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ABSTRACT

Service system is currently facing environmental complexity 
problems, such as the need of a distributed, heterogeneous, 
decentralized, and interdependent system which operates 
dynamically and unpredictably. This condition requires the service 
system to have an ability to adapt in order to realize sustainable 
functions. The success of service adaptation is determined by 
its ability to handle variability at runtime. The purpose of this 
research is to realize service flexibility through variability 
modeling, which is an extension of previous work to enrich the 
adaptability view. The methodology was developed through the 
monitor-analyse-plan-execute-knowledge control loops approach 
integrated into the adaptive service (service level) element 
within the adaptive enterprise service system metamodel based 
on goal-oriented requirements engineering. Service adaptation 
scenario was prepared through proactive and reactive adaptation 
mechanisms. For evaluation, the model was applied to the case 
of a configuration management system. The experimental results 
showed that the model is able to adapt to runtime variability and 
accomodates the growth of the service component items shown 
by the description of the system scalability. The proposed model 
has a better alternative design in analyzing variability with a 
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total response that can be applicable in normal operations and 
overload. It also meets the expected level (level-5: adapting) of the 
adaptive capability maturity model as a standard for assessment 
of a service system adaptation.

Keywords: Self-adaptive systems, service variability, goal-based, MAPE-K, 
rule-based systems.

 
INTRODUCTION

The service system has now become an important part in various activities, 
where different elements of the real-world system can interact with the 
system. The involvement of various elements and activities raises the issue of 
complexity in its development, for example the characteristics of system entities 
related to rapid organization growth, hardware ubiquitous, the dynamic and 
unpredictable environment, etc. These conditions require the service system 
to have an ability to adapt to environmental characteristics and uncertainty at 
runtime. The main factor behind the uncertainty is the variability at runtime that 
refers to changes which occur in the system requirements, environment, related 
systems, and the system itself (Abbas & Anderson, 2017). In our previous 
work (Surendro, Aradea, & Supriana, 2016), we introduced a requirements 
engineering for cloud computing adaptive (RECCA) model focused on cloud 
services variability. In this work, we propose three views, namely architectural 
view, alignment view, and adaptability view from which the three views of the 
requirements engineering process capture the service system requirements. 
However, the adaptability view only focuses on providing external services, 
which are cloud services. Meanwhile, the need for a service system within an 
enterprise of reality will also require a service provided by an internal party. 
This research extends the capability of the adaptability view, where the service 
flexibility factor becomes the main focus so that the system is able to adapt 
to the services requirements provided by both external and internal parties. 
Providing these services will address the runtime variability and growth of 
service items.

Based on a review of related works, there are still some missing pieces 
that has motivated us to conduct this research. For example, the results of 
work by Qureshi, Jureta, and Perini (2012), Clark, Warnier, and Brazier 
(2011), Morandini, Penserini, and Marchetto (2017), and Mendoca, Rodrigues, 
Alves, Ali, and Baresi (2016) indicate the need to further investigate the 
dynamic evolutionary needs of the requirements model for service variability. 
Meanwhile, Abuseta and Swesi (2015), Arciani, Riccobene, and Scandura 
(2015), Knauss, Damian, Franch, Rook, Muller, and Thomo (2016), Paz 
and Arboleda (2016) have utilized the advantages of autonomic computing 
to develop adaptation mechanisms. However, the representation of domain 
models (goal models) in the concept has yet to be investigated. Based on these 
facts, we see an opportunity to deal with limitations in the adaptive enterprise 
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service system (AESS) metamodel proposed by Surendro et al. (2016). A more 
detailed discussion of this gap is presented in the related works section.

This paper introduces the handling of service variability where the 
lifecycle of the adaptive service element in the AESS metamodel is formulated 
as a monitor-analyze-plan-execute-knowledge (MAPE-K) pattern through 
goal-oriented requirements engineering (GORE). Adaptation mechanisms are 
developed through two strategies. The first is proactive adaptation prepared 
through a set of variability rules to anticipate changes in the service context. 
The second is the reactive adaptation prepared through a set of evolution rules 
to follow up on the needs for additions or changes to the new function service 
system at runtime.

RELATED WORKS

There have been some work on the concept of self-adaptive service. For 
example, Perini (2012) discussed various challenges related to requirements 
from the engineering perspective for self-adaptive service based applications, 
in which a challenge viewpoint is defined for design-time and run-time 
requirements. The proposed model in this paper may be regarded as one of the 
answers to the challenge. Qureshi and Perini (2010) proposed a framework 
for continuous adaptive requirements engineering (CARE) supporting self-
adaptive service-based applications using Techne’s language to map the goal 
model into ontology domains. This concept can help in detailing the behavior 
of the system to meet its goals and adaptation actions. However, the mechanism 
of reasoning for changes in domain assumptions, preferences and contexts 
still requires further research. Meanwhile, our research proposes a dynamic 
rule model so that reasoning at run-time can be done automatically. Clark et 
al. (2011) introduced self-adaptive monitoring services to adapt to changes 
based on risk levels. This model focused on service monitoring capabilities 
to respond to change. Our proposed model is not only prepared for handling 
changes, but accomodates system evolution requirements as the growth of 
service items also becomes one of the actions of the monitoring results.

