
45

Journal of ICT, 19, No. 1 (January) 2020, pp: 45-63

How to cite this article: 

Saravanan, P. S., & Balasundaram, S. R. (2020). Enhanced privacy protection against location-
dependent attacks in location based services using spatial cloaking. Journal of Information and 
Communication Technology, 19(1), 45-63. https://doi.org/10.32890/jict2020.19.1.3

ENHANCED PRIVACY PROTECTION FROM LOCATION-
DEPENDENT ATTACKS IN LOCATION BASED SERVICES 

USING SPATIAL CLOAKING

Perumal Shanthi Saravanan & Sadhu Ramakrishnan Balasundaram 
Department of Computer Applications, 

National Institute of Technology Tiruchirappalli, India 
shanthisaravanan09@gmail.com; blsundar@nitt.edu

ABSTRACT

Use of Internet enabled mobile devices has facilitated the rapid 
development of location-based services (LBS). LBS allow users 
to access useful information such as the nearest ATM, temple, 
and so on. Although users enjoy the convenience of LBS, they 
are being exposed to the risk of location disclosures which could 
lead to potential abuse of location data. Hence, location privacy 
protection has recently received considerable attention in LBS. 
There are numerous techniques presented by various researchers 
to protect the location-context of users. Location cloaking is an 
often used technique to protect location-contexts. Most of the 
existing location cloaking algorithms are only concerned with 
snapshot user locations and cannot effectively prevent users 
from location-dependent attacks when user location-contexts 
are continuously updated. This paper presents a solution to 
protect users from location-dependent attacks by improving the 
existing clique based cloaking algorithm. The main idea is to 
maintain maximum sized cliques required for location cloaking 
in an undirected graph. Thus, a qualified clique can be quickly 
identified and used to generate a cloaked region when a new 
request arrives. In addition, dummy queries are generated to 
protect users from unusual situations. Through maximum sized 
cliques and dummy query generation, more user queries get 
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cloaked within a reasonable amount of time, thereby providing 
better privacy protection when using LBS applications. The 
experimental results showed that the proposed cloaking algorithm 
outperformed existing algorithms such as IClique, OptClique and 
MMBClique in terms of its cloaking success rate and processing 
time.

Keywords: Location based services, location-dependent attacks, privacy 
preservation, spatial cloaking

INTRODUCTION

Advances in information and communication technologies (ICTs) have 
revolutionized the way in which people perform their activities and obtain 
benefits from automated services. Especially mobile technologies have paved 
the way for getting details of services in less time; wherever the requester 
may be, and whenever the need arises. Location Based Services (LBSs) are 
a growing category of mobile applications that enable information services 
to be accessible with the help of mobile devices through the mobile network 
and to make use of the location of the mobile device. Though mobile users get 
benefits from the LBS applications, they have to expose their location-context 
to service providers (Bamba, Liu, Pesti, & Wang, 2008; Du, Xu, Tang, & Hu, 
2007; Xu, Teo, Tan, & Agarwal, 2009). Malicious service providers through 
location-context, can determine users’ life style, personal details and in extreme 
cases, track individuals (Cheng, Zhang, Bertino, & Prabhakar, 2006; Ghinita, 
Kalnis, Khoshgozaran, Shahabi, & Tan, 2008; Chow & Mokbel, 2009; Lin, 
Zakariah, & Mohamed, 2010; Pan & Meng, 2013; Shanthi & Balasundaram, 
2015). This violates the privacy of users. Hence the location-context must 
be protected from adversaries, including malicious service providers (Kalnis, 
Ghinita, Mouratidis, & Papadias, 2007).

An efficient way to protect users is to blur the actual location-context 
into a cloaked region (CR) which preserves location k-anonymity property 
(Mokbel, Chow, & Aref, 2006; Um, Kim, & Chang, 2010; Pan, Xu, & Meng, 
2012). Gruteser and Grunwald (2003) have incorporated the k-anonymity 
mechanism of relational databases to protect the user’s location privacy. In 
the relational database, k-anonymity (Sweeney, 2002) used in the context of 
privacy preservation means that for each tuple, there is at least k-1 similar 
tuples. Whereas in location privacy, k-anonymity (Xu & Cai, 2007) means 
that for each user, there is at least k-1 users of the same location. That is to say, 
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a minimum of k numbers of users are sharing the same location-context while 
issuing the location-based query to service providers. Thus, the cloaked region 
introduces uncertainty in finding the exact location-context of users; thereby 
protecting the location privacy of the users.

Most of the existing cloaking algorithms (Gedik & Liu, 2005; Mokbel 
et al., 2006; Um et al., 2010; Shanthi & Balasundaram, 2015; Kuang et al., 
2017; Biswas & Sairam, 2017; Nguyen, 2017) have not considered the effect 
of continuous location updates of users. The continuous location updates 
may result in serious privacy breaches when different one-shot queries are 
frequently issued by mobile users. Towards this end, this paper proposes 
MClique-Dynamic cloaking algorithm with the goal of protecting users while 
updating their location-contexts continuously.

