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ABSTRACT

Recently, various variants of evolutionary algorithms have been
offered to optimize the exploration and exploitation abilities of
the search mechanism. Some of these variants still suffer from
slow convergence rates around the optimal solution. In this
paper, a novel heuristic technique is introduced to enhance the
search capabilities of an algorithm, focusing on certain search
spaces during evolution process. Then, employing a heuristic
search mechanism that scans an entire space before determining
the desired segment of that search space. The proposed method
randomly updates the desired segment by monitoring the
algorithm search performance levels on different search space
divisions. The effectiveness of the proposed technique is assessed
through harmony search algorithm (HSA). The performance of
this mechanism is examined with several types of benchmark
optimization functions, and the results are compared with those
of the classic version and two variants of HSA. The experimental
results demonstrate that the proposed technique achieves the
lowest values (best results) in 80% of the non-shifted functions,
whereas only 33.3% of total experimental cases are achieved
within the shifted functions in a total of 30 problem dimensions.
In 100 problem dimensions, 100% and 25% of the best results
are reported for non-shifted and shifted functions, respectively.
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The results reveal that the proposed technique is able to orient
the search mechanism toward desired segments of search
space, which therefore significantly improves the overall search
performance of HSA, especially for non-shifted optimization
functions.

Keywords: evolutionary algorithms, exploration and exploitation, harmony
search algorithm, heuristic search, optimization functions.

INTRODUCTION

Evolutionary algorithms (EAs) are stochastic optimization algorithms that
mimic natural evolution mechanisms, such as mutations and crossovers to
solve various optimization problems. EAs have been proven to be effective
in various optimization fields due to their efficiency in solving different
forms of optimization problems. However, EAs are generally converged to
a region after a number of algorithm iterations, but the global optima in this
region may not be identified (Yong & Sannomiya, 2000). Meanwhile, these
algorithms gradually lose the diversity among current solutions as iteration
counts increase, and thus they prematurely converge into a local optimum. A
higher diversity among current solutions is generally important in reducing
the chances of premature convergence (Sultan et al., 2004).

Determining the conditions wherein the exploration and exploitation
search strategies of an algorithm are balanced is a major challenge encountered
in research on EA behavior enhancement. Algorithm performance improves
when the balance of the usage is enhanced. Many improved versions of classical
EA methods are partly based on this fact and can thus improve algorithm
performance in terms of finding global optima, such as genetic algorithm
(Holland, 1975), particle swarm optimization (Kennedy and Eberhart, 1995)
and harmony search algorithm (Geem et al., 2001).

This paper presents a novel heuristic search technique for solving
numerical benchmark functions in which a harmony search algorithm (HSA)
is used as a type of EA. HSA is selected because of its general applicability
and capability to obtain satisfactory solutions on a wide range of optimization
fields (Cobos etal., 2010; Alia & Mandava, 2011; Lenin et al., 2013; Shambour
etal., 2014). The main objective of this study is to control the algorithm search
mechanism toward the promising regions of a problem search space and orient
the algorithm such that it searches an optimal solution within a reasonable
computational time.
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The proposed method launches the process by dividing the search
space of a given problem into a random number of equally split segments.
Then, it generates several initial solutions for every search segment to identify
the best initial solution to be improved. Thereafter, the proposed technique
periodically generates new solutions from other segments during algorithm’s
search process and compared their fitness results with the fitness of current
selected segment. The segment with the best solution quality will be only
considered for next generation process.

The effectiveness of the proposed technique is demonstrated by using a
set of well-known benchmark functions introduced for CEC2005 (Suganthan
et al., 2005), and the experimental results are compared with basic HSA and
two other variants of HSA.

HARMONY SEARCH ALGORITHM

Harmony Search Algorithm (HSA) is a heuristic algorithm inspired by the
improvisation process of musicians when they compose a well-sounding
harmony with their musical instruments. It is considered as a robust algorithm
owing to its general applicability to many problems in various optimization
fields such as, water distribution networks (Geem, 2009), design of steel
structure (Carbas & Aydogdu, 2007), timetabling problem (Shambour et al.,
2013) power dispatch (Valipour & Ghasemi, 2017), vehicle routing (Yassen
et al., 2015), robot application (Xu et al., 2010), design of satellite heat pipe
(Geem, 2016), design of aircraft panels (Keshtegar et al., 2017), energy-
efficient routing network (Zeng & Dong, 2016) and data Mining applications
(Assad & Deep, 2016).

HSA is characterized by a good exploration of the search space and
involves the composition of new solutions from several existing solutions in
every algorithm’s iteration. However, similar to other optimization algorithms,
the HSA is insufficiently capable of generating optimal solutions during the
search process (Kazmi et al., 2017).

The main HSA operators include; harmony memory (HM) that reflects
population memory which stores several harmony vectors according to the
harmony memory size (HMS); and harmony memory consideration rate
(HMCR), which denotes the rate of selecting a value with a (i) memory
consideration rule, where the decision variable value is extracted from stored
harmony vectors in HM, or (ii) memory consideration rule, where the value
of decision variable is randomly generated. HSA operators also comprise the
pitch adjustment rate (PAR) that indicates the rate of modifying the selected
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value in memory consideration rule to a neighboring value, in addition to
bandwidth (BW), which is considered as an adjustment value used in the pitch
adjustment rule.

The principal steps of the HSA are explained below and illustrated by

a flowchart (Figure 1):

1.

