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ABSTRACT

Twitter is one of most popular Internet-based social networking 
platform to share feelings, views, and opinions. In recent years, 
many researchers have utilized the social dynamic property of 
posted messages or tweets to predict civil unrest in advance. 
However, existing frameworks fail to describe the low granular-
ity level of tweets and how they work in offline mode. Moreover, 
most of them do not deal with cases where enough tweet infor-
mation is not available. To overcome these limitations, this arti-
cle proposes an online framework for analyzing tweet stream in 
predicting future civil unrest events. The framework filters tweet 
stream and classifies tweets using linear Support Vector Machine 
(SVM) classifier. After that, the weight of the tweet is measured 
and distributed among extracted locations to update the overall 
weight in each location in a day in a fully online manner. The 
weight history is then used to predict the status of civil unrest in a 
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location. The significant contributions of this article are (i) A new 
keyword dictionary with keyword score to quantify sentiment in 
extracting the low granularity level of knowledge (ii) A new dif-
fusion model for extracting locations of interest and distributing 
the sentiment among the locations utilizing the concept of in-tilizing the concept of in-
formation diffusion and location graph to handle locations with 
insufficient information (iii) Estimating the probability of civil 
unrest and determining the stages of unrest in upcoming days. 
The performance of the proposed framework has been measured 
and compared with existing logistic regression based predictive 
framework. The results showed that the proposed framework 
outperformed the existing framework in terms of F1 score, ac-
curacy, balanced accuracy, false acceptance rate, false rejection 
rate, and Matthews correlation coefficient.

Keywords: Text classification, information diffusion, sentiment analysis, 
polynomial regression, connected graph.

INTRODUCTION

Social networking platforms allow sharing of information, ideas, feelings and 
events among individuals, communities, and organizations. These platforms 
work as a tool for people in a positive or negative way (Chumwatana, 2018). 
The ubiquitous use of these platforms has enabled its users to communicate 
with thousands of other users within a few seconds.The users build a 
virtual community by connecting each other and transmitting information 
(Olanrewaju & Ahmad, 2018). Azpeitia, Ochoa-Zezzatti, & Cavazos, (2017) 
noted that the socio-cultural aspect of individuals can be used to characterize 
the behaviour of a community. A lot of such platforms exist in the world and 
among them Twitter has drawn the notable attention of scholars as it has an 
impressive number of users and open read characteristics (Oh, Eom, & Rao, 
2015; Valenzuela, 2013). Due to its high reachability and popularity, in recent 
years, researchers have investigated the role of Twitter in motivating, planning 
and mobilizing civil unrest events (Muthiah et al., 2015; Oh et al., 2015; Van 
Dyke & Amos, 2017). Civil unrest is a kind of social problem that includes 
riots, demonstrations, marches, protests, barricades, sit-ins and strikes. 
Sometimes it can cause a significant amount of economic and political loss 
(Dermisi, 2017; Passarelli & Tabellini, 2017). Several studies have found that 
most of today’s civil unrest events are planned and mobilized in advance on 
social networking platforms (Filchenkov, Azarov, & Abramov, 2014; Muthiah 
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et al., 2015). This social dynamic feature of social networking platforms like 
Twitter has motivated social scientists in analyzing tweet streams to detect and 
forecast unrest events while they are unfolding (Korolov et al., 2016; Watts, 
2013).

There are many unrest predictions and forecasting frameworks that 
exist based on social network streams (Galla & Burke, 2018; Kang et al., 
2017; Wu & Gerber, 2018) or based on Short Message Service (SMS) or 
texting via Smartphone (Chiluwa, 2018). However most of these frameworks 
are missing two critical issues. Firstly, they lack details. In other words, they 
fail to describe the low granularity level of sentiment inside a tweet. There 
are several methods for extracting hidden sentiment in tweets (Parlar, Özel, & 
Song, 2018). However, they are mostly frequency based (e.g. word frequency, 
inverse document frequency, word presence, and relevance frequency) (Parlar 
et al., 2018) and frequency based sentiment weighting is not by itself a good 
measure of sentiment as it fails to look more in depth inside the tweet. For 
an illustration, consider these two tweets, “Today, protestors leave the road 
as police build barricades” and “Today, protestors leave the road as police 
started to fire”. Though, both tweets have equal negative sentiment (equal 
frequency), but in practice, the second tweet bears more negative weight than 
the first tweet. Secondly, the distribution of Twitter users is not symmetric in 
all cities or countries in the world (O’Leary, 2015). 

Some countries have large numbers of tweet users (e.g. USA, Mexico 
and Saudi Arabia) while some countries have very low numbers of users 
(e.g. Bangladesh, Afghanistan). This fact results in a situation where some 
countries have insufficient numbers of tweet messages to predict civil unrest 
events. Almost, all frameworks fail to handle locations where enough tweet 
information is not available. However, a partial solution is provided using 
heterogeneous and multiple data sources for prediction (Korkmaz et al., 2015, 
2016). But collecting information from multiple sources is a time-consuming 
and costly task. Alternatively, a multi-tasking framework has been introduced 
based on sharing the information among all locations (Zhao et al., 2015, 2017). 
However, some locations may have no relation at all with the information and 
thus sharing all information among all locations is not a feasible task. The 
problem is reflected in the unstable performance over different locations. Thus, 
the scarcity of an online framework still exists to predict civil unrest events. 
The framework should be able to analyze the tweet in more granularities 
for in-depth sentiment analysis. The framework will also be able to predict 
and forecast unrest events in regions where sufficient tweet information is 
available as well as in regions where sufficient information is not available. It 
is hoped that the prediction framework will improve performance and show 
stable performance.
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In this study, we propose an online framework to predict civil unrest 
occurrence by analyzing real-time tweet stream utilizing the concept of 
sentiment analysis based on word weight. The following are the main 
contributions of this study:
i) This study proposes a new keyword dictionary with scores to 

measure word weight and extract sentiments in depth. The weight of 
keywords describes the importance of words in a text. To the best of 
our knowledge, the three existing methods to analyze tweets at a more 
granularity level are: AFFIN (Nielsen, 2011), MPQA (Raina, 2013) and 
NRC (Mohammad, Kiritchenko, & Zhu, 2013). However, all of these 
methods only extract the positive or negative polarity of sentiments in 
text documents. Unlike these methods, we are interested in extracting 
the level of sentiment of tweets which are reflected in their weight. In 
our framework, we assign a positive score to every word in the keyword 
dictionary. Moreover, we also consider the effect of negative words and 
influencing words (Table 3) which are not included in other prediction 
frameworks (Cadena et al., 2015; Kang et al., 2017; Korkmaz et al., 
2015; Wu & Gerber, 2018). This method of sentiment analysis enables 
the proposed framework to handle the first issue (as mentioned above) 
by analyzing tweets in depth.

ii) The revolution of social media enables the globalization of information 
that helps the world to know quickly what is happening in a city 
(Berestycki, Nadal, & Rodriguez, 2015; Zhao et al., 2017). The spread 
of information about any event or activity to other locations using 
communication networks is termed as information diffusion (Ferrara, 
2018; Liang & Kee, 2018). Several studies discussed the importance 
of information diffusion in influencing and spreading unrest activities 
to geographical proximity locations (Huang, Boranbay-Akan, & 
Huang, 2016; Lang & De Sterck, 2014; Zhao et al., 2017). Utilizing the 
concept of information diffusion, we propose a new diffusion model 
of information related to civil unrest. In the proposed framework, the 
locations are extracted from tweet messages and users’ profile. The 
weight of the tweets are distributed among extracted locations. The 
locations of study are represented by a location graph (Figure 4) which 
reflects the vicinity of the locations. The unrest sentiment of any location 
is represented by its measured weight using tweets which belong to that 
location. The location with insufficient tweets, gets the diffused weight 
from its neighbour locations to predict future civil unrest events. This 
dynamics of unrest events solves the second problem (as mentioned 
above).
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iii) Henslin (2011) noted that a planned unrest event goes through a 
sequence of five distinct stages and they are: observe, agitation, 
mobilization, organization and occurrence. The unrest process starts 
from the observe stage when people are actually not happy in their 
present social behaviour. They express their unhappiness in social media 
like Twitter. During the agitation stage, people share their thoughts with 
known people about an issue in society and they also want to change 
it according to their view point. In the mobilization stage, some people 
agree and use blogs, and tweets for a movement. In the organization 
stage, people are organized, select leaders, policies and tactics to keep 
the movement alive. Finally, the unrest events happen at the occurrence 
stage. The participants actively take part in demonstrations, road 
marches, strikes, etc. We utilize this concept to identify the stages of 
civil unrest events based on tweet weight. We measure the probability 
of unrest events in future and distribute the probability over the event 
stages to forecast future unrest events occurring.