BACKGROUND AND RELATED STUDIES

The scenario for location-dependent attacks is given in Figure 1. Assuming 
that at time t1 user Shan sends a query to ‘Find the nearest ATM’ and is cloaked 
into the region R1. Later, at time t2 she issues another query to ‘Find shopping 
mall within a km’ and is cloaked into the region R2 (users in R1 and R2 are 
shown in Figure 1). Suppose an attacker knows the historical region of Shan 
(i.e.) R1 and R2 and her speed limit, then it is easy to pinpoint the current 
location of Shan. The reason is that the user must be limited to the maximum 
movement boundary (MMB) computed at time, t1. The MMB is computed by 
extending the previous CR by a radius of ‘r’ and its computation is given in 
Equation 1.

r = (t2 ‒ t1) × speed of the vehicle				        (1)

r = radius by which the CR generated at time t1  is extended to form the MMB
t1  and t2=query sent time by the user	     

From this inference, an attacker can deduce the user, Shan, who must 
be located in the overlapped area of MMB of the user at time t1 and R2. The 
overlapped area may also be a single location point. In this case, the exact user 
location is disclosed with strong evidence. Similarly, the previous location of 
the user can also be deduced by an attacker. If an attacker knows the maximum 
arrival boundary (MAB) of the user, current and previous cloaked regions then 
the previous location of the user is limited to the intersection area of the MAB 
and previous cloaked region (Figure 1 - right side). The MAB is computed by 
extending the current cloaked region by a radius of ‘r’ as specified.
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Figure 1. Location-dependent attacks

That is to say in continuous location updates, the mobile user’s current 
and previous location can be predicted by LBS providers through historical 
information such as current and previous cloaked regions and the mobility 
pattern. This is known as location-dependent attacks (Pan et al., 2012; Shanthi 
& Balasundaram, 2014) and can be described in Equations 2 and 3:

Current location (user) ═ Area (MMB ∩ Current CR)
 					   
								             (2)

Previous location (user) ═ Area (MAB ∩ Previous CR) 	

								             (3)

Location-dependent attacks have been discussed in some existing work 
(Ghinita, Damiani, Silvestri, & Bertino, 2009; Xu, Tang, Hu, & Du, 2010). All 
these work only considered cloaking granularity as their privacy metric. The 
cloaking granularity alone preserves location privacy, but fails to protect user 
identity in case there is only one user in the cloaked region. To resolve this 
problem, Pan et al. (2012) proposed IncrementalCliqueCloak (ICliqueCloak) 
algorithm. This algorithm adopts both cloaking granularity as well as location 
k-anonymity as its privacy metrics and finds out the cloaked region for any 
user at time ti+1 within his/her MMB at time ti. However, this algorithm suffers 
from ‘out-of-time’ query; that is to say, some queries cannot be cloaked within 
the time period. Therefore, the queries cannot be answered. To minimize the 
‘out-of-time’ queries as well as to protect users from location-dependent 
attacks, an efficient cloaking algorithm called MClique-Dynamic is proposed 
in this study.

3 
 

 

users. Towards this end, this paper proposes MClique-Dynamic cloaking algorithm with the goal of 

protecting users while updating their location-contexts continuously. 

 

BACKGROUND AND RELATED STUDIES 
 

The scenario for location-dependent attacks is given in Figure 1. Assuming that at time t1 user Shan 

sends a query to ‘Find the nearest ATM’ and is cloaked into the region R1. Later, at time t2 she issues 

another query to ‘Find shopping mall within a km’ and is cloaked into the region R2 (users in R1 and 

R2 are shown in Figure 1). Suppose an attacker knows the historical region of Shan (i.e.) R1 and R2 

and her speed limit, then it is easy to pinpoint the current location of Shan. The reason is that the user 

must be limited to the maximum movement boundary (MMB) computed at time, t1. The MMB is 

computed by extending the previous CR by a radius of ‘r’ and its computation is given below. 

    (1) 

From this inference, an attacker can deduce the user, Shan, who must be located in the overlapped 

area of MMB of the user at time t1 and R2. The overlapped area may also be a single location point. In 

this case, the exact user location is disclosed with strong evidence. Similarly, the previous location of 

the user can also be deduced by an attacker. If an attacker knows the maximum arrival boundary 

(MAB) of the user, current and previous cloaked regions then the previous location of the user is 

limited to the intersection area of the MAB and previous cloaked region (Figure 1 - right side). The 

MAB is computed by extending the current cloaked region by a radius of ‘r’ as specified. 

