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ABSTRACT

Wireless traffic prediction plays an important role in network 
planning and management, especially for real-time decision 
making and short-term prediction. Systems require high accuracy, 
low cost, and low computational complexity prediction methods. 
Although exponential smoothing is an effective method, there is 
a lack of use with cellular networks and research on data traffic. 
The accuracy and suitability of this method need to be evaluated 
using several types of traffic. Thus, this study introduces the 
application of exponential smoothing as a method of adaptive 
forecasting of cellular network traffic for cases of voice (in Erlang) 
and data (in megabytes or gigabytes). Simple and Error, Trend, 
Seasonal (ETS) methods are used for exponential smoothing. By 
investigating the effect of their smoothing factors in describing 
cellular network traffic, the accuracy of forecast using each 
method is evaluated. This research comprises a comprehensive 
analysis approach using multiple case study comparisons to 
determine the best fit model. Different exponential smoothing 
models are evaluated for various traffic types in different time 
scales. The experiments are implemented on real data from a 
commercial cellular network, which is divided into a training data 
part for modeling and test data part for forecasting comparison. 
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This study found that ETS framework is not suitable for hourly 
voice traffic, but it provides nearly the same results with Holt–
Winter’s multiplicative seasonal (HWMS) in both cases of daily 
voice and data traffic. HWMS is presumably encompassed by 
ETC framework and shows good results in all cases of traffic. 
Therefore, HWMS is recommended for cellular network traffic 
prediction due to its simplicity and high accuracy.

Keywords: Cellular network traffic, exponential smoothing, Holt–Winter’s 
multiplicative seasonal, wireless traffic prediction.

 
INTRODUCTION 

Wireless traffic prediction is a key component of network planning, development, 
and management. Accurate prediction will become even more necessary with 
the development of 5th generation wireless systems (5G) that contain many 
new service capabilities (5G PPP, 2015). The 5G system has a higher capacity 
and higher density of mobile broadband users than the current 4G system. 
It also supports device-to-device communications and massive machine-type 
communications (NGMN Alliance, 2015). Consequently, people are living in 
the age of social networks (Tyagi & Kumar, 2017) and the Internet-of-Things 
(Matta, Pant, & Arora, 2017). Life becomes more convenient and intelligent 
when everything can be connected via heterogeneous wireless networks 
(Qiang, Li, & Altman, 2017). Along with these advanced technologies, Yusuf-
Asaju, Dahalin, and Ta’a (2018) also figured out the issues of mobile network 
performance and proposed a framework for modeling mobile network quality 
of experience using the big data analytics approach. And in fact, better network 
operation and management are required to ensure a robust infrastructure that 
includes the underlying network and supporting technologies, for example.                                                  

Analysis of wireless network traffic shows that the traffic series normally 
contains seasonal components and can be modeled and forecasted by time 
series analysis models (Tran, Ma, Li, Hao, & Trinh, 2015). Authors in these 
papers proposed combining statistical procedures for modeling and forecasting 
cellular network traffic, such as the autoregressive integrated moving average 
(ARIMA) and generalized autoregressive conditional heteroskedasticity 
(GARCH). They took advantage of the ARIMA model for capturing the 
conditional mean of the traffic series and the GARCH model for dealing with 
the conditional heteroskedasticity existing inside the traffic. They achieved 
better forecast results compared with the individual models, but at the cost of 
computational complexity. The results can be used for capacity planning and 
overload warning issues that are important parts of network planning.

