
435

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

Received: 8 August 2017 Accepted: 10 April 2018

How to cite this paper:

Gabi, D., Ismail, A S., Zainal, A., Zakaria, Z., & Al-Khasawneh, A. (2018). Hybrid cat swarm
optimization and simulated annealing for dynamic task scheduling on cloud computing
environment. Journal of Information and Communication Technology, 17(3), 435-467.

HYBRID CAT SWARM OPTIMIZATION AND SIMULATED
ANNEALING FOR DYNAMIC TASK SCHEDULING ON CLOUD

COMPUTING ENVIRONMENT

1Danlami Gabi, 2Abdul Samad Ismail, 2Anazida Zainal,
2Zalmiyah Zakaria & 3Ahmad Al-Khasawneh

1Department of Kebbi State University of Science and Technology,
Aliero, Nigeria

2Faculty of Computing, Universiti Teknologi Malaysia, Malaysia
3Faculty of Prince Al-Hussein bin Abdullah II of Information Technology,

Hashemite University, Zarqa, Jordan

gabsonley@gmail.com; abdsamad@utm.my; anazida@gmail.com;
zalmiyah@utm.my; akhasawneh@hu.edu.jo

ABSTRACT

The unpredictable number of task arriving at cloud datacentre
and the rescaling of virtual processing elements can affect the
provisioning of better Quality of Service expectations during
task scheduling in cloud computing. Existing researchers have
contributed several task scheduling algorithms to provide
better QoS expectations but are characterized with entrapment
at the local search and high dimensional breakdown due to
slow convergence speed and imbalance between global and
local search, resulting from lack of scalability. Dynamic task
scheduling algorithms that can adjust to long-time changes and
continue facilitating the provisioning of better QoS are necessary
for cloud computing environment. In this study, a Cloud Scalable
Multi-Objective Cat Swarm Optimization-based Simulated
Annealing algorithm is proposed. In the proposed method, the

 Published: 12 June 2018

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

436

. orthogonal Taguchi approach is applied to enhance the SA which
is incorporated into the local search of the proposed CSM-
CSOSA algorithm for scalability performance. A multi-objective
QoS model based on execution time and execution cost criteria
is presented to evaluate the efficiency of the proposed algorithm
on CloudSim tool with two different datasets. Quantitative
analysis of the algorithm is carried out with metrics of execution
time, execution cost, QoS and performance improvement rate
percentage. Meanwhile, the scalability analysis of the proposed
algorithm using Isospeed-efficiency scalability metric is also
reported. The results of the experiment show that the proposed
CSM-CSOSA has outperformed Multi-Objective Genetic
Algorithm, Multi-Objective Ant Colony and Multi-Objective
Particle Swarm Optimization by returning minimum execution
time and execution cost as well as better scalability acceptance
rate of 0.4811−0.8990 respectively. The proposed solution
when implemented in real cloud computing environment could
possibly meet customers QoS expectations as well as that of the
service providers.

Keywords: Cloud computing; multi-objective optimization; task scheduling; cat
swarm optimization; simulated annealing.

INTRODUCTION

The evolution of cloud computing has reshaped Information Technology
(IT) consumption through the provisioning of high-performance computing
as well as massive resource storage that are continually channelled across a
medium called the Internet. The paradigm permits the execution of large-scale
applications, where distributed collaborative resources which are managed by
several autonomous domains are made available (Khajehvand et al., 2014;
Gabi, 2014). Trends toward the development of cloud computing have
arisen far back when computers are connected and how networking among
computers moved to distributed computing, which further led to cluster
computing and from cluster computing to grid computing and eventually
now, cloud computing (Rani et al., 2015). Presently, services provided by
cloud computing are available at affordable cost, with high availability and
scalability for all scales of businesses (Hassan et al., 2017). These services
include: Software as a Service (SaaS); providing users with opportunities
to run applications remotely from the cloud. The Infrastructure as a Service
(IaaS); providing virtualize computer services that ensure better processing