Anna et al. (2019), proposed a model of requirements engineering for 
adaptive systems based on goal model, and Mendoca et al. (2016) proposed 
a model of contextualed runtime goal through a probabilistic approach. 
However, the dynamic evolution requirements are still not covered in these 
works, while our model provides this capability through the plug and play 
model. The expansion of autonomic computing (Abeywickrama & Ovaska, 
2017) has now become a major concern of researchers in developing self-
adaptive models. Arciani et al. (2015) introduced a framework for modeling 
and validating distributed self-adaptive service-oriented applications using the 
formal method. Further, Knauss et al. (2016) introduced a model of contextual 
requirements using machine learning and data mining approach. Paz and 
Arboleda (2016) also proposed a model for the guide of dynamic adaptation 
planning with formal methods. The works focused on the generic function of 
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MAPE-K control loops for reasoning at runtime. However, in our model, the 
representation of entities is from the domain problem as a domain model (goal 
model) under additional concerns. So, it has advantages in terms of capturing 
the requirements domain. Meanwhile, Surendro et al. (2016) adopted the 
AESS metamodel to handle service variability in service catalogs limited to 
providing external services.

Based on these related works, we argue that handling service variability 
can be improved through the ability to realize the dynamic evolution of 
service requirements based on adaptation patterns embedded in the service 
level elements of the AESS metamodel. Service requirements are defined 
through GORE to represent domain models. Meanwhile, adaptation strategies 
are realized through a generic function of the MAPE-K pattern. The proposed 
method section discusses in more detail the approach used in this paper.

RESEARCH METHODOLOGY

This research is divided into five phases as presented in Table 1. 
Phase 1 reviews some related research to identify gaps and define 
research problems. In Phase 2, the research problem is identified, 
that is how to handle service variability in the AESS metamodel.  

Table 1
 
Research design

Research Design
Phase Activity Description

1
Systematic 
Literature 
Review

Explore research areas and a.	
related work
Survey engineering b.	
approaches

Understand the domain(s) of research, 
related work, and existing engineering 
approaches

2
Research 
Problem

Identify research gapsa.	
Define research problemsb.	

Define research limitations and 
opportunities for improvement

3
Requirements 

Modeling

Define elements of model a.	
requirements
Map model elementsb.	

Define the requirements of the model 
and its controls

4
Proposed 
Method

Develop an approacha.	
Formulate algorithmb.	

Develop an approach through the 
integration of goal models and 
MAPE-K in the AESS metamodel

5
Empirical 
Evaluation

Apply case studiesa.	
Compare proposed models b.	
with related work

Evaluate proposed method through the 
quality attributes of dQAS and ACMM
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Phase 3 defines the elements of the model needs by mapping the AESS 
metamodel into the requirements model and its control needs to obtain 
three views of the model, namely architecture, alignment, and adaptability. 
Furthermore, the third phase results are used in Phase 4 to realize the 
improvement of the adaptability view by introducing approaches at each level 
of the AESS metamodel through the integration of goal-oriented requirements 
engineering and the MAPE-K adaptation cycle. Finally, in Phase 5, an 
evaluation is carried out to prove that the proposed model provides relevant 
contributions. Empirical evaluation is conducted through a discussion of case 
studies using the domain Quality Attribute Scenarios (dQAS) and Adaptive 
Capability Maturity Model (ACMM).

 
 

PROPOSED METHOD

In order to realize the self-adaptation capabilities for service variability, we 
utilized the methods of some previous researches, for example, Abuseta and 
Swesi (2015) who proposed a design pattern for a model of MAPE-K. Some 
of the patterns are used in the model which we proposed and also expanded 
by adding the ability to plug and play as a form of service system evolution. 
Nakagawa, Ohsuga, and Honiden (2012) research also inspired the proposed 
model, in which our models can enrich its features. Further, Morandini (2017) 
proposed Tropos4AS where the primitive of goal model is used as requirements 
description, adopted and expanded in our model. This work has advantages in 
terms of capturing context variability and we equip it with domain assumption 
through the rule editor and embed the control loops approach.

The configuration developed in the proposed model is an extension of 
our previous work (Aradea, Supriana, Surendro, & Darmawan, 2017a; 2017b) 
to enrich the adaptability view of the RECCA model. We introduced three 
requirement views: architecture, alignment, and adaptability in the model. The 
architectural view is enabled to understand the environment. Then, the results 
of that understanding are mapped into the service system requirements through 
an alignment view. Finally, the adaptability view determines the adaptation 
mechanism. The adaptability view is realized through an event-condition-
action (ECA) method that represents the MAPE-K concept, but does not 
explicitly define the mapping mechanism of the goal model as a description of 
requirements. In addition, the function of the adaptability view is only focused 
on the cloud service variability. The construction of the proposed model is 
to complement the adaptability view by preparing a more relaxed adaptation 
mechanism for service variability.

In the AESS metamodel, the design principle consists of agility, a living 
system (system of systems) and service principles, where the core elements 
are divided into three levels: adaptive enterprise service system (enterprise 
level), adaptive service system (capability level) and adaptive service (service 
level) (Gill, 2015). Enterprise level is a conceptual element of the adaptive 
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enterprise architecture metamodel, while capability level is defined as a 
system abstraction that can represent a human individual, function, business 
unit, department or team, etc. In the RECCA model, both levels are configured 
through an architectural view to capture environmental elements and 
alignment view to define their service requirements. In this paper, we focus on 
the adaptability view for service level expansion that is context aware and is 
continually evolving and self-adapting.

Figure 1 illustrates an overview of the proposed self-adaptive model 
which is an extension of the RECCA model based on the principles of the 
AESS metamodel. Enterprise and capability levels are defined as the domain 
model by adopting goal-oriented requirements engineering (goal model) and 
service level is realized as control strategy through the implementation of 
the MAPE-K adaptation cycle, which consists of scans and senses (monitors 
[M]), interprets and analyses (analyze and plan [AP]), decides and responds 
(execute [E]) to internal and external changes.

 
 
Figure 1. An overview of the self-adaptive model.