Initializing the HSA parameters

This step involves two main sections. The first section includes the
initialization of the optimization parameter, HMCR, PAR, BW, and
number of iterations (NI). The second section defines the initialization
of the problem parameters targeted for resolution.

Initializing the HM

HM is initialized with several initial harmony vectors before the start of
the algorithm process.

Improvisation process

This step is the crucial part of the entire process of the HSA. A new
harmony is generated through the use of various HSA operators.
Updating the HM

The HM is revised after improvisation by replacing the weakest
harmony located with the most promising solution obtained through
the improvisation process. The worst harmony vector in the HM has the
lowest fitness value among the vectors.

Check the stopping criterion

Whether further improvisation required is determined in this final step

on the basis of the number of iterations.
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Figurel. HSA Flowchart.

RELATED WORK

Since the formulation of the first HSA, a series of ameliorated variants of the
classic HSA progressed. However, most of the improved versions focus first
on improving the algorithm according to three fundamental aspects, namely,
the tuning of the optimization parameters, hybridization of the HSA with
other parts of other algorithms, and the addition of optimization parameters
as criteria for the selection of harmony values from the HM (Shambour et al.,
2014).

Early modifications on the HSA parameters were launched by Mahdavi
et al. (2007), where the optimization parameter values were dynamically
adjusted during improvisation process. They were able to diminish the BW
exponentially from the maximum value to the minimum value but facilitate
the linear growth of PAR values from the minimum value to the maximum
value.
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Contreras et al. (2014) suggested a new type of HSA named ABHS. This
HSA variant consists of the linear augmentation of the PAR value throughout
the algorithm iteration processes. However, the BW value in this variant
increases constantly and decreases exponentially periodically according to the
number of harmonies that penetrate the HM.

Ouyang et al. (2017) proposed a different improved version of HSA
with integrated principal features, namely, adaptive global pitch adjustment,
opposition-based learning technique, and mechanism selection. This
technique adjusts the BW parameter according to the status of the best and
worst harmony vectors in HM to enhance the algorithm exploitation power of
the search space.

Another modification of HSA was introduced by Kumar et al. (2014).
In this HAS version, improvisation starts with a minor HMCR value, which
increases linearly during algorithm iterations. This increase facilitates
investigation within the search space. The PAR value is reduced exponentially
for the improvement of the solutions.

Khalilietal. (2014) proposed a free predefined parameter setting of HSA.
In this setting, HMCR, PAR, and BW parameters are dynamically changed
according to the nature of a targeted problem. At the early improvisation stage,
the algorithm starts elaborating the search solution by generating harmonies
rather than selecting solutions from actual HM. Meanwhile, low PAR values
can be adjusted or repeated depending on the proposed search mechanism.
At the middle stage of the improvisation process, large HMCR values are
increased to 1 for the selection of decision variable values from HM. PAR
values are then increased to 1 for the adjustment procedure. At subsequent
iterations, the HMCR value declines and subsequently enables the algorithm
to escape from local minima by forcing a random consideration procedure
instead of a memory consideration. Further related research can be found in
(Sabarinath et al., 2015; Kong et al., 2009).

Hybridization provides enhanced convergence speed and accuracy for
evolutionary approaches (Ibrahim et al., 2015). Omran et al. (2008) are among
the pioneers of hybridization techniques for HSA. The main idea of their work
is to inject the principal of the particle swarm optimization within the HSA
core. The inserted part is in the pitch adjustment rule where the BW parameter
is exchanged by an inherited value of the best harmony vector in HM.

Shambour et al. (2013) studied the proposition of a heuristic technique
that combines HSA and simulated annealing (SA) method to solve “Real-
World” high school timetabling optimization problem. The SA method is
employed at the end of every improvisation process for the enhancement of
a generated harmony. Five neighborhood functions, namely move meeting,
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swap meeting, swap three meetings, swap block of meetings, and task split
functions are randomly selected and applied to the newly generated harmony.

Satapathy et al. (2017) formulated a hybrid HSA with firefly algorithm
(FA) to investigate the stability profile improvement of a distributed resource-
based microgrid. An improved version fruitfully increases population diversity.
Meanwhile, FA is generally used for increasing convergence speed.

An improved approach of HSA and Cuckoo—Search (CS) is produced
by Wang et al. (2016) to resolve numerical benchmark functions. In this
approach, the search capability of CS is enhanced by hybridizing HSA and
CS, and the pitch adjustment operator of HSA is included in the CS process,
thereby increasing convergence rate during a search process. Hasan et al.
(2014) investigated the performance of HSA by exchanging a stochastic
operator with crossover processes. For other related work, refer to Zhang et
al. (2015), and Kar & Swain (2016).

Shambour et al. (2014) offered a new method for adjusting the
tournament selection scheme of HSA. In this method, the selection procedure
is performed before the tournament scheme operation, and a random selection
is performed on the basis of stochastic tournament sizes. The most appropriate
solution vector selected from different competitive harmonies is utilized for
further processing.

In another study, Shambour (2017) enhanced the exploration behavior
of the classical HSA through monitoring the search performance on different
subzones of the whole search space. Thereafter, the subzone with the best
search performance will be considered for further search process. The
proposed algorithm is validated on twelve numerical benchmark functions
and the results show advantages of the proposed algorithm compared to the
previous improved algorithms.

Al-Betar et al. (2012) worked on the impact of various selection schemes
of HSA on improvising a new solution. The study is based on exchanging
the classic random selection process by a number of other schemes (global-
best, linear rank, tournament, fitness-proportional and exponential rank).
Other work studies that improvised traditional HSA through various selection
schemes can be found in (Chen et al., 2012; Doush et al., 2013; Al-Betar et
al., 2016).