 

Figure 1. Location-dependent attacks 

That is to say in continuous location updates, the mobile user’s current and previous location can be 

predicted by LBS providers through historical information such as current and previous cloaked 

4 
 

regions and the mobility pattern. This is known as location-dependent attacks (Pan et al., 2012; 

Shanthi & Balasundaram, 2014) and can be described as follows: 

Current location (user) ═ Area (MMB ∩ Current CR)      (2) 

Previous location (user) ═ Area (MAB ∩ Previous CR)      (3) 

Location-dependent attacks have been discussed in some existing work (Ghinita, Damiani, Silvestri, 

& Bertino, 2009; Xu, Tang, Hu, & Du, 2010). All these work only considered cloaking granularity as 

their privacy metric. The cloaking granularity alone preserves location privacy, but fails to protect 

user identity in case there is only one user in the cloaked region. To resolve this problem, Pan et al. 
(2012) proposed IncrementalCliqueCloak (ICliqueCloak) algorithm. This algorithm adopts both 

cloaking granularity as well as location k-anonymity as its privacy metrics and finds out the cloaked 

region for any user at time ti+1 within his/her MMB at time ti. However, this algorithm suffers from 

‘out-of-time’ query; that is to say, some queries cannot be cloaked within the time period. Therefore, 

the queries cannot be answered. To minimize the ‘out-of-time’ queries as well as to protect users from 

location-dependent attacks, an efficient cloaking algorithm called MClique-Dynamic is proposed in 

this study. 

Algorithms such as CliqueCloak (Gedik & Liu, 2008), MMBClique, IClique and OptClique (Pan et 

al., 2012) locate the cloaked region for a user ‘u’ based on a privacy value (k). During the 

computation of the cloaked region, the algorithms group only neighbors whose privacy value is less 

than or equal to that of the request of the user, ‘u’. So that, for queries with high privacy value, the 

waiting time (which plays a major role in computation processing time) of the queries getting cloaked 

is increased; also in some cases, the queries cannot be cloaked. Thus, this leads to a reduced success 

rate and increased processing time. These issues are effectively handled in the proposed MClique-

Dynamic by defining the privacy value (minimum privacy value guaranteed is 2 and maximum 

privacy value guaranteed is the number of users’ issued queries at time ‘t’) dynamically and 

generating duplicate queries. Thus, MClique-Dynamic guarantees the improved success rate of 

queries getting cloaked by minimizing ‘out-of-time’ queries and reducing processing time. 

In view of protecting users from location-dependent attacks and ensuring the improved success rate of 

queries getting cloaked and to reduce processing time of cloaked region generation, in the proposed 

MClique-Dynamic, maximum sized clique is determined using greedy heuristic within the MMB of 

users. At the same time, this algorithm incorporates duplicate query generation in addition to location 

k-anonymity, reciprocity (the cloaked region contains u and at least k-1 additional users, also every 

user in a cloaked set generates the same cloaked set for the given k-value) and cloaking granularity 

(the area of the cloaked region which is larger than the user-specified threshold value) properties. We 

conducted a series of experiments to evaluate the performance of the proposed MClique-Dynamic 4 
 

regions and the mobility pattern. This is known as location-dependent attacks (Pan et al., 2012; 

Shanthi & Balasundaram, 2014) and can be described as follows: 

Current location (user) ═ Area (MMB ∩ Current CR)      (2) 

Previous location (user) ═ Area (MAB ∩ Previous CR)      (3) 

Location-dependent attacks have been discussed in some existing work (Ghinita, Damiani, Silvestri, 

& Bertino, 2009; Xu, Tang, Hu, & Du, 2010). All these work only considered cloaking granularity as 

their privacy metric. The cloaking granularity alone preserves location privacy, but fails to protect 

user identity in case there is only one user in the cloaked region. To resolve this problem, Pan et al. 
(2012) proposed IncrementalCliqueCloak (ICliqueCloak) algorithm. This algorithm adopts both 

cloaking granularity as well as location k-anonymity as its privacy metrics and finds out the cloaked 

region for any user at time ti+1 within his/her MMB at time ti. However, this algorithm suffers from 

‘out-of-time’ query; that is to say, some queries cannot be cloaked within the time period. Therefore, 

the queries cannot be answered. To minimize the ‘out-of-time’ queries as well as to protect users from 

location-dependent attacks, an efficient cloaking algorithm called MClique-Dynamic is proposed in 

this study. 

Algorithms such as CliqueCloak (Gedik & Liu, 2008), MMBClique, IClique and OptClique (Pan et 

al., 2012) locate the cloaked region for a user ‘u’ based on a privacy value (k). During the 

computation of the cloaked region, the algorithms group only neighbors whose privacy value is less 

than or equal to that of the request of the user, ‘u’. So that, for queries with high privacy value, the 

waiting time (which plays a major role in computation processing time) of the queries getting cloaked 

is increased; also in some cases, the queries cannot be cloaked. Thus, this leads to a reduced success 

rate and increased processing time. These issues are effectively handled in the proposed MClique-

Dynamic by defining the privacy value (minimum privacy value guaranteed is 2 and maximum 

privacy value guaranteed is the number of users’ issued queries at time ‘t’) dynamically and 

generating duplicate queries. Thus, MClique-Dynamic guarantees the improved success rate of 

queries getting cloaked by minimizing ‘out-of-time’ queries and reducing processing time. 