The decomposition of goal model (functional) can represent the service 
requirements (R) in every sub-goal that are influenced by each property and 
have positive or negative (++ / + or - / -) contribution to soft-goal (non-
functional). The role of the control strategy (MAPE-K) in this case is to 
identify and monitor the possibilities of changes in the service. Decomposition 
model adopts the concept of component mapping (Nakagawa et al., 2012) for 
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goal (non-functional). The role of the control strategy (MAPE-K) in this case is to identify and monitor the 
possibilities of changes in the service. Decomposition model adopts the concept of component mapping 
(Nakagawa et al., 2012) for software components (Hirsch, Kramer, Magee, & Uchitel, 2006) by utilizing some 
design patterns (Abuseta & Swesi, 2015) and modifies in accordance with the requirements of service systems. 
Figure 2 illustrates a model for transforming model goals into software components. Each parent goal with 
AND-Decomposition is defined as a goal to analyze and plan (AP), while every child’s goal is defined as a 
goal to monitor (M) and execute (E), which is fully regulated in the knowledge (K). 
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software components (Hirsch, Kramer, Magee, & Uchitel, 2006) by utilizing 
some design patterns (Abuseta & Swesi, 2015) and modifies in accordance 
with the requirements of service systems. Figure 2 illustrates a model for 
transforming model goals into software components. Each parent goal with 
AND-Decomposition is defined as a goal to analyze and plan (AP), while 
every child’s goal is defined as a goal to monitor (M) and execute (E), which 
is fully regulated in the knowledge (K).

 
Figure 2. Goal Mapping to MAPE-K Components.

 
	 The control strategy to adjust each component is started by the M 
(monitor) component function as shown in Algorithm 1. There are a number of 
properties (P) on the goal (G) model (m) that should be monitored concurrently. 
This activity represents the runtime states which are time-triggered or event-
triggered to respond to requests or events. State (S) of system at runtime 
is represented by a combination of internal and external property values. 
Violation of the state is detected by way of any violation of the threshold of 
each goal property and the new state will be stored in the system state log to 
be analyzed.

Algorithm 1

Monitoring algorithm
Monitoring States

for all G in m do
     m        (∑ : fn ) //run-time
     G       getValue(P) //time_or_event_triggered
     for each value(S) in P do
            S       combining internal and external value(S)            
            if S in S.target(F) ≠ P.threshold then
               systemState       new S.system(S.instance) and
               systemStateLog       save(S.system) and
               send information(S.system) to analyzerManager
            end if
     end for
end for
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Algorithm 2

Analyze-Plan algorithm

Analyze-Plan

δ      (S.system)// state of system
 for each δ in analyzerManager do
     analyzer       update(logs) actual S.system
     search (δ) in symptomList
     if symptom ≠ ø then
        create(adaptationRequest) and
        update(adaptationRequest) for plan specification
        else 
              addSymptom to symptomList and
              create(adaptationRequest) and
              send information(adaptationRequest) for plan specification
        end if
end for

Algorithm 3
 
Execute algorithm 

Execute of Plan
for all δ is found do
      a        construct correctiveAction(addAction)
      changePlan       newChangePlan(an)
      send changePlan to one or more executors
      for each a in executor do
           actuator         update(an) //one or more actuators 
           S.system       reconfiguration m with actuator 
           // set new value for C(G.Node)
           systemStateLog       saveState(S.system)
      end for
end for

 
	

Violation of the goal system is analyzed based on the symptoms list. If 
the results of the analysis detected the presence of some symptoms, the system 
will accept the adaptation request and then reconfigure based on rule engine. 
Algorithm 2 shows the reconfiguration algorithms for AP (analyze and plan) 
component. Rule engine contains high-level goals that control the operation 
and functions of related systems. The general form is event-condition-action 
(ECA) rules. In our version, the rule engine is extended with a rule editor model 
where the specification changes can be done by editing the knowledge base 
directly or putting back into the system. Each adaptation request is represented 
as a state of system (S). A set of S contains the context (goal model) and the 
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expected action for the target system. Changing plan contains the adaptation 
actions to be executed by the E (execute) component. The execute component 
(Algorithm 3) will use a number of actuators for setting the new value of the 
target system property. Adaptation strategies are developed through two rules 
of adaptation, namely a set rule of variability for proactive adaptation and a 
set rule of evolution for reactive adaptation. Proactive adaptation is prepared 
to anticipate changes in context information identified based on symptoms 
or events arising. The type of adaptation is formulated through ECA rules as 
follows:

WHEN <event> ; current situation when there is a change in service
IF <condition> ; certain events that occur so that the appropriate action  

          is activated	                      
THEN <action> ; adjustments to service changes for reactive adaptation  

          behavior
VALID-TIME <time_period> ; suitability for service adaptation

Reactive adaptation is prepared to follow up on the need for service 
updates based on the results of operations from proactive adaptation. This type 
of adaptation utilizes the scheme of service levels in the AESS metamodel, 
where each service instance in the service catalog is generated based on the 
results of the MAPE-K pattern analysis, so that service requirements can be 
activated according to prevailing conditions. The rule specifications for both 
types of proactive and reactive adaptation can be defined through the rule 
editor according to the preferences and requirements of stakeholders.

EVALUATION AND RESULTS

The discussion presented in this section is an extension of the configuration 
management system case based on the ITIL Framework (OGC, 2007) which 
is now widely used by large companies in the world for the provision of IT 
services. The main target of this experiment is scalability, which accommodates 
users’ requirements in accessing an application service based on the changes, 
assesses the characteristics of quality attributes in handling variability at 
runtime, and measures the adaptive capability maturity level. Goal modeling 
(GORE) is shown in Figure 3 while the mapping of the system components is 
shown in Figure 4.
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Figure 3. Goal modeling for service system.

