accuracy, MAPE, RMSPE and fitness value. Besides, it also 
obtained better results compared with CUCKOO-LSSVM and BAT-LSSVM 
in terms of accuracy, MAPE and RMSPE. With this, the proposed CUCKOO-
BAT-LSSVM can be acknowledged as an alternative solution for an accurate 
forecasting model. To further enhance the forecasting, an investigation of 
parameter selection for swarm algorithms is worth exploring.
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