
225

Journal of ICT, 19, No. 2 (April) 2020, pp: 225-250

How to cite this article:

Aradea, A., Supriana, I., & Surendro, K. (2020). Self-adaptive model based on goal-oriented
requirements engineering for handling service variability. Journal of Information and
Communication Technology, 19(2), 225-250. https://doi.org/10.32890/jict2020.19.2.4

SELF-ADAPTIVE MODEL BASED ON GOAL-ORIENTED
REQUIREMENTS ENGINEERING FOR HANDLING SERVICE

VARIABILITY

Aradea Aradea, Iping Supriana & Kridanto Surendro
School of Electrical Engineering and Informatics,

Bandung Institute of Technology, Indonesia

aradea@unsil.ac.id; iping,endro@informatika.org

ABSTRACT

Service system is currently facing environmental complexity
problems, such as the need of a distributed, heterogeneous,
decentralized, and interdependent system which operates
dynamically and unpredictably. This condition requires the service
system to have an ability to adapt in order to realize sustainable
functions. The success of service adaptation is determined by
its ability to handle variability at runtime. The purpose of this
research is to realize service flexibility through variability
modeling, which is an extension of previous work to enrich the
adaptability view. The methodology was developed through the
monitor-analyse-plan-execute-knowledge control loops approach
integrated into the adaptive service (service level) element
within the adaptive enterprise service system metamodel based
on goal-oriented requirements engineering. Service adaptation
scenario was prepared through proactive and reactive adaptation
mechanisms. For evaluation, the model was applied to the case
of a configuration management system. The experimental results
showed that the model is able to adapt to runtime variability and
accomodates the growth of the service component items shown
by the description of the system scalability. The proposed model
has a better alternative design in analyzing variability with a

Received: 31/10/2018 Revised: 2/5/2019 Accepted: 8/5/2019 Published: 31/3/2020

226

Journal of ICT, 19, No. 2 (April) 2020, pp: 225-250

total response that can be applicable in normal operations and
overload. It also meets the expected level (level-5: adapting) of the
adaptive capability maturity model as a standard for assessment
of a service system adaptation.

Keywords: Self-adaptive systems, service variability, goal-based, MAPE-K,
rule-based systems.

INTRODUCTION

The service system has now become an important part in various activities,
where different elements of the real-world system can interact with the
system. The involvement of various elements and activities raises the issue of
complexity in its development, for example the characteristics of system entities
related to rapid organization growth, hardware ubiquitous, the dynamic and
unpredictable environment, etc. These conditions require the service system
to have an ability to adapt to environmental characteristics and uncertainty at
runtime. The main factor behind the uncertainty is the variability at runtime that
refers to changes which occur in the system requirements, environment, related
systems, and the system itself (Abbas & Anderson, 2017). In our previous
work (Surendro, Aradea, & Supriana, 2016), we introduced a requirements
engineering for cloud computing adaptive (RECCA) model focused on cloud
services variability. In this work, we propose three views, namely architectural
view, alignment view, and adaptability view from which the three views of the
requirements engineering process capture the service system requirements.
However, the adaptability view only focuses on providing external services,
which are cloud services. Meanwhile, the need for a service system within an
enterprise of reality will also require a service provided by an internal party.
This research extends the capability of the adaptability view, where the service
flexibility factor becomes the main focus so that the system is able to adapt
to the services requirements provided by both external and internal parties.
Providing these services will address the runtime variability and growth of
service items.

Based on a review of related works, there are still some missing pieces
that has motivated us to conduct this research. For example, the results of
work by Qureshi, Jureta, and Perini (2012), Clark, Warnier, and Brazier
(2011), Morandini, Penserini, and Marchetto (2017), and Mendoca, Rodrigues,
Alves, Ali, and Baresi (2016) indicate the need to further investigate the
dynamic evolutionary needs of the requirements model for service variability.
Meanwhile, Abuseta and Swesi (2015), Arciani, Riccobene, and Scandura
(2015), Knauss, Damian, Franch, Rook, Muller, and Thomo (2016), Paz
and Arboleda (2016) have utilized the advantages of autonomic computing
to develop adaptation mechanisms. However, the representation of domain
models (goal models) in the concept has yet to be investigated. Based on these
facts, we see an opportunity to deal with limitations in the adaptive enterprise

227

Journal of ICT, 19, No. 2 (April) 2020, pp: 225-250

service system (AESS) metamodel proposed by Surendro et al. (2016). A more
detailed discussion of this gap is presented in the related works section.

This paper introduces the handling of service variability where the
lifecycle of the adaptive service element in the AESS metamodel is formulated
as a monitor-analyze-plan-execute-knowledge (MAPE-K) pattern through
goal-oriented requirements engineering (GORE). Adaptation mechanisms are
developed through two strategies. The first is proactive adaptation prepared
through a set of variability rules to anticipate changes in the service context.
The second is the reactive adaptation prepared through a set of evolution rules
to follow up on the needs for additions or changes to the new function service
system at runtime.

RELATED WORKS

There have been some work on the concept of self-adaptive service. For
example, Perini (2012) discussed various challenges related to requirements
from the engineering perspective for self-adaptive service based applications,
in which a challenge viewpoint is defined for design-time and run-time
requirements. The proposed model in this paper may be regarded as one of the
answers to the challenge. Qureshi and Perini (2010) proposed a framework
for continuous adaptive requirements engineering (CARE) supporting self-
adaptive service-based applications using Techne’s language to map the goal
model into ontology domains. This concept can help in detailing the behavior
of the system to meet its goals and adaptation actions. However, the mechanism
of reasoning for changes in domain assumptions, preferences and contexts
still requires further research. Meanwhile, our research proposes a dynamic
rule model so that reasoning at run-time can be done automatically. Clark et
al. (2011) introduced self-adaptive monitoring services to adapt to changes
based on risk levels. This model focused on service monitoring capabilities
to respond to change. Our proposed model is not only prepared for handling
changes, but accomodates system evolution requirements as the growth of
service items also becomes one of the actions of the monitoring results.

Anna et al. (2019), proposed a model of requirements engineering for
adaptive systems based on goal model, and Mendoca et al. (2016) proposed
a model of contextualed runtime goal through a probabilistic approach.
However, the dynamic evolution requirements are still not covered in these
works, while our model provides this capability through the plug and play
model. The expansion of autonomic computing (Abeywickrama & Ovaska,
2017) has now become a major concern of researchers in developing self-
adaptive models. Arciani et al. (2015) introduced a framework for modeling
and validating distributed self-adaptive service-oriented applications using the
formal method. Further, Knauss et al. (2016) introduced a model of contextual
requirements using machine learning and data mining approach. Paz and
Arboleda (2016) also proposed a model for the guide of dynamic adaptation
planning with formal methods. The works focused on the generic function of

228

Journal of ICT, 19, No. 2 (April) 2020, pp: 225-250

MAPE-K control loops for reasoning at runtime. However, in our model, the
representation of entities is from the domain problem as a domain model (goal
model) under additional concerns. So, it has advantages in terms of capturing
the requirements domain. Meanwhile, Surendro et al. (2016) adopted the
AESS metamodel to handle service variability in service catalogs limited to
providing external services.

Based on these related works, we argue that handling service variability
can be improved through the ability to realize the dynamic evolution of
service requirements based on adaptation patterns embedded in the service
level elements of the AESS metamodel. Service requirements are defined
through GORE to represent domain models. Meanwhile, adaptation strategies
are realized through a generic function of the MAPE-K pattern. The proposed
method section discusses in more detail the approach used in this paper.

RESEARCH METHODOLOGY

This research is divided into five phases as presented in Table 1.
Phase 1 reviews some related research to identify gaps and define
research problems. In Phase 2, the research problem is identified,
that is how to handle service variability in the AESS metamodel.

Table 1

Research design

Research Design
Phase Activity Description

1
Systematic
Literature
Review

Explore research areas and a.	
related work
Survey engineering b.	
approaches

Understand the domain(s) of research,
related work, and existing engineering
approaches

2
Research
Problem

Identify research gapsa.	
Define research problemsb.	

Define research limitations and
opportunities for improvement

3
Requirements

Modeling

Define elements of model a.	
requirements
Map model elementsb.	

Define the requirements of the model
and its controls

4
Proposed
Method

Develop an approacha.	
Formulate algorithmb.	

Develop an approach through the
integration of goal models and
MAPE-K in the AESS metamodel

5
Empirical
Evaluation

Apply case studiesa.	
Compare proposed models b.	
with related work

Evaluate proposed method through the
quality attributes of dQAS and ACMM

229

Journal of ICT, 19, No. 2 (April) 2020, pp: 225-250

Phase 3 defines the elements of the model needs by mapping the AESS
metamodel into the requirements model and its control needs to obtain
three views of the model, namely architecture, alignment, and adaptability.
Furthermore, the third phase results are used in Phase 4 to realize the
improvement of the adaptability view by introducing approaches at each level
of the AESS metamodel through the integration of goal-oriented requirements
engineering and the MAPE-K adaptation cycle. Finally, in Phase 5, an
evaluation is carried out to prove that the proposed model provides relevant
contributions. Empirical evaluation is conducted through a discussion of case
studies using the domain Quality Attribute Scenarios (dQAS) and Adaptive
Capability Maturity Model (ACMM).