All the previous work mentioned above are focused on the search
capabilities of the HSA and designing methods for the enhancement of basic
algorithm performance quality in various optimization fields. However, some
room remains for ameliorating the efficiency of the HSA through controlling
the exploration process of the random search mechanism. This can be achieved
by guiding the search progress in exploring certain promising areas of the
search space during the algorithm search progress.
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PROPOSED METHOD

The random variation part of optimization algorithms continues to attract
interest among researchers of the evolution search process. These compromise
trials enrich the generation by exploring more areas of the search space through
supporting a series of random variables.

VSM relies on promoting certain changes to the basic HSA. Figure 2 shows
the modifications of the original HSA which can be explained as follows:

Division Stage

In this stage, the search space is first split into random divisions (up to ten).
Each division has the same size and probability of selection. The division of
the search space enables direct searching.

Production Stage

This stage involves the production of initial solutions according to the number
of previously created divisions. The lowest average of the values of initial
solutions in each subdivision is used for the identification of a promising
subdivision.

Orientation Stage

In the third stage, the algorithm search mechanism orients the search toward
the promising subdivision, and the initial solutions of the selected subdivision
is inserted into HM. Then, the improvisation procedure is employed on the
promising division for the generation of harmonies that may contain an
optimal solution.

Detection Stage

A detection procedure is required in a periodical mode and must consider all
subdivisions produced in step 1. This procedure is necessary to the validation
of the suitability of a selected subdivision. The recurring process will be based
on detection rate (DR) that is created randomly and ranges between 0 and
0.01. That is, DR =[0.000, 0.0025, 0.005, 0.0075, 0.01]. This phase promotes
a reassuring aspect of previous processes and verifies the presence of any
division containing a promising subdivision. This procedure directs the search
process toward the promising division, thereby improving the accuracy of
results.
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The number of dedicated iteration (DI) to detection procedure is given in
equation 1.

DI=NI<DR [U (1, 5)] (1)
Where NI is the maximum number of iterations, and U is uniform

random integer between (1, 5). The pseudocode of the proposed
algorithm is provided in Figure 3.
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Stepl: Initializing optimization parameters of HSA
[HMCR, PAR, HMS, ND, NI, MaxNI, UB, LB, DR={0;0.025;0.05;0.075;0.1}, Num_SubDiv, DI]
Divide search space according to Num_SubDiv S= (s1, s2,...., SNum subpiv)

Step2: Generate initial solutions
Build a number of initial solutions (X1,X2,...,XNum_SubDiv)
Injecting the best initial solution to HM
Define LB and UB according to the best initial solution

Step3: Improvising a new solution
for each i € (1, ND) do
if (U(0, 1) < HMCR) then
xI = x{ (j=1,2, HMS) \\ memory consideration rule
if (U(0, 1) < PAR) then
xi= xi £ U(0, 1) x bw \\ pitch adjustment rule
end if
else
xi=LBi+ U(0, 1) x (UB;-LB;) \\ random consideration rule
end if
if (U(0, 1) < DR[U(1,5)] then
detection_procedure ()
end if
end for

Step4: Updating the harmony memory
if (f(xi) < f(Xworst)) then
Include x; to HM
Exclude Xworst from HM
end if

Step5: Checking the stop criterion
while (NI <= MaxNI)
Repeat Step3 and Step4
end while

Figure 3. The proposed Vibrant Search Mechanism.

EMPIRICAL EXPERIMENTS AND RESULTS

The performance of the proposed VSM is validated through a series of
numerical simulations and compared with three HSA variants namely, original
HSA (OHSA) (Geem et al., 2001), tournament HSA (THSA), and Global HSA
(GHSA) (Al-Betar et al., 2012) where a group of benchmark optimization
functions including different specifications (i.e. uni-modal, multi-modal,
continues, and so on) are used to examine the effectiveness and robustness of
the proposed mechanism in terms of result accuracy.

Numerical Benchmark Optimization Functions

A total of 14 well-known numerical benchmark instances introduced for
CEC 2005 (Suganthan et al., 2005) are taken in this study. The definitions
of numerical instances and their properties are presented in Table 1. The two

dimension landscapes of benchmark functions are given in Figure 4.
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Table 1

Benchmark optimization functions

1) Sphere function [Unimodal] 8) Ackley’s function [Multimodal]
FiE)=>"x 2 - fo(x) =—20exp(-0.2 %gxf)—exp%gcos(znx,))+2o+e
X, €[-100.100], min(f,) =f(0....0) =0\ "1_100,100], min(f,) =f (0....,0) = 0
2 )Scwefel’s problem 2.22 [Unimodal] 9)Griewank function [ Multimodal]
D D D x ‘2 D x.
= e ; = L — =) +1
Sa(x) Z::,X l:llx So(x) %:4000 HCOS(JI'_)
x, €[-10,10], min(f,) =f (0....,0) = 0-  x, €[~600,600], min(f,) =f (0....0)=0

3)Step function[Unimodal & discontinues]  10) Six-Hump Camel-Back function [Multimodal]

N 2
S (x)zzl_:l|(|_xi +0'5J) Sro(x)=4x? —2.1x14+%xf’+x1x2—4x22+4x;'

100,100], min(f,) =f (0,...0) = 0
x el Lo min(f) =/ (0.....0) x, €[-5,5, min(f,) =f (0.08983,0.7126) — 1.0316285

