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ABSTRACT

The k-AMH algorithm has been proven efficient in clustering 
categorical datasets. It can also be used to cluster numerical 
values with minimum modification to the original algorithm. In 
this paper, we present two algorithms that extend the k-AMH 
algorithm to the clustering of numerical values. The original 
k-AMH algorithm for categorical values uses a simple matching 
dissimilarity measure, but for numerical values it uses Euclidean 
distance. The first extension to the k-AMH algorithm, denoted 
k-AMH Numeric I, enables it to cluster numerical values in a 
fashion similar to k-AMH for categorical data. The second 
extension, k-AMH Numeric II, adopts the cost function of the 
fuzzy k-Means algorithm together with Euclidean distance, and 
has demonstrated performance similar to that of k-AMH Numeric 
I. The clustering performance of the two algorithms was evaluated 
on six real-world datasets against a benchmark algorithm, the 
fuzzy k-Means algorithm. The results obtained indicate that the 
two algorithms are as efficient as the fuzzy k-Means algorithm 
when clustering numerical values. Further, on an ANOVA test, 
k-AMH Numeric I obtained the highest accuracy score of 0.69 for 
the six datasets combined with p-value less than 0.01, indicating 
a 95% confidence level. The experimental results prove that the 
k-AMH Numeric I and k-AMH Numeric II algorithms can be 
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effectively used for numerical clustering. The significance of 
this study lies in that the k-AMH numeric algorithms have been 
demonstrated as potential solutions for clustering numerical objects.

Keywords: Cluster analysis, partitional clustering algorithms, categorical and 
numerical data mining.

INTRODUCTION

Conventionally, clustering algorithms may fall under either of two clustering 
approaches: hierarchical approach or partitional approach. In the hierarchical 
approach, objects are arranged in a multi-level overlapping hierarchical form, 
whereas in the partitional approach, objects are assigned to a one-level non-
overlapping partitioning (Gan et al., 2007). For clustering large and high-
dimensional datasets, partitional clustering algorithms are generally more 
efficient than hierarchical clustering algorithms (Gan et al., 2007). Several 
well-established partitional clustering algorithms based on the center of a 
cluster, also known as center-based clustering algorithms (Gan et al., 2007) 
exist. They include the k-Means algorithm (MacQueen, 1967), which uses 
mean center clusters; the k-Modes algorithm (Huang, 1998), which uses mode 
center clusters; the k-Medoid algorithm (Kaufman & Rousseeuw, 1987), 
which uses object center clusters; and the k-Median algorithm (Meyerson et 
al., 2004), which uses median center clusters. 

Researchers became interested in clustering categorical data 20 years 
ago, when Huang (1998) proposed the k-Modes algorithm to specifically 
handle categorical variables.  The k-Modes algorithm is based on the k-Means 
algorithm, established for clustering numerical variables. It leverages the 
framework of the k-Means algorithm by exchanging mean with mode as the 
center of clusters and the simple similarity measure for calculating categorical 
variables, instead of the Euclidean distance of numerical variables. Variants 
that improve on these two seminal clustering algorithms (k-Means and 
k-Modes) have been proposed over the years. For example, k-Modes variants 
have been proposed for dealing with set-valued features (Cao et. al., 2017a) 
and matrix-object data (Cao et. al., 2017b). Similarly, bi-level and tri-level 
k-Means algorithms have been introduced to overcome the common issues of 
outliers and noisy data by the k-Means algorithm (Yu et. al., 2017). In addition, 
density canopy has been incorporated into the algorithm for determining the 
appropriate value for k, clusters, and initial cluster centers (Zhang, 2018).

Fuzzy clustering algorithms are inspired by the concept of fuzzy 
sets, introduced by Zadeh (1965). The fuzzy k-Means (also known as fuzzy 
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c-Means) algorithm, introduced by Bezdek (1981), gained popularity as 
the pioneer fuzzy-based clustering algorithm. Several other fuzzy-based 
algorithms exist for solving clustering problems, e.g., the fuzzy Covariance 
Clustering (Gustafson & Kessel, 1978) and fuzzy c-Elliptotypes (Bezdek, 
1981) algorithms for numerical problems, and the fuzzy k-Modes (Huang & 
Ng, 1999), k-Population (Kim et al., 2005), and new fuzzy k-Modes (Ng & 
Jing, 2009) algorithms for categorical problems.