PROPOSED METHOD

In order to realize the self-adaptation capabilities for service variability, we
utilized the methods of some previous researches, for example, Abuseta and
Swesi (2015) who proposed a design pattern for a model of MAPE-K. Some
of the patterns are used in the model which we proposed and also expanded
by adding the ability to plug and play as a form of service system evolution.
Nakagawa, Ohsuga, and Honiden (2012) research also inspired the proposed
model, in which our models can enrich its features. Further, Morandini (2017)
proposed Tropos4AS where the primitive of goal model is used as requirements
description, adopted and expanded in our model. This work has advantages in
terms of capturing context variability and we equip it with domain assumption
through the rule editor and embed the control loops approach.

The configuration developed in the proposed model is an extension of
our previous work (Aradea, Supriana, Surendro, & Darmawan, 2017a; 2017b)
to enrich the adaptability view of the RECCA model. We introduced three
requirement views: architecture, alignment, and adaptability in the model. The
architectural view is enabled to understand the environment. Then, the results
of that understanding are mapped into the service system requirements through
an alignment view. Finally, the adaptability view determines the adaptation
mechanism. The adaptability view is realized through an event-condition-
action (ECA) method that represents the MAPE-K concept, but does not
explicitly define the mapping mechanism of the goal model as a description of
requirements. In addition, the function of the adaptability view is only focused
on the cloud service variability. The construction of the proposed model is
to complement the adaptability view by preparing a more relaxed adaptation
mechanism for service variability.

In the AESS metamodel, the design principle consists of agility, a living
system (system of systems) and service principles, where the core elements
are divided into three levels: adaptive enterprise service system (enterprise
level), adaptive service system (capability level) and adaptive service (service
level) (Gill, 2015). Enterprise level is a conceptual element of the adaptive

230

Journal of ICT, 19, No. 2 (April) 2020, pp: 225-250

enterprise architecture metamodel, while capability level is defined as a
system abstraction that can represent a human individual, function, business
unit, department or team, etc. In the RECCA model, both levels are configured
through an architectural view to capture environmental elements and
alignment view to define their service requirements. In this paper, we focus on
the adaptability view for service level expansion that is context aware and is
continually evolving and self-adapting.

Figure 1 illustrates an overview of the proposed self-adaptive model
which is an extension of the RECCA model based on the principles of the
AESS metamodel. Enterprise and capability levels are defined as the domain
model by adopting goal-oriented requirements engineering (goal model) and
service level is realized as control strategy through the implementation of
the MAPE-K adaptation cycle, which consists of scans and senses (monitors
[M]), interprets and analyses (analyze and plan [AP]), decides and responds
(execute [E]) to internal and external changes.

Figure 1. An overview of the self-adaptive model.

The decomposition of goal model (functional) can represent the service
requirements (R) in every sub-goal that are influenced by each property and
have positive or negative (++ / + or - / -) contribution to soft-goal (non-
functional). The role of the control strategy (MAPE-K) in this case is to
identify and monitor the possibilities of changes in the service. Decomposition
model adopts the concept of component mapping (Nakagawa et al., 2012) for

5

 Figure 1. An overview of the self-adaptive model.

The decomposition of goal model (functional) can represent the service requirements (R) in every
sub-goal that are influenced by each property and have positive or negative (++ / + or - / -) contribution to soft-
goal (non-functional). The role of the control strategy (MAPE-K) in this case is to identify and monitor the
possibilities of changes in the service. Decomposition model adopts the concept of component mapping
(Nakagawa et al., 2012) for software components (Hirsch, Kramer, Magee, & Uchitel, 2006) by utilizing some
design patterns (Abuseta & Swesi, 2015) and modifies in accordance with the requirements of service systems.
Figure 2 illustrates a model for transforming model goals into software components. Each parent goal with
AND-Decomposition is defined as a goal to analyze and plan (AP), while every child’s goal is defined as a
goal to monitor (M) and execute (E), which is fully regulated in the knowledge (K).

Figure 2. Goal Mapping to MAPE-K Components.

Acer! 1/3/20 9:06 PM
Comment [10]: According to APA style, since
this is the first time citing a reference with multiple
authors, pl. cite all authors. All subsequent citations
can use et al.

231

Journal of ICT, 19, No. 2 (April) 2020, pp: 225-250

software components (Hirsch, Kramer, Magee, & Uchitel, 2006) by utilizing
some design patterns (Abuseta & Swesi, 2015) and modifies in accordance
with the requirements of service systems. Figure 2 illustrates a model for
transforming model goals into software components. Each parent goal with
AND-Decomposition is defined as a goal to analyze and plan (AP), while
every child’s goal is defined as a goal to monitor (M) and execute (E), which
is fully regulated in the knowledge (K).

Figure 2. Goal Mapping to MAPE-K Components.

	 The control strategy to adjust each component is started by the M
(monitor) component function as shown in Algorithm 1. There are a number of
properties (P) on the goal (G) model (m) that should be monitored concurrently.
This activity represents the runtime states which are time-triggered or event-
triggered to respond to requests or events. State (S) of system at runtime
is represented by a combination of internal and external property values.
Violation of the state is detected by way of any violation of the threshold of
each goal property and the new state will be stored in the system state log to
be analyzed.

Algorithm 1

Monitoring algorithm
Monitoring States

for all G in m do
 m (∑ : fn) //run-time
 G getValue(P) //time_or_event_triggered
 for each value(S) in P do
 S combining internal and external value(S)
 if S in S.target(F) ≠ P.threshold then
 systemState new S.system(S.instance) and
 systemStateLog save(S.system) and
 send information(S.system) to analyzerManager
 end if
 end for
end for

5

 Figure 1. An overview of the self-adaptive model.

The decomposition of goal model (functional) can represent the service requirements (R) in every
sub-goal that are influenced by each property and have positive or negative (++ / + or - / -) contribution to soft-
goal (non-functional). The role of the control strategy (MAPE-K) in this case is to identify and monitor the
possibilities of changes in the service. Decomposition model adopts the concept of component mapping
(Nakagawa et al., 2012) for software components (Hirsch, Kramer, Magee, & Uchitel, 2006) by utilizing some
design patterns (Abuseta & Swesi, 2015) and modifies in accordance with the requirements of service systems.
Figure 2 illustrates a model for transforming model goals into software components. Each parent goal with
AND-Decomposition is defined as a goal to analyze and plan (AP), while every child’s goal is defined as a
goal to monitor (M) and execute (E), which is fully regulated in the knowledge (K).

Figure 2. Goal Mapping to MAPE-K Components.

Acer! 1/3/20 9:06 PM
Comment [10]: According to APA style, since
this is the first time citing a reference with multiple
authors, pl. cite all authors. All subsequent citations
can use et al.

232

Journal of ICT, 19, No. 2 (April) 2020, pp: 225-250

Algorithm 2

Analyze-Plan algorithm

Analyze-Plan

δ (S.system)// state of system
 for each δ in analyzerManager do
 analyzer update(logs) actual S.system
 search (δ) in symptomList
 if symptom ≠ ø then
 create(adaptationRequest) and
 update(adaptationRequest) for plan specification
 else
 addSymptom to symptomList and
 create(adaptationRequest) and
 send information(adaptationRequest) for plan specification
 end if
end for

Algorithm 3

Execute algorithm

Execute of Plan
for all δ is found do
 a construct correctiveAction(addAction)
 changePlan newChangePlan(an)
 send changePlan to one or more executors
 for each a in executor do
 actuator update(an) //one or more actuators
 S.system reconfiguration m with actuator
 // set new value for C(G.Node)
 systemStateLog saveState(S.system)
 end for
end for

	

Violation of the goal system is analyzed based on the symptoms list. If
the results of the analysis detected the presence of some symptoms, the system
will accept the adaptation request and then reconfigure based on rule engine.
Algorithm 2 shows the reconfiguration algorithms for AP (analyze and plan)
component. Rule engine contains high-level goals that control the operation
and functions of related systems. The general form is event-condition-action
(ECA) rules. In our version, the rule engine is extended with a rule editor model
where the specification changes can be done by editing the knowledge base
directly or putting back into the system. Each adaptation request is represented
as a state of system (S). A set of S contains the context (goal model) and the

233

Journal of ICT, 19, No. 2 (April) 2020, pp: 225-250

expected action for the target system. Changing plan contains the adaptation
actions to be executed by the E (execute) component. The execute component
(Algorithm 3) will use a number of actuators for setting the new value of the
target system property. Adaptation strategies are developed through two rules
of adaptation, namely a set rule of variability for proactive adaptation and a
set rule of evolution for reactive adaptation. Proactive adaptation is prepared
to anticipate changes in context information identified based on symptoms
or events arising. The type of adaptation is formulated through ECA rules as
follows:

WHEN <event> ; current situation when there is a change in service
IF <condition> ; certain events that occur so that the appropriate action

 is activated	
THEN <action> ; adjustments to service changes for reactive adaptation

 behavior
VALID-TIME <time_period> ; suitability for service adaptation

Reactive adaptation is prepared to follow up on the need for service
updates based on the results of operations from proactive adaptation. This type
of adaptation utilizes the scheme of service levels in the AESS metamodel,
where each service instance in the service catalog is generated based on the
results of the MAPE-K pattern analysis, so that service requirements can be
activated according to prevailing conditions. The rule specifications for both
types of proactive and reactive adaptation can be defined through the rule
editor according to the preferences and requirements of stakeholders.