Exponential smoothing is a simple method of adaptive forecasting 
in which the forecasts adjust based on past errors, unlike forecasts from 
regression models that use fixed coefficients. Exponential smoothing 
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methods have been applied in several areas, such as palm oil real production 
forecasting (Siregar, Butar-Butar, Rahmat, Andayani, & Fahmi, 2017), power 
(Usaratniwart, Sirisukprasert, Hatti, & Hagiwara, 2017), revenue forecasting 
(Rahman, Salma, Hossain, & Khan, 2016), and solar irradiance prediction 
(Margaret & Jose, 2015), to name a few. These researchers all achieved good 
results with this low-complexity and low-cost method. In terms of wireless 
traffic prediction, Tikunov and Nishimura (2007) proposed the application of 
Holt–Winter’s exponential smoothing, which is simple, low cost, does not 
require a without highly skilled analyst, and operates nearly automatically 
for GSM/GPRS network Erlang traffic prediction. The recorded data were 
classified into three types, namely high, medium, and low intensity traffic 
cells. The authors focused on cells with high and medium traffic intensity 
for the purposes of overload warning and capacity planning. Although good 
results were achieved, only voice traffic was considered. In the era of data, 
there is a necessity for more comprehensive studies about using exponential 
smoothing in cellular network traffic that includes not only voice (Erlang) but 
also data (megabytes or gigabytes).

Base on the mentioned requirement, more exponential smoothing 
methods were investigated that included not only the specific Holt–Winter’s 
multiplicative seasonal method (HWMS), but also different types of 
exponential smoothing methods. They were then applied to forecast cellular 
network traffic that consists of not only voice (in Erlang) but also data (in 
megabytes or gigabytes). In this study, the simple exponential smoothing 
methods include single, double, Holt–Winter’s no seasonal, Holt–Winter’s 
additive seasonal, and HWMS. The methods are introduced together with an 
Error, Trend, Seasonal (ETS) framework. The exponential smoothing methods 
are considered in three cases of hourly voice, daily voice, and daily data traffic 
types. 

 
SIMPLE EXPONENTIAL SMOOTHING

Simple exponential smoothing methods include:

Single smoothing: one parameter -	              

Double smoothing: one parameter -	

Holt-Winters – No seasonal: two parameters -	

Holt-Winters – Additive seasonal: three parameters                          and-	

Holt-Winters – Multiplicative seasonal: three parameters -	

where α, β, and γ are the damping, or smoothing, factors.
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The analysis of cellular network traffic is appropriate for the HWMS method 
(Valakevicius & Brazenas, 2015), which is suitable for a series with a linear 
time trend and multiplicative seasonal variation. If xt is the input traffic series, 
then the smoothed series,     is given by

                                                                                                              (1)

where a is the permanent component (intercept), b is the trend, and ct is the 
multiplicative seasonal factor. These three coefficients are defined by the 
following recursions:

                                                                                                              (2)

                                                                                                              (3)

                                                                                                              (4)

where                        are the damping factors and s is the seasonal frequency.

The forecasts are computed by:

                                                                                                              (5)

where the seasonal factors are used from the last s estimates.

 
ERROR TREND SEASONAL EXPONENTIAL SMOOTHING

This framework defines an extended class of exponential smoothing methods 
and offers a theoretical foundation for analysis of these models using state-space 
based likelihood calculations. Support for model selection and calculation of 
forecast standard errors are also included. The standard exponential smoothing 
models discussed in the previous section, such as HWMS, are encompassed 
by this ETS framework. 

In the ETS exponential smoothing method, the time series may be decomposed 
into three components, namely the error (E) that is the irregular unpredictable 
component of the series, the trend (T) that characterizes the long-term movement 
of the time series, and the season (S) that corresponds to a pattern with known 
periodicity.
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The forecasts are computed by: 

𝑥�𝑡+𝑖 = (𝑎(𝑇) + 𝑏(𝑇)𝑖)𝑐𝑇+𝑖−𝑠 (5) 

where the seasonal factors are used from the last s estimates. 

 

ETS EXPONENTIAL SMOOTHING 

This framework defines an extended class of exponential smoothing methods and offers a theoretical 

foundation for analysis of these models using state-space based likelihood calculations. Support for 

model selection and calculation of forecast standard errors are also included. The standard exponential 

smoothing models discussed in the previous section, such as HWMS, are encompassed by this ETS 

framework.  