4) Rosenbrock function [Multimodal] 11) Shifted Sphere function [Unimodal]

f4(x):§(100(x,.2 G, =y Sa(x)=D0 22 +f _bias,.z =x —o

x, €[-100,100], min(f,,) =f(o,,...,04)=1f ., =-450

bias]

x, €[-30,301, min(f,) =f(...,1) =0

5) Rotated hyper-ellipsoid function [Unimodal] 12) Shifted R brock [Multimodal]

)= () Fale) =X (1002, -22) + (2, 1) ) iz =x -0

x, €[-100,100], min(fs) =f (0,...,0) = O

x, €[~100,100], min(f,,) =fo,, .. . 00) =F e = -390
6) Schwefel’s problem [Multimodal] 13) Shifted Rosenbrock [Multimodal]
D . N 2 .
Fe(x)==>"x, sin(|x, ‘”2) fa(x)=X ;I(loo(zh] 72[2) +(z, 71)2)+f _bias,,z =x —o
i=1

x, €[-500,500], min(f,) =f (420.9687....420.9687)=-12569.5 X €[-100.100],  min(f,;) =floy, ..., Or) = £ s = -390

7) Rastrigin function [Multimodal] 14) Shifted Rastrigin [Multimodal]
D

N[, .
f7(x)=>"(x,” —10cos(27zx,) +10) fm(X):Z,:l(Zt 710005(2”Zi)+10)+f _bias;,z =x -0
-~ x; €[-5,5], min(f,) =fo,, ..., 0) = 1y =-330
x, €[-5.12,5.12], min(f,) =f (0,...,0) = 0

Experimental Setup

Similar values of optimization parameters are set in the initialization step for all
compared HSA variants (i.e. OHSA, THSA and GHSA), where HMCR=0.95,
PAR=0.3, number of iterations N/=20000, DR= [0; 0.025; 0.05; 0.075; 0.1],
DI= NI *x DR [U (1, 5)], maximum number of sub divisions Max_SubDiv=10,
the dimensionality ND=30, with different values of HMS including (5, 20
and 50). The proposed mechanism is coded using Matlab simulation program
version 2012b and performed on a computer with Microsoft Windows 7 (64-
bit) with Intel processor i5@3.4 GHz.
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Figure 4. Landscape benchmark functions (Pan et al., 2010).

Results and discussion

The detection procedure of VSM randomly scans the entire search space,
including the created subdivisions, to define the promising division that
requires further investigation. This scanning process is performed once at the
start of the improvisation stage and periodically in a random manner during
the process according to a predefined DR.

The experiments tackle different HMSs and consider the value of
maximum number of subdivisions randomly set between / and /0 in each run.

Tables 2, 3, and 4 show the statistical results in terms of the solution
fitness value, including best, mean, and standard deviation for 30 runs for
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each compared HSA variant (i.e. OHSA, GHSA, THSA, and VSM) with 30
problem dimensions. The bold font highlights the lowest solutions which
reflect the best results, as this study deals with minimizing problems.

Table 2

Best, Mean and Standard Deviation of the Benchmark Function Results
(HMS= 5,ND=30)

Benchmark
function OHSA GHSA THSA VSM
Best 6.536E-01 2.523E-03 1.13E+00 1.435E-04
f1 Mean 5.231E+00 2.114E+00 3.07E+00 2.957E+00
Std. 2.887E+00 1.936E+00 1.48E+00 2.856E+00
Best 4.143E-02 3.948E-02 3.21E-02 3.769E-02
12 Mean 7.079E-02 7.055E-02 5.43E-02 6.021E-02
Std. 4.108E-02 4.379E-02 2.77E-02 3.238E-02
Best 0.000E+00 1.000E+00 1.00E+00 0.000E+00
3 Mean 4.300E+00 3.967E+00 4.17E+00 3.833E+00
Std. 2.395E+00 3.011E+00 2.77E+00 5.596E+00
Best 7.593E+01 6.408E+00 2.11E+01 2.841E+00
14 Mean 4.714E+02 3.594E+02 2.49E+02 1.197E+02
Std. 7.195E+02 6.871E+02 4.85E+02 1.065E+02
Best 5.531E+03 2.471E+03 4.42E+03 1.946E-01
& Mean 8.876E+03 6.867E+03 7.99E+03 1.211E+03
Std. 1.888E+03 2.203E+03 2.10E+03 1.618E+03
Best -1.26E+04 -1.26E+04 -1.26E+04 -1.26E+04
f6 Mean -1.254E+04 -1.254E+04 -1.25E+04 -1.243E+04
Std. 1.589E+01 9.695E+00 1.22E+01 6.460E+02
Best 2.662E-02 3.163E-02 2.40E-02 1.886E-02
f7 Mean 9.532E-01 1.034E+00 1.19E+00 2.072E+00
Std. 8.084E-01 9.769E-01 1.12E+00 5.340E+00
Best 6.744E-01 2.337E-02 9.88E-03 7.885E-03
f8 Mean 1.287E+00 1.120E+00 1.02E+00 8.949E-01
Std. 2.906E-01 5.147E-01 5.21E-01 5.714E-01
Best 1.043E+00 1.038E+00 1.00E+00 8.205E-02
19 Mean 1.101E+00 1.091E+00 1.08E+00 1.025E+00
Std. 3.515E-02 4.168E-02 3.08E-02 2.459E-01
Best -1.032E+00  -1.032E+00 -1.03E+00 -1.032E+00
f10 Mean -1.032E+00 -1.032E+00 -1.03E+00 -1.032E+00
Std. 4.728E-10 1.461E-10 3.04E-10 1.908E-10
Best 1.220E+00 2.057E-03 2.57E-01 1.608E+00
f11 Mean 5.508E+00 1.450E+00 4.19E+00 3.944E+03
Std. 3.442E+00 1.174E+00 2.59E+00 1.251E+04
Best 4.638E+03 3.170E+03 5.11E+03 9.621E+03
f12 Mean 1.013E+04 9.557E+03 9.58E+03 1.897E+04
Std. 3.244E+03 3.466E+03 3.32E+03 3.856E+03
Best 4.445E+02 2.976E+02 4.42E+03 4.703E+02
fi3 Mean 3.219E+03 1.690E+03 7.99E+03 2.059E+09
Std. 3.004E+03 3.546E+03 2.10E+03 5.185E+09
Best 3.059E-02 3.135E-02 -1.25E+04 2.603E-02
f14 Mean 1.358E+00 8.861E-01 1.22E+01 3.738E+01
Std. 1.218E+00 9.022E-01 1.13E+00 7.106E+01
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The observed results generally show that the proposed VSM method has
superior performance in most experiment cases of non-shifted functions set
(i.e. f1- f10) with 80% of total experiment cases and acceptable performance
with 33.3% for the shifted set when compared with other HSA variants.