 
            The results of goal modeling in Figure 3 are representations of the 
architectural and alignment views based on the AESS Metamodel. Meanwhile, 
Figure 4 is a representation of the adaptability view based on the mapping 
from Figure 3. The mapping rule refers to Figure 2, that is each AND-
Decomposition in goal modeling is generated into a composite component, so 
that three composite components are obtained, namely, user interface, service 
application, and service delivery. Each composite component represents the 
adaptation cycle through three types of primitive components, namely, M 
(monitor), AP (analyze and plan), and E (execute). The links of each composite 
and primitive components are defined by two types of ports, namely provider 
service ports and required service ports based on the links formed from the 
results of goal modeling. The mapping in Figure 4 generates an adaptability 
pattern for user requirements and service requirements represented by the 
service delivery function in the service application.
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Experiment 

The property on context element monitored is service item or known as configuration item (CI) which consists 
of hardware, software, peripheral and network equipment. Handling these changes can be classified into two 
types of adaptation, which are: proactive adaptation and reactive adaptation. Proactive adaptation is to 
determine which components need to be updated, added and/ or deleted. It can be assigned as a symptom or 
event that can be identified. The setting of all these events can be assigned as rules, for example: 
! access device events, when a new device is detected or unavailable device; 
! authority events, when the permission mismatch is detected by the user or user's role changes; 
! feature and service time events, when unavailability of features and / or time of service beyond 

the threshold is detected in the service catalog. 

For example, it will discuss the rule when access event of device appears. Based on the function of the 
component “role detection (M)” and “user authority (E)”, there are a number of “access services (E)” which 
will be accessed by users via the interface options. Goal decomposition of this services access is OR-
decomposition, thus showing variability related to the resource (device_type). In addition, based on the 
function components, it is possible to change “feature detection (M)” and “change detection (M)” in service 
due to unexpected events or errors (event_error). Based on the description, the plan can be represented as: plan 
(device_type, event_error). This plan is to create an alternative behavior in dealing with variability context; for 
example, the plan of “access method” and “determination of the status” must use the function of “service 
delivery (AP)” components, because it provides the full positive contribution (++) toward the “relevance” and 
"response time" soft-goal, as opposed to doing analyze and plan (AP); each of which only contributes to 
positive (+) that will affect, even negative contribution (-). Thus, the system has a consideration to analyze and 
plan (AP) for a “user interface” and “service application”. Collection of this property value would set the 
system input variables “service delivery (AP)”. The setting of behavior can be defined as follows: 
! Rule-1 : if (device_type = mobile) and (event_error = null) then 

   plan = internet_service delivery 
! Rule-2 : if (device_type = personal_computer) and (event_error = null) then 

   plan = window_client_service or virtual_terminal_service delivery 
! Rule-3 : if (device_type = telephone or fax) and (event_error = null) then 

   plan = text_messaging_service delivery 
! Rule-4 : if (device_type = printer) and (event_error = null) then 

Figure 4. Component specification for service system.
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Experiment

The property on context element monitored is service item or known as 
configuration item (CI) which consists of hardware, software, peripheral and 
network equipment. Handling these changes can be classified into two types of 
adaptation, which are: proactive adaptation and reactive adaptation. Proactive 
adaptation is to determine which components need to be updated, added and/ 
or deleted. It can be assigned as a symptom or event that can be identified. The 
setting of all these events can be assigned as rules, for example:

access device events, when a new device is detected or unavailable -	
device;
authority events, when the permission mismatch is detected by the user or -	
user’s role changes;
feature and service time events, when unavailability of features and / or -	
time of service beyond the threshold is detected in the service catalog.

For example, it will discuss the rule when access event of device 
appears. Based on the function of the component “role detection (M)” and 
“user authority (E)”, there are a number of “access services (E)” which will be 
accessed by users via the interface options. Goal decomposition of this services 
access is OR-decomposition, thus showing variability related to the resource 
(device_type). In addition, based on the function components, it is possible 
to change “feature detection (M)” and “change detection (M)” in service due 
to unexpected events or errors (event_error). Based on the description, the 
plan can be represented as: plan (device_type, event_error). This plan is to 
create an alternative behavior in dealing with variability context; for example, 
the plan of “access method” and “determination of the status” must use the 
function of “service delivery (AP)” components, because it provides the 
full positive contribution (++) toward the “relevance” and “response time” 
soft-goal, as opposed to doing analyze and plan (AP); each of which only 
contributes to positive (+) that will affect, even negative contribution (-). 
Thus, the system has a consideration to analyze and plan (AP) for a “user 
interface” and “service application”. Collection of this property value would 
set the system input variables “service delivery (AP)”. The setting of behavior 
can be defined as follows:

–	 Rule-1 : if (device_type = mobile) and (event_error = null) the plan =  
			   internet_service delivery
–	 Rule-2 : if (device_type = personal_computer) and (event_error = null)  
		      then plan = window_client_service or virtual_terminal_service  
		      delivery
–	 Rule-3 : if (device_type = telephone or fax) and (event_error = null) then
   		      plan = text_messaging_service delivery
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–	 Rule-4 : if (device_type = printer) and (event_error = null) then plan =  
		      printouts_service delivery
–	 Rule-5 : if (device_type = new_type) and (event_error = null) then  
                     plan = add new device_type [instance component]
–	 Rule-6 : if (device_type = null) and (event_error = null) then plan =  
                    change_service delivery [instance component]
–	 Rule-7 : if (event_error = not null) then plan = send notification to user  
		      and service_desk
–	 Rule-8 : if not [criteria] then plan = change_service delivery [instance  
		       component]

These rules can be mapped into the concept of ECA rules, as shown 
in Table 2. So, there are four action plans (Pn) as the alternative solution. 
Meanwhile, reactive adaptation can be done by determining the procedures for 
handling service disruptions. For example, the handling of service disruptions 
will identify single points of failure, as can be seen in Figure 5, in order to 
obtain the configuration item (CI) as shown in Table 3. The data is obtained 
based on the monitor (M) functions, “role detection” and “feature detection”. 
Then, the component of “service observation (M)” will perform detection to 
determine components of CI that can be considered critically. Availability-
service (As) in Table 6 consists of several CI components with different levels 
of availability-component (Ac).
 