In view of protecting users from location-dependent attacks and ensuring the improved success rate of 

queries getting cloaked and to reduce processing time of cloaked region generation, in the proposed 

MClique-Dynamic, maximum sized clique is determined using greedy heuristic within the MMB of 

users. At the same time, this algorithm incorporates duplicate query generation in addition to location 

k-anonymity, reciprocity (the cloaked region contains u and at least k-1 additional users, also every 

user in a cloaked set generates the same cloaked set for the given k-value) and cloaking granularity 

(the area of the cloaked region which is larger than the user-specified threshold value) properties. We 

conducted a series of experiments to evaluate the performance of the proposed MClique-Dynamic 



49

Journal of ICT, 19, No. 1 (January) 2020, pp: 45-63

Algorithms such as CliqueCloak (Gedik & Liu, 2008), MMBClique, 
IClique and OptClique (Pan et al., 2012) locate the cloaked region for a user ‘u’ 
based on a privacy value (k). During the computation of the cloaked region, the 
algorithms group only neighbors whose privacy value is less than or equal to 
that of the request of the user, ‘u’. So that, for queries with high privacy value, 
the waiting time (which plays a major role in computation processing time) of 
the queries getting cloaked is increased; also in some cases, the queries cannot 
be cloaked. Thus, this leads to a reduced success rate and increased processing 
time. These issues are effectively handled in the proposed MClique-Dynamic 
by defining the privacy value (minimum privacy value guaranteed is 2 and 
maximum privacy value guaranteed is the number of users’ issued queries 
at time ‘t’) dynamically and generating duplicate queries. Thus, MClique-
Dynamic guarantees the improved success rate of queries getting cloaked by 
minimizing ‘out-of-time’ queries and reducing processing time.

In view of protecting users from location-dependent attacks and 
ensuring the improved success rate of queries getting cloaked and to reduce 
processing time of cloaked region generation, in the proposed MClique-
Dynamic, maximum sized clique is determined using greedy heuristic within 
the MMB of users. At the same time, this algorithm incorporates duplicate 
query generation in addition to location k-anonymity, reciprocity (the cloaked 
region contains u and at least k-1 additional users, also every user in a cloaked 
set generates the same cloaked set for the given k-value) and cloaking 
granularity (the area of the cloaked region which is larger than the user-
specified threshold value) properties. We conducted a series of experiments 
to evaluate the performance of the proposed MClique-Dynamic algorithm 
using a synthetic dataset generated with the help of the mntg traffic generator 
(Mokbel et al., 2013).

OVERVIEW OF MCLIQUE-DYNAMIC ALGORITHM

The proposed MClique-Dynamic algorithm finds out the MMB first for each 
user upon the arrival of location-based queries from various users at a given 
time period. Then it computes the neighbors. Both users and their neighbors 
are modeled in an undirected graph. Next, the algorithm checks whether 
a clique set that satisfies location k-anonymity is formed in the modeled 
undirected graph. If any such clique set is found, then the minimum bounding 
rectangle (MBR) of the clique set is compared with Amin and Amax (minimum 
and maximum area covered by the cloaked region) values. The MBR (which 
will be given as a cloaked region) should be greater than or equal to Amin in 
order to prevent location disclosures.
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Consider a case in which the clique set satisfies the location k-anonymity 
but fails to satisfy cloaking granularity. In this case, the MBR of the clique set 
is extended in such a way that it satisfies the cloaking granularity. Similarly, 
if the cloaked region exceeds Amax then it will be reduced to be equal to Amax 
in order to avoid the larger cloaked region. The above mentioned criteria are 
stated as follows:

Let MS = {u1, u2…, un} be a user set that forms the clique, MBR is Ru,ti 
at time, ti and Su is the speed of a user. The previous cloaked region of each 
user u is denoted by Ru,ti-1. The set MS is a cloaking set if and only if it satisfies 
the following conditions for any user u in MS:

1.	 Distance(Ru,ti, Ru,ti-1) ≤ Su ∙ (ti-ti-1)
2.	 Distance(Ru,ti-1, Ru,ti) ≤ Su ∙ (ti-ti-1)
3.	 |MS| ≤ 2
4.	 Area(MBR(MS)) ≥ Amin

5.	 Area(MBR(MS)) ≥ Amax

In order to defend against location-dependent attacks, the users in the 
cloaked region must satisfy the first two conditions. The third condition states 
the location k-anonymity requirement to protect user identity. Finally, the 
fourth and fifth conditions ensure that the area of the cloaked region is not too 
small (populated area) and not too big, respectively. Here, distance (Ri, Rj) is 
the Euclidean distance between a point in Ri and its closest point in Rj.