In the ETS exponential smoothing method, the time series may be decomposed into three 

components, namely the error (E) that is the irregular unpredictable component of the series, the trend 

(T) that characterizes the long-term movement of the time series, and the season (S) that corresponds 

to a pattern with known periodicity. 

The ETS models can be described as state equations that are extended versions of those outlined by 

Hyndman et al. (2002) as in Equations (6), (7), and (8), respectively: 

𝑙𝑠 = 𝛼𝑃(𝑥𝑡−1, 𝑒𝑡) + (1 − 𝛼)𝑄(𝑥𝑡−1)
𝑏𝑡 = 𝛽𝑅(𝑥𝑡−1, 𝑒𝑡) + (1 − 𝛽)𝜙1𝑏𝑡−1

𝜙2

𝑠𝑡 = 𝛾𝑇(𝑥𝑡−1, 𝑒𝑡) + (1 − 𝛾)𝑠𝑡−�
 

(6) 
(7) 
(8) 

where l is a level term, b is a growth term, and s is a seasonal term. Variables P, R, and T are 

functions of the prediction error and lagged states; Q is a function of the lagged state; 𝜙1 is the 

damping parameter for linear trend models; 𝜙2 is the damping parameter for multiplicative trend 

models; and 𝑒𝑡~𝑖𝑖𝑑(0,𝜎2) is prediction error. Figure 1 presents the model of ETS exponential 

smoothing method. 
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Figure 1. Model of ETS Exponential Smoothing Method.

Model Estimation

Model Specification

In this section, the type of ETS model used for smoothing is specified. There 
are a total of 30 possible ETS models based on the various combinations of 
the three components, E, T, and S, as defined in Equations (9), (10) and (11), 
respectively:
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E {A, M}                                                                                  (9)

T {N, A, M, AD, MD}                                                            (10)

S {N, A, M}                                                                            (11)

where N = none, A = additive, M = multiplicative, AD = additive dampened, 
and MD = multiplicative dampened.

Estimation Control

According to the chosen ETS model specification, the corresponding unknown 
parameters                                 and the initial states x0 may be estimated using  
either the maximum likelihood or average mean square error minimization 
(AMSE) methods.
The Gaussian log likelihood for ETS specifications can be written in terms of 
the prediction errors, as in Equation (12):

                                                                                              (12)

The parameters and initial states are achieved by maximizing the likelihood in 
Equation (12) with respect to  and  using the Broyden, Fletcher, Goldfarb, and 
Shanno (BFGS) algorithm (Fletcher, 1987).
The average mean square error (AMSE) of the h-step forecasts is expressed 
as in Equation (13):

                                                                                              (13)

	 The parameters and initial states that minimize the AMSE using BFGS 
are then achieved.

Model Selection
 
In this step, the model can be selected based on either the comparison of a 
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Figure 1. Model of ETS Exponential Smoothing Method. 

(1) Model Estimation 

Model Specification 

In this section, the type of ETS model used for smoothing is specified. There are a total of 30 possible 

ETS models based on the various combinations of the three components, E, T, and S, as defined in 

Equations (9), (10) and (11), respectively: 

E {A, M} (9) 

T {N, A, M, AD, MD} (10) 

S {N, A, M} (11) 

where N = none, A = additive, M = multiplicative, AD = additive dampened, and MD = multiplicative 

dampened. 

Estimation Control 

According to the chosen ETS model specification, the corresponding unknown parameters 𝜃 =
(𝛼,𝛽, 𝛾,𝜙), and the initial states x0 may be estimated using either the maximum likelihood or average 

mean square error minimization (AMSE) methods. 
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best results were chosen to make comparisons with the best choices by the 
ETS exponential smoothing framework in terms of estimation information, 
in-sample forecast, and out-of-sample forecast.