Recent literature in the domain of civil unrest is reviewed in the 
‘related work’ section and a proposed framework is described in detail in the 
section that follows. After that, the performance of the proposed framework is 
measured and compared with existing prediction frameworks. The measured 
performance shows that the proposed framework has excellent capability/
potential to predict future civil unrest events and has outperformed existing 
prediction frameworks. Finally, the article summarizes and describes future 
research directions.

RELATED WORK

The quantification of social interactions on social media enables us to 
formulate social-psychology for objectively discovering social dynamics 
(Boonstra, Larsen, & Christensen, 2015). Social scientists and policymakers 
are especially interested in predicting civil unrest events as it can break 
geographical stability (El-Katiri, Fattouh, & Mallinson, 2014). The current 
study is the application of computational intelligence in the field of social 
science for forecasting civil unrest events based on the quantification of 
messages on Twitter. Several frameworks for extracting useful information 
from Twitter platform are extensively reviewed (Imran, Elbassuoni, Castillo, 
Diaz, & Meier, 2013; Kumar, Morstatter, & Liu, 2014). Based on these works, 
researchers have succeeded in varying degrees in predicting civil unrest 
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events. We reviewed articles from the recent five years from 2013 to 2017 
in the domain of civil unrest prediction based on social media contents to 
describe their features, advantages and weaknesses.

Table 1

Dimensions for annotating related literature articles

Letter Dimension Category Description
A Classification method Text classification method.

B Prediction method Future event prediction method.

C Data source Single (S) Only one source to collect test dataset/ single 
social media.

Multiple (M) More than one source to collect test dataset/ 
multiple social media.

D Analysis Content (D1) Mine only textual content for feature 
extraction and event forecasting.

User profile (D2) Mine user profiles and networks for 
extracting event related information.

E Features News count (NC) Total related news frequency.
Bag-of-words (BOW) Related keywords and key phrases in 

dictionary.
Sentiment (SM) Ultimate intention of user.

Temporal expression 
(TE)

Present time-related information.

F Region(s) Single (S) Conduct experiments on protests happening 
in a country/region.

Multiple (M) Perform event forecasting which can be 
extended to more than one region.

G Language(s) Single (S) Conduct experiments only on English 
Language tweets.

Multiple (M) Testbed consisting of multiple language 
content.

H Dealing with insufficient event 
information

Handle locations which fail to provide 
enough unrest related tweets.

I Gold Standard Report (GSR) Dataset Ground truth for framework evaluation.

Table 1, illustrates several criteria in depth for comparing the reviewed 
civil unrest frameworks. From Table 1, the classification method criterion (A) 
describes the classifier used to classify the tweets on Twitter and prediction 
method criterion (B) presents the method used for predicting future unrest 
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events. Data source dimension (C) describes whether the framework uses 
single (S) or multiple (M) sources to generate its test dataset in completing 
prediction tasks. The common metadata for analyzing in extracting features 
are message content and user profile which are denoted by D1 and D2, 
respectively. The extracted features are categorized into news count (NC), 
bag-of-words (BOW), user’s sentiment (SM), temporal or time-related 
information (TE) and the dimension is denoted as features (E). Whether 
the framework is applicable to multiple regions (M) or limited to a single 
region (S) is indicated by the region(s) criterion (F). The language dimension 
(G) describes the ability of the framework to process single (S) or multiple 
(M) languages. The next aspect (H) explains the fact as to whether or not 
the framework can predict unrest events in those locations where sufficient 
information is not available. The GSR (Gold Standard Report) dimension (I) 
is used to describe the ground truth dataset for framework evaluation. GSR 
contains the actual occurrences of civil unrest events.

Table 2 summarizes featured frameworks and compares reviewed 
articles. According to column A of Table 2, most of the articles use 
keyword dictionary for filtering and classifying contents into informative or 
uninformative classes (Cadena et al., 2015; Korkmaz et al., 2015; Manrique 
et al., 2013; Wu & Gerber, 2018; Xu, Lu, Compton, & Allen, 2014; Zhao 
et al., 2017). Some articles criticized this method of content classification 
as keywords alone cannot decide the relativity of content to civil unrest. 
Instead, they used keyword dictionary for filtering and the popular supervised 
classifiers like SVM (Chen & Neill, 2014; Korolov et al., 2016; Qiao & Wang, 
2015), Naïve Bayes (Qiao et al., 2017; Ramakrishnan et al., 2014; van Noord, 
Kunneman, & van den Bosch, 2016) and n-gram classifier (Compton et al., 
2014) for classification of content. An exception, Ranganath et al. (2016) 
used the latent discriminant classifier based on extracted latent dimension 
representation of content to identify related content.

Column B of Table 2, illustrates that nearly one-fourth of the reviewed 
articles search for future dates in the content for predicting unrest events 
occurring (Compton et al., 2014; Muthiah et al., 2015; van Noord et al., 
2016; Xu et al., 2014). However, these frameworks suffer from the fact that 
nowadays protestors are smart and rarely specify dates of their planned events 
directly in their posts. In view of this limitation, other authors use regression 
techniques like logistics and Least Absolute Shrinkage and Selection Operator 
(LASSO)  regression (Cadena et al., 2015; Korkmaz et al., 2015; Korolov 
et al., 2016; Qiao & Wang, 2015; Ramakrishnan et al., 2014; Wu & Gerber, 
2018), HMM (Hidden Markov Model) (Qiao et al., 2017), random forest 
(Singh & Pal, 2018) and Long Short-Term Memory Networks (LSTM) (Galla 
& Burke, 2018) in predicting tasks that use historical event information. 
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The rest of the authors introduce their own prediction models like data 
mining frameworks based indication and warning assessment, recognition 
system (IWARS) (Benkhelifa, Rowe, Kinmond, Adedugbe, & Welsh, 2014), 
graph-based non-parametric heterogeneous graph scan (NPHGS) model 
(Chen & Neill, 2014) and multi-task learning framework based Multi-Task 
Feature Learning (MTFL) model (Zhao et al., 2017), Bayesian model fusion 
framework (Hoegh, Leman, Saraf, & Ramakrishnan, 2015), Naïve Bayes 
(Hossny & Mitchell, 2018), and keyword frequency-based model (Manrique 
et al., 2013).

Column C of Table 2 shows that more than 50% of the articles use 
single social media like Twitter, Tumblr while less than 50% use multiple 
social media combing social networking platforms with news sources for 
collecting, analyzing and predicting civil unrest occurrences.

Based on column D of Table 2, most of the reviewed articles analyze 
media contents in their framework. With the exception of Manrique et al. 
(2013) who use Google Trends (GT) and two other frameworks which use 
Global Data on Events, Location, and Tone (GDELT) database features (Qiao 
et al., 2017; Qiao & Wang, 2015) in their prediction task instead of accessing 
media content or user profiles. Besides analyzing contextual metadata, some 
researchers (Cadena et al., 2015; Chen & Neill, 2014; Compton et al., 2014; 
Muthiah et al., 2015; Ramakrishnan et al., 2014) elicited several types of 
information from user profiles such as follower lists and home locations from 
their frameworks.