There is a possibility for a situation in which the location k-anonymity 
property may not be satisfied. In this situation, the anonymizer generates 
duplicate queries with random users whose location-context is bounded within 
the MMB of the actual query issuer. The results returned in the duplicate 
queries are cached by the anonymizer for future use. By this random duplicate 
generation, the anonymizer maintains k-anonymity value as a minimum of 
2. In the following section, a detailed discussion on steps associated with 
cloaked region construction is described to effectively and protectively answer 
location-based queries.

PRIVACY PROTECTION

Procedure for protecting the location privacy of users by generating 
k-anonymous cloaked regions using MClique-Dynamic is given in the 
following subsections.
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Location Anonymization in Dynamic Context

In movement (continuous location updating), instead of one single query with 
snapshot location, a list of queries with different snapshot locations are sent to 
the LSP. In this scenario, if a cloaked region is constructed for each snapshot 
location using existing clique based cloaking algorithm, a malicious LSP can 
easily uncover the real location. For instance, assume a user uses the LBS 
app at 9.00 a.m. for obtaining a route suggestion for a particular destination. 
Later at 9.20 a.m., he/she issued the query about the POI (fuel station) during 
mobility. In order to protect the user, existing CliqueCloak generates two 
separate cloaked regions (without considering any query dependency) CR1 
and CR2 at time 9.00 a.m. and 9.20 a.m., respectively. From the cloaked 
regions, the LSP can easily conclude the traveling route as well as the current 
location of the user.

Algorithm 1: MClique-Dynamic

INPUT   	 : Set of location context of the users- FP
OUTPUT	 : Cloaked Region- CR
Step 1:   begin
Step 2:   for i←1 to | FP | do
Step 3:        construct MMB
Step 4:    end for
Step 5:    for i←1 to | FP | do
Step 6:         compute neighbor
Step 7:    end for
Step 8:    construct graph G ← (V, E)
Step 9:    for i←1 to | V | do
Step 10:         find clique existence with its neighbors
Step 11:         if (clique exist) then
Step 12:             if Amin ≤ MBR(clique) ≤ Amax then
Step 13:                CR← MBR(clique)
Step 14:                V←V ‾ {vertices associated with the clique }
Step 15:                E← E ‾{ edges associated with the clique }
Step 16:                send  CR as the location-context of users in
                             the clique to the LSP
Step 17:          else if (MBR(clique) < Amin) then
Step 18:               extend MBR(clique)  in such a way that
                                                 Area(MBR(clique)) ←Amin 
Step 19:           else     

(continued)
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Step 20:                 reduce MBR(clique) in such a way that
                                                Area(MBR(clique) ← Amax
Step 21:                end if
Step 22:             else
Step 23:                 Generate duplicate queries from dummy locations that lie 
                               within the
                    MMB and returns to the area comprising the actual query issuer and 
                    duplicate queries as the cloaked region
Step 24:          end if
Step 25:     end for
Step 26:     end

The reason is that the current location of the user must be limited to the 
MMB of the CR1 (previous cloaked region). As per the CliqueCloak, the CR2 
(current cloaked region) may or may not be completely residing inside the 
MMB. If the CR2 is not completely residing inside the MMB, then the user 
must be in the intersection area of the MMB and CR2. Hence, by correlating 
the MMB, previous and current cloaked regions, the service provider can 
easily pinpoint where the user is currently located. Similarly, the previous 
location of the user can also be determined. To prevent users from this type of 
attack, CliqueCloak has been modified in order to accommodate continuous 
location updating.

When a user (while in movement) wants to make a request to LBS, 
the anonymizer hides the location-context using clique based cloaked region 
construction algorithm in such a way that the current cloaked region always 
completely resides inside the MMB. For that, whenever a query is issued 
by various users, the anonymizer computes the MMB (as mentioned above) 
and then determines the neighbors. For a user ‘u’, the neighbors are the ones 
where the MMB is contained in each other. Next to neighbor computation, 
graph construction, clique computation and cloaked region construction are 
performed. The pseudo code for the proposed MClique-Dynamic cloaking is 
given in Algorithm 1.

With the computation of the clique, the size of the problem is reduced 
by 1 every time the clique is not formed. This is expressed by the recurrence 
Equation 4 as follows:

T(n) = T(n ‒ 1)+ f(n) 					          (4)
								             

The function f(n) accounts for the time needed to reduce an instance 
to a smaller one and to extend the solution of the smaller instance to that of 

n = number of mobile users issued the queries 
T = time to compute the clique 
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a solution of the larger instance. Applying backward substitution, the above 
equation are peformed by Equations 5 and 6.

								             (5)

								            

						        		       (6)

In the worst case, the problem size should be reduced to two; hence, substitute  
in the above equation 6, yield Equations 7 and 8.

							           	      (7)

								             (8)

In order to verify the pairwise connection between the users, the algorithms 
have two for-loops each with n iterations. Hence, f(i) takes n2 time as in 
Equations 9.

								             (9)

Thus, in the worst case scenario, clique computation takes O(n3) time and in 
the best case scenario, clique computation takes only O(n2).