The results demonstrate that the proposed VSM achieves the best results
compared with other algorithms in 10 out of 14 experimental cases when the
HMS is equal to 5 and 20 and in seven cases when HMS is equal t.

Table 3

Best, Mean and Standard Deviation of the Benchmark Function Results
(HMS= 20,ND=30)

Benchmark
function OHSA GHSA THSA VSM
Best 4.543E+00 1.484E-02 3.025E+00 1.483E-01
f1 Mean 9.826E+00 1.466E+00 9.527E+00 7.18E+00
Std. 3.964E+00 1.250E+00 4.885E+00 4.27E+00
Best 5.195E-02 4.089E-02 3.965E-02 3.903E-02
12 Mean 1.446E-01 7.937E-02 7.392E-02 7.981E-02
Std. 8.874E-02 3.495E-02 3.699E-02 3.458E-02
Best 1.000E+00 0.000E+00 0.000E+00 0.000E+00
3 Mean 6.400E+00 3.800E+00 4.433E+00 4.133E+00
Std. 3.349E+00 3.357E+00 3.857E+00 3.711E+00
Best 1.104E+02 1.321E+00 1.071E+02 1.768E+01
14 Mean 4.161E+02 2.250E+02 3.106E+02 2.146E+02
Std. 3.850E+02 4.072E+02 4.311E+02 1.155E+02
Best 4.393E+03 2.627E+03 4.863E+03 4.874E+00
VAl Mean 7.269E+03 8.276E+03 7.774E+03 1.578E+03
Std. 2.636E+03 2.996E+03 2.268E+03 2.486E+03
Best -1.255E+04 -1.256E+04 -1.255E+04 -1.257E+04
f6 Mean -1.253E+04 -1.254E+04 -1.254E+04 -1.254E+04
Std. 1.224E+01 1.020E+01 1.067E+01 2.067E+01
Best 6.084E-02 3.555E-02 3.429E-02 2.177E-02
f7 Mean 1.473E+00 1.376E+00 1.014E+00 1.741E+00
Std. 9.824E-01 1.163E+00 8.710E-01 5.384E+00
Best 6.444E-01 1.516E-02 5.841E-02 1.246E-02
/8 Mean 1.406E+00 1.123E+00 1.191E+00 8.675E-01
Std. 3.961E-01 5.266E-01 4.356E-01 6.106E-01
Best 1.038E+00 9.870E-01 1.055E+00 2.596E-01
Vil Mean 1.124E+00 1.090E+00 1.118E+00 1.074E+00
Std. 4.877E-02 4.527E-02 4.242E-02 1.619E-01
Best -1.032E+00 -1.032E+00 -1.032E+00 -1.032E+00
f10 Mean -1.032E+00 -1.032E+00 -1.032E+00 -1.032E+00
Std. 1.698E-10 1.083E-10 1.832E-10 3.244E-10
Best 6.237E+00 1.280E-02 3.949E+00 7.787E+00
f11 Mean 1.240E+01 1.958E+00 9.605E+00 9.684E+03
Std. 4.391E+00 3.266E+00 4.487E+00 2.235E+04
(continued)
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Benchmark

function OHSA GHSA THSA VSM
Best 4.832E+03 4.866E+03 6.103E+03 1.051E+04

f12 Mean 1.077E+04 1.013E+04 1.004E+04 2.100E+04
Std. 3.205E+03 2.263E+03 2.356E+03 1.366E+04
Best 1.826E+03 3.348E+02 1.452E+03 1.304E+03

f13 Mean 1.072E+04 2.777E+03 5.821E+03 7.900E+08
Std. 7.156E+03 4.255E+03 4.034E+03 4.327E+09
Best 4.260E-02 3.157E-02 3.569E-02 2.691E-02

f14 Mean 1.293E+00 8.915E-01 1.082E+00 8.658E+00
Std. 1.248E+00 9.407E-01 1.020E+00 3.804E+01

The observed mean results show that the VSM achieves the best mean
score in 50%, 43%, and 29% of total cases in 5, 20, and 50 HMS, respectively,
among the compared algorithms.

The high standard deviation values obtained by the VSM in all cases of

f11 and f13 test functions indicate the instability of the VSM search progress.