437

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

power with reserved bandwidth for storage. The Platform as a Service (PaaS);
providing operating systems and require services for a particular application
(Furkt, 2010; Raza et al., 2015; Cui et al., 2017). All these services function
within the delivery model of cloud computing such as Public cloud; that
permit dynamic allocation of computing resource over the Internet through
web applications. The Private clouds; built to provide full control over data,
security as well as the quality of service. The Hybrid cloud; which controls the
distribution of applications across both public and private cloud (Furkt, 2010).
One of the fundamental challenges of cloud computing is the level of
Quality of Service (QoS) satisfaction which has become insufficient to meet
consumer and service provider expectations. The number of tasks arriving
cloud datacentre are alarming and the recalling of virtual machines processing
elements to meet each task expectations is a complex scheduling problem
(Ibrahim et al., 2015). The cloud consumers sent tasks to cloud virtual resources
(virtual machines). Each task is characterized with QoS objective(s) expected
to be met. The cloud consumer demands their submitted task to be processed
in a short time with less cost of execution. The service provider facilitates
the provisioning of the required service that can meet this expectation while
demanding for better pay. This problem can be referred to as a multi-objective
NP-hard problem (Kalra & Singh, 2015). It has become necessary to develop
task scheduling algorithm that considers dynamicity of cloud computing
environment to facilitate efficient mapping of each task on a suitable resource
and ordering the task on each resource to satisfy performance criteria (Monika
& Jindal, 2016; Kalra & Singh, 2015; Zhang et al., 2014; Letort et al., 2015).
Therefore, dynamic optimization algorithms are the potential solutions to
distributing tasks amongst virtual machines at run-time as well as considering
the current state of Virtual Machine (VM) information on its capacity to fast
track next distribution decision (Gabi et al., 2015; Mustaffa et al., 2013;
Ibrahim et al., 2016). To date, it is vital to design a low-complexity dynamic
optimization algorithm to adapt the dynamicity of cloud tasks and resources
while maintaining better QoS performance.

The Swarm Intelligence (SI) techniques are relatively new promising
approaches for solving combinatorial optimization problems because of
their ability in handling large scale problem and produce results in just one
run. These techniques are inspired by the collective intelligence of social
behavioural model of insects and other animals (Singh et al., 2017). With the
SI technique, sharing of information is done easily among multiple swarms
for co-evolution which learn in searching for solution space. The large-scale
optimization becomes practical with this technique because it allows multiple
agents to be parallelised easily (Singh et al., 2017; Mustaffa et al., 2015).

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

438

Some of the examples of SI techniques used by existing researchers to address
task scheduling problem are; Particle Swarm Optimization (PSO) (Ramezaini
et al., 2013; Awad et al., 2015; Jena, 2015), Ant Colony Optimization (ACO),
(Shengjun et al., 2015; Anradha & Selvakumar, 2015), Artificial Bee Colony
(ABC) (Kumar & Gunasekaram, 2014; Li & Pan, 2015; Gao et al., 2015),
BAT algorithm (Gandomi & Yang, 2014; Jacob, 2014; George, 2015) & Cat
Swarm Optimization (CSO) (Bilgaiyan et al., 2015; Gabi et al., 2016).

Cat Swarm Optimization (CSO) is one of the SI approaches introduced in (Chu
& Tsai, 2007) to address continuous optimization problem. The technique
converges faster than Particle Swarm Optimization (PSO) in terms of speed
and convergence (Chu & Tsai, 2007). Exploring this technique to address a
discrete optimization problem especially cloud task scheduling problem will
be a potential solution. The CSO has both global and local search known as the
seeking and tracing mode and a mixed ratio (MR) that determine the position
of the cat (Gabi et al., 2016; Chu &Tsai, 2007). Its local search (tracing mode)
can be enhanced to search for optimality in a multi-dimensional problem.
Simulated Annealing (SA) is a type of local search and is easy to implement
probabilistic approximation algorithm, as introduced in (Kirkpatrick et al.,
1983) to solve the NP-hard optimization problem (Wang et al., 2016). It uses
a neighbourhood function and a fitness function to avoid being trapped at the
local optimal, thereby finding a solution closer to global optimum (Jonasson
& Norgren, 2016; Abdullahi & Ngadi, 2016; Černý, 1985). The strength of
the SA when searching for an optimal solution can as well be enhanced when
method like orthogonal Taguchi is introduced (Taguchi et al., 2000). In this
study, we proposed a Cloud Scalable Multi-Objective Cat Swarm Optimization
based Simulated Annealing (CSM-CSOSA) algorithm to address cloud task
scheduling problem in cloud computing. To determine the effectiveness of
the algorithm, a multi-objective QoS task scheduling model is presented and
solved using the proposed (CSM-CSOSA) algorithm.

Several contributions are made possible in this study, i.e. the development
of a Multi-Objective model based on execution time and execution cost
objectives for optimal task scheduling on cloud computing environment; the
development of CSM-CSOSA task scheduling algorithm to solve the multi-
objective task scheduling model; the implementation of the CSM-CSOSA
task scheduling algorithm on CloudSim tool; the performance comparison of
the proposed CSM-CSOSA task scheduling algorithm with multi-objective
genetic algorithm (Budhiraja & Singh, 2014), multi-objective scheduling
optimization method based on ant colony optimization (Zuo et al.¸2015) and
multi-objective particle swarm optimization (Ramezaini et al., 2013) based

439

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

on execution time, execution cost, QoS and percentage improvement rate
percentage.