EVALUATION AND RESULTS

The discussion presented in this section is an extension of the configuration
management system case based on the ITIL Framework (OGC, 2007) which
is now widely used by large companies in the world for the provision of IT
services. The main target of this experiment is scalability, which accommodates
users’ requirements in accessing an application service based on the changes,
assesses the characteristics of quality attributes in handling variability at
runtime, and measures the adaptive capability maturity level. Goal modeling
(GORE) is shown in Figure 3 while the mapping of the system components is
shown in Figure 4.

234

Journal of ICT, 19, No. 2 (April) 2020, pp: 225-250

Figure 3. Goal modeling for service system.

 The results of goal modeling in Figure 3 are representations of the
architectural and alignment views based on the AESS Metamodel. Meanwhile,
Figure 4 is a representation of the adaptability view based on the mapping
from Figure 3. The mapping rule refers to Figure 2, that is each AND-
Decomposition in goal modeling is generated into a composite component, so
that three composite components are obtained, namely, user interface, service
application, and service delivery. Each composite component represents the
adaptation cycle through three types of primitive components, namely, M
(monitor), AP (analyze and plan), and E (execute). The links of each composite
and primitive components are defined by two types of ports, namely provider
service ports and required service ports based on the links formed from the
results of goal modeling. The mapping in Figure 4 generates an adaptability
pattern for user requirements and service requirements represented by the
service delivery function in the service application.

8

EVALUATION AND RESULTS

The discussion presented in this section is an extension of the configuration management system case based on
the ITIL Framework (OGC, 2007) which is now widely used by large companies in the world for the
provision of IT services. The main target of this experiment is scalability, which accommodates users’
requirements in accessing an application service based on the changes, assesses the characteristics of quality
attributes in handling variability at runtime, and measures the adaptive capability maturity level. Goal
modeling (GORE) is shown in Figure 3 while the mapping of the system components is shown in Figure 4.

 Figure 3. Goal Modeling for Service System.

The results of goal modeling in Figure 3 are representations of the architectural and alignment views
based on the AESS Metamodel. Meanwhile, Figure 4 is a representation of the adaptability view based on the
mapping from Figure 3. The mapping rule refers to Figure 2, that is each AND-Decomposition in goal
modeling is generated into a composite component, so that three composite components are obtained, namely,
user interface, service application, and service delivery. Each composite component represents the adaptation
cycle through three types of primitive components, namely, M (monitor), AP (analyze and plan), and E
(execute). The links of each composite and primitive components are defined by two types of ports, namely
provider service ports and required service ports based on the links formed from the results of goal modeling.
The mapping in Figure 4 generates an adaptability pattern for user requirements and service requirements
represented by the service delivery function in the service application.

9

 Figure 4. Component Specification for Service System.

Experiment

The property on context element monitored is service item or known as configuration item (CI) which consists
of hardware, software, peripheral and network equipment. Handling these changes can be classified into two
types of adaptation, which are: proactive adaptation and reactive adaptation. Proactive adaptation is to
determine which components need to be updated, added and/ or deleted. It can be assigned as a symptom or
event that can be identified. The setting of all these events can be assigned as rules, for example:
! access device events, when a new device is detected or unavailable device;
! authority events, when the permission mismatch is detected by the user or user's role changes;
! feature and service time events, when unavailability of features and / or time of service beyond

the threshold is detected in the service catalog.

For example, it will discuss the rule when access event of device appears. Based on the function of the
component “role detection (M)” and “user authority (E)”, there are a number of “access services (E)” which
will be accessed by users via the interface options. Goal decomposition of this services access is OR-
decomposition, thus showing variability related to the resource (device_type). In addition, based on the
function components, it is possible to change “feature detection (M)” and “change detection (M)” in service
due to unexpected events or errors (event_error). Based on the description, the plan can be represented as: plan
(device_type, event_error). This plan is to create an alternative behavior in dealing with variability context; for
example, the plan of “access method” and “determination of the status” must use the function of “service
delivery (AP)” components, because it provides the full positive contribution (++) toward the “relevance” and
"response time" soft-goal, as opposed to doing analyze and plan (AP); each of which only contributes to
positive (+) that will affect, even negative contribution (-). Thus, the system has a consideration to analyze and
plan (AP) for a “user interface” and “service application”. Collection of this property value would set the
system input variables “service delivery (AP)”. The setting of behavior can be defined as follows:
! Rule-1 : if (device_type = mobile) and (event_error = null) then

 plan = internet_service delivery
! Rule-2 : if (device_type = personal_computer) and (event_error = null) then

 plan = window_client_service or virtual_terminal_service delivery
! Rule-3 : if (device_type = telephone or fax) and (event_error = null) then

 plan = text_messaging_service delivery
! Rule-4 : if (device_type = printer) and (event_error = null) then

Figure 4. Component specification for service system.

235

Journal of ICT, 19, No. 2 (April) 2020, pp: 225-250

Experiment

The property on context element monitored is service item or known as
configuration item (CI) which consists of hardware, software, peripheral and
network equipment. Handling these changes can be classified into two types of
adaptation, which are: proactive adaptation and reactive adaptation. Proactive
adaptation is to determine which components need to be updated, added and/
or deleted. It can be assigned as a symptom or event that can be identified. The
setting of all these events can be assigned as rules, for example:

access device events, when a new device is detected or unavailable -	
device;
authority events, when the permission mismatch is detected by the user or -	
user’s role changes;
feature and service time events, when unavailability of features and / or -	
time of service beyond the threshold is detected in the service catalog.

For example, it will discuss the rule when access event of device
appears. Based on the function of the component “role detection (M)” and
“user authority (E)”, there are a number of “access services (E)” which will be
accessed by users via the interface options. Goal decomposition of this services
access is OR-decomposition, thus showing variability related to the resource
(device_type). In addition, based on the function components, it is possible
to change “feature detection (M)” and “change detection (M)” in service due
to unexpected events or errors (event_error). Based on the description, the
plan can be represented as: plan (device_type, event_error). This plan is to
create an alternative behavior in dealing with variability context; for example,
the plan of “access method” and “determination of the status” must use the
function of “service delivery (AP)” components, because it provides the
full positive contribution (++) toward the “relevance” and “response time”
soft-goal, as opposed to doing analyze and plan (AP); each of which only
contributes to positive (+) that will affect, even negative contribution (-).
Thus, the system has a consideration to analyze and plan (AP) for a “user
interface” and “service application”. Collection of this property value would
set the system input variables “service delivery (AP)”. The setting of behavior
can be defined as follows:

–	 Rule-1 : if (device_type = mobile) and (event_error = null) the plan =
			 internet_service delivery
–	 Rule-2 : if (device_type = personal_computer) and (event_error = null)
		 then plan = window_client_service or virtual_terminal_service
		 delivery
–	 Rule-3 : if (device_type = telephone or fax) and (event_error = null) then
 		 plan = text_messaging_service delivery

236

Journal of ICT, 19, No. 2 (April) 2020, pp: 225-250

–	 Rule-4 : if (device_type = printer) and (event_error = null) then plan =
		 printouts_service delivery
–	 Rule-5 : if (device_type = new_type) and (event_error = null) then
 plan = add new device_type [instance component]
–	 Rule-6 : if (device_type = null) and (event_error = null) then plan =
 change_service delivery [instance component]
–	 Rule-7 : if (event_error = not null) then plan = send notification to user
		 and service_desk
–	 Rule-8 : if not [criteria] then plan = change_service delivery [instance
		 component]

These rules can be mapped into the concept of ECA rules, as shown
in Table 2. So, there are four action plans (Pn) as the alternative solution.
Meanwhile, reactive adaptation can be done by determining the procedures for
handling service disruptions. For example, the handling of service disruptions
will identify single points of failure, as can be seen in Figure 5, in order to
obtain the configuration item (CI) as shown in Table 3. The data is obtained
based on the monitor (M) functions, “role detection” and “feature detection”.
Then, the component of “service observation (M)” will perform detection to
determine components of CI that can be considered critically. Availability-
service (As) in Table 6 consists of several CI components with different levels
of availability-component (Ac).