Dummy Location-Contexts Generation

For the generation of duplicate queries, two important pieces of information 
are needed. One is service specific information (SSI) and another one is 
the location-context from where the query is posed to the LSP. Both the 
information can be generated at random. The random generation of SSI may 
not affect users’ location privacy. However, the random generation of location-
contexts may reveal users’ location privacy. The reason is the distribution 
of the location-contexts. For example, if k-1 location-contexts are chosen 
randomly within the MMB, there may be a possibility for these k-1 positions 
to be very close to the user’s position in which the privacy region is generated. 
This can have negative consequences such as (a) malicious LSP will probably 
ignore outliers and may deduce the user’s location-context with high certainty 
and (b) the privacy area that is the cloaked region generated may be a smaller 
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region and therefore the malicious LSP can easily pinpoint the user’s location-
context.

To counter these problems, some control is needed over the distribution 
of dummy location-contexts while generating duplicate queries. For this 
purpose, modified grid based dummy generation algorithm called DLC 
(Dummy Location-Context) is proposed and is described as follows.

	 A uniform square grid is created with an area (A) equal to the MMB 
of the user (to whom the CR is generated), and is composed of n vertices. 
Among the n vertices, one is the user position p, the other n-1 vertices will 
be used as dummy locations for duplicate query generation. The pseudo code 
of the DLC is given in Algorithm 2, and steps involved in the algorithm are 
stated as follows.

Step 1:	Calculate the number of vertices, n as the square root of G, where G is 
a square number (the value of G is taken by the anonymizer).

Step 2:	Attach the user position, p to one of the vertices, by randomly 
generating x, y indices.

Step 3:	Determine the side length of the grid cells, Ls by dividing the area of 
the grid (A) by the square root of G.

Step 4:	Calculate the position for each grid vertex in row-major layout.
Step 5:	Select k-1 number of vertices and enter its position into the dummy 

location-context array Kd.
Step 6: Return Kd.

Algorithm 2 : DLC
INPUT:	 p-user location-context, k-privacy value, A-MMB of the user
OUPPUT: Kd- array of k numbers of location-contexts
Step 1: begin
Step 2: initialize Kd ←{p};count ←1
Step 3: 
Step 4: 
Step 5: 
Step 6: for i ←1 to n do
Step 7: for j ←1 to n do
Step 8: x1  ←(i –x)∙ Ls  +px          
Step 9: y1←(j –y)∙ Ls  +p.y         
Step 10: Kd  ← Kd  ∪(x1,y1)       
Step 11: count ←count +1     
Step 12: if count ≤ k  then
Step 13:                  continue

5: Select k-1 number of vertices and enter its position into the dummy location-context 

array Kd. 

 Step 6: Return Kd. 

 
Algorithm 2 : DLC 
 
 
INPUT: p-user location-context, k-privacy value,  

A-MMB of the user 
OUPPUT: Kd- array of k numbers of location-contexts 

               Step 1: begin 
Step 2: initialize 𝐾𝐾𝑑𝑑 ← {𝑝𝑝}; 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ← 1 
Step 3: 𝑛𝑛 ←  √𝐺𝐺 
Step 4: 𝑥𝑥 ← 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(1,𝑛𝑛);𝑦𝑦 ← 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (1,𝑛𝑛) 

Step 5: 𝐿𝐿𝑠𝑠  ←  √𝐴𝐴 𝑛𝑛⁄  
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Step 9:           𝑦𝑦1 ← (𝑗𝑗 –𝑦𝑦) ∙  𝐿𝐿𝑠𝑠  + 𝑝𝑝.𝑦𝑦 
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Step 14:         end if 
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Step 11:       𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ← 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 1 

      Step 12:       if 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 𝑘𝑘  then 
      Step 13:                  continue 

Step 14:         end if 
Step 15:  end for 
Step 16:  end for 
Step 17:  return 𝐾𝐾𝑑𝑑 

      Step 18:  end 
 

 

5: Select k-1 number of vertices and enter its position into the dummy location-context 

array Kd. 

 Step 6: Return Kd. 

 
Algorithm 2 : DLC 
 
 
INPUT: p-user location-context, k-privacy value,  

A-MMB of the user 
OUPPUT: Kd- array of k numbers of location-contexts 

               Step 1: begin 
Step 2: initialize 𝐾𝐾𝑑𝑑 ← {𝑝𝑝}; 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ← 1 
Step 3: 𝑛𝑛 ←  √𝐺𝐺 
Step 4: 𝑥𝑥 ← 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(1,𝑛𝑛);𝑦𝑦 ← 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (1,𝑛𝑛) 