Table 2

ECA: Access services

Access Services

Event (E) Condition (C) Action (A)
access_device (device_type = mobile);

(device_type = personal_computer);
(device_type = telephone or fax);
(device_type = printer); 
(event_error = null);

P1.1 = internet_service
P1.2 = window_client or virtual_
terminal
P1.3 = text_messaging
P1.4 = printouts

access_device (device_type = new_type);
(event_error = null);

P2 = add new device_type [instance 
component]

access_device (device_type = null); 
not [criteria]; (event_error = null);

P3 = change_service delivery 
[instance component]

access_device (event_error = not null); P4 = send notification to user and 
service_desk
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The calculation of service availability of stand-alone and redundant are formulated differently (OGC, 2007). 
The availability of services with a number of stand-alone CI is calculated by the following equation As = Ac1 * 
Ac2 * Ac3 ... Acn. Thus, based on statistical data of MTBF (mean time between failures) and MTRS (mean 
time to restore service), the service availability of single point of failure in the availability column in Table 3 
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The calculation of service availability of stand-alone and redundant are formulated 
differently (OGC, 2007). The availability of services with a number of stand-alone 
CI is calculated by the following equation As = Ac1 * Ac2 * Ac3 ... Acn. Thus, based 
on statistical data of MTBF (mean time between failures) and MTRS (mean time to 
restore service), the service availability of single point of failure in the availability 
column in Table 3 has a total value of 8.79%. The availability of each CIn is obtained 
by the Equations 1, 2, 3

where MTBF denotes the average time that a configuration item (CI) or IT service 
can perform its agreed Function without interruption. This is measured from when 
the CI or IT service starts working, until it next fails (Lloyd & Rudd, 2011).

 
where MTRS denotes the average time taken to restore a configuration item (CI) 
or IT service after a Failure. MTRS is measured from when the CI or IT service 
fails until it is fully restored and delivering its normal functionality (Lloyd & Rudd, 
2011).

 
where Availability is the ability of a service, component or configuration item (CI) to 
perform its agreed function when required (Lloyd & Rudd, 2011).

Meanwhile, the calculation of the service availability with a number of redundant 
CI is conducted by the following equation: As = Ac1 + ((1 – Ac1) * Ac2) for one CI 
and one redundant CI, As = Ac (n - 1) + ((1 – Acn (n - 1)) * Acn) for a number of (n) 
redundant CI. The service availability of redundant CI with shared dependencies 
can be seen in Table 7 with the number of redundant (n) which varies between 2 and 
4. So, the total value of the redundant CI is 30.47%. These data are used as input 
variables for the “service delivery (AP)” component in determining any CI that can 
be considered as critical. Thus, the list of critical CI status is obtained as shown in 
Table 4; there are 10 critical CI with shared dependency requiring reconfiguration 
actions. The illustration of SLA percentage (%) change for each CI can be seen in 
Figure 6 with a total availability of services increase by 21.68% that is from 8.79% 
to 30.47%.
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Table 4

Availability of redundant services

CI

Service (S)
Redundant  User Availability

L1 L2 L3 L4  L(1 – 4) (n = 2; 3; 4;)

CI1 90.00% 90.00% 90.00% 90.00% 1400 99.99%
CI2 90.00% 90.00% - 90.00% 1150 99.90%
CI3 75.00% 75.00% 75.00% - 1200 98.44%
CI4 90.00% 90.00% 90.00% 90.00% 1400 99.99%
CI5 73.00% - - - 550 73.00%
CI6 - 75.00% - - 400 75.00%
CI7 90.00% 90.00% 90.00% 90.00% 1400 99.99%
CI8 85.00% - - - 550 85.00%
CI9 - 85.00% - - 400 85.00%
CI10 - - 85.00% 85.00% 550 97.75%
CI11 90.00% - - - 550 90.00%
CI12 - 90.00% - - 400 90.00%
CI13 - - 90.00% 90.00% 450 99.00%
CI14 90.00% 90.00% 90.00% 90.00% 1400 99.99%
CI15 90.00% 90.00% 90.00% 90.00% 1400 99.99%
CI16 90.00% 90.00% 90.00% 90.00% 1400 99.99%

Figure 6. Critical CI
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Based on data of critical CI, the system will then do a reconfiguration through 
the components of the “service reconfiguration (E)”. Finally, the “service 
release (E)” component will deliver new services. For example:

CI-	 1 is detected as critical CI, where “Server-1” is based on monitoring 
CPU usage necessary to improve and to avoid over utilization and 
contention. Thus, the system will add adaptation functions using a load 
balancing system.
CI-	 7 is detected as critical CI, where “Application-1” is based on the 
monitoring of facilities provided which require the model to establish 
baseline performance through the addition of new features. Thus, the 
system will add new features through the cloud service so that the system 
will determine the cloud adoption mechanism. 
Treatment of any other critical CI is adjusted based on the event detected -	
respectively. 

The dashed line in Figure 7 shows the new added functions of the 
components. The following are previous works discussing the adaptation 
process of load balancing functions (Abuseta & Swesi, 2015; Darmawan 
& Aradea, 2017); the illustration of mapping the goal model into system 
components for load balancing is shown in Figure 8. The numbers of properties 
which should be monitored are shown in Tables 8 and 9. System will have 
the consideration to analyze and plan (AP) to organize “user’s access”. In 
addition, the system will also analyze and plan (AP) to set “performance of 
server farm”. Based on the combination of each property value in Tables 8 and 
9 will be the input variables for the system to “manage load (AP)” through 
“workload observation (M)” component. The combination of the value is 
performed by Equation 4.