Based on column E of Table 2, all articles generated their own keywords 
and key-phrases dictionary in their respective prediction framework. Some of 
the articles also extracted temporal expressions like tomorrow, January 1, 7.00 
a.m., etc., from news contents (Compton et al., 2014; Muthiah et al., 2015; 
Ramakrishnan et al., 2014; Wu & Gerber, 2018; Xu et al., 2014), while some 
of the articles used the frequency of news in their framework (Cadena et al., 
2015; Chen & Neill, 2014; van Noord et al., 2016; Wu & Gerber, 2018; Zhao 
et al., 2017). Another important feature termed as the sentiment hidden in a 
post was extracted from a few articles for a more in-depth analysis of social 
media content to improve prediction performance (Benkhelifa et al., 2014; 
Chen & Neill, 2014; van Noord et al., 2016).

From column F of Table 2, it can be seen that the articles are classified 
into two classes (single, or multiple) based on the region(s) covered. About 
43% of them are focused on a specific region such as the Netherlands, Latin 
America, and Africa whereas more than 50% of the reviewed articles are 
applicable to multiple regions.

Column G of Table 2 illustrates that nearly all popular social media 
like networking platforms and news media supply the features of providing 
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content in multiple languages. However, all the articles are not able to process 
any language in the domain of civil unrest prediction. We have categorized the 
articles into two categories (single or multiple). The first category can process 
single languages like English, Dutch, Hindi or Spanish (Chen & Neill, 2014; 
Korolov et al., 2016; Manrique et al., 2013; Qiao et al., 2017; van Noord et al., 
2016) and the rest of the articles can process multiple languages.

It is also important to handle cases when a location has insufficient 
social media content to predict the occurrence of civil unrest. Column H of 
Table 2 noted that most of the articles missed this vital issue. It has been proven 
that civil unrest is diffused to neighbouring locations by communication 
networks (Ferrara, 2018; Huang et al., 2016; Lang & De Sterck, 2014; Zhao 
et al., 2017). Thus, considering this fact, two efforts have been found so far. 
The first effort comes from Korkmaz et al. (2015) and Korkmaz et al. (2016) 
where heterogeneous data sources are used, and the second effort comes from 
Zhao et al. (2015) and Zhao et al. (2017) where information is equally diffused 
to all locations to predict unrest events.

Finally, column I of Table 2, gives the Gold Standard Dataset (GSR) 
which is used by each article to measure performance. More than, one-third 
of them generate their own truth data set by MSMLN (Manually Searching 
Major Local Newspapers) to use as ground truth dataset. The other datasets 
include MITRE, Govt. Agencies Provided (GAP), Cross-National Time Series 
Dataset (CNTS), Intelligence Advanced Research Projects Activity (IARPA), 
GDELT (Global Data on Events, Location, and Tone), TwiNL, Google Trends (GT).

From the discussion on existing frameworks, most of the articles used 
their own keyword dictionary to filter tweet data sets. They also used the 
existing classifier to classify tweets and term frequency method to extract tweet 
sentiments. But, there was no existing work to measure the level of sentiment. 
In other words; they did not provide the low granularity level of tweet stream. 
Regression technique remains popular for the prediction of unrest tasks. Most 
of the frameworks processed tweet streams to predict unrest events in small 
set locations and generated their own ground truth data sets. The frameworks 
worked mostly in offline mode where whole datasets were required during 
the execution of the frameworks. Moreover, most of the existing frameworks 
were not able to predict civil unrest events where sufficient tweet information 
was available.

METHODOLOGY

An online framework has been proposed as in Figure 1 in this study, to 
analyze tweet streams for predicting civil unrest events in multiple regions 
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of the world. Overall, the framework starts with a 2-stage filtering (keyword 
and location based) of noisy tweet stream as will be explained later in this 
section. The stream then passes through a trained SVM classifier to classify 
each tweet into related or unrelated class. Using the proposed keywords scale 
(examples in Table 3), the weight of each tweet is measured and distributed 
to corresponding locations. The overall weight of each location is updated 
recursively. The weight of a location with an insufficient number of tweets 
is determined using the connected location graph. The weight indicates the 
negative sentiment of a citizen in a particular area towards an unrest event. 
This weight history is used to predict and forecast future unrest possibility in 
a specific area.

Figure 1. Proposed civil unrest prediction framework.

Data Acquisition, Cleaning and Keyword-based Filtering

Twitter platform provides two APIs for capturing tweets from Twitter. The 
first one is REST API that allows the downloading of 100 tweets per queries 
and 450 queries per 15 minutes (Ochoa-Zezatti, 2016). This limitation of 
REST API is overcome by another API called Streaming API that allows the 
streaming of tweets using a persistent HTTP connection without separating 
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user request. The proposed framework collects civil unrest related tweet 
stream using Streaming API. After acquiring the tweet stream, it is cleaned by 
deleting re-tweets as they carry existing information. Emojis, html links and 
punctuations are also removed. The raw tweet is then split into its words using 
classical tokenization and all non-alphanumeric characters and web links are 
also removed. A word may be in different parts of speech. For simplification, 
Porter stemming algorithm (Porter, 1980) is used to represent the derived 
words in their stem or root form.

A keyword-based filter is used to remove unnecessary tweets from the 
tweet stream. The filter is developed based on a keyword dictionary. Civil 
unrest related tweets on Twitter for 30 days are analyzed and a dictionary is 
developed with the help of a domain expert who is basically a social scientist 
to determine the keywords. The keyword identification method in the proposed 
framework is similar to some other efforts (Cadena et al., 2015; Chen & Neill, 
2014; Korkmaz et al., 2015; Ranganath et al., 2016; Xu et al., 2014). The tweet 
which is written in English language is considered for keyword identification. 
The identified keywords form a dictionary called “keyword dictionary”. 
Figure 2 represents the developed keyword cloud that contains 200 keywords.

Figure 2. Keyword cloud for proposed framework.
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The proposed keyword dictionary is used to filter out unusable tweets. 
Suppose, a tweet message is represented by a tuple, T(M, U, Z) where M is 
the tweet message, U is the user profile and Z is the temporal information. 
The user profile, U is a metadata that includes name, permanent/home and 
current location of user. The temporal variable, Z stores the date and time 
of tweet posting. Tweet message, M is represented using its N stems that is,  
M = {S1, S2, S3,......,Sn-1, Sn}. Then, the relativity (RM) of M to unrest is a binary 
variable (0 means related and 1 means unrelated) which is calculated based 
on its n stem’s existence in keyword dictionary, D using the following logical 
expression in Equations 1 and 2.

                                          
(1)
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dictionary                           

The tweet, T is identified as unrelated if RM= 0 and it is filtered out. 
Otherwise, T is passed though a second filter for further processing.
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After keyword based filtering, the tweet is passed though a second filter 
called location based filter. The tweet with no location of interest is filtered 
out. This filtering prevents the processing of uninformative tweets. For this 
purpose, spatial information is extracted from the user profile (U) and tweet 
message (M). The current (LM) and permanent/ home location (Lh) of the user 
are extracted using Carmen geocoding technique from the user’s profile, U 
(Cadena et al., 2015). Besides, a tweet message may contain one or more 
explicit locations and the extracted location set is LM = {L1, L2, L3,......, Lp-1, 
Lp}  . The total extracted location set is LT = Lc ∪	Lh ∪ L

M  = {Lc, Lh, L1, L2......, 
Lp-1, Lp} Suppose the target location set of the framework is  for R locations. 
Then, the tweet, T is filtered out if the following filter (Equation 3) FL returns 
an empty location set (i.e. FL = φ ).
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If  FL ≠ φ, then tweet T, belongs to at least one location from the target location 
set V and T is classified into two classes (informative or uninformative) using 
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popularity in the field of text classification because it not only minimizes errors 
but also has low complexity (Dilrukshi, De Zoysa, & Caldera, 2013) The basic 
principle of the linear SVM is to create a hyperplane that separates the samples 
into two classes (Zou & Jin, 2018). The closest samples to the hyperplane are 
computed from both classes. These samples are called support vectors and 
the distance between the line and the support vectors is called the margin. 
The hyperplane with the maximum margin is the optimal hyperplane. Before 
tweet classification, the linear SVM classifier is trained with training tweet 
sets. We downloaded tweets from Twitter platforms and manually labelled the 
tweets into either informative or uninformative classes. The annotated tweets 
are used as training data set for the classifier. In this stage, Count Vectorizer 
module of Scikit-learn Toolkit (Pedregosa et al., 2011) is used for tokenizing 
and extracting feature vectors from tweet datasets.