 
Hourly Voice Traffic

The simple exponential smoothing methods were applied to hourly voice 
traffic. The estimation outputs are shown in Table 1, where HWMS presents 
the best results in terms of the 426.5057 RMSE. Thus, the HWMS was chosen 
as the best forecasting method in the case of hourly voice traffic. In contrast, 
the ETS framework was also applied to this hourly voice traffic, and the 
estimation outputs are listed in Table 2. The numerical results indicate that this 
framework is not suitable for the hourly data series when both AIC-based and 
AMSE-based models yield abnormal RMSE values. To confirm this judgment, 
we further implement the in-sample and out-of-sample forecast tests for these 
two models and compare the results with those obtained using HWMS. The 
results are shown in Figures 2 and 3 which display that the HWMS out-of-
sample forecasted data is very close to the original data, so we can figure out 
that HWMS outperforms the two ETS models in modeling and forecasting 
hourly cellular voice traffic.

Table 1

Hourly Voice Traffic Estimation Outputs of Simple Exponential Smoothing 
Methods.

 
Exponential Smoothing Methods

 
Single

 
Double

 
HWNS

 
HWAS

 
HWMS

Parameters

Alpha 0.9990 0.9990 1.0000 1.0000 1.0000

Beta 1.0000 0.0000 0.0000

Gamma 0.0000 0.0000

Sum of Squared Residuals 5.36E+09 4.15E+09 4.05E+09 2.36E+08 1.35E+08

Root Mean Squared Error 2684.505 2363.002 2334.268 563.0144 426.5057

End of Period 
Levels

Mean 2797.097 2793.238 2793.240 9059.919 10147.16

Trend -3854.95 -3850.91 1.419014 1.419014
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Table 2

Hourly Voice Traffic Estimation Outputs of AIC and AMSE Based ETS Chosen 
Models.

AIC Based AMSE Based
Chosen Models

E
T
S

E{M}
T{MD}
S{N}

E{A}
T{MD}
S{M}

Parameters

Alpha
Beta
Gamma
Phi

1.000000
 0.986463

1.000000

1.000000
0.000000
0.000000
1.000000

Estimation information

AIC
SSR
RMSE
AMSE

16065.87
95.84155
 0.358914
 3.21E+40

16665.64
5.25E+09
2656.054
21744630

 
 
Figure 2. In-sample forecast by HWMS and ETS models in case of hourly 
voice traffic (2-day view window)
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Figure 3. Out-of-sample forecast by HWMS and ETS models for 1 day in case of hourly voice traffic. 

(2) Daily Voice Traffic  

The same experimental procedure was implemented for the case of daily voice traffic. Table 3 

illustrates the estimation outputs of the simple exponential smoothing methods. The HWMS again 

presents the best results among other methods in term of RMSE, which is 531.6792. Thus, HWMS 

was chosen as the best forecasting method for the case of daily voice traffic. The ETS framework was 



Journal of ICT, 18, No. 1 (January) 2019,  pp: 1–18

10

 
Figure 3. Out-of-sample forecast by HWMS and ETS models for 1 day in 
case of hourly voice traffic.

 
Daily Voice Traffic

The same experimental procedure was implemented for the case of daily voice 
traffic. Table 3 illustrates the estimation outputs of the simple exponential 
smoothing methods. The HWMS again presents the best results among other 
methods in term of RMSE, which is 531.6792. Thus, HWMS was chosen 
as the best forecasting method for the case of daily voice traffic. The ETS 
framework was also applied to the daily voice traffic, and the estimation 
outputs are illustrated in Table 4. Based on the results, the AIC-based ETS 
model, i.e. {A, N, M}, should be chosen due to the better RMSE.

 
Table 3

Daily Voice Traffic Estimation Outputs of Simple Exponential Smoothing 
Methods.

Exponential Smoothing Methods Single Double HWNS HWAS HWMS

Parameters
Alpha 0.0010 0.0070 0.1100 0.8200 0.8400
Beta 0.0000 0.0000 0.0000
Gamma 0.0000 0.0000

Sum of Squared Residuals 3.84E+08 3.89E+08 4.33E+08 73565891 66713129

(continued)
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Figure 3. Out-of-sample forecast by HWMS and ETS models for 1 day in case of hourly voice traffic. 