Recently, a new algorithm called the k-Approximate Modal Haplotype 
(k-AMH) algorithm, which manipulates objects as the center of clusters, 
was exclusively introduced for clustering categorical values, particularly the 
DNA datasets of Y-Short Tandem Repeats (Y-STR) (Seman et al., 2012a). 
The k-AMH algorithm comes with its own medoid mechanism as the center 
of its clusters and has proven to be efficient in clustering Y-STR (Seman et 
al., 2012b) and other categorical data, such as soybean and voting (Seman 
et al., 2013). The algorithm relies on the maximization of its cost function 
and employs the fuzzy clustering framework as incorporated by the fuzzy 
k-means-type and fuzzy k-modes-type algorithms. This clustering framework 
still leaves the k-AMH algorithm open for further extension and improvement; 
for example, k-AMH I, II, and III were extended to improve the previous 
Y-STR clustering results (Seman et al., 2015).

This study presents two extension algorithms aimed at generalizing the 
k-AMH algorithm for clustering numerical values: (1) the original k-AMH 
algorithm extended directly to cluster numerical values by using Euclidean 
distance and (2) another k-AMH algorithm with a new cost function, adapted 
from the fuzzy k-Means algorithm cost function, combined with Euclidean 
distance. Thus, in the ensuing sections, the fundamental features of the k-AMH 
algorithm is first described, followed by descriptions of the two proposed 
algorithms for clustering numerical values. Finally, the performances of these 
two algorithms versus that of the fuzzy k-means algorithm on six real-world 
datasets are discussed.

k-AMH ALGORITHM

Let X = {X1, X2,..., Xn} be a set of n objects with categorical values and  H = 
{H1, H2,..., Hk} be a set of objects as the medoid of clusters. The aim is to find 
k clusters from n objects; the algorithm selects an object, h, for each cluster. 
Each x is tested and replaced in succession to obtain h via the maximization 
processes of P(W, D), as described in Eq. (1). 

                                    						           (1)P(W,D)r  > P(W,D)t, r ≠t; ∀t, 1≤ t ≤ (n-k)
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P(W, D) is maximized and defined in Eq. (2):

                                                 					          (2)

where Wwli ∈α is a (k × n) matrix that describes the degree of fuzziness values 
of the object, which contains values of zero and one, as described in Eq. (3). 

                            					                       (3)

where k (≤ n) is a predefined number of clusters, H is the medoid such that  
H = {H1, H2,..., Hk} ∈ X, a ∈[1, ∞)  is an alpha value that is typically greater 
than 1.0 and d (Xi, Hz)  is the distance calculated between object Xi and medoid 
Hz, as described in Eq. (4) and (4a):

                                         				                      (4)

subject to

                                   					                     (4a)

where m is the number of attributes.

dli∈ D, a is a (k × n) matrix that assigns a value of 1.0 or 0.5, known as the 
dominant weight, described in Eq. (5), subject to Eq. (5a), and (5b): 

                                           					          (5)

subject to

                                                    				                   (5a)
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 .                                             				                    (5b)

The optimization steps of the k-AMH algorithm are as follows.

Step 1: Select the initial medoid, H(1) ∈ X , randomly. Calculate P(W, D). Set 
q=1.
Step 2: Select X(t+1)  such that P(W, D) t+1  is maximized to replace H(1) ← X(t+1) . 
Step 3: Set q = q+1. If q = n, stop; otherwise, go to Step 2.

The algorithm above can be further simplified to the following steps.

Step 1: Choose k initial objects randomly as medoids. 
Step 2: Calculate distance d(Xi, Hz) between object x and medoid h using Eq. 
(4) and subject to Eq. (4a).
Step 3: Based on the distance calculated in Step 2, calculate partition matrix  
wli using Eq. (3). 
Step 4: Based on the partition matrix calculated in Step 3, assign a weighting 
dominant of 1.0 or 0.5 using Eq. (5) and subject to Eq. (5a) and (5b).
Step 5: Calculate cost function P(W, D) using Eq. (2).
Step 6: If the current cost function (Step 5) is greater than the previous cost 
function, replace medoid h for each x until the final medoids are obtained for 
all clusters using Eq. (1).
Step 7: Assign the objects to their corresponding crisp clusters.

EXTENDED k-AMH ALGORITHMS FOR NUMERICAL VALUES

k-AMH Numeric I

This algorithm is based precisely on the original k-AMH algorithm. However, 
Euclidean distance is used instead of similarity measure for the clustering of 
numerical values, as described in Eq. (4) and (4a). 