Recursive Solution to Measure Tweet Weight

The overall sentiment of people in a particular location in any specific day 
towards an unrest event is measured based on keyword scoring and tweet 
weight. The overall weight in a location is computed recursively so that the 
framework provides an online solution for unrest prediction. The following 
sections describe the scoring of keywords and measuring of individual tweet 
weights. The recursive method for computing the overall tweet weight is 
described in later sections.

Scaling of Keywords

The keyword dictionary contains a total of 200 keywords (Figure 2). But all of 
them do not carry the same level of information related to civil unrest events. 
Motivated by the work of Nielsen (2011), who scored the words in a sentence 
for sentiment analysis; we conducted scaling of the keywords to weigh the 
impact on an event. For example, the word ‘murder’ carries more weight 
than the word ‘fight’, and also the latter word carries more weight than the 
word ‘trouble’. Moreover, the presence of adjectives, adverbs and determiners 
(influencing words) before a keyword affects the overall weight of sentiment of 
the keyword. For example, the appearance of ‘huge’ before ‘protest’ increases 
the weight of ‘protest’ while the word ‘minor’ before ‘protest’ decreases the 
weight. Also, the presence of a negation word before a keyword alters the 
polarity of the following word (Hasan, Sabuj, & Afrin, 2015). For example, 
‘no strike’ opposes the meaning of ‘strike’. In the proposed framework, the 
keywords are categorized into five categories and the influencing words in 
three special categories (Table 3). The keywords from first category describe 
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the highest negative impact of an unrest event on civil life while keywords 
from fifth category have the lowest negative impact of an event. Influencing 
words from the first special category increases the impact of keywords that 
come next while words from the second special category decreases the impact. 
The third special category is for negation words; these are extracted from the 
work of Hasan et al. (2015). Words which are not in the keyword dictionary or 
in a special category word list are termed as uncategorized words. Examples 
of words from these eight categories are given in Table 3 with their scale.

Table 3

Examples of keywords with its categories and scales

Category Example of keywords Summation 
Scale (A)

Multiplication 
Scale (B)

Category 1 kill, attack, bomb, terror, riot, clash, 
murder, etc.

5.0 1.0

Category 2 smash, blast, shot, fire, brutal, 
tyranny, etc.

4.0 1.0

Category 3 strike, damage, protest, fight, march, 
hijack, etc.

3.0 1.0

Category 4 rob, harass, assail, loot, trouble, 
defeat, etc.

2.0 1.0

Category 5 disorder, against, panic, apostasy, 
confusion, etc.

1.0 1.0

Special 
Category 1

huge, much, terrible, serious, 
dangerous, major, etc.

0 1.20 (Increase 
preceding keyword 

weight by 20%)

Special 
Category 2

few, near, slight, minor, etc. 0 0.80 (Decrease 
preceding keyword 

weight by 20%)

Special 
Category 3

not, no, never, n’t. 0 -1.0 (Inverse 
preceding keyword 

weight)

Uncategorized Other words 0 1.0

Furthermore, in Table 3, the proposed framework sets two kinds of 
scaling (summation and multiplication scale) for each keyword and influencing 
word. Keywords from the first category have the highest negative impact on 
society, so the summation score is 5.00 while the minimum summation scale 
of 1.00 is assigned to the fifth category of keywords as they have the lowest 
negative impact. This framework also assigns the multiplication scale value 
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of 1.20 for words in the first special category i.e. those that increase preceding 
keyword weight by 20%. Words from the second special category have a 
multiplication scale of 0.80 which decreases the preceding keyword weight 
by 20%. Words from the third special category have a multiplication scale 
value of -1.00 i.e. those that inverse preceding keyword weight.

Measure Weight of Tweets

After classification, each tweet (T) is processed further to measure its weight 
to determine whether the tweet (T) falls into “informative” class. The weight 
of T (M, U, Z) is computed based on its stem score and scaling (Table 3). The 
temporal information, Z of tweet T, includes the data (d) and time (t) of tweet 
posting. As described earlier, the message M, is represented by its stem set,  
M = {S1, S2, S3,......., Sn-1, Sn} where n is the number of stems (root form of each 
word). Then, there exists a stem set P such that P = M ∩ D where D represents 
the keyword dictionary. The weight W(t) of tweet T at time t, can be calculated 
using Equation 4.

                                      (4) 

Where, Ai= Summation score of stem Si and Bi-1= Multiplication scale of stem 
Si-1

Weight Distribution

In the proposed framework, we distributed the weight of tweets instead of 
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The model of tweet (or its weight) distributor function is shown in Figure 3 as follows. 
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Figure 3. Tweet weight distributor.

If for any location Vj, the distributor function Equation 5 returns true for a 
tweet T, then tweet T belongs to the location Vj. In this case, Vj is added to the 
weight distributing location set, LD, as stated in Equation 6.

LD = LD ∪ V, if f (Vj, T) = 1                                                          (6)     

Suppose, Equation (6) generates the weight distribution location set LD = 
{LD1, LD2,....., LDQ} with Q locations where 0 <	Q ≤ R and LD ∈V. Finally, the 
weight, W(t)  of tweet (T) is distributed to every location from location set LD. 
The overall weight and tweet count of every location in LD is location updated 
using W(t).

Recursive Weight Updating

The overall weight of any target location from location set V = {V1, V2,....., 
VR-1, VR}at any day d is updated in an online manner. The weight (W(t)) of a 
newly arrived tweet is used to update the overall weight,           and tweet count,       
      to every extracted location LDi in distributing location set LD = {LD1, 
LD2,....., LDQ} where LD

 = {LD1, LD2,....., LDQ}. If at time instant t, there are               
       (t) tweets from the tweet stream for location LDi, then the overall weight

         for LDi is represented using Equation 7.
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where, at time (t+1) the weight of new tweet is, )1( tW
iLD . 

Remarks: The above equation (8), for overall weight computation for any location iLD , works well 

for large sets of tweets in a target location. A low number of tweets may create a false positive weight 

where every single tweet sample’s weight significantly affects the overall weight. For example, if 2 

tweets exist in a target location and the overall weight is high, then generally it is interpreted as a high 

level of civil unrest polarity. However, at a practical level, the overall weight may not reflect the actual 

situation of the target location. Thus, the framework sets a threshold value thTC of tweet counter to 

minimize this bias. 

Predicting Future Weights 

The weights of future days (prediction period) are predicted based on the weight history (window size) 
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connectivity among target locations. The set of L target locations V = {V1, 
V2,....., VL-1, VL} works as vertices and neighbouring set E = {e1, e2,....., en-1, 
en} works as the edge between two vertices. In graph G,                  represents 
the vertice vi with weight          . If a location Vi has weight average 0 and its 
adjacency vertex set is R, then the diffused weight of Vi is computed using 
Equation 10.

                                                        (10)

An illustration of the location graph is is shown in Figure 4 as follows. 

Figure 4. Connected location graph.
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can be calculated as Equation 11.
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Where, the parameter ρ negotiates between the diffused weight (         ) and 
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that the weight history and diffused weight contribute equally to measure the 
current weight.
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This probability (Pvj
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civil unrest at location (Vi) on jth future day. The measured probability is 
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organization, and occurrence) as in Figure 5. The final stage is the occurrence 
stage where unrest breaks out.

Thus in distributing a probability equally, if the probability falls between 
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Figure 5. Probability distribution of unrest stages.

RESULTS AND DISCUSSION

Prior to the execution of the framework, three parameters namely tweet count 
threshold (TCth) standard weight (Wstd) and baseline weight (Wbl) were set. 
To set the parameters, we collected tweet streams from all target locations 
(178 countries) in a duration of 180 days from April 05, 2017 to October 
01, 2017. The tweets from the stream were classified and the overall weights 
were measured each day for a duration of 180 days from April 05, 2017 to 
October 01, 2017. During this period, significant civil unrest events around 
the world were searched in the GlobalData on Events, Location, and Tone 
(GDELT) database (Leetaru & Schrodt, 2013). In this experiment, significant 
unrest events referred to those events which had international news coverage 
and significant negative impact on society. The standard weight (Wstd) was set 
to the maximum weight that was found among all unrest events occurring day 
in all countries. The experiment found that the maximum of such weight was 
6.96 and the standard weight was set as Wstd = 7.0 by rounding the value. On 
the other hand, the baseline weight (Wbl) was set to the minimum weight that 
was found among all peace days in all countries. The experiment set found 
the minimum weight as 4.54 and the baseline weight was set as Wbl = 4.5. The 
experiment set the count threshold as TCth = 50.