Figure 7. Component specification after the addition of new functions.
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Figure 8. Component Specification for Load Balancing System. 

 

 

where x = server (task); n = number of clients; c = client. 

in order to obtain the total task to be executed, that is 3209 tasks. The next stage “capability observation (M)” 
component will determine the ability of each server to the total task to be processed, through Equation 5. 
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Then, the server capability that can perform the task is sorted as 
quickly as possible based on the total task. Constraints to any desired process 
is set as k = 2 ms. The setting of system behavior to manage the server load is 
associated with some rules in response to symptoms or events, for example, 
high load event à when the server load is detected to be larger than 80%; 
unresponsive or very low load event à when detected, server does not perform 
the process.
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in order to obtain the total task to be executed, that is 3209 tasks. The next stage “capability observation (M)”

component will determine the ability of each server to the total task to be processed, through Equation 5.

( ) =
( ( ) + )

(5)

where x = server (task); n = number of clients; c = client; d = distance; m = memory; v = speed.

Then, the server capability that can perform the task is sorted as quickly as possible based on the total task.

Constraints to any desired process is set as k = 2 ms. The setting of system behavior to manage the server load

is associated with some rules in response to symptoms or events, for example, high load event when the

server load is detected to be larger than 80%; unresponsive or very low load event when detected,

server does not perform the process.

Table 5

Client property

Client
(n) Load Client

(n) Load Client
(n) Load Client

(n) Load

C1 44 C14 65 C27 77 C40 45
C2 23 C15 77 C28 54 C41 52
C3 75 C16 56 C29 77 C42 21
C4 20 C17 34 C30 80 C43 76
C5 56 C18 67 C31 99 C44 79
C6 45 C19 43 C32 90 C45 27
C7 67 C20 65 C33 87 C46 33
C8 99 C21 99 C34 88 C47 45
C9 34 C22 43 C35 76 C48 61
C10 99 C23 65 C36 82 C49 77
C11 66 C24 75 C37 77 C50 55
C12 67 C25 60 C38 76
C13 43 C26 89 C39 99

Table 6

Server farm property

Server (x) Speed (v)
= ms

Memory (m)
= ms

Distance (d)
= ms

S1 10 10 34
S2 12 7 2
S3 11 12 10
S4 7 8 4
S5 10 9 3
S6 6 6 2
S7 8 5 20
S8 10 8 2
S9 8 4 1
S10 6 8 2
S11 11 4 5
S12 14 7 7
S13 8 5 3
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Figure 7. Component specification after the addition of new functions

Figure 8. Component specification for load balancing system

( ) = ( ) (4)

where x = server (task); n = number of clients; c = client.
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Table 5

Client property

Client
(n) Load Client

(n) Load Client
(n) Load Client

(n) Load

C1 44 C14 65 C27 77 C40 45
C2 23 C15 77 C28 54 C41 52
C3 75 C16 56 C29 77 C42 21
C4 20 C17 34 C30 80 C43 76
C5 56 C18 67 C31 99 C44 79
C6 45 C19 43 C32 90 C45 27
C7 67 C20 65 C33 87 C46 33
C8 99 C21 99 C34 88 C47 45
C9 34 C22 43 C35 76 C48 61
C10 99 C23 65 C36 82 C49 77
C11 66 C24 75 C37 77 C50 55
C12 67 C25 60 C38 76
C13 43 C26 89 C39 99

Table 6

Server farm property

Server (x) Speed (v)
= ms

Memory (m)
= ms

Distance (d)
= ms

S1          10          10          34 
S2          12            7            2 
S3          11          12          10 
S4            7            8            4 
S5          10            9            3 
S6            6            6            2 
S7            8            5          20 
S8          10            8            2 
S9            8            4            1 
S10            6            8            2 
S11          11            4            5 

(continued)
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Server (x) Speed (v)
= ms

Memory (m)
= ms

Distance (d)
= ms

S12          14            7            7 
S13            8            5            3 
S14          15            6            4 
S15            8            5            7 
S16            7            8          10 
S17          11          10            8 
S18          12            9            5 
S19            8            4            9 
S20            9            7          12 

Table 7

Description of server load balancing

Number 
of

Server

Detection 
of Server

Sorting of
Server

Without
Balancing

Balancing 
Server Amount of 

Serverf(x)
second

f(x) 
second Fitness Server Residue Balancing

1 32.43 24.39 1219% 80% 1139% 76% 1
2 38.23 29.25 1462% 80% 1059% 76% 1
3 24.39 29.76 1488% 80% 979% 76% 1
4 57.38 32.43 1622% 80% 899% 76% 1
5 35.69 32.82 1641% 80% 819% 76% 1
6 89.19 35.69 1784% 80% 739% 76% 1
7 80.73 35.70 1785% 80% 659% 76% 1
8 40.14 38.23 1911% 80% 579% 76% 1
9 100.31 40.14 2007% 80% 499% 76% 1
10 66.90 57.38 2869% 80% 419% 76% 1
11 73.05 57.48 2874% 80% 339% 76% 1
12 32.82 66.90 3345% 80% 259% 76% 1
13 80.30 73.05 3652% 80% 179% 76% 1
14 35.70 80.30 4015% 80% 99% 76% 1
15 80.40 80.40 4020% 80% 19% 76% 1
16 57.48 80.73 4036% 19% 0% 76% 1
17 29.25 89.19 4460% 0% 0% 0% 0
18 29.76 100.31 5016% 0% 0% 0% 0
19 100.56 100.56 5028% 0% 0% 0% 0
20 51.13 100.56 5028% 0% 0% 0% 0

Total 1219% 1219% 16
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Furthermore, the system performs server activation (E)” by considering 
events for high load and a very low load / unresponsive through calculation 
of servers used and determining the value of balance by assessing the value of 
the smallest fitness divided by the number of servers used as in Equation 6.