(2) Daily Voice Traffic  

The same experimental procedure was implemented for the case of daily voice traffic. Table 3 

illustrates the estimation outputs of the simple exponential smoothing methods. The HWMS again 

presents the best results among other methods in term of RMSE, which is 531.6792. Thus, HWMS 

was chosen as the best forecasting method for the case of daily voice traffic. The ETS framework was 
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Exponential Smoothing Methods Single Double HWNS HWAS HWMS

Root Mean Squared Error 1275.546 1283.683 1354.245 558.3188 531.6792

End of Period Levels
Levels

Mean 5259.193 5440.615 5707.966 5691.035 5662.484

Trend 2.008049 9.387678 1.317833 1.317833

 
Table 4

Daily Voice Traffic Estimation Output of AIC and AMSE Based ETS Chosen  
Models.

 
AIC Based AMSE Based

Chosen Models

E
T
S

E{A}
T{N}
S{M}

E{A}
T{A}
S{M}

Parameters

Alpha
Beta
Gamma
Phi

0.838877

0.000000

0.000000
0.000000
0.000000

Estimation information

AIC
SSR
RMSE
AMSE

4269.541
66652447
531.4373
484775.5

4363.242
97473742
642.6697
412858.1

 
 
The comparison between the HWMS and ETS models was done next for the 
case of daily voice traffic. It can be seen from Table 5 that the achieved ETS 
model shows the same parameters as HWMS. In addition, there appears to be 
no difference between the HWMS and ETS{A,N,M} in terms of in-sample 
forecasts in Figures 4 and 5, and the out-of-sample forecast in Figure 6.
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Table 5

Comparison of HWMS and ETS Methods in Case of Daily Voice Traffic. 

Exponential Smoothing Methods
Simple ETS

HWMS {A,N,M}

Parameters

Alpha
Beta
Gamma
Phi

0.838877

0.000000

0.838877

0.000000

Akaike Information Criterion
Sum of Squared Residuals
Root Mean Squared Error
Average Mean Squared Error

66713129
531.6792

4269.541
66652447
531.4373
484775.5

 
Figure4. In-sample forecast by HWMS and ETS in case of daily voice 
traffic.
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Figure 5. In-sample forecast by HWMS and ETS for 3 weeks in case of 
daily voice traffic.

Figure 6. Out-of-sample forecast by HWMS and ETS for 3 weeks in case 
of daily voice traffic.
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(3) Daily Data Traffic  

The HWMS again is the best choice among other the simple exponential smoothing methods in the 

case of daily data traffic due to the best RMSE of 48.03080, as presented in Table 6. Besides, AIC-

based ETS {A,N,M} was also the chosen model with the lower RMSE of 48.03521, as shown in 

Table 7. The same results were achieved in the case of daily data traffic in which the HWMS and 

ETS{A,N,M} have almost the same parameters, as in Table 8. The same is true for the same in-

sample forecasts in Figures 7 and 8 and the same out-of-sample forecast in Figure 9. 

Table 6 

Daily Data Traffic Estimation Outputs of Simple Exponential Smoothing Methods. 

Exponential Smoothing Methods Single Double HWNS HWAS HWMS 

Parameters 
Alpha 0.8080 0.1140 0.3200 0.6600 0.6700 
Beta   0.0000 0.0000 0.0000 
Gamma    0.0000 0.0000 

Sum of Squared Residuals 2943240. 3114186. 2932171. 1040425. 1021982. 
Root Mean Squared Error 81.51002 83.84370 81.35660 48.46225 48.03080 
End of Period 
Levels 

Mean 1042.763 1117.194 1113.848 1093.138 1094.759 
Trend  1.345373 1.359729 0.878545 0.878545 

Table 7 

Daily Data Traffic Estimation Output of AIC and AMSE Based ETS Chosen Models. 