                                                     				        (6)

Therefore, the k-AMH Numeric I uses the clustering procedures of k-AMH 
algorithm as described above.
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k-AMH Numeric II

This algorithm was introduced with a minor modification to the original cost 
function of the k-AMH algorithm. The cost function employed by the fuzzy 
k-Means algorithm (Bezdek, 1981) is used in this algorithm to iteratively 
replace objects in succession towards h. Therefore, the replacement is based 
on the minimization of the cost function, P(W, D)  and as described in Eq. (7) 
and (8), and Euclidean distance as the distance measure (Eq. (6)). 

                                                				                      (7)

P(W, D) is a cost function, as described above in Eq. (2) and expanded in Eq. 
(8):

                                                      				         (8)

subject to Eq. (3) and (6).

RESULTS AND DISCUSSION

In this section, we discuss the experimental results obtained and compare the 
clustering performance of each of the two k-AMH numeric algorithms to that 
of the well-established fuzzy k-Means algorithm. 

Clustering Performance

We used the external criterion employed by Huang (1998) to evaluate his 
algorithm, the k-Modes algorithm, in evaluating the clustering performance of 
the proposed algorithms. The external criterion is one of three types of criteria 
that can be used in discovering inherent data structures of clustering results 
(Jain & Dubes, 1988). This criterion measures the degree of correspondence 
between the clusters and the classes assigned a priori.

The accuracy scores were manually obtained using the misclassification matrix 
Huang (1998) employed to analyze the correspondence between the clusters 
and the classes of the instances. This method was mainly used to measure the 
performance of clustering algorithms, as described by (9): 

                                                                                (9)
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where k is the number of clusters, gi is the number of objects occurring in both 
cluster i and its corresponding class/cluster, and n is the number of objects.

In addition, the experiments were conducted for each algorithm and 
dataset based on the alpha values used by them, i.e., 1.1, 1.2, 1.3, 1.4, 1.5, 
1.6, 1.7, 1.8, 1.9, and 2.0. To benchmark the performances of all algorithms, 
we rigorously conducted a 100-run experiment for each algorithm, dataset, 
and alpha value. Consequently, we obtained 18,000 accuracy scores (= 3 
algorithms × 6 datasets × 100-run experiment × 10 alpha values). 

Real-world Datasets

To benchmark the results, six numerical datasets were used to evaluate the 
performance of the algorithms; specifically, the Haberman, Pima, Wine, Seed, 
Iris, and User Knowledge datasets from the UCI repository (Lichman, 2013). 
Table 1 gives a summary of all the datasets and presents the number of objects, 
classes, and attributes for each set. 

Table 1

Summary of Numerical Datasets

Dataset Description No. of 
Instances

No. of 
Classes

No. of 
Attributes

1. Haberman Haberman’s survival dataset used for 
breast cancer studies. The original 
dataset contained 306 items with no 
filtration, divided into two classes with 
three attributes.

306 2 3

2. Pima Pima Indians Diabetes Data Set 
donated by National Institute of 
Diabetes and Digestive and Kidney 
Diseases. The original dataset 
contained 768 items, but was filtered 
to 393 by excluding all missing values. 
The number of classes and attributes 
are three and eight, respectively.

393 3 8

3. Wine The Wine dataset used for chemical 
analysis of wines grown in a specific 
area of Italy. The original dataset 
contained 178 items with no filtration, 
divided into three classes with thirteen 
attributes.

178 3 13

(continued)
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Dataset Description No. of 
Instances

No. of 
Classes

No. of 
Attributes

4. Seed The Seed dataset used for comparing 
three different varieties of wheat: 
Kama, Rosa, and Canadian. The 
original dataset contained 210 items 
with no filtration, divided into three 
classes with seven attributes.

210 3 7

5. Iris The Iris dataset used for analyzing the 
three types of Iris plants. The original 
dataset contained 150 items with no 
filtration, divided into three classes 
with four attributes.

150 3 4

6. User 
knowledge

The Users’ knowledge dataset used 
for studying students’ knowledge 
status about electrical DC machines. 
The dataset was filtered to 255 by 
excluding zero values from the 258-
item training set. The number of 
classes and attributes are four and five, 
respectively.