The experiment executed the proposed framework from November 2017 
to June 2018 in 178 countries around the world. The Twitter data streams for 
the period from November 1, 2017 to November 25, 2017 were used to train 
SVM, while the data streams from November 26, 2017 to June 25, 2018 were 
used to evaluate performance. Similar to the effort by Korolov et al. (2016), 
the performance of the proposed framework was compared with the mainly 
used logistic regression based framework. The existing logistic regression-
based method uses Gold Standard Report (GSR) event stream which are coded 
using the binary variable for predicting future events. To identify the true and 
false prediction, the predicted events of both frameworks were compared with 
the labelled events set, known as the GSR. The experiment used the GDELT 

 

measured based on both diffused weight )( d
Vi

DW  and weight on previous day )( 1d
Vi

WH  as Equation 

(12). 
d

V
d
V

d
V iii

DWWHWH )1(1                                                                      (12) 

Where, the parameter ρ negotiates between the diffused weight )( d
Vi

DW  and weight history )( 1d
Vi

WH  

to determine d
Vi

WH . With ρ=0 setting implies that the weight history and diffused weight contribute 

equally to measure the current weight. 

Forecasting Future Civil Unrest 

An increase in the recent collective level of knowledge of a future protest is correlated with the 

occurrence of the onset of a protest in the near future (Wu & Gerber, 2018). Benkhelifa et al. (2014) 

also proved that future unrest events can also be predicted by comparing the current record with 

historical records of activities during normal and unrest periods in social networking platforms. 

Similarly, the proposed framework estimates the weight )..,,( 21 Fd
V

d
V

d
V iii

WHWHWH   in future dates 

(prediction period, F) using historical (window size, H) weights )..,,( 1 Hd
V

d
V

d
V iii

WHWHWH  . We have 

used the 2nd order polynomial regression for weight estimation as the weights of tweet stream have 

non-linear properties. The estimated weight is used to forecast future unrest events with the help two 

other framework parameters, baseline weight )( blW  and standard weight ( stdW ). Baseline weight 

)( blW  is the minimum weight during times of peace and the standard weight ( stdW ) is the maximum 

weight during times of unrest. If in a location (Vi), the predicted weight )( jd
Vj

WH   at jth the prediction 

day from current day d, then the probability ( jd
V j

P  ) of unrest event occurring as Equation (13) 

blstd

bljd
Vjd

V WW

WWH
P j

j 






       for j=1,2,3, ……..,F                                                 (13) 

This probability )( jd
V j

P  is used to determine the current stage of civil unrest at location (Vi) on jth 

future day. The measured probability is equally distributed over five unrest stages (observe, agitation, 

mobilization, organization, and occurrence) as in Figure 5. The final stage is the occurrence stage 

where unrest breaks out. 

 



Journal of ICT, 19, No. 1 (January) 2020, pp: 65-101

86

(Leetaru & Schrodt, 2013) dataset as GSR, with its tremendous amount of event 
records which were more than any other event datasets (Qiao et al., 2017). The 
dataset was downloaded using the GDELT provided event exporter service. 
According to the GDELT data format codebook (Gerner, Schrodt, Yilmaz, 
& Abu-Jabr, 2002), any data row (event) in the database with ‘Event Root 
Code’ 14 is decoded as an unrest event, ‘NumArticles’ is the total number 
of source documents containing the event and ‘AvgTone’ is the average tone 
range from -100 (extremely negative) to +100 (extremely positive) to express 
the total impact of an event. As for each country, we were interested to predict 
civil unrest events which had a significant negative impact on society, so the 
GDELT was further filtered with a minimum number of articles with 10 to 
reduce biases and the average tone with less than -5.00 to identify events 
which had significant negative impact.

To measure the performance of SVM classifier, we selected 10,500 
tweets randomly from the testing data stream. The tweets were manually 
classified as ‘informative’ or ‘uninformative’ with the help of domain 
expert. The tweets were then classified using trained SVM and then 
compared with the manually labelled class. The comparisons generated four 
results; they were true positive (manual=informative, SVM=informative), 
true negative (manual=uninformative, SVM=uninformative), false 
positive (manual=uninformative, SVM=informative) and false negative 
(manual=informative, SVM=uninformative). Based on these class results, the 
performance SVM classifier is illustrated in Figure 6.

Figure 6. Performance of SVM classifier.
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In Figure 6, the performance of SVM is described in terms of five 
parameters. They are accuracy (ACC), F1 score (F1), true negative rate or 
specificity (SPC), recall or true positive rate (TPR) and precision (PPV). The 
figure shows that the trained SVM classifier indicates more than 95% accuracy 
and recall. Precision and specificity are also nearly 95%. The overall F1 score 
is 0.936 which proves the excellent performance of SVM. However, accuracy 
and F1 score are below 1 as they fail to identify some truly informative tweets 
(false negative). This occurs when tweets contain abbreviations and informal 
words.

Muthiah et al. (2015) reported that the best prediction period for civil 
unrest using Twitter was 2.82 days. Kallus (2014) also predicted significant 
unrest which occurred in three days that followed. Similarly the proposed 
framework forecasted the occurrence of civil unrest in three days that followed 
(prediction period, F=1st, 2nd, and 3rd day) from December 03, 2017 to June 
28, 2018 in a seven-day window (H=7) for four selected countries namely, 
Afghanistan, Argentina, Australia and Bangladesh. The predicted probabilities 
are presented in Figures 7(a-d) in a similar manner as presented by Azpeitia, 
Ochoa-Zezzatti, and Cavazos (2017).
                

Figure 7. Predicted civil unrest probability by proposed framework for four 
countries.
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Based on Figure 7, Bangladesh shows special behaviour where for 
most days it has insufficient tweet information, and thus uses diffused and 
historical weights for predicting future unrest probability. The unrest stages 
are, ‘observe’ and ‘agitation’ in a few number of days. The ‘mobilization’ 
stage is the most frequent stage found in all four countries. Among all the 
countries in Figure 7, Bangladesh is seen to be the country with the most 
potential for civil unrest occurrence. Most importantly, it can be seen that 
the probability for civil unrest increases and decreases sequentially on most 
days. For example, on 6th December 2017 the unrest stage was ‘agitation’ in 
Argentina and it turned into the ‘mobilization’ stage on 9th December and 
progressed to ‘organization’ stage on 12th December. Finally civil unrest 
broke out on 16th December in Argentina.

To measure the performance of any forecasting framework, it is neces-
sary to determine how many instances are correctly identified and how many 
instances are missed or incorrectly identified. If for any country c, the true 
events set and predicted events sets for l prediction days are, 
and                               respectively where                for i = 1,2,3,....,n 
test days then true positive (TP) is the number of truly identified significant 
unrest event i.e.                       and true negative (TN) is the case where the 
framework correctly identifies that no unrest events occur i.e.                               . False positive (FP) and false negative (FN) is defined as the number of incor-
rectly identified and missed unrest events. The performance of the framework 
is compared with logistic regression based prediction framework using its F1 
score. F1 score considers both precision and recall to measure the accuracy of 
forecasting framework using Equation 14.

                                          (14)

Figures 8 (a-d) illustrate the F1 score values for three different prediction 
periods in four different countries. From Figures 8(a-d), the F1 scores are the 
highest and best for the proposed framework in all countries on the first (F=1) 
and second (F=2) prediction day. The scores are very close to each other for 
both frameworks in all the four countries on the third prediction day (F=3). The 
F1 scores of the proposed framework are better in Afghanistan and Australia 
than the existing logistic regression based framework while the results altered 
for the other two countries. Overall, the F1 score is nearly between 0.6 and 0.7 
on the first prediction day, a 10% decrement on the second prediction day for 
both frameworks in the countries mentioned. The scores remain close to each 
other in both frameworks in all countries on the third prediction day.
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Figure 8. F1 scores for different prediction periods in different countries.