Table 2

ECA: Access services

Access Services

Event (E) Condition (C) Action (A)
access_device (device_type = mobile);

(device_type = personal_computer);
(device_type = telephone or fax);
(device_type = printer);
(event_error = null);

P1.1 = internet_service
P1.2 = window_client or virtual_
terminal
P1.3 = text_messaging
P1.4 = printouts

access_device (device_type = new_type);
(event_error = null);

P2 = add new device_type [instance
component]

access_device (device_type = null);
not [criteria]; (event_error = null);

P3 = change_service delivery
[instance component]

access_device (event_error = not null); P4 = send notification to user and
service_desk

237

Journal of ICT, 19, No. 2 (April) 2020, pp: 225-250

Figure 5. Single point of failure.

Table 3

Description of configuration item

Configuration Item
(CI)

Service (S)

Option Dependency User Availability

S1 S2 S3 S4 S(1 – 4) S(1 – 4) (%)

CI1 : Server-1 1 1 2 1 Shared 1400 90.00%

CI2 : Disk-1 1 1 - 1 Shared 1150 90.00%

CI3 : Disk-2 1 1 2 - Shared 1200 75.00%

CI4 : System-1 1 1 2 1 Shared 1400 90.00%

CI5 : Utility-1 1 - - - L1 550 73.00%

CI6 : Utility-2 - 1 - - L2 400 75.00%

CI7 : Application-1 1 1 2 1 Shared 1400 90.00%

CI8 : Interface-1 1 - - - L1 550 85.00%

CI9 : Interface-2 - 1 - - L2 400 85.00%

CI10 : Interface-3 - - 2 1 Shared 550 85.00%

CI11 : Cable-1 1 - - - L1 550 90.00%

CI12 : Cable-2 - 1 - - L2 400 90.00%

CI13 : Cable-3 - - 2 1 Shared 450 90.00%

CI14 : Cable-4 1 1 2 1 Shared 1400 90.00%

CI15 : Switch-1 1 1 2 1 Shared 1400 90.00%

CI16 : Power-1 1 1 2 1 Shared 1400 90.00%

11

Figure 5. Single Point of Failure (SPoF)

Table 3

Description of Configuration Item (CI)

Configuration
Item (CI)

Service (S)
Option Dependency User Availability

S1 S2 S3 S4 S(1 – 4) S(1 – 4) (%)
CI1 : Server-1 1 1 2 1 Shared 1400 90.00%
CI2 : Disk-1 1 1 - 1 Shared 1150 90.00%
CI3 : Disk-2 1 1 2 - Shared 1200 75.00%
CI4 : System-1 1 1 2 1 Shared 1400 90.00%
CI5 : Utility-1 1 - - - L1 550 73.00%
CI6 : Utility-2 - 1 - - L2 400 75.00%
CI7 : Application-1 1 1 2 1 Shared 1400 90.00%
CI8 : Interface-1 1 - - - L1 550 85.00%
CI9 : Interface-2 - 1 - - L2 400 85.00%
CI10 : Interface-3 - - 2 1 Shared 550 85.00%
CI11 : Cable-1 1 - - - L1 550 90.00%
CI12 : Cable-2 - 1 - - L2 400 90.00%
CI13 : Cable-3 - - 2 1 Shared 450 90.00%
CI14 : Cable-4 1 1 2 1 Shared 1400 90.00%
CI15 : Switch-1 1 1 2 1 Shared 1400 90.00%
CI16 : Power-1 1 1 2 1 Shared 1400 90.00%

The calculation of service availability of stand-alone and redundant are formulated differently (OGC, 2007).
The availability of services with a number of stand-alone CI is calculated by the following equation As = Ac1 *
Ac2 * Ac3 ... Acn. Thus, based on statistical data of MTBF (mean time between failures) and MTRS (mean
time to restore service), the service availability of single point of failure in the availability column in Table 3
has a total value of 8.79%. The availability of each CIn is obtained by the Equations 1, 2, 3

where MTBF denotes the average time that a configuration item (CI) or IT service can perform its agreed

238

Journal of ICT, 19, No. 2 (April) 2020, pp: 225-250

The calculation of service availability of stand-alone and redundant are formulated
differently (OGC, 2007). The availability of services with a number of stand-alone
CI is calculated by the following equation As = Ac1 * Ac2 * Ac3 ... Acn. Thus, based
on statistical data of MTBF (mean time between failures) and MTRS (mean time to
restore service), the service availability of single point of failure in the availability
column in Table 3 has a total value of 8.79%. The availability of each CIn is obtained
by the Equations 1, 2, 3

where MTBF denotes the average time that a configuration item (CI) or IT service
can perform its agreed Function without interruption. This is measured from when
the CI or IT service starts working, until it next fails (Lloyd & Rudd, 2011).

where MTRS denotes the average time taken to restore a configuration item (CI)
or IT service after a Failure. MTRS is measured from when the CI or IT service
fails until it is fully restored and delivering its normal functionality (Lloyd & Rudd,
2011).

where Availability is the ability of a service, component or configuration item (CI) to
perform its agreed function when required (Lloyd & Rudd, 2011).

Meanwhile, the calculation of the service availability with a number of redundant
CI is conducted by the following equation: As = Ac1 + ((1 – Ac1) * Ac2) for one CI
and one redundant CI, As = Ac (n - 1) + ((1 – Acn (n - 1)) * Acn) for a number of (n)
redundant CI. The service availability of redundant CI with shared dependencies
can be seen in Table 7 with the number of redundant (n) which varies between 2 and
4. So, the total value of the redundant CI is 30.47%. These data are used as input
variables for the “service delivery (AP)” component in determining any CI that can
be considered as critical. Thus, the list of critical CI status is obtained as shown in
Table 4; there are 10 critical CI with shared dependency requiring reconfiguration
actions. The illustration of SLA percentage (%) change for each CI can be seen in
Figure 6 with a total availability of services increase by 21.68% that is from 8.79%
to 30.47%.

(1)

(2)

(3)

12

Table 3

Description of configuration item (CI)

Configuration
Item (CI)

Service (S)
Option Dependency User Availability

S1 S2 S3 S4 S(1 – 4) S(1 – 4) (%)
CI1 : Server-1 1 1 2 1 Shared 1400 90.00%
CI2 : Disk-1 1 1 - 1 Shared 1150 90.00%
CI3 : Disk-2 1 1 2 - Shared 1200 75.00%
CI4 : System-1 1 1 2 1 Shared 1400 90.00%
CI5 : Utility-1 1 - - - L1 550 73.00%
CI6 : Utility-2 - 1 - - L2 400 75.00%
CI7 : Application-1 1 1 2 1 Shared 1400 90.00%
CI8 : Interface-1 1 - - - L1 550 85.00%
CI9 : Interface-2 - 1 - - L2 400 85.00%
CI10 : Interface-3 - - 2 1 Shared 550 85.00%
CI11 : Cable-1 1 - - - L1 550 90.00%
CI12 : Cable-2 - 1 - - L2 400 90.00%
CI13 : Cable-3 - - 2 1 Shared 450 90.00%
CI14 : Cable-4 1 1 2 1 Shared 1400 90.00%
CI15 : Switch-1 1 1 2 1 Shared 1400 90.00%
CI16 : Power-1 1 1 2 1 Shared 1400 90.00%

The calculation of service availability of stand-alone and redundant are formulated differently (OGC, 2007).

The availability of services with a number of stand-alone CI is calculated by the following equation As = Ac1 *

Ac2 * Ac3 ... Acn. Thus, based on statistical data of MTBF (mean time between failures) and MTRS (mean

time to restore service), the service availability of single point of failure in the availability column in Table 3

has a total value of 8.79%. The availability of each CIn is obtained by the Equations 1, 2, 3
()

(1)

where MTBF denotes the average time that a configuration item (CI) or IT service can perform its agreed

Function without interruption. This is measured from when the CI or IT service starts working, until it next

fails (Lloyd & Rudd, 2011).

(2)

where MTRS denotes the average time taken to restore a configuration item (CI) or IT service after a Failure.

MTRS is measured from when the CI or IT service fails until it is fully restored and delivering its normal

functionality (Lloyd & Rudd, 2011).

where Availability is the ability of a service, component or configuration item (CI) to perform its agreed

function when required (Lloyd & Rudd, 2011).

12

Table 3

Description of configuration item (CI)

Configuration
Item (CI)

Service (S)
Option Dependency User Availability

S1 S2 S3 S4 S(1 – 4) S(1 – 4) (%)
CI1 : Server-1 1 1 2 1 Shared 1400 90.00%
CI2 : Disk-1 1 1 - 1 Shared 1150 90.00%
CI3 : Disk-2 1 1 2 - Shared 1200 75.00%
CI4 : System-1 1 1 2 1 Shared 1400 90.00%
CI5 : Utility-1 1 - - - L1 550 73.00%
CI6 : Utility-2 - 1 - - L2 400 75.00%
CI7 : Application-1 1 1 2 1 Shared 1400 90.00%
CI8 : Interface-1 1 - - - L1 550 85.00%
CI9 : Interface-2 - 1 - - L2 400 85.00%
CI10 : Interface-3 - - 2 1 Shared 550 85.00%
CI11 : Cable-1 1 - - - L1 550 90.00%
CI12 : Cable-2 - 1 - - L2 400 90.00%
CI13 : Cable-3 - - 2 1 Shared 450 90.00%
CI14 : Cable-4 1 1 2 1 Shared 1400 90.00%
CI15 : Switch-1 1 1 2 1 Shared 1400 90.00%
CI16 : Power-1 1 1 2 1 Shared 1400 90.00%

The calculation of service availability of stand-alone and redundant are formulated differently (OGC, 2007).