Table 4

Best, Mean and Standard Deviation of the Benchmark Function Results

(HMS=50,ND=30)

Benchmark
function OHSA GHSA THSA VSM
Best 7.501E+00 2.136E-01 6.420E+00 3.592E-01
f1 Mean 2.156E+01 1.983E+00 1.570E+01 1.153E+01
Std. 7.203E+00 1.973E+00 6.269E+00 5.905E+00
Best 2.499E-01 4.963E-02 7.990E-02 5.933E-02
2 Mean 4.992E-01 7.621E-02 2.426E-01 2.636E-01
Std. 1.802E-01 5.257E-02 1.148E-01 1.679E-01
Best 2.000E+00 0.000E+00 0.000E+00 0.000E+00
3 Mean 9.533E+00 3.567E+00 6.733E+00 5.333E+00
Std. 5.070E+00 2.329E+00 4.085E+00 4.505E+00
Best 2.606E+02 1.868E+01 2.165E+02 1.049E+02
14 Mean 8.307E+02 2.240E+02 5.518E+02 3.538E+02
Std. 5.765E+02 2.743E+02 4.119E+02 2.365E+02
Best 2.840E+03 3.835E+03 2.468E+03 1.041E+02
&l Mean 8.822E+03 8.882E+03 6.415E+03 1.399E+03
Std. 3.591E+03 2.476E+03 2.374E+03 1.456E+03
Best -1.255E+04 -1.256E+04 -1.255E+04 -1.257E+04
f6 Mean -1.252E+04 -1.254E+04 -1.253E+04 -1.253E+04
Std. 1.681E+01 1.071E+01 1.436E+01 2.180E+01
Best 1.233E-01 4.518E-02 5.418E-02 3.989E-02
f7 Mean 1.760E+00 1.028E+00 1.521E+00 2.090E+00
Std. 1.186E+00 8.751E-01 1.492E+00 5.347E+00
Best 1.264E+00 1.066E-02 8.157E-01 7.178E-02
f8 Mean 2.071E+00 1.014E+00 1.736E+00 1.226E+00
Std. 3.663E-01 6.125E-01 4.419E-01 6.251E-01
(continued)
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Benchmark
function OHSA GHSA THSA VSM
Best 1.099E+00 9.392E-01 1.056E+00 3.935E-01
Vil Mean 1.214E+00 1.077E+00 1.127E+00 1.087E+00
Std. 6.325E-02 4.684E-02 4.369E-02 1.801E-01
Best -1.032E+00  -1.032E+00 -1.032E+00 -1.032E+00
f10 Mean -1.032E+00 -1.032E+00 -1.032E+00 -1.032E+00
Std. 1.338E-10 2.879E-10 3.567E-10 2.766E-10
Best 9.933E+00 9.689E-02 7.476E+00 1.522E+01
11 Mean 2.094E+01 1.640E+00 1.501E+01 6.519E+03
Std. 5.366E-+00 1.709E+00 5.314E+00 1.782E+04
Best 5.124E+03 5.094E+03 4.789E+03 4.068E+03
f12 Mean 1.039E+04 1.028E+04 9.305E+03 1.805E+04
Std. 2.771E+03 3.734E+03 2.337E+03 9.635E+03
Best 3.947E+03 4.852E+02 1.776E+03 4.982E+03
fi3 Mean 1.745E+04 2.278E+03 1.293E+04 7.704E+08
Std. 8.877E+03 3.040E+03 8.160E+03 3.480E+09
Best 1.836E-01 2.877E-02 6.993E-02 2.447E-01
f14 Mean 2.432E+00 9.694E-01 1.612E+00 1.651E+01
Std. 1.481E+00 1.048E+00 1.102E+00 4.258E+01

This result is attributed to the weak performance of the VSM procedure
in detecting promising divisions in these two functions, leading to a relatively
slow convergence rate. Note that the evaluation number used in the detection
procedure is considered and deducted from the amount of remaining evaluation
times.

Tables 5, 6, and 7 show the statistical results obtained on the basis of the
solution fitness value for 100 problem dimensions.

Table 5

Best, Mean and Standard Deviation of the Benchmark Function Results
(HMS=5,ND=100)

Benchmark

function OHSA GHSA THSA VSM
Best 4.852E+03 3.698E+03 4.603E+03 8.038E+01

f1 Mean 6.443E+03 5.983E+03 5.800E+03 1.413E+03
Std. 8.404E+02 9.638E+02 8.185E+02 1.654E+03
Best 3.700E+01 4.144E+01 4.064E+01 9.800E+00

12 Mean 4.710E+01 4.672E+01 4.876E+01 2.325E+01
Std. 3.779E+00 3.174E+00 3.815E+00 1.182E+01
Best 4.819E+03 3.976E+03 3.989E+03 1.180E+02

3 Mean 5.825E+03 5.429E+03 5.400E+03 1.301E+03
Std. 7.527E+02 7.599E+02 8.274E+02 1.451E+03
Best 9.182E+05 7.031E+05 3.953E+05 1.921E+03