255 4 5

Clustering Results

The performance of the clustering algorithms can be observed by comparing 
the accuracy scores recorded through the 100-run experiments for each 
algorithm and dataset. Figure 1 shows box plot diagrams plotted from 1000 
accuracy scores for each algorithm and dataset through their alpha values. At a 
glance, it is clear that the two k-AMH numeric algorithms are competitive. In 
general, for each dataset, the performances of the k-AMH numeric algorithms 
are at least on par with the performances of the fuzzy k-Means algorithm. In 
fact, k-AMH Numeric I obviously outperforms the fuzzy k-Means algorithm 
on dataset 1, whereas k-AMH Numeric II demonstrates its competitiveness 
on datasets 3, 4, and 5. However, there is no algorithm is able to discover the 
inherent grouping structures consistently in all datasets. This is because the 
datasets used for the experiments are real datasets.
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(a) (b)

(c) (d)

(e) (f)

Figure 1. Overall observation through box plots based on clustering 
accuracy scores for each algorithm and alpha value: (a) Haberman dataset, 
(b) Pima dataset, (c) Wine dataset, (d) Seed dataset, (e) Iris dataset, (f) User 
Knowledge dataset.
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Figure 2 shows box plots of the accuracy scores of the fuzzy k-Means, k-AMH 
Numeric I, and k-AMH Numeric II algorithms plotted based on the combined 
accuracy scores of all datasets and alpha values. In general, there are no obvious 
differences among the three box plots. The box plots are comparatively tall, 
which suggests that the overall accuracy scores are optimal. Furthermore, 
the medians, which are generally close to the average accuracy scores, are all 
considerably at the same level. The average accuracy scores recorded were 
0.675, 0.694, and 0.685, whereas the minimum scores were 0.35, 0.36, and 
0.34 and the maximum were 0.99, 0.96, and 0.95 for fuzzy k-Means, k-AMH 
Numeric I, and k-AMH Numeric II, respectively. 

Figure 2. Box plot showing the accuracy scores on the six datasets combined.

For further analysis, a one-way ANOVA test was also used to elucidate 
whether any differences exist among the three algorithms. The assumption 
of homogeneity of variance was violated; therefore, the Welch F-ratio was 
reported, in which F (2, 11, 732.9) = 17,997, p < 0.01, ω2 <0.01. Thus, the 
comparison of the three algorithms was based on the Games-Howell Post Hoc 
test. Table 2 shows the comparison results obtained for the Games-Howell 
Post Hoc test. At a five percent level of significance, the k-AMH Numeric I 
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algorithm (M = 0.694, 95% CI [0.691, 0.697]) is significantly different from 
the average accuracy scores for both the fuzzy k-Means and the k-AMH 
Numeric II algorithms, with p-value < 0.01. Furthermore, the average 
accuracy score of k-AMH Numeric II (M = 0.685, 95% CI [0.680, 0.689]) is 
also significantly different from that of the fuzzy k-Means algorithm (p-value 
= 0.01). In conclusion, the k-AMH Numeric I and II algorithms are marginally 
better that than the fuzzy k-Means algorithm. 

Table 2

Multiple Comparisons of the Fuzzy k-Means, k-AMH Numeric I, and k-AMH 
Numeric II Algorithms for Combined Datasets

Average accuracy
Games-Howell Post Hoc Test

(I) Algorithm (J) Algorithm Mean  
(I-J)

Std. 
Error

p-value 95% Confidence 
Level

Lower 
Bound

Upper 
Bound

Fuzzy k-Means k-AMH Numeric I -0.02* 0.003 <0. 01 -0.03 0.01
k-AMH Numeric II 0.00* 0.003 0. 01 -0.02 0.00

k-AMH Numeric I Fuzzy k-Mean 0.02* 0.003 <0.01 0.01 0.02
k-AMH Numeric II 0.01* 0.003 0.04 0.02 0.02

*Note: p < 0.05.

CONCLUSION

The k-AMH algorithm has already been proven efficient for the clustering of 
categorical data. Moreover, it can also be generalized and extended to cluster 
numerical data because it uses a clustering framework similar to the one 
incorporated by the fuzzy k-Means algorithm. The main difference is simply 
that it uses medoid-based cluster centers instead of the centroid used by the 
k-Means algorithm. From the rigorous experiments conducted on the six real-
world datasets, the performances of both k-AMH numeric algorithms are 
very promising. The k-AMH Numeric algorithms are considerably efficient 
in clustering numerical objects and their performances are at least on par with 
that of the well-established fuzzy k-Means algorithm. Furthermore, on certain 
datasets—specifically, datasets 1, 2, 4, and 5—the two algorithms obviously 
outperform the fuzzy k-Means algorithm. The results presented via box plots 
demonstrate their efficiency—specifically in terms of higher accuracy scores 
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and median values—as well as their consistency, specifically showing fewer 
outliers and shorter box plots. Hence, the k-AMH numeric algorithms can be 
viewed as potential solutions for clustering numerical objects.
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