RELATED WORK

Several authors have put forward task scheduling optimization algorithms
to solve task scheduling problem in cloud computing. Some of which
are discussed as follows: Zuo et al. (2015) introduced a multi-objective
optimization scheduling method based on an ant colony. The authors’ aim
is to optimise both the objective of performance and cost. The authors
conduct some experiments via simulation to shows the effectiveness of their
proposed algorithm. The result of the experiment shows that their method
managed to achieve 56.6% increase in the best-case scenario as compared
to other algorithms. However, local trapping is an issue regarding the ant
colony method as they traverse toward solution finding. The updating process
of pheromone can lead to long computation time. Besides, the number of
tasks used for the experiment may not be significant enough to justify whether
their proposed method is scalable to handle large task size. Similarly, Zuo et
al. (2016) proposed a multi-objective task scheduling method based on Ant
Colony Optimization (MOSACO). The objective of the study is to address
deadline and cost in a hybrid cloud computing environment. The researchers
have been able to measure the effectiveness of their proposed MOSACO
algorithm using metrics of task completion time, cost, the number of deadline
violations, and the degree of private resource utilization.

The results of the simulation show that their proposed MOSACO task
scheduling algorithm can provide the highest optimality. However, scalability
may be an issue due to the number of tasks used for the experiment, especially
when considering the dynamicity of cloud computing. In another development,
Dandhwani and Vekariya (2016) put forward a multi-objective scheduling
algorithm for cloud computing environments. Their objective is to minimize
the execution time and makespan of schedule tasks on computing resources.
The authors reported that simulation results of their proposed method can
minimize the execution time and makespan time effectively. However, the
greedy approach may be insufficient to handle large scale tasks scheduling
problem, especially in a dynamic cloud environment. Khajehvand et al.
(2013) dwelled on heuristic scalable cost-time trade-off scheduling algorithm
for grid computing environments to solve workflow scheduling problem.
The study makes use of three scheduling constraints (i.e. the task sizes,
task parallelism, and heterogeneous resources) to evaluate their proposed
method. The authors revealed that simulation results show that their heuristic
method has outperformed the comparison method based on performance
and scalability with different workflow sizes. However, the heuristic based

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

440

approach can perform better when centralized scheduling environment is
considered, where task arrival is known in advance and scheduling is done
on the capacity of the virtual machines to handle the task demand. Besides,
their performance in a dynamic cloud environment could be an issue due to
the volume of tasks and heterogeneity of cloud computing resources. As a
result, determining the right resource to execute the task demand will be a
very complex decision. In another development, Lakra and Yadav (2015)
introduced a multi-objective task scheduling algorithm to increase throughput
and minimize resource execution cost. The experimental result via simulation
shows that their proposed method can yield better performance in terms of
cost and improves throughput. However, its application to address large size
tasks in an elastic resource condition is still an issue that needs to be addressed.
Yue et al. (2016) presented an improved multi-objective niched Pareto genetic
(NPGA) method. The objective of the study is to minimize time consumption
and financial cost of handling the users’ tasks. The results of the experiment
via simulation shows that their proposed algorithms can maintain the diversity
and the distribution of Pareto-optimal solutions in cloud tasks scheduling
under the same population size and evolution generation than the comparison
algorithm. However, long computation time is bound to occur due to mutation
process characterised by the genetic algorithm. Besides, the global solution
finding merit of the genetic algorithm is insufficient to find an optimal solution
due to the nature of its chromosome selection using the probability function.
In their part, Budhiraja and Singh (2014) introduced a multi-objective task
scheduling algorithm using the genetic technique. The objective of the study
is to reduce the cost of execution, execution time and ensured scalability
performance. The result of the simulation as stated by the authors shows that
their method can obtain a better optimiser in terms of makespan and cost of
resource usage. However, it is hard to draw a conclusion on their proposed
algorithm, since comparison technique has not been considered.