 AIC Based AMSE Based 
Chosen Models 
E E{A} E{A} 
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Daily Data Traffic

The HWMS again is the best choice among other the simple exponential 
smoothing methods in the case of daily data traffic due to the best RMSE 
of 48.03080, as presented in Table 6. Besides, AIC-based ETS {A,N,M} 
was also the chosen model with the lower RMSE of 48.03521, as shown 
in Table 7. The same results were achieved in the case of daily data 
traffic in which the HWMS and ETS{A,N,M} have almost the same 
parameters, as in Table 8. The same is true for the same in-sample forecasts 
in Figures 7 and 8 and the same out-of-sample forecast in Figure 9. 
 
Table 6

Daily Data Traffic Estimation Outputs of Simple Exponential Smoothing 
Methods.

Exponential Smoothing 
Methods

Single Double HWNS HWAS HWMS

Parameters

Alpha 0.8080 0.1140 0.3200 0.6600 0.6700

Beta 0.0000 0.0000 0.0000

Gamma 0.0000 0.0000

Sum of Squared Residuals 2943240. 3114186. 2932171. 1040425. 1021982.

Root Mean Squared Error 81.51002 83.84370 81.35660 48.46225 48.03080

End of Period Levels
Mean 1042.763 1117.194 1113.848 1093.138 1094.759

Trend 1.345373 1.359729 0.878545 0.878545

 
Table 7

Daily Data Traffic Estimation Output of AIC and AMSE Based ETS Chosen 
Models.

AIC Based AMSE Based
Chosen Models

E
T
S

E{A}
T{N}
S{M}

E{A}
T{MD}
S{M}

Parameters
Alpha
Beta
Gamma
Phi

0.669730

0.000000

0.457427
0.000000
0.000000
0.729664

(continued)
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AIC Based AMSE Based

Estimation information

AIC
SSR
RMSE
AMSE

6147.985
1022170.
48.03521
3448.010

6177.137
1077010.
49.30693
3326.265

 
 
Table 8

Comparison of HWMS and ETS Methods in Case of Daily Data Traffic.

Exponential Smoothing Methods
Simple ETS
HWMS {A,N,M}

Parameters

Alpha
Beta
Gamma
Phi

0.6700
0.0000
0.0000

0.669730

0.000000

Akaike Information Criterion
Sum of Squared Residuals
Root Mean Squared Error
Average Mean Squared Error

1021982.
48.03080

6147.985
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Figure 8. In-sample forecast by HWMS and ETS for 3 weeks in case of 
daily data traffic.

Figure 9. Out-of-sample forecast by HWMS and ETS for 3 weeks in case 
of daily data traffic.
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CONCLUSION

In network planning and management, short-term prediction and real-time 
decisions are best served by simple and low-cost prediction methods with a 
high accuracy. Therefore, exponential smoothing methods, such as HWMS, 
were applied to forecast GSM/GPRS network Erlang traffic. However, a more 
comprehensive study was required to evaluate the usage of various exponential 
smoothing methods in more types of wireless traffic, such as data, which is 
becoming more important along with the development of communication 
technology. This research applied different exponential smoothing methods 
that were categorized as a simple exponential smoothing method and ETS 
framework, to forecast cellular network traffic that included voice and data. 
The experiments on hourly and daily traffic collected from commercial cellular 
networks showed that HWMS was the best fit for cellular network traffic 
among other simple exponential smoothing methods that included single, 
double, Holt-Winters No Seasonal, and Holt-Winters Additive Seasonal. It was 
unsuitable for the ETS framework to forecast hourly voice traffic. However, 
in the case of daily voice and data traffic, the ETS found that the {A,N,M} 
models provided nearly the same results as the HWMS. The HWMS forecast 
series was close to the original series in both hourly and daily voice traffic 
cases and showed a good ability to forecast daily data traffic as well. Due to 
the low complexity and low cost, HWMS can be applied effectively to cellular 
network traffic prediction. Moreover, the evaluation of HWMS can be further 
implemented based on the specific requirements of cellular networks.
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