The availability of services with a number of stand-alone CI is calculated by the following equation As = Ac1 *

Ac2 * Ac3 ... Acn. Thus, based on statistical data of MTBF (mean time between failures) and MTRS (mean

time to restore service), the service availability of single point of failure in the availability column in Table 3

has a total value of 8.79%. The availability of each CIn is obtained by the Equations 1, 2, 3
()

(1)

where MTBF denotes the average time that a configuration item (CI) or IT service can perform its agreed

Function without interruption. This is measured from when the CI or IT service starts working, until it next

fails (Lloyd & Rudd, 2011).

(2)

where MTRS denotes the average time taken to restore a configuration item (CI) or IT service after a Failure.

MTRS is measured from when the CI or IT service fails until it is fully restored and delivering its normal

functionality (Lloyd & Rudd, 2011).

where Availability is the ability of a service, component or configuration item (CI) to perform its agreed

function when required (Lloyd & Rudd, 2011).

12

Table 3

Description of configuration item (CI)

Configuration
Item (CI)

Service (S)
Option Dependency User Availability

S1 S2 S3 S4 S(1 – 4) S(1 – 4) (%)
CI1 : Server-1 1 1 2 1 Shared 1400 90.00%
CI2 : Disk-1 1 1 - 1 Shared 1150 90.00%
CI3 : Disk-2 1 1 2 - Shared 1200 75.00%
CI4 : System-1 1 1 2 1 Shared 1400 90.00%
CI5 : Utility-1 1 - - - L1 550 73.00%
CI6 : Utility-2 - 1 - - L2 400 75.00%
CI7 : Application-1 1 1 2 1 Shared 1400 90.00%
CI8 : Interface-1 1 - - - L1 550 85.00%
CI9 : Interface-2 - 1 - - L2 400 85.00%
CI10 : Interface-3 - - 2 1 Shared 550 85.00%
CI11 : Cable-1 1 - - - L1 550 90.00%
CI12 : Cable-2 - 1 - - L2 400 90.00%
CI13 : Cable-3 - - 2 1 Shared 450 90.00%
CI14 : Cable-4 1 1 2 1 Shared 1400 90.00%
CI15 : Switch-1 1 1 2 1 Shared 1400 90.00%
CI16 : Power-1 1 1 2 1 Shared 1400 90.00%

The calculation of service availability of stand-alone and redundant are formulated differently (OGC, 2007).

The availability of services with a number of stand-alone CI is calculated by the following equation As = Ac1 *

Ac2 * Ac3 ... Acn. Thus, based on statistical data of MTBF (mean time between failures) and MTRS (mean

time to restore service), the service availability of single point of failure in the availability column in Table 3

has a total value of 8.79%. The availability of each CIn is obtained by the Equations 1, 2, 3
()

(1)

where MTBF denotes the average time that a configuration item (CI) or IT service can perform its agreed

Function without interruption. This is measured from when the CI or IT service starts working, until it next

fails (Lloyd & Rudd, 2011).

(2)

where MTRS denotes the average time taken to restore a configuration item (CI) or IT service after a Failure.

MTRS is measured from when the CI or IT service fails until it is fully restored and delivering its normal

functionality (Lloyd & Rudd, 2011).

where Availability is the ability of a service, component or configuration item (CI) to perform its agreed

function when required (Lloyd & Rudd, 2011).

239

Journal of ICT, 19, No. 2 (April) 2020, pp: 225-250

Table 4

Availability of redundant services

CI

Service (S)
Redundant User Availability

L1 L2 L3 L4 L(1 – 4) (n = 2; 3; 4;)

CI1 90.00% 90.00% 90.00% 90.00% 1400 99.99%
CI2 90.00% 90.00% - 90.00% 1150 99.90%
CI3 75.00% 75.00% 75.00% - 1200 98.44%
CI4 90.00% 90.00% 90.00% 90.00% 1400 99.99%
CI5 73.00% - - - 550 73.00%
CI6 - 75.00% - - 400 75.00%
CI7 90.00% 90.00% 90.00% 90.00% 1400 99.99%
CI8 85.00% - - - 550 85.00%
CI9 - 85.00% - - 400 85.00%
CI10 - - 85.00% 85.00% 550 97.75%
CI11 90.00% - - - 550 90.00%
CI12 - 90.00% - - 400 90.00%
CI13 - - 90.00% 90.00% 450 99.00%
CI14 90.00% 90.00% 90.00% 90.00% 1400 99.99%
CI15 90.00% 90.00% 90.00% 90.00% 1400 99.99%
CI16 90.00% 90.00% 90.00% 90.00% 1400 99.99%

Figure 6. Critical CI

13

Figure 6. Critical CI

Based on data of critical CI, the system will then do a reconfiguration through the components of the “service
reconfiguration (E)”. Finally, the “service release (E)” component will deliver new services. For example:
! CI1 is detected as critical CI, where “Server-1” is based on monitoring CPU usage necessary to

improve and to avoid over utilization and contention. Thus, the system will add adaptation
functions using a load balancing system.

! CI7 is detected as critical CI, where “Application-1” is based on the monitoring of facilities
provided which require the model to establish baseline performance through the addition of new
features. Thus, the system will add new features through the cloud service so that the system will
determine the cloud adoption mechanism.

! Treatment of any other critical CI is adjusted based on the event detected respectively.

The dashed line in Figure 7 shows the new added functions of the components. The following are

previous works discussing the adaptation process of load balancing functions (Abuseta & Swesi,
2015; Darmawan & Aradea, 2017); the illustration of mapping the goal model into system
components for load balancing is shown in Figure 8. The numbers of properties which should be
monitored are shown in Tables 8 and 9. System will have the consideration to analyze and plan (AP)
to organize “user's access”. In addition, the system will also analyze and plan (AP) to set
“performance of server farm”. Based on the combination of each property value in Tables 8 and 9 will
be the input variables for the system to “manage load (AP)” through “workload observation (M)”
component. The combination of the value is performed by Equation 4.

Acer! 1/3/20 11:28 PM
Comment [11]: ?

240

Journal of ICT, 19, No. 2 (April) 2020, pp: 225-250

Based on data of critical CI, the system will then do a reconfiguration through
the components of the “service reconfiguration (E)”. Finally, the “service
release (E)” component will deliver new services. For example:

CI-	 1 is detected as critical CI, where “Server-1” is based on monitoring
CPU usage necessary to improve and to avoid over utilization and
contention. Thus, the system will add adaptation functions using a load
balancing system.
CI-	 7 is detected as critical CI, where “Application-1” is based on the
monitoring of facilities provided which require the model to establish
baseline performance through the addition of new features. Thus, the
system will add new features through the cloud service so that the system
will determine the cloud adoption mechanism.
Treatment of any other critical CI is adjusted based on the event detected -	
respectively.

The dashed line in Figure 7 shows the new added functions of the
components. The following are previous works discussing the adaptation
process of load balancing functions (Abuseta & Swesi, 2015; Darmawan
& Aradea, 2017); the illustration of mapping the goal model into system
components for load balancing is shown in Figure 8. The numbers of properties
which should be monitored are shown in Tables 8 and 9. System will have
the consideration to analyze and plan (AP) to organize “user’s access”. In
addition, the system will also analyze and plan (AP) to set “performance of
server farm”. Based on the combination of each property value in Tables 8 and
9 will be the input variables for the system to “manage load (AP)” through
“workload observation (M)” component. The combination of the value is
performed by Equation 4.

Figure 7. Component specification after the addition of new functions.

14

Figure 7. Component Specification after the Addition of New Functions.

Figure 8. Component Specification for Load Balancing System.

where x = server (task); n = number of clients; c = client.

in order to obtain the total task to be executed, that is 3209 tasks. The next stage “capability observation (M)”
component will determine the ability of each server to the total task to be processed, through Equation 5.

241

Journal of ICT, 19, No. 2 (April) 2020, pp: 225-250

Figure 8. Component specification for load balancing system.

where x = server (task); n = number of clients; c = client.

in order to obtain the total task to be executed, that is 3209 tasks. The next
stage “capability observation (M)” component will determine the ability of
each server to the total task to be processed, through Equation 5.

where x = server (task); n = number of clients; c = client; d = distance; m =
memory; v = speed.

Then, the server capability that can perform the task is sorted as
quickly as possible based on the total task. Constraints to any desired process
is set as k = 2 ms. The setting of system behavior to manage the server load is
associated with some rules in response to symptoms or events, for example,
high load event à when the server load is detected to be larger than 80%;
unresponsive or very low load event à when detected, server does not perform
the process.