Step 5: 𝐿𝐿𝑠𝑠  ←  √𝐴𝐴 𝑛𝑛⁄  

Step 6: for 𝑖𝑖 ← 1 𝑡𝑡𝑡𝑡 𝑛𝑛 do 
Step 7:      for 𝑗𝑗 ← 1 𝑡𝑡𝑡𝑡 𝑛𝑛 do 
Step 8:           𝑥𝑥1  ← (𝑖𝑖 – 𝑥𝑥) ∙  𝐿𝐿𝑠𝑠  + 𝑝𝑝. 𝑥𝑥 
Step 9:           𝑦𝑦1 ← (𝑗𝑗 –𝑦𝑦) ∙  𝐿𝐿𝑠𝑠  + 𝑝𝑝.𝑦𝑦 
Step 10:        𝐾𝐾𝑑𝑑  ←  𝐾𝐾𝑑𝑑  ∪ (𝑥𝑥1,𝑦𝑦1) 
Step 11:       𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ← 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 1 

      Step 12:       if 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 𝑘𝑘  then 
      Step 13:                  continue 

Step 14:         end if 
Step 15:  end for 
Step 16:  end for 
Step 17:  return 𝐾𝐾𝑑𝑑 

      Step 18:  end 
 

 

(continued)
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Step 14:         end if
Step 15:  end for
Step 16:  end for
Step 17:  return Kd
Step 18:  end

PERFORMANCE EVALUATION

We have implemented the proposed MClique-Dynamic cloaking algorithm 
using Java, executed on Intel(R) Core (TM) 2 Duo 2.00GHz machine with 3.00 
GB of RAM and Windows 7 Operating System. For experimental purposes, 
approximately 2.5 MB of data was generated with the help of the mntg traffic 
generator (http:// mntg.cs.umn.edu). The input parameters of the generator are 
shown in Table 1, and the simulated traffic pattern is shown in Figure 2.

Table 1

Input parameters of mntg traffic generator

Search Area Tamilnadu
Traffic model Brinkhoff
Starting vehicles 100
Simulation time 20
Additional vehicles each time unit 10

Figure 2. Traffic pattern simulation.

Traffic Results
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Results and Discussion

The proposed MClique-Dynamic algorithm is compared with three algorithms, 
namely MMBClique, OptClique, and IClique. MMBClique refers to the 
revised version of the cloaking algorithm proposed by Gedik and Liu (2005). 
In this algorithm, the tolerable maximum cloaked region is replaced with the 
MMB to prevent from location-dependent attacks; so that it generates larger 
cloaked regions as users’ privacy area. Thus MMBClique increases cloaking 
time. In order to reduce cloaking time, Pan et al. (2012) has proposed IClique 
and OptClique.

IClique adopts both cloaking granularity as well as location k-anonymity 
as its privacy metrics and finds out the cloaked region for any user at time 
ti+1 within his/her MMB at time ti. Hence compared to MMBClique, IClique 
can generate a smaller cloaked region to serve as users’ privacy area. Thus, 
IClique reduces cloaking time. The optimized version of IClique is OptClique 
algorithm which further reduces the size of a cloaked region. In this algorithm, 
the MMB is set to infinity. Even though this algorithm does not protect users 
from location-dependent attacks, it is included for comparison to show the 
cost required for defending against location-dependent attacks. However, all 
the above mentioned algorithms (MMBClique, IClique, and OptClique) suffer 
from ‘out-of-time’ queries. Therefore, the success rate of the queries getting 
cloaked is reduced. This problem is effectively handled by the proposed 
MClique-Dynamic cloaking algorithm and is shown in the following 
experimental results.

The experimental parameters are shown in Table 2, and for evaluation 
purposes, metrics such as success rate, time to generate dummy location-
contexts (DLC) and cloaking time are used. As shown in Figure 3, the success 
rate of IClique and OptClique decrease with much more diversified privacy 
levels. They reach 89% and 87%, respectively when the privacy level reaches 
25. The reason is that the attempts by both IClique and OptClique to find out 
cloaked regions by incrementally maintaining maximal clique takes more time 
to cloak users’ requests for larger k values. Therefore, some queries would 
have expired before they are cloaked successfully, and this is reflected in the 
reduced success rate.

In addition, the success rate of MMBClique decreases significantly 
with increasing k. Its success rate drops to about 66% when the privacy level 
reaches 25. The main reason is that MMBClique finds the cloaking set only 
from neighbors whose privacy levels are less than that of the new request. Thus, 
a request with a higher privacy level is difficult to be cloaked successfully in 
the MMBClique. In contrast, MClique-Dynamic has the best performance. 
Its success rate is about 99%, even with increasing k values. This is mainly 
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because MClique-Dynamic employs duplicate query generation to find a 
cloaking set with a larger k-value and in situations where sufficient requests 
are not available for cloaking. As a result, all the requests are cloaked before 
they expire. Therefore, this indicates a significant difference in the cloaking 
algorithm of the proposed MClique-Dynamic.

Table 2 

Experimental Parameters

Amin 500m2

Amax 4-6km2

Speed 50km/h
Minimum no. of duplicate queries generated 2

 

Figure 3. Success rate.