Thus, the performance of the proposed framework is better than the 
existing framework in terms of F1 scores and the best result is found on the 
first prediction day.

The performance of the proposed framework is further measured based 
on their balanced accuracy (BACC) that is defined as the mean of true positive 
rate (TPR) and true negative rate (TNR) (Qiao et al., 2017). TPR is the frac-(Qiao et al., 2017). TPR is the frac-. TPR is the frac-
tion of TP to positive instances and TNR is the fraction of TN to total negative 
instances. BACC is computed as Equation 15.
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The BACC for three prediction periods in four different countries is presented 
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Figure 9. BACC for different prediction periods in different countries.
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regression based framework and for the other three countries, the proposed 
framework is still better than the existing one. It is also found that the BACC 
value in Bangladesh is lower than the other three countries. The derived tweet 
weight is hoped to be deviated by a small amount which contributed to this 
depreciation in performance.

To evaluate the falsely produced result, two metrics were used in this 
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According to figures 9(a-d), on the first prediction day (F=1), the proposed framework outperforms the 

logistic regression based framework in all countries in terms of BACC. On the second prediction day 

(F=2), the BACC values of the proposed framework are better than the existing framework in 

Afghanistan and Australia whereas they are nearly equal for both frameworks in Argentina and 

Bangladesh. But in the case of the third prediction day (F=3), BACC of the proposed framework is below 

the logistic regression based framework and for the other three countries, the proposed framework is still 

better than the existing one. It is also found that the BACC value in Bangladesh is lower than the other 
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2008). FAR is defined as the ratio of falsely accepted unrest events to the total 
number of unrest events occurring. This indicates the likelihood that an event 
may be falsely accepted and must be minimized in high-performing prediction 
framework. FAR is measured as Equation 16.

                                                                       (16)

The measured FAR for three prediction days (F=1, 2, 3) in four countries is 
shown in Figures 10(a-d).
  

Figure 10. FAR for different prediction periods in different countries.

From Figures 10(a-d), on the first prediction day (F=1), the proposed 
framework show less FAR than the logistic regression based framework in 
all countries. On the second prediction day (F=2), the value of the framework 
is better than the existing framework in Afghanistan and Australia whereas 
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they are nearly equal for both frameworks in Argentina and Bangladesh. But 
in the case of the third prediction day (F=3), the proposed framework finds 
less falsely accepted events than other frameworks in Bangladesh and for the 
other three countries; the proposed framework is still better than the existing 
one. It is also found that the FAR value in Bangladesh is lower than the other 
three countries.

FRR is defined as the ratio of falsely rejected unrest events to the total 
number of non-events occurring. FRR describes the probability that a true 
event may be rejected as a non-event and measured as Equation 17.

                                                                               (17)

Where FN is False Negative and TN is True Negative.

Figure 11. FRR for different prediction periods (F=1, 2, 3) in different countries.
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Figure 11. FRR for different prediction periods (F=1, 2, 3) in different countries. 

 

Figures 11(a-d) illustrates that FRR follows approximately the same characteristics as FAR, Figures 10(a-

d). The FRR is below in the proposed framework than the existing logistic regression framework in 

Australia and Bangladesh. It remains nearly unchanged for Argentina but in Afghanistan the proposed 

framework shows more falsely rejected cases on the third prediction day (F=3). 
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Figures 11(a-d) illustrates that FRR follows approximately the same characteristics as FAR, Figures 10(a-

d). The FRR is below in the proposed framework than the existing logistic regression framework in 

Australia and Bangladesh. It remains nearly unchanged for Argentina but in Afghanistan the proposed 

framework shows more falsely rejected cases on the third prediction day (F=3). 



93

Journal of ICT, 19, No. 1 (January) 2020, pp: 65-101

Figures 11(a-d) illustrates that FRR follows approximately the same 
characteristics as FAR, Figures 10(a-d). The FRR is below in the proposed 
framework than the existing logistic regression framework in Australia and 
Bangladesh. It remains nearly unchanged for Argentina but in Afghanistan the 
proposed framework shows more falsely rejected cases on the third prediction 
day (F=3).

Matthews correlation coefficient (MCC) was first introduced by B.W. 
Matthews to assess the performance of a prediction framework (Matthews, 
1975). MCC is measured using Equation 18.

                                                 (18)

Figures 12(a-d), illustrates the MCC value for different prediction periods 
where on the first (F=1) and second (F=2) prediction day, the coefficient value 
is best for the proposed framework in all countries.

Figure 12. MCC for different prediction periods in different countries.
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Figure 12. MCC for different prediction periods in different countries. 

According to Figures 12(a-d), on the first prediction day (F=1), the proposed framework shows better 

MCC value than the logistic regression based framework in all the four countries. On the second 

prediction day (F=2), the MCC value of the proposed framework is more than the existing framework in 

Afghanistan, Australia and Bangladesh whereas they are nearly equal for both frameworks in Argentina. 
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According to Figures 12(a-d), on the first prediction day (F=1), the proposed framework shows better 

MCC value than the logistic regression based framework in all the four countries. On the second 

prediction day (F=2), the MCC value of the proposed framework is more than the existing framework in 

Afghanistan, Australia and Bangladesh whereas they are nearly equal for both frameworks in Argentina. 
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According to Figures 12(a-d), on the first prediction day (F=1), the 
proposed framework shows better MCC value than the logistic regression 
based framework in all the four countries. On the second prediction day 
(F=2), the MCC value of the proposed framework is more than the existing 
framework in Afghanistan, Australia and Bangladesh whereas they are nearly 
equal for both frameworks in Argentina. But in case of the third prediction day, 
the MCC of the proposed framework is below the existing logistic regression 
based framework and for the other three countries, the proposed framework 
is still better than the existing one. Similar to the F1 score and BACC, the 
experiment found that the MCC value in Bangladesh is lower than the other 
three countries.

In this experiment, the performance of the proposed framework is ana-
lyzed for three prediction days (F=1st day, F=2nd day and F=3rd day) based 
on three different historical time granularity (H=7 days, H=14 days and 
H=21 days) in terms of accuracy for determining the effective window size. 
Accuracy is the proportion of correctly identified instances (Visa, Ramsay, 
Ralescu, & Van Der Knaap, 2011) as Equation 19.

                                                                      (19)

The measured ACCs for three prediction periods (F=1, 2, 3) in four different 
countries are represented in Figures 13(a-d). From Figures 13(a-d), it can 
be seen that on the first prediction day (F=1) the accuracy is highest for the 
window size of seven days (H=7) in all the four countries. By increasing the 
prediction day (F=2, 3), the accuracy decreases in all the four countries. It 
can also be seen from Figures 13(a-d) that for the window size of 14 days 
(H=14), the accuracies in all countries are lower than the window size of 
seven days (H=7) for all prediction days (F=1, 2, 3). When the window size 
is further increased to 21 days (H=21) days, for the first prediction day (F=1), 
the accuracy performance decreases for all countries.

The prediction accuracies is highest for the window size of seven days 
in all the following countries for all prediction periods except Afghanistan 
where the accuracy for the window size of 21 days crosses the accuracy for the 
window size of seven days. It is also illustrated in the figures that accuracies 
for the window size of 21 days are better than the window size of 14 days.
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Figure 13. Accuracy for different prediction periods (F) and different win-
dow sizes (H).

CONCLUSION

In this study, a granularity framework for tweet stream processing has been 
proposed which enables us to predict the probability of civil unrest events 
occurring in any location. While almost all existing frameworks are designed 
simply based on term frequency, the proposed framework analyzes tweet stream 
at a more granularity level by weighting the term along with the frequency. 
The quantitative value of unrest related sentiments in a tweet is measured 
based on keywords and influencing words scaling. The recursive nature of 
calculating the overall weight of tweet stream in the proposed framework 
enables us to analyze the tweet in real time. This feature supports the proposed 
framework as an online analysis framework. The proposed framework also 
utilizes the diffusion property of civil unrest events and connected location 
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Figure 13. Accuracy for different prediction periods (F) and different window sizes (H). 