14

Figure 7. Component Specification after the Addition of New Functions.

Figure 8. Component Specification for Load Balancing System.

where x = server (task); n = number of clients; c = client.

in order to obtain the total task to be executed, that is 3209 tasks. The next stage “capability observation (M)”
component will determine the ability of each server to the total task to be processed, through Equation 5.

(4)

(5)

16

in order to obtain the total task to be executed, that is 3209 tasks. The next stage “capability observation (M)”

component will determine the ability of each server to the total task to be processed, through Equation 5.

() =
(() +)

(5)

where x = server (task); n = number of clients; c = client; d = distance; m = memory; v = speed.

Then, the server capability that can perform the task is sorted as quickly as possible based on the total task.

Constraints to any desired process is set as k = 2 ms. The setting of system behavior to manage the server load

is associated with some rules in response to symptoms or events, for example, high load event when the

server load is detected to be larger than 80%; unresponsive or very low load event when detected,

server does not perform the process.

Table 5

Client property

Client
(n) Load Client

(n) Load Client
(n) Load Client

(n) Load

C1 44 C14 65 C27 77 C40 45
C2 23 C15 77 C28 54 C41 52
C3 75 C16 56 C29 77 C42 21
C4 20 C17 34 C30 80 C43 76
C5 56 C18 67 C31 99 C44 79
C6 45 C19 43 C32 90 C45 27
C7 67 C20 65 C33 87 C46 33
C8 99 C21 99 C34 88 C47 45
C9 34 C22 43 C35 76 C48 61
C10 99 C23 65 C36 82 C49 77
C11 66 C24 75 C37 77 C50 55
C12 67 C25 60 C38 76
C13 43 C26 89 C39 99

Table 6

Server farm property

Server (x) Speed (v)
= ms

Memory (m)
= ms

Distance (d)
= ms

S1 10 10 34
S2 12 7 2
S3 11 12 10
S4 7 8 4
S5 10 9 3
S6 6 6 2
S7 8 5 20
S8 10 8 2
S9 8 4 1
S10 6 8 2
S11 11 4 5
S12 14 7 7
S13 8 5 3

15

Figure 7. Component specification after the addition of new functions

Figure 8. Component specification for load balancing system

() = () (4)

where x = server (task); n = number of clients; c = client.

242

Journal of ICT, 19, No. 2 (April) 2020, pp: 225-250

Table 5

Client property

Client
(n) Load Client

(n) Load Client
(n) Load Client

(n) Load

C1 44 C14 65 C27 77 C40 45
C2 23 C15 77 C28 54 C41 52
C3 75 C16 56 C29 77 C42 21
C4 20 C17 34 C30 80 C43 76
C5 56 C18 67 C31 99 C44 79
C6 45 C19 43 C32 90 C45 27
C7 67 C20 65 C33 87 C46 33
C8 99 C21 99 C34 88 C47 45
C9 34 C22 43 C35 76 C48 61
C10 99 C23 65 C36 82 C49 77
C11 66 C24 75 C37 77 C50 55
C12 67 C25 60 C38 76
C13 43 C26 89 C39 99

Table 6

Server farm property

Server (x) Speed (v)
= ms

Memory (m)
= ms

Distance (d)
= ms

S1 10 10 34
S2 12 7 2
S3 11 12 10
S4 7 8 4
S5 10 9 3
S6 6 6 2
S7 8 5 20
S8 10 8 2
S9 8 4 1
S10 6 8 2
S11 11 4 5

(continued)

243

Journal of ICT, 19, No. 2 (April) 2020, pp: 225-250

Server (x) Speed (v)
= ms

Memory (m)
= ms

Distance (d)
= ms

S12 14 7 7
S13 8 5 3
S14 15 6 4
S15 8 5 7
S16 7 8 10
S17 11 10 8
S18 12 9 5
S19 8 4 9
S20 9 7 12

Table 7

Description of server load balancing

Number
of

Server

Detection
of Server

Sorting of
Server

Without
Balancing

Balancing
Server Amount of

Serverf(x)
second

f(x)
second Fitness Server Residue Balancing

1 32.43 24.39 1219% 80% 1139% 76% 1
2 38.23 29.25 1462% 80% 1059% 76% 1
3 24.39 29.76 1488% 80% 979% 76% 1
4 57.38 32.43 1622% 80% 899% 76% 1
5 35.69 32.82 1641% 80% 819% 76% 1
6 89.19 35.69 1784% 80% 739% 76% 1
7 80.73 35.70 1785% 80% 659% 76% 1
8 40.14 38.23 1911% 80% 579% 76% 1
9 100.31 40.14 2007% 80% 499% 76% 1
10 66.90 57.38 2869% 80% 419% 76% 1
11 73.05 57.48 2874% 80% 339% 76% 1
12 32.82 66.90 3345% 80% 259% 76% 1
13 80.30 73.05 3652% 80% 179% 76% 1
14 35.70 80.30 4015% 80% 99% 76% 1
15 80.40 80.40 4020% 80% 19% 76% 1
16 57.48 80.73 4036% 19% 0% 76% 1
17 29.25 89.19 4460% 0% 0% 0% 0
18 29.76 100.31 5016% 0% 0% 0% 0
19 100.56 100.56 5028% 0% 0% 0% 0
20 51.13 100.56 5028% 0% 0% 0% 0

Total 1219% 1219% 16

244

Journal of ICT, 19, No. 2 (April) 2020, pp: 225-250

Furthermore, the system performs server activation (E)” by considering
events for high load and a very low load / unresponsive through calculation
of servers used and determining the value of balance by assessing the value of
the smallest fitness divided by the number of servers used as in Equation 6.

 Thus, the system can adjust and balance the ability of the server and
specify the number of servers needed as can be seen in Table 7. A total of 50
client needs with 3209 tasks need 16 servers; the average load balance of each
server is 76%. The illustration of these functions is shown in Figure 9; the
top picture is a real condition or CPU maximum capabilities after balancing
process is obtained with the required number of servers with respective load
balancing as presented in the following table.

Figure 9. Illustration of server load balancing.

17

Figure 9. Illustration of Server Load Balancing.

Evaluation

The evaluation consists of three activities: first, illustrating the service scalability; second, the model
comparison to assess the design support in handling variability using the domain Quality Attribute Scenarios
(dQAS); and third, evaluating adaptation maturity levels using Adaptive Capability Maturity Model (ACMM).
The scalability of service system is related to the growth in the number of each CI in the service catalog at
runtime. As an example of evaluation, scalability description of load balancing system is represented by
growth in the number of clients and the load of each client that can continue to grow and change at runtime. As
shown in Figure 10, the total 3209 tasks of 50 clients require 16 servers with an average load of 76%; but if the
total tasks of clients change, for example increase or decrease the need for servers, then the average balance of
the load will be adjusted. For example, with a maximum number of tasks of 45 clients, then 14 servers with an
average load balance is activated automatically; if the maximum number of tasks is for 24 clients, then only 7
servers are enabled. If the maximum number of tasks is for 30 clients, then only 9 servers are enabled, and so
on. Thus, the evaluation results show that the scale is linear with the number of clients and the number of
server load for balancing size. Thus, the system is able to handle change and growth in context.

17

S14 15 6 4
S15 8 5 7
S16 7 8 10
S17 11 10 8
S18 12 9 5
S19 8 4 9
S20 9 7 12

Table 7

Description of server load balancing

Number
of

Server

Detection
of Server

Sorting of
Server

Without
Balancing

Balancing
Server Amount

of
Serverf(x)

second
f(x)

second Fitness Server Residue Balancing

1 32.43 24.39 1219% 80% 1139% 76% 1
2 38.23 29.25 1462% 80% 1059% 76% 1
3 24.39 29.76 1488% 80% 979% 76% 1
4 57.38 32.43 1622% 80% 899% 76% 1
5 35.69 32.82 1641% 80% 819% 76% 1
6 89.19 35.69 1784% 80% 739% 76% 1
7 80.73 35.70 1785% 80% 659% 76% 1
8 40.14 38.23 1911% 80% 579% 76% 1
9 100.31 40.14 2007% 80% 499% 76% 1
10 66.90 57.38 2869% 80% 419% 76% 1
11 73.05 57.48 2874% 80% 339% 76% 1
12 32.82 66.90 3345% 80% 259% 76% 1
13 80.30 73.05 3652% 80% 179% 76% 1
14 35.70 80.30 4015% 80% 99% 76% 1
15 80.40 80.40 4020% 80% 19% 76% 1
16 57.48 80.73 4036% 19% 0% 76% 1
17 29.25 89.19 4460% 0% 0% 0% 0
18 29.76 100.31 5016% 0% 0% 0% 0
19 100.56 100.56 5028% 0% 0% 0% 0
20 51.13 100.56 5028% 0% 0% 0% 0

Total 1219% 1219% 16

Furthermore, the system performs server activation (E)" by considering events for high load and a very low

load / unresponsive through calculation of servers used and determining the value of balance by assessing the

value of the smallest fitness divided by the number of servers used as in Equation 6.