14 Mean 1.513E+06 1.383E+06 1.084E+06 2.360E+05
Std. 3.349E+05 3.863E+05 3.942E+05 5.333E+05

(continued)
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Benchmark
function OHSA GHSA THSA VSM
Best 1.154E+05 1.233E+05 1.021E+05 2.499E+03
& Mean 1.596E+05 1.522E+05 1.402E+05 5.197E+04
Std. 2.722E+04 1.664E+04 1.779E+04 8.843E+04
Best -3.791E+04 -3.774E+04 -3.693E+04 -4.164E+04
f6 Mean -3.689E+04 -3.677E+04 -3.600E+04 -3.963E+04
Std. 5.016E+02 6.163E+02 6.005E+02 1.484E+03
Best 1.800E+02 1.765E+02 1.751E+02 5.788E+01
f7 Mean 2.047E+02 1.977E+02 2.083E+02 1.260E+02
Std. 1.425E+01 1.298E+01 1.863E+01 4.468E+01
Best 8.298E+00 8.436E+00 8.322E+00 3.413E+00
f8 Mean 9.534E+00 9.484E+00 9.327E+00 5.679E+00
Std. 4.712E-01 4.436E-01 4.931E-01 2.166E+00
Best 4.118E+01 4.502E+01 3.913E+01 1.734E+00
Vil Mean 5.790E+01 5.754E+01 5.362E+01 1.607E+01
Std. 7.542E+00 6.802E+00 8.945E+00 1.689E+01
Best -1.032E+00 -1.032E+00 -1.032E+00 -1.032E+00
f10 Mean -1.032E+00 -1.032E+00 -1.032E+00 -1.032E+00
Std. 3.469E-10 1.838E-10 2.965E-10 2.247E-10
Best 4.658E+03 4.930E+03 5.012E+03 5.808E+03
f11 Mean 6.952E+03 6.297E+03 6.405E+03 3.522E+04
Std. 1.209E+03 8.616E+02 9.371E+02 5.916E+04
Best 1.586E+05 1.680E+05 1.358E+05 1.282E+05
f12 Mean 2.160E+05 2.116E+05 1.929E+05 1.975E+05
Std. 2.938E+04 2.929E+04 2.794E+04 8.819E+04
Best 1.001E+08 1.135E+08 6.670E+07 1.258E+08
f13 Mean 2.071E+08 1.764E+08 1.329E+08 8.750E+09
Std. 6.028E+07 4.782E+07 3.409E+07 2.095E+10
Best 1.985E+02 1.911E+02 1.860E+02 2.008E+02
f14 Mean 2.216E+02 2.218E+02 2.244E+02 2.772E+02
Std. 1.272E+01 1.568E+01 1.709E+01 1.185E+02

The observed results show that the VSM has excellent performance in
100% of the cases of non-shifted functions and acceptable performance in
25% of the cases of shifted functions.

Moreover, the observed mean results show comparable performance
between the compared algorithms where the proposed technique achieves the
best mean score in 71%, 71%, and 64% of total experimental cases for 5, 20
and 50 HMS, respectively.
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Table 6

Best, Mean and Standard Deviation of the Benchmark Sunction Results
(HMS=20,ND=100)

Benchmark
function OHSA GHSA THSA VSM
Best 5.002E+03 5.192E+03 4.447E+03 1.147E+02
f1 Mean 7.327E+03 7.230E+03 5.888E+03 2.634E+03
Std. 8.831E+02 1.031E+03 8.772E+02 2.871E+03
Best 3.643E+01 3.734E+01 4.424E+01 4.465E+00
2 Mean 4.272E+01 4.331E+01 5.004E+01 2.347E+01
Std. 3.230E+00 3.004E-+00 3.564E+00 1.309E+01
Best 5.343E+03 5.546E+03 4.170E+03 1.260E+02
3 Mean 6.885E+03 6.815E+03 5.405E+03 1.373E+03
Std. 8.548E+02 8.218E+02 7.593E+02 1.676E+03
Best 2.000E+06 1.204E+06 6.347E+05 2.781E+03
14 Mean 2.850E+06 2.290E+06 1.077E+06 6.131E+05
Std. 5.631E+05 4.844E+05 3.166E+05 1.105E+06
Best 2.235E+05 1.653E+05 1.170E+05 5.811E+03
5 Mean 3.045E+05 2.269E+05 1.478E+05 5.804E+05
Std. 5.787E+04 4.188E+04 1.736E+04 1.554E+06
Best -3.843E+04 -3.880E+04 -3.706E+04 -4.163E+04
f6 Mean -3.765E+04 -3.742E+04 -3.605E+04 -3.985E+04
Std. 5.605E+02 5.260E+02 6.157E+02 1.190E+03
Best 1.605E+02 1.736E+02 1.863E+02 8.332E+01
f7 Mean 1.864E+02 1.952E+02 2.151E+02 1.394E+02
Std. 1.581E+01 1.362E+01 1.557E+01 4.122E+01
Best 8.785E+00 9.163E+00 8.382E+00 2.137E+00
/8 Mean 1.006E+01 9.935E+00 9.340E+00 5.401E+00
Std. 3.721E-01 4.087E-01 4.417E-01 2.160E+00
Best 5.083E+01 5.161E+01 4.332E+01 2.452E+00
¥l Mean 6.959E+01 6.365E+01 5.503E+01 2.397E+01
Std. 1.035E+01 9.249E+00 9.756E+00 2.501E+01
Best -1.032E+00  -1.032E+00 -1.032E+00 -1.032E+00
f10 Mean -1.032E+00 -1.032E+00 -1.032E+00 -1.032E+00
Std. 2.528E-10 4.286E-10 1.903E-10 1.279E-10
Best 6.874E+03 5.880E+03 3.825E+03 6.941E+03
f11 Mean 8.323E+03 7.805E+03 5.898E+03 4.558E+04
Std. 9.388E+02 1.001E+03 8.438E+02 6.820E+04
Best 2.497E+05 1.962E+05 1.311E+05 1.419E+05
f12 Mean 3.427E+05 2.700E+05 1.925E+05 2.189E+05
Std. 4.207E+04 3.729E+04 3.002E+04 8.858E+04
Best 2.851E+08 1.840E+08 6.882E+07 3.943E+08
f13 Mean 4.204E+08 3.064E+08 1.303E+08 4.754E+09
Std. 8.033E+07 7.245E+07 3.490E+07 1.607E+10
Best 1.791E+02 1.743E+02 1.846E+02 1.891E+02
f14 Mean 2.071E+02 2.161E+02 2.227E+02 2.935E+02
Std. 1.489E+01 1.914E+01 2.031E+01 1.781E+02
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Table 7