 
Figure 4 shows the cloaking time of all algorithms. In most cases, waiting 

time dominates the overall cloaking time of cloaked region generation, and 
cloaking time increases with increasing k values. In particular, MMBClique 
cannot scale up to a larger privacy level and its processing time gets worse 
dramatically. In contrast, IClique and OptClique require a much shorter 
processing time than MMBClique. The reason is that both these algorithms 
can quickly find the cloaking set from the set of incrementally maintained 
maximal cliques.
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Figure 4. Cloaking Time.

 

Figure 5. Dummy Location Generation Time.

Although the proposed MClique-Dynamic algorithm employs DLC 
to protect users from extreme situations, the cloaking time of the proposed 
MClique-Dynamic can be further reduced. The reason is that the duplicate 
queries are generated in a reasonable amount of time (in milliseconds). Figure 
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5 show that the DLC takes only 0.029ms when the privacy value reaches 
25. This signifies that the proposed location cloaking algorithm does not 
delay cloaking time. Besides, the proposed algorithm speeds up the process 
of finding the cloaking set only from neighboring nodes, thereby eliminating 
time taken to incrementally maintain maximal cliques.

 

Figure 6. Spatial Resolution.

Figure 6 compares the size of the cloaking areas of IClique and MClique-
Dynamic. As can be seen, cloaking areas are less than 2km2 for lower privacy 
values (k=5), less than 4.5 km2 for medium privacy values (k=10 or k=15) and 
less than 5km2 for higher privacy values (k=20 or k=25). That is MClique-
Dynamic generates a smaller (better) region than IClique when privacy values 
increase. This is mainly because MClique-Dynamic imposes two threshold 
values (Amin and Amax) while seeking out the cloaked region, but IClique 
employs only one threshold value (Amin).

Figure 7 shows that the cloaked region computation time varies for 
varying Amax (1-3km2, 4-6km2, and 7-9km2) values. It is observed that the 
higher the Amax value, it results in higher cloaked region computation time. The 
reason is that cloaked region computation time includes the time to compute 
neighbors, construct MBR and check for clique existence. Hence, when the 
Amax value is increased, there may be a chance of getting more numbers of 
users inside the MBR, thereby increasing the time taken for checking clique 
existence. This is reflected in an increase in cloaked region computation time.
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Figure 7. Different Amax Values.

In addition, threshold values influence the size of the CR. Since the size 
of the CR is restricted by the threshold values, spatial resolution is affected by 
Amin and Amax values. A larger Amin and Amax generate a larger region as users’ 
privacy area. Similarly, a smaller Amin and Amax lead to a smaller CR. Therefore 
care must be taken while choosing threshold values. In the experiment, better 
cloaking is achieved when selecting Amax at 4-6km2.

The positive side of the proposed MClique-Dynamic is a) minimization 
of ‘out-of-time’ queries and b) generation of CR that lies between two threshold 
values Amin and Amax (i.e. Amin ≤  cloaked area ≤  Amax). Through minimizing 
‘out-of-time’ queries, most of the queries are successfully cloaked and by 
using threshold values the anonymizer prevents the generation of cloaked 
regions which are neither too small nor too large. Intuitively, a smaller CR 
brings better performance in terms of storage cost and computation, while a 
larger CR makes it better from the privacy point of view.

Despite this, regions which are too small improve the level of certainty 
of locating users and therefore the location privacy of users is violated. On 
the other hand, regions which are too large may increase processing cost 
of the service provider which in turn leads to a reduction in the quality of 
query services. Thus, the proposed MClique-Dynamic algorithm balances 
both the privacy of users and quality of query services in terms of generating 
reasonably-sized CRs. In addition, it preserves the two main ingredients of 
cloaking namely a) location privacy—unable to locate user and b) query 
anonymity—unable to identify person who sent query.
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CONCLUSION

In this paper, we have presented the MClique-Dynamic, cloaking algorithm 
which safeguards the location privacy of users from location-dependent 
attacks. To obtain an improved success rate, duplicate queries are generated 
using DLC algorithm while seeking out the cloaking set. In addition, two 
threshold values are used to avoid the generation of CRs which are either 
too small or too large. As these would reduce the certainty level of locating 
users in populated areas, and also maintain the quality of query services. 
Through generating duplicate queries and reasonably-sized CRs, the proposed 
MClique-Dynamic is capable of protecting users’ location privacy better than 
existing cloaking algorithms such as IClique, OptClique, and MMBClique. 
The improvements are shown in the experimental results using synthetic 
dataset generated by the mntg traffic generator.

Existing solutions to cloak users’ location-contexts may degrade the 
usefulness of LBS applications when more numbers of requests emerge from 
people in different places. The reason is when query density that is user density 
is increased, the graph constructed by the anonymizer may become a dense 
graph and processing the dense graph by an anonymizer will take more time. 
One way to speed up the anonymization of location-context of various users is 
partitioning the user graph into separate units of smaller sub-graphs which can 
be mapped onto parallel processors of anonymity servers hosted on trusted 
cluster computing environment bases. In accord with this, we propose a graph 
partitioning based spatial cloaking algorithm in our future work.
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