=
min(())

(
min(())

)
(6)

Thus, the system can adjust and balance the ability of the server and specify the number of servers needed as

can be seen in Table 7. A total of 50 client needs with 3209 tasks need 16 servers; the average load balance of

each server is 76%. The illustration of these functions is shown in Figure 9; the top picture is a real condition or

CPU maximum capabilities after balancing process is obtained with the required number of servers with

respective load balancing as presented in the following table.

245

Journal of ICT, 19, No. 2 (April) 2020, pp: 225-250

Evaluation

The evaluation consists of three activities: first, illustrating the service
scalability; second, the model comparison to assess the design support in
handling variability using the domain Quality Attribute Scenarios (dQAS);
and third, evaluating adaptation maturity levels using Adaptive Capability
Maturity Model (ACMM). The scalability of service system is related to
the growth in the number of each CI in the service catalog at runtime. As
an example of evaluation, scalability description of load balancing system
is represented by growth in the number of clients and the load of each client
that can continue to grow and change at runtime. As shown in Figure 10, the
total 3209 tasks of 50 clients require 16 servers with an average load of 76%;
but if the total tasks of clients change, for example increase or decrease the
need for servers, then the average balance of the load will be adjusted. For
example, with a maximum number of tasks of 45 clients, then 14 servers with
an average load balance is activated automatically; if the maximum number of
tasks is for 24 clients, then only 7 servers are enabled. If the maximum number
of tasks is for 30 clients, then only 9 servers are enabled, and so on. Thus,
the evaluation results show that the scale is linear with the number of clients
and the number of server load for balancing size. Thus, the system is able to
handle change and growth in context.

Figure 10. Scalability of service process.

 Furthermore, we evaluated the model through dQAS (Abbas, Andersson,
& Weyns, 2012) to compare the adaptability of the RECCA model with the
proposed model in the same case study. The dQAS characterized the quality
attributes in the configuration management system experiment (Figure 3)

18

Figure 10. Scalability of Service Process.

 Furthermore, we evaluated the model through dQAS (Abbas, Andersson, & Weyns, 2012) to
compare the adaptability of the RECCA model with the proposed model in the same case study. The dQAS
characterized the quality attributes in the configuration management system experiment (Figure 3) through 9
dQAS elements, as shown in Table 8. The evaluation results showed that the proposed model provided more
response alternatives in each variant, VC. From 6 combinations (variant VC), there were 20 total responses
that could be alternative solutions for all stimuli. In addition, the responses were given to both normal and
overload operating conditions. Meanwhile, the RECCA model had 13 total responses and was applied only
under normal operating conditions, and there were some unsupported response requirements, such as R2, R5
and R6. This suggested that the proposed model could reduce the uncertainty factor caused by variability at
runtime where requirements could be realized through alternative designs.
 In the RECCA model, we describe the evaluation based on the criteria and controls of the ACMM
(Gill, 2015). The evaluation results indicated that the maturity level of the adaptation model varies (level-4 or
5) depending on the adaptation cycle applied. Meanwhile, based on the proposed model and the artifacts
generated from the RECCA model, adaptation maturity is definitely at level-5 (adapting) which is the highest
level of adaptive capability maturity model. Figure 11 shows the maturity criteria of each level in the ACMM,
and the achievement of level-5 is made through the interaction cycle with scans and sense patterns of changes
and adjustments between the context and rationalization (service level) based on the MAPE-K pattern, i.e.: the
ability to monitor, assess, and respond to changes for continuous adaptation is realized through the integration
of goal models as contextual environments (target system) and adaptation cycles of the MAPE-K pattern.
There is integrated engagement and governance for adaptation through artifacts generated from the
architecture and alignment views that are managed through an adaptability view and there is good support for
adaptation through automatic computing mechanisms at the service level.

Table 8

Evaluation of Domain Quality Attribute Scenarios

Acer! 1/4/20 7:49 AM
Comment [12]: According to APA style, since
this is the first time citing a reference with multiple
authors, pl. cite all authors. All subsequent citations
can use et al.

246

Journal of ICT, 19, No. 2 (April) 2020, pp: 225-250

through 9 dQAS elements, as shown in Table 8. The evaluation results showed
that the proposed model provided more response alternatives in each variant,
VC. From 6 combinations (variant VC), there were 20 total responses that could
be alternative solutions for all stimuli. In addition, the responses were given
to both normal and overload operating conditions. Meanwhile, the RECCA
model had 13 total responses and was applied only under normal operating
conditions, and there were some unsupported response requirements, such as
R2, R5 and R6. This suggested that the proposed model could reduce the
uncertainty factor caused by variability at runtime where requirements could
be realized through alternative designs.

In the RECCA model, we describe the evaluation based on the criteria
and controls of the ACMM (Gill, 2015). The evaluation results indicated that
the maturity level of the adaptation model varies (level-4 or 5) depending on
the adaptation cycle applied. Meanwhile, based on the proposed model and the
artifacts generated from the RECCA model, adaptation maturity is definitely
at level-5 (adapting) which is the highest level of adaptive capability maturity
model. Figure 11 shows the maturity criteria of each level in the ACMM,
and the achievement of level-5 is made through the interaction cycle with
scans and sense patterns of changes and adjustments between the context and
rationalization (service level) based on the MAPE-K pattern, i.e.: the ability to
monitor, assess, and respond to changes for continuous adaptation is realized
through the integration of goal models as contextual environments (target
system) and adaptation cycles of the MAPE-K pattern. There is integrated
engagement and governance for adaptation through artifacts generated from
the architecture and alignment views that are managed through an adaptability
view and there is good support for adaptation through automatic computing
mechanisms at the service level.

Table 8

Evaluation of domain quality attribute scenarios

Element RECCA Model Proposed Model

Source (SO) [SO1] Access device; [SO2] User; [SO3] Service features

Stimulus (ST) [ST1] New devices; [ST2] User’s role changes; [ST3]
Unavailability of features [ST4] Service failures

Artifact (A) [A1] User interface fragment; [A2] Service application fragment;
[A3] Service delivery fragment

Environment (E) [E1] Runtime under normal operating; [E2] Runtime under
overload operating

Response (R) [R1] Select access devices (P1); [R2] Add new device type (P2);
[R3] Change service delivery (P3); [R4] Send notification to user

and service desk (P4); [R5] Calculate service level availability
(SPoF); [R6] Service reconfiguration (CI: load balancing); [R7]

Service reconfiguration (CI: cloud adoption); [R8] Service delivery
(configuration item (CI))

(continued)

247

Journal of ICT, 19, No. 2 (April) 2020, pp: 225-250

Element RECCA Model Proposed Model

Variants (V) [V1] Role detection; [V2] Access services; [V3] User Authority; [V4] Feature
detection; [V5] Change detection; [V6] Sevice Status; [V7] Service observation;

[V8] Service reconfiguration; [V9] Service release
Valid QAS

Configurations
(VC)

[VC1] V1 ˄ V2 ˄ V3; [VC2] V4 ˄ V5 ˄ V6; [VC3] V7 ˄ V8 ˄ V9;
[VC4] V2; [VC5] V5; [VC6] V8

Fragment
Constraints (FC)

[Mandatory] {SO1, SO2, SO3} ˄ {A1,
A2, A3} ˄ {E1} ˄ {R1, R8}

[Variant VC1] {ST1, ST2} ˄ {R3, R4}
[Variant VC2] {ST3} ˄ {R3, R4, R7}
[Variant VC3] {ST3, ST4} ˄ {R3, R4,

R7}
[Variant VC4] {ST1} ˄ {R4}

[Variant VC5] {ST2, ST3} ˄ {R3, R4,
R7}

[Variant VC6] {ST4} ˄ {R7}

[Mandatory] {SO1, SO2, SO3} ˄ {A1,
A2, A3} ˄ {E1} ˄ {R1, R8}

[Variant VC1] {ST1, ST2} ˄ {R2, R3,
R4}

[Variant VC2] {ST3} ˄ {R3, R4, R7}
[Variant VC3] {ST3, ST4} ˄ {E2} ˄

{R3, R4, R5, R6, R7}
[Variant VC4] {ST1} ˄ {R2, R3, R4}
[Variant VC5] {ST2, ST3} ˄ {R3, R4,

R7}
[Variant VC6] {ST4} ˄ {E2} ˄ {R5,

R6, R7}
Response Measure

(RM)
[RM1] R1, access device detected

within x seconds
[RM2] R2, not supported

[RM3] R3, CI in the service catalog is
changed within x seconds

[RM4] R4, notifications are sent within
x seconds

[RM5] R5, not supported
[RM6] R6, not supported

[RM7] R7, service request sent within
x seconds

[RM8] R8, CI is sent within x seconds

[RM1] R1, access device detected within
x seconds

[RM2] R2, new device type added
within x seconds

[RM3] R3, CI in the service catalog is
changed within x seconds

[RM4] R4, notifications are sent within
x seconds

[RM5] R5, critical CI is specified within
x seconds

[RM6] R6, load balancing function is
added within x seconds

[RM7] R7, service request sent within
x seconds

[RM8] R8, CI is sent within x seconds
Total Responses 13 (normal operation) 20 (normal operation and overload)

Figure 11. Adaptive capability maturity model.