The prediction accuracies is highest for the window size of seven days in all the following countries for 

all prediction periods except Afghanistan where the accuracy for the window size of 21 days crosses the 

accuracy for the window size of seven days. It is also illustrated in the figures that accuracies for the 

window size of 21 days are better than the window size of 14 days. 

CONCLUSION 

In this study, a granularity framework for tweet stream processing has been proposed which enables us to 

predict the probability of civil unrest events occurring in any location. While almost all existing 

frameworks are designed simply based on term frequency, the proposed framework analyzes tweet stream 

at a more granularity level by weighting the term along with the frequency. The quantitative value of 
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graph to handle locations where sufficient information related to unrest is not 
available. This feature of the framework circumvents the effort and cost of 
depending on alternative sources of required information.

To the best of our knowledge, this is the first quantitative framework 
to analyze tweet stream for predicting and forecasting the occurrence of civil 
unrest events in the future. The forecasting performance of the proposed 
framework outperforms the mainly used logistic regression-based framework 
on the first prediction day in all experimental locations. In addition, accuracy 
on the first prediction day is improved by about 10% if the proposed framework 
uses the tweet stream weight for the seven days window instead of 14 or 21 
days. Though, the proposed framework successfully predicts the occurrence 
of significant civil unrest events at around 85% of cases with some exceptions 
on the first day of prediction, the accuracy decreases with the increasing 
prediction period. This fact leaves future research on improving performance. 
Besides, the proposed keyword dictionary contains only English words; even 
though, a lot of users use language specific keywords in their tweets which are 
not translatable, including language specific keywords which could improve 
forecasting accuracy. Furthermore, forecasting unrest periods, groups of 
participants in civil unrests and the economic losses incurred could also serve 
as directions for future research from the current study.

ACKNOWLEDGEMENT

This research work was supported by the Ministry of Higher Education, 
Malaysia through the Fundamental Research Grant Scheme (Grant no. RDU 
170395 and RDU 190184). The author would like to acknowledge Universiti 
Malaysia Pahang for its partial support from another research grant (Grant no. 
RDU 170103).

REFERENCES

Azpeitia, D., Ochoa-Zezzatti, A., & Cavazos, J. (2017). Viral Analysis on 
Virtual Communities: A Comparative of Tweet Measurement Systems. 
In P. Melin, O. Castillo & J. Kacprzyk (Eds.), Nature-Inspired Design of 
Hybrid Intelligent Systems (pp. 801-808). Cham: Springer International 
Publishing.

Benkhelifa, E., Rowe, E., Kinmond, R., Adedugbe, O. A., & Welsh, T. (2014, 
August). Exploiting social networks for the prediction of social and 
civil unrest: A cloud based framework. Paper presented at the 2014 



97

Journal of ICT, 19, No. 1 (January) 2020, pp: 65-101

International Conference on the Future Internet of Things and Cloud 
(FiCloud), Barcelona, Spain.

Berestycki, H., Nadal, J.-P., & Rodriguez, N. (2015). A model of riots dynamics: 
Shocks, diffusion and thresholds. arXiv preprint arXiv:1502.04725. 

Boonstra, T. W., Larsen, M. E., & Christensen, H. (2015). Mapping dynamic 
social networks in real life using participants’ own smartphones. 
Heliyon, 1(3), e00037. 

Cadena, J., Korkmaz, G., Kuhlman, C. J., Marathe, A., Ramakrishnan, N., & 
Vullikanti, A. (2015). Forecasting social unrest using activity cascades. 
PloS one, 10(6), e0128879. 

Chen, F., & Neill, D. B. (2014, August). Non-parametric scan statistics 
for event detection and forecasting in heterogeneous social media 
graphs. Paper presented at the Proceedings of the 20th ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining, 
New York, USA.

Chiluwa, I. (2018). SMS & civil unrest Encyclopedia of Information Science 
and Technology (4th ed.). (pp. 6275-6285): IGI Global.

Chumwatana, T. (2018). Comment analysis for product and service satisfaction 
from Thai customers’ review in social network. Journal of Information 
and Communication Technology, 18(2), 271-289. 

Compton, R., Lee, C., Xu, J., Artieda-Moncada, L., Lu, T.-C., De Silva, L., & 
Macy, M. (2014). Using publicly visible social media to build detailed 
forecasts of civil unrest. Security informatics, 3(1), 4. 

Dermisi, S. (2017). Social media, civil unrest and fallout for cities and hotels: 
European Real Estate Society (ERES).

Dilrukshi, I., De Zoysa, K., & Caldera, A. (2013, April). Twitter news 
classification using SVM. Paper presented at the 2013 8th International 
Conference on Computer Science & Education (ICCSE), Colombo, Sri 
Lanka.

El-Katiri, L., Fattouh, B., & Mallinson, R. G. (2014). The Arab uprisings and 
MENA political instability: Implications for oil & gas markets. Oxford 
Institute for Energy Studies, UK.

Ferrara, E. (2018). Measuring social spam and the effect of bots on information 
diffusion in social media Complex Spreading Phenomena in Social 
Systems (pp. 229-255). Place of publication?: Springer.

Filchenkov, A. A., Azarov, A. A., & Abramov, M. V. (2014, November). 
What is more predictable in social media: Election outcome or protest 
action? Paper presented at the Proceedings of the 2014 Conference on 
Electronic Governance and Open Society: Challenges in Eurasia, New 
York, USA.



Journal of ICT, 19, No. 1 (January) 2020, pp: 65-101

98

Galla, D., & Burke, J. (2018, 2018//). Predicting Social Unrest Using GDELT. 
Paper presented at the Machine Learning and Data Mining in Pattern 
Recognition, Cham, Switzerland.

Gerner, D. J., Schrodt, P. A., Yilmaz, O., & Abu-Jabr, R. (2002). Conflict and 
mediation event observations (CAMEO): A new event data framework 
for the analysis of foreign policy interactions. International Studies 
Association, New Orleans. 

Hasan, K. A., Sabuj, M. S., & Afrin, Z. (2015, December). Opinion mining 
using naive bayes. Paper presented at the 2015 IEEE International WIE 
Conference on Electrical and Computer Engineering (WIECON-ECE), 
Dhaka, Bangladesh.

Henslin, J. (2011). Essentials of Sociology (9th ed.). New York, USA: Pearson.
Hernández, J. A., Ortiz, A. O., Andaverde, J., & Burlak, G. (2008). Biometrics 

in online assessments: A study case in high school students. Paper 
presented at the 18th International Conference on Electronics, 
Communications and Computers, 2008 (CONIELECOMP 2008).

Hoegh, A., Leman, S., Saraf, P., & Ramakrishnan, N. (2015). Bayesian model 
fusion for forecasting civil unrest. Technometrics, 57(3), 332-340. 

Hossny, A. H., & Mitchell, L. (2018). Event detection in Twitter: A keyword 
volume approach. Paper presented at the 2018 IEEE International 
Conference on Data Mining Workshops (ICDMW).

Huang, H., Boranbay-Akan, S., & Huang, L. (2016). Media, protest diffusion, 
and authoritarian resilience. Political Science Research and Methods, 
1-20. 

Imran, M., Elbassuoni, S., Castillo, C., Diaz, F., & Meier, P. (2013, May). 
Extracting information nuggets from disaster-related messages 
in social media. Paper presented at the Proceedings of the 10th 
International Conference on Information Systems for Crisis Response 
& Management, Baden- Baden, Germany.

Kang, W., Chen, J., Li, J., Liu, J., Liu, L., Osborne, G., . . . Neale, G. (2017). 
Carbon: Forecasting Civil Unrest Events by Monitoring News and 
Social Media, Cham.

Korkmaz, G., Cadena, J., Kuhlman, C. J., Marathe, A., Vullikanti, A., & 
Ramakrishnan, N. (2015, August). Combining heterogeneous data 
sources for civil unrest forecasting. Paper presented at the Proceedings 
of the 2015 IEEE/ACM International Conference on Advances in Social 
Networks Analysis and Mining 2015, Paris, France.