Best, Mean and Standard dDviation of the Benchmark Function Results
(HMS=50,ND=100)

Benchmark

function OHSA GHSA THSA VSM
Best 4.852E+03 3.698E+03 4.603E+03 8.038E+01
f1 Mean 6.443E+03 5.983E+03 5.800E+03 1.413E+03
Std. 8.404E+02 9.638E+02 8.185E+02 1.654E+03
Best 3.700E+01 4.144E+01 4.064E+01 9.800E+00
12 Mean 4.710E+01 4.672E+01 4.876E+01 2.325E+01
Std. 3.779E+00 3.174E+00 3.815E+00 1.182E+01
Best 4.819E+03 3.976E+03 3.989E+03 1.180E+02
3 Mean 5.825E+03 5.429E+03 5.400E+03 1.301E+03
Std. 7.527E+02 7.599E+02 8.274E+02 1.451E+03
Best 9.182E+05 7.031E+05 3.953E+05 1.921E+03
4 Mean 1.513E+06 1.383E+06 1.084E+06 2.360E+05
Std. 3.349E+05 3.863E+05 3.942E+05 5.333E+05
Best 1.154E+05 1.233E+05 1.021E+05 2.499E+03
5 Mean 1.596E+05 1.522E+05 1.402E+05 5.197E+04
Std. 2.722E+04 1.664E+04 1.779E+04 8.843E+04
Best -3.791E+04 -3.774E+04 -3.693E+04 -4.164E+04
f6 Mean -3.689E+04 -3.677E+04 -3.600E+04 -3.963E+04
Std. 5.016E+02 6.163E+02 6.005E+02 1.484E+03
Best 1.800E+02 1.765E+02 1.751E+02 5.788E+01
f7 Mean 2.047E+02 1.977E+02 2.083E+02 1.260E+02
Std. 1.425E+01 1.298E+01 1.863E+01 4.468E+01
Best 8.298E+00 8.436E+00 8.322E+00 3.413E+00
f8 Mean 9.534E+00 9.484E+00 9.327E+00 5.679E+00
Std. 4.712E-01 4.436E-01 4.931E-01 2.166E+00
Best 4.118E+01 4.502E+01 3.913E+01 1.734E+00
Vil Mean 5.790E+01 5.754E+01 5.362E+01 1.607E+01
Std. 7.542E+00 6.802E+00 8.945E+00 1.689E+01
Best -1.032E+00  -1.032E+00 -1.032E+00 -1.032E+00
f10 Mean -1.032E+00 -1.032E+00 -1.032E+00 -1.032E+00
Std. 3.469E-10 1.838E-10 2.965E-10 2.247E-10
Best 4.658E+03 4.930E+03 5.012E+03 5.808E+03
f11 Mean 6.952E+03 6.297E+03 6.405E+03 3.522E+04
Std. 1.209E+03 8.616E+02 9.371E+02 5.916E+04
Best 1.586E+05 1.680E+05 1.358E+05 1.282E+05
f12 Mean 2.160E+05 2.116E+05 1.929E+05 1.975E+05
Std. 2.938E+04 2.929E+04 2.794E+04 8.819E+04
Best 1.001E+08 1.135E+08 6.670E+07 1.258E+08
fi3 Mean 2.071E+08 1.764E+08 1.329E+08 8.750E+09
Std. 6.028E+07 4.782E+07 3.409E+07 2.095E+10
Best 1.985E+02 1.911E+02 1.860E+02 2.008E+02
f14 Mean 2.216E+02 2.218E+02 2.244E+02 2.772E+02
Std. 1.272E+01 1.568E+01 1.709E+01 1.185E+02
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CONCLUSION AND FUTURE WORK

The size of search space greatly affects the search strategies of optimization
algorithms. In this study, a novel search algorithm named vibrant search
mechanism (VSM) is proposed, which divides the search space into an array
of subdivisions and orients the search procedure toward the most promising
division. This algorithm facilitates searching and minimizes algorithm
complexity by generating better solutions.

The effectiveness of the VSM can be evaluated by applying it within a
well-known evolutionary algorithm, such as the HSA. A series of numerical
simulations were performed and applied on different types of benchmark
optimization functions to validate the performance of the VSM. The
performance of VSM was evaluated on the basis of the generated results. The
evaluation results were compared with those of basic, tournament, and global
HSAs.

The results indicated that the VSM is more efficient than other algorithms
in non-shifted functions and less effective in shifted functions. The increased
efficiency of the VSM was attributed to its capability to guide search progress
toward the selection of promising divisions during the improvisation process.

This paper offers an initial investigation of the exploration part of an
evolutionary algorithm. Further work will focus on boosting the selection
process of created divisions and analysis of different parameter settings of the
proposed algorithm.
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