20

 Figure 11. Adaptive Capability Maturity Model.

CONCLUSION AND FUTURE WORK

This paper introduces an adaptation model to address service variability. The lifecycle of each service element
within the AESS metamodel is formulated as a control loop (MAPE-K) pattern based on the description of
requirements. Adaptation mechanisms are realized through proactive and reactive adaptation scenarios, both of
which are service requirements that can be viewed as a set of variants selected at runtime through a concept of
variability rules for service change and evolution. The evaluation results showed that the proposed model is
able to describe the scalability of services related to change and growth of new service requirements. The
proposed model has an alternative design that is better than the previous work in variability modeling, where
an alternative response in each variant, VC is capable of handling any stimulus under normal operating and
overload conditions. In addition to these achievements, the adaptive capability maturity of the proposed model
also improves the results of previous work.
 Future research could detail additional features to enrich the description of service system
requirements, as well as expand the context inference mechanism of the rule editor to accommodate more
sophisticated conflict resolutions. Some approaches, such as strategies for machine learning and requirements
reflection, could be taken into account in further studies.

ACKNOWLEDGMENT

The work conducted in this study was supported by the Ministry of Research, Technology and Higher
Education of the Republic of Indonesia (No. 181.A/ADD/UN58.21/LT/2017).

REFERENCES

248

Journal of ICT, 19, No. 2 (April) 2020, pp: 225-250

CONCLUSION AND FUTURE WORK

This paper introduces an adaptation model to address service variability. The
lifecycle of each service element within the AESS metamodel is formulated
as a control loop (MAPE-K) pattern based on the description of requirements.
Adaptation mechanisms are realized through proactive and reactive adaptation
scenarios, both of which are service requirements that can be viewed as a set
of variants selected at runtime through a concept of variability rules for service
change and evolution. The evaluation results showed that the proposed model
is able to describe the scalability of services related to change and growth of
new service requirements. The proposed model has an alternative design that
is better than the previous work in variability modeling, where an alternative
response in each variant, VC is capable of handling any stimulus under normal
operating and overload conditions. In addition to these achievements, the
adaptive capability maturity of the proposed model also improves the results
of previous work.

Future research could detail additional features to enrich the description
of service system requirements, as well as expand the context inference
mechanism of the rule editor to accommodate more sophisticated conflict
resolutions. Some approaches, such as strategies for machine learning and
requirements reflection, could be taken into account in further studies.

Acknowledgment

The work conducted in this study was supported by the Ministry of Research,
Technology and Higher Education of the Republic of Indonesia (No. 181.A/
ADD/UN58.21/LT/2017).

REFERENCES

Abbas, N., Andersson, J., & Weyns, D. (2012). Modeling variability
in product lines using domain quality attribute scenarios.
ACM International Conference Proceeding Series. https://doi.
org/10.1145/2361999.2362028

Abbas, N., Andersson, J., & Weyns, D. (2018). ASPLe : A methodology to
develop self-adaptive software systems with systematic reuse.

Abeywickrama, D. B., & Ovaska, E. (2017). A survey of autonomic computing
methods in digital service ecosystems. Service Oriented Computing and
Applications, 11(1), 1–31. https://doi.org/10.1007/s11761-016-0203-8

Abuseta, Y., & Swesi, K. (2015). Design patterns for self adaptive systems
engineering. International Journal of Software Engineering

249

Journal of ICT, 19, No. 2 (April) 2020, pp: 225-250

& Applications (IJSEA), 6(4), 11–28. https://doi.org/10.5121/
ijsea.2015.6402

Anna, D. D., Dalpiaz, F., & Dastani, M. (2019). Requirements-driven evolution
of sociotechnical systems via probabilistic reasoning and hill climbing.
Automated Software Engineering. https://doi.org/10.1007/s10515-019-
00255-5

Aradea, D., Supriana, I., Surendro, K., & Darmawan, I. (2017). Integration
of self-adaptation approach on requirements modeling. In T. Herawan,
R. Ghazali, N. M. Nawi, & M. M. Deris (Eds.), Recent advances on
soft computing and data mining (pp. 233–243). Springer International
Publishing.

Arcaini, P., Riccobene, E., & Scandurra, P. (2015). Modeling and validating self-
adaptive service-oriented applications. ACM SIGAPP Applied Computing
Review, 15, 35–48. https://doi.org/10.1145/2835260.2835262

Clark, K., Warnier, M., & Brazier, F. M. T. (2011). Self-adaptive service
monitoring. In A. Bouchachia (Ed.), Adaptive and intelligent systems
(pp. 119–130). Springer Berlin Heidelberg. https://doi.org/10.1007/978-
3-642-23857-4_15

Gill, A. Q. (2015). Adaptive cloud enterprise architecture. In World Scientic
Publishing Co. Pte. Ltd. https://doi.org/10.1142/9789814632133_
fmatter

Hirsch, D., Kramer, J., Magee, J., & Uchitel, S. (2006). Modes for software
architectures. In V. Gruhn & F. Oquendo (Eds.), Software architecture
(pp. 113–126). Springer Berlin Heidelberg.

Knauss, A., Damian, D., Franch, X., Rook, A., Müller, H. A., & Thomo, A.
(2016). ACon: A learning-based approach to deal with uncertainty
in contextual requirements at runtime. Information and Software
Technology, 70, 85–99. https://doi.org/https://doi.org/10.1016/j.
infsof.2015.10.001

Lee, E., Seo, Y.-D., & Kim, Y.-G. (2019). Self-adaptive framework based on
MAPE loop for Internet of things. In sensors (Vol. 19, Issue 13). https://
doi.org/10.3390/s19132996

Lloyd, V., & Rudd, C. (2011). ITIL version 3 service design. The office of
government commerce, 449. https://doi.org/10.1016/j.im.2003.02.002

Mendonça, D. F., Rodrigues, G. N., Ali, R., Alves, V., & Baresi, L. (2016).
GODA: A goal-oriented requirements engineering framework for runtime
dependability analysis. Information and Software Technology, 80, 245–
264. https://doi.org/https://doi.org/10.1016/j.infsof.2016.09.005

Morandini, M., Penserini, L., Perini, A., & Marchetto, A. (2017). Engineering
requirements for adaptive systems. Requirements Engineering, 22(1),
77–103. https://doi.org/10.1007/s00766-015-0236-0

Nakagawa, H., Ohsuga, A., & Honiden, S. (2012). Towards dynamic evolution
of self-adaptive systems based on dynamic updating of control loops.

250

Journal of ICT, 19, No. 2 (April) 2020, pp: 225-250

2012 IEEE Sixth International Conference on Self-Adaptive and Self-
Organizing Systems, 59–68. https://doi.org/10.1109/SASO.2012.17

Paz, A., & Arboleda, H. (2016). A model to guide dynamic adaptation
planning in self-adaptive systems. Electronic Notes in Theoretical
Computer Science, 321, 67–88. https://doi.org/https://doi.org/10.1016/j.
entcs.2016.02.005

Perini, A. (2012). Self-adaptive service based applications: Challenges in
requirements engineering. 2012 Sixth International Conference on
Research Challenges in Information Science (RCIS), 1. https://doi.
org/10.1109/RCIS.2012.6240416

Qureshi, N. A., Jureta, I. J., & Perini, A. (2012). Towards a requirements
modeling language for self-adaptive systems. In B. Regnell & D.
Damian (Eds.), Requirements engineering: Foundation for software
quality (pp. 263–279). Springer Berlin Heidelberg.

Qureshi, N. A., & Perini, A. (2010). Continuous adaptive requirements
engineering: An architecture for self-adaptive service-based
applications. 2010 First International Workshop on Requirements@Run.
Time, 17–24. https://doi.org/10.1109/RERUNTIME.2010.5628553

Solano, G. F., Caldas, R. D., Rodrigues, G. N., Vogel, T., & Pelliccione,
P. (2019). Taming uncertainty in the assurance process of self-
adaptive systems: A Goal-oriented approach. 2019 IEEE/ACM 14th
International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS), 89–99. https://doi.org/10.1109/
SEAMS.2019.00020

Surendro, K., Aradea., & Supriana, I. (2016). Requirements engineering
for cloud computing adaptive model. Journal of Information and
Communication Technology, 2180- 3862, 15, 1–17.

Zavala, E., Franch, X., & Marco, J. (2019). Adaptive monitoring: A systematic
mapping. In Information and Software Technology (Vol. 105, pp. 161–
189). Elsevier B. V. https://doi.org/10.1016/j.infsof.2018.08.013

Zavala, E., Franch, X., Marco, J., & Berger, C. (2020). HAFLoop: An
architecture for supporting highly adaptive feedback loops in self-
adaptive systems. Future Generation Computer Systems, 105, 607–630.
https://doi.org/https://doi.org/10.1016/j.future.2019.12.026