Korkmaz, G., Cadena, J., Kuhlman, C. J., Marathe, A., Vullikanti, A., 
& Ramakrishnan, N. (2016). Multi-source models for civil unrest 
forecasting. Social network analysis and mining, 6(1), 50. 



99

Journal of ICT, 19, No. 1 (January) 2020, pp: 65-101

Korolov, R., Lu, D., Wang, J., Zhou, G., Bonial, C., Voss, C., . . . Ji, H. (2016). 
On predicting social unrest using social media. Paper presented at 
the 2016 IEEE/ACM International Conference on Advances in Social 
Networks Analysis and Mining (ASONAM).

Kumar, S., Morstatter, F., & Liu, H. (2014). Twitter data analytics. New York, 
USA: Springer.

Lang, J. C., & De Sterck, H. (2014). The Arab Spring: A simple compartmental 
model for the dynamics of a revolution. Mathematical Social Sciences, 
69, 12-21. 

Leetaru, K., & Schrodt, P. A. (2013). Gdelt: Global data on events, location, 
and tone, 1979–2012. Paper presented at the ISA Annual Convention.

Liang, Y., & Kee, K. F. (2018). Developing and validating the ABC framework 
of information diffusion on social media. New Media & Society, 20(1), 
272-292. 

Manrique, P., Qi, H., Morgenstern, A., Velasquez, N., Lu, T.-C., & Johnson, 
N. (2013, June). Context matters: improving the uses of big data for 
forecasting civil unrest: Emerging phenomena and big data. Paper 
presented at the 2013 IEEE International Conference on Intelligence 
and Security Informatics (ISI), Seattle, Washington, USA.

Matthews, B. W. (1975). Comparison of the predicted and observed secondary 
structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-
Protein Structure, 405(2), 442-451. 

Mohammad, S. M., Kiritchenko, S., & Zhu, X. (2013, June ). NRC-Canada: 
Building the state-of-the-art in sentiment analysis of tweets. Paper 
presented at the Proceedings of the Seventh International Workshop on 
Semantic Evaluation Exercises, Atlanta, Georgia, USA.

Muthiah, S., Huang, B., Arredondo, J., Mares, D., Getoor, L., Katz, G., & 
Ramakrishnan, N. (2015, January). Planned Protest Modeling in 
News and Social Media. Paper presented at the Proceedings of the 
Twenty-Seventh Conference on Innovative Applications of Artificial 
Intelligence Austin, Texas, USA.

Nielsen, F. (2011). Afinn, informatics and mathematical modelling, Technical 
University of Denmark. Technical University of Denmark, Denmark.

O’Leary, D. E. (2015). Twitter mining for discovery, prediction and causality: 
Applications and methodologies. Intelligent Systems in Accounting, 
Finance and Management, 22(3), 227-247. 

Ochoa-Zezatti., C. A. (2016). Identifying consumption patterns in Twitter 
using text mining to classify trends in shopping. Paper presented at the 
CICLing 2016, Konya, Turkey. 

Oh, O., Eom, C., & Rao, H. R. (2015). Research note—Role of social media in 
social change: An analysis of collective sense making during the 2011 
Egypt revolution. Information Systems Research, 26(1), 210-223. 



Journal of ICT, 19, No. 1 (January) 2020, pp: 65-101

100

Olanrewaju, A.-S. T., & Ahmad, R. (2018). Examining the information 
dissemination process on social media during the Malaysia 2014 floods 
using social network analysis (SNA). Journal of Information and 
Communication Technology, 17(1), 141-166. 

Parlar, T., Özel, S. A., & Song, F. (2018). Interactions Between Term Weighting 
and Feature Selection Methods on the Sentiment Analysis of Turkish 
Reviews, Cham.

Passarelli, F., & Tabellini, G. (2017). Emotions and political unrest. Journal of 
Political Economy, 125(3), 903-946. 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, 
O., . . . Dubourg, V. (2011). Scikit-learn: Machine learning in Python. 
Journal of machine learning research, 12(Oct), 2825-2830. 

Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3), 130-
137. 

Priambodo, B., & Ahmad, A. (2018). Traffic flow prediction model based 
on neighbouring roads using neural network and multiple regression. 
Journal of Information and Communication Technology, 17(4), 513-
535. 

Qiao, F., Li, P., Zhang, X., Ding, Z., Cheng, J., & Wang, H. (2017). Predicting 
social unrest events with hidden Markov models using GDELT. Discrete 
Dynamics in Nature and Society, 2017. 

Qiao, F., & Wang, H. (2015). Computational approach to detecting and 
predicting occupy protest events. Paper presented at the 2015 
International Conference on Identification, Information, and Knowledge 
in the Internet of Things (IIKI).

Raina, P. (2013). Sentiment analysis in news articles using sentic computing. 
Paper presented at the 2013 IEEE 13th International Conference on 
Data Mining Workshops (ICDMW).

Ramakrishnan, N., Butler, P., Muthiah, S., Self, N., Khandpur, R., Saraf, P., 
. . . Korkmaz, G. (2014, August). ‘Beating the news’ with EMBERS: 
Forecasting civil unrest using open source indicators. Paper presented 
at the Proceedings of the 20th ACM SIGKDD International Conference 
on Knowledge Discovery and Data Mining, New York, USA.

Ranganath, S., Morstatter, F., Hu, X., Tang, J., Wang, S., & Liu, H. (2016, 
February). Predicting Online Protest Participation of Social Media 
Users. Paper presented at the Proceedings of the 13th AAAI Conference 
on Artificial Intelligence, Phoenix, Arizona, USA.

Singh, S., & Pal, R. (2018, 2018//). Characterizing and Detecting Social 
Outrage on Twitter: Patel Reservation in Gujarat. Paper presented at 
the Data Science and Analytics, Singapore.



101

Journal of ICT, 19, No. 1 (January) 2020, pp: 65-101

Valenzuela, S. (2013). Unpacking the use of social media for protest behavior: 
The roles of information, opinion expression, and activism. American 
Behavioral Scientist, 57(7), 920-942. 

Van Dyke, N., & Amos, B. (2017). Social movement coalitions: Formation, 
longevity, and success. Sociology Compass, 11(7), e12489. 

van Noord, R., Kunneman, F. A., & van den Bosch, A. (2016, November). 
Predicting civil unrest by categorizing Dutch Twitter events. Paper 
presented at the Benelux Conference on Artificial Intelligence, 
Amsterdam, The Netherlands.

Visa, S., Ramsay, B., Ralescu, A. L., & Van Der Knaap, E. (2011, April). 
Confusion Matrix-based Feature Selection. Paper presented at the 22nd 
Midwest Conference on Artificial Intelligence and Cognitive Science, 
Cincinnati, OH, USA. .

Watts, D. J. (2013). Computational social science: Exciting progress and 
future directions. The Bridge on Frontiers of Engineering, 43(4), 5-10. 

Wu, C., & Gerber, M. S. (2018). Forecasting Civil Unrest Using Social Media 
and Protest Participation Theory. IEEE Transactions on Computational 
Social Systems, 5(1), 82-94. 

Xu, J., Lu, T.-C., Compton, R., & Allen, D. (2014, April). Civil unrest 
prediction: A tumblr-based exploration. Paper presented at the 
International Conference on Social Computing, Behavioral-Cultural 
Modeling, and Prediction, Washington, DC, USA. .

Zhao, L., Sun, Q., Ye, J., Chen, F., Lu, C.-T., & Ramakrishnan, N. (2015). 
Multi-task learning for spatio-temporal event forecasting. Paper 
presented at the Proceedings of the 21th ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining.

Zhao, L., Sun, Q., Ye, J., Chen, F., Lu, C.-T., & Ramakrishnan, N. (2017). 
Feature constrained multi-task learning models for spatiotemporal event 
forecasting. IEEE Transactions on Knowledge and Data Engineering, 
29(5), 1059-1072. 

Zou, H., & Jin, Z. (2018, July). Comparative Study of Big Data Classification 
Algorithm Based on SVM. Paper presented at the 2018 Cross Strait 
Quad-Regional Radio Science and Wireless Technology Conference 
(CSQRWC).