 
          Thus, the system can adjust and balance the ability of the server and 
specify the number of servers needed as can be seen in Table 7. A total of 50 
client needs with 3209 tasks need 16 servers; the average load balance of each 
server is 76%. The illustration of these functions is shown in Figure 9; the 
top picture is a real condition or CPU maximum capabilities after balancing 
process is obtained with the required number of servers with respective load 
balancing as presented in the following table.

 
Figure 9. Illustration of server load balancing.

17 
 

 

Figure 9. Illustration of Server Load Balancing. 

Evaluation 

The evaluation consists of three activities: first, illustrating the service scalability; second, the model 
comparison to assess the design support in handling variability using the domain Quality Attribute Scenarios 
(dQAS); and third, evaluating adaptation maturity levels using Adaptive Capability Maturity Model (ACMM). 
The scalability of service system is related to the growth in the number of each CI in the service catalog at 
runtime. As an example of evaluation, scalability description of load balancing system is represented by 
growth in the number of clients and the load of each client that can continue to grow and change at runtime. As 
shown in Figure 10, the total 3209 tasks of 50 clients require 16 servers with an average load of 76%; but if the 
total tasks of clients change, for example increase or decrease the need for servers,  then the average balance of 
the load will be adjusted. For example, with a maximum number of tasks of 45 clients, then 14 servers with an 
average load balance is activated automatically; if the maximum number of tasks is for 24 clients, then only 7 
servers are enabled. If the maximum number of tasks is for 30 clients, then only 9 servers are enabled, and so 
on. Thus, the evaluation results show that the scale is linear with the number of clients and the number of 
server load for balancing size. Thus, the system is able to handle change and growth in context. 
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Furthermore, the system performs server activation (E)" by considering events for high load and a very low

load / unresponsive through calculation of servers used and determining the value of balance by assessing the

value of the smallest fitness divided by the number of servers used as in Equation 6.

=
min( ( ))

(
min( ( ))

)
(6)

Thus, the system can adjust and balance the ability of the server and specify the number of servers needed as

can be seen in Table 7. A total of 50 client needs with 3209 tasks need 16 servers; the average load balance of

each server is 76%. The illustration of these functions is shown in Figure 9; the top picture is a real condition or

CPU maximum capabilities after balancing process is obtained with the required number of servers with

respective load balancing as presented in the following table.
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Evaluation

The evaluation consists of three activities: first, illustrating the service 
scalability; second, the model comparison to assess the design support in 
handling variability using the domain Quality Attribute Scenarios (dQAS); 
and third, evaluating adaptation maturity levels using Adaptive Capability 
Maturity Model (ACMM). The scalability of service system is related to 
the growth in the number of each CI in the service catalog at runtime. As 
an example of evaluation, scalability description of load balancing system 
is represented by growth in the number of clients and the load of each client 
that can continue to grow and change at runtime. As shown in Figure 10, the 
total 3209 tasks of 50 clients require 16 servers with an average load of 76%; 
but if the total tasks of clients change, for example increase or decrease the 
need for servers,  then the average balance of the load will be adjusted. For 
example, with a maximum number of tasks of 45 clients, then 14 servers with 
an average load balance is activated automatically; if the maximum number of 
tasks is for 24 clients, then only 7 servers are enabled. If the maximum number 
of tasks is for 30 clients, then only 9 servers are enabled, and so on. Thus, 
the evaluation results show that the scale is linear with the number of clients 
and the number of server load for balancing size. Thus, the system is able to 
handle change and growth in context.

Figure 10. Scalability of service process.

 
          Furthermore, we evaluated the model through dQAS (Abbas, Andersson, 
& Weyns, 2012) to compare the adaptability of the RECCA model with the 
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 In the RECCA model, we describe the evaluation based on the criteria and controls of the ACMM 
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5) depending on the adaptation cycle applied. Meanwhile, based on the proposed model and the artifacts 
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and the achievement of level-5 is made through the interaction cycle with scans and sense patterns of changes 
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There is integrated engagement and governance for adaptation through artifacts generated from the 
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adaptation through automatic computing mechanisms at the service level. 
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through 9 dQAS elements, as shown in Table 8. The evaluation results showed 
that the proposed model provided more response alternatives in each variant, 
VC. From 6 combinations (variant VC), there were 20 total responses that could 
be alternative solutions for all stimuli. In addition, the responses were given 
to both normal and overload operating conditions. Meanwhile, the RECCA 
model had 13 total responses and was applied only under normal operating 
conditions, and there were some unsupported response requirements, such as 
R2, R5 and R6. This suggested that the proposed model could reduce the 
uncertainty factor caused by variability at runtime where requirements could 
be realized through alternative designs.

In the RECCA model, we describe the evaluation based on the criteria 
and controls of the ACMM (Gill, 2015). The evaluation results indicated that 
the maturity level of the adaptation model varies (level-4 or 5) depending on 
the adaptation cycle applied. Meanwhile, based on the proposed model and the 
artifacts generated from the RECCA model, adaptation maturity is definitely 
at level-5 (adapting) which is the highest level of adaptive capability maturity 
model. Figure 11 shows the maturity criteria of each level in the ACMM, 
and the achievement of level-5 is made through the interaction cycle with 
scans and sense patterns of changes and adjustments between the context and 
rationalization (service level) based on the MAPE-K pattern, i.e.: the ability to 
monitor, assess, and respond to changes for continuous adaptation is realized 
through the integration of goal models as contextual environments (target 
system) and adaptation cycles of the MAPE-K pattern. There is integrated 
engagement and governance for adaptation through artifacts generated from 
the architecture and alignment views that are managed through an adaptability 
view and there is good support for adaptation through automatic computing 
mechanisms at the service level.

Table 8

Evaluation of domain quality attribute scenarios

Element RECCA Model Proposed Model

Source (SO) [SO1] Access device; [SO2] User; [SO3] Service features

Stimulus (ST) [ST1] New devices; [ST2] User’s role changes; [ST3] 
Unavailability of features [ST4] Service failures

Artifact (A) [A1] User interface fragment; [A2] Service application fragment; 
[A3] Service delivery fragment

Environment (E) [E1] Runtime under normal operating; [E2] Runtime under 
overload operating

Response (R) [R1] Select access devices (P1); [R2] Add new device type (P2); 
[R3] Change service delivery (P3); [R4] Send notification to user 

and service desk (P4); [R5] Calculate service level availability 
(SPoF); [R6] Service reconfiguration (CI: load balancing); [R7] 

Service reconfiguration (CI: cloud adoption); [R8] Service delivery 
(configuration item (CI))

(continued)
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Element RECCA Model Proposed Model

Variants (V) [V1] Role detection; [V2] Access services; [V3] User Authority; [V4] Feature 
detection; [V5] Change detection; [V6] Sevice Status; [V7] Service observation; 

[V8] Service reconfiguration; [V9] Service release
Valid QAS 

Configurations 
(VC)

[VC1] V1 ˄ V2 ˄ V3; [VC2] V4 ˄ V5 ˄ V6; [VC3] V7 ˄ V8 ˄ V9; 
[VC4] V2; [VC5] V5; [VC6] V8

Fragment 
Constraints (FC)

[Mandatory] {SO1, SO2, SO3} ˄ {A1, 
A2, A3} ˄ {E1} ˄ {R1, R8}

[Variant VC1] {ST1, ST2} ˄ {R3, R4}
[Variant VC2] {ST3} ˄ {R3, R4, R7}
[Variant VC3] {ST3, ST4} ˄ {R3, R4, 

R7}
[Variant VC4] {ST1} ˄ {R4}

[Variant VC5] {ST2, ST3} ˄ {R3, R4, 
R7}

[Variant VC6] {ST4} ˄ {R7}

[Mandatory] {SO1, SO2, SO3} ˄ {A1, 
A2, A3} ˄ {E1} ˄ {R1, R8}

[Variant VC1] {ST1, ST2} ˄ {R2, R3, 
R4}

[Variant VC2] {ST3} ˄ {R3, R4, R7}
[Variant VC3] {ST3, ST4} ˄ {E2} ˄ 

{R3, R4, R5, R6, R7}
[Variant VC4] {ST1} ˄ {R2, R3, R4}
[Variant VC5] {ST2, ST3} ˄ {R3, R4, 

R7}
[Variant VC6] {ST4} ˄ {E2} ˄ {R5, 

R6, R7}
Response Measure 

(RM)
[RM1] R1, access device detected 

within x seconds
[RM2] R2, not supported

[RM3] R3, CI in the service catalog is 
changed within x seconds

[RM4] R4, notifications are sent within 
x seconds

[RM5] R5, not supported
[RM6] R6, not supported

[RM7] R7, service request sent within 
x seconds

[RM8] R8, CI is sent within x seconds

[RM1] R1, access device detected within 
x seconds

[RM2] R2, new device type added 
within x seconds

[RM3] R3, CI in the service catalog is 
changed within x seconds

[RM4] R4, notifications are sent within 
x seconds

[RM5] R5, critical CI is specified within 
x seconds

[RM6] R6, load balancing function is 
added within x seconds

[RM7] R7, service request sent within 
x seconds

[RM8] R8, CI is sent within x seconds
Total Responses 13 (normal operation) 20 (normal operation and overload)

         

Figure 11. Adaptive capability maturity model.
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CONCLUSION AND FUTURE WORK 

This paper introduces an adaptation model to address service variability. The lifecycle of each service element 
within the AESS metamodel is formulated as a control loop (MAPE-K) pattern based on the description of 
requirements. Adaptation mechanisms are realized through proactive and reactive adaptation scenarios, both of 
which are service requirements that can be viewed as a set of variants selected at runtime through a concept of 
variability rules for service change and evolution. The evaluation results showed that the proposed model is 
able to describe the scalability of services related to change and growth of new service requirements. The 
proposed model has an alternative design that is better than the previous work in variability modeling, where 
an alternative response in each variant, VC is capable of handling any stimulus under normal operating and 
overload conditions. In addition to these achievements, the adaptive capability maturity of the proposed model 
also improves the results of previous work. 
 Future research could detail additional features to enrich the description of service system 
requirements, as well as expand the context inference mechanism of the rule editor to accommodate more 
sophisticated conflict resolutions. Some approaches, such as strategies for machine learning and requirements 
reflection, could be taken into account in further studies. 
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CONCLUSION AND FUTURE WORK

This paper introduces an adaptation model to address service variability. The 
lifecycle of each service element within the AESS metamodel is formulated 
as a control loop (MAPE-K) pattern based on the description of requirements. 
Adaptation mechanisms are realized through proactive and reactive adaptation 
scenarios, both of which are service requirements that can be viewed as a set 
of variants selected at runtime through a concept of variability rules for service 
change and evolution. The evaluation results showed that the proposed model 
is able to describe the scalability of services related to change and growth of 
new service requirements. The proposed model has an alternative design that 
is better than the previous work in variability modeling, where an alternative 
response in each variant, VC is capable of handling any stimulus under normal 
operating and overload conditions. In addition to these achievements, the 
adaptive capability maturity of the proposed model also improves the results 
of previous work.

Future research could detail additional features to enrich the description 
of service system requirements, as well as expand the context inference 
mechanism of the rule editor to accommodate more sophisticated conflict 
resolutions. Some approaches, such as strategies for machine learning and 
requirements reflection, could be taken into account in further studies.
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