Hua et al. (2016) presented a PSO-based adaptive multi-objective task
scheduling algorithm for cloud computing environment. The objective of their
study is to minimize processing time and the transmission time of scheduled
tasks in cloud datacentre. The results of the experiment via simulation shows that
their PSO-based AMTS algorithm can obtain better quasi-optimal solutions in
task completion time, average cost, and energy consumption compared to the
genetic algorithm. However, global search process of the PSO is insufficient
to handle task scheduling optimization problem without incorporating any
local search optimization technique. Besides, the number of iterations used
in the experiments is insufficient to justify the performance of the proposed
algorithm. On the other hand, Letort et al. (2015) presented a greedy-based
scheduling algorithm that handles task scheduling problem based on resource
and precedence constraints. The experimental results via simulation show a

441

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

significant increase in several numbers of cumulative constraints. However,
the greedy approach can perform better when considering small scale network
environment with small task size. Leena et al. (2016) proposed a bio-
objective task scheduling algorithm based on genetic algorithm for hybrid
cloud environments. The objective of the study is to minimize the execution
time and execution cost of task schedule on computing resources. The authors
make used of two single objective algorithms each for the execution time and
execution cost to show the effectiveness of their proposed method. The result
of the experiment via simulation shows that their proposed method can reduce
the execution time and execution cost of all tasks scheduled on computing
resources as compared to the single objective optimization algorithms.
However, local entrapment can still be an issue with the genetic technique.
Ramezani et al. (2013) introduced a multi-objective algorithm to solve
three conflicting objectives; task execution/transfer time and task execution
cost. The result of the experiment via simulation on CloudSim tool shows
remarkable performance than other comparative algorithms. However, the
PSO can easily get entrapped at the local optima region.

Findings from the Existing Method

Findings show that the heuristic (greedy) task scheduling algorithms are
applicable to small size scheduling problems. Although some degree of success
in addressing the NƤ-completeness of the scheduling of a task can be achieved
by returning a feasible solution, but the dynamic nature of cloud computing
environment lags the heuristic approach to satisfy scheduling optimization
problems such as makespan and execution cost. The metaheuristic techniques
are promising than the heuristic techniques. However, metaheuristic
techniques used in the existing literature for multi-objective task scheduling
problem exhibits both global and local search optimization process. The
global search optimization alone cannot guarantee optimality and local search
optimization often gets trapped at the local optimal. Hence, intensification
and diversification will generate focus on exploring the search space in a
local region using a combination of several methods to help achieve global
optimality of both the execution time and execution cost objectives. This
will as well increase the scalability to handle the dynamic changing task and
resource condition (i.e. the virtual machine processing elements).

METHODOLOGY

Cat Swarm Optimization

Chu and Tsai (2007) introduce Cat Swarm Optimization (CSO) technique
which mimics the common behaviour of a natural cat. As observed by the

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

442

author, the cats always remain alert while spending most of their time resting and
move slowly when observing their environment. Two modes were actualized
which represent the behaviour of cat (Gabi et al., 2016) i.e., the seeking mode
and the tracing mode. The seeking mode is the global search process of the CSO
technique. Four attributes were associated with this mode. The Seeking Memory
Pool (SMP); which indicates the memory size sort by the cat, Seeking Range of
selected Dimension (SRD); for selecting cat dimensions, Counts of Dimension to
Change (CDC); used for disclosing how many dimensions according to cat number
varied, and Self-Position Considering (SPC); represents a Boolean variable that
unveil if the position at which the cat is presently standing can be chosen as the
candidates’ position to move into (Gabi et al., 2016). Algorithm 1 shows the
procedure for the seeking mode (Chu & Tsai, 2007). The tracing mode is the local
search procedure of the CSO technique. Algorithm 2 shows the pseudocode for the
CSO tracing mode (Gabi et al., 2016).

Algorithm 1: Pseudocode for CSO seeking mode
Do

1.	 Generate N copies of cat,
1.	 Change at random the dimension of cats as per CDC by applying mutation operator
2.	 Determine all changed cats’ fitness values.
3.	 Discover most suitable cats (non-dominant) based on their fitness values.
4.	 Replace the position of the N cat after picking a candidate at random
 While Stopping condition is not exceeded.
Algorithm 2: Pseudocode for CSO tracing mode

Begin
1.	 Compute and update cat velocity using the new velocity in Equation 1:

 (1)

Where c; the constant value of acceleration, r; is the uniform distributed random
number in the range of [0, 1].
2.	 Add new velocity by computing the current (new) position of the cat using

Equation 2

 (2)
3.	 Calculate the fitness values of all cats.
4.	 Update and return best cats with the best fitness.
End

Limitations of Cat Swarm Optimization to Solve Cloud Task Scheduling
Problem

Although the CSO technique has proven to be more efficient than PSO in both
computation time and convergence speed (Chu &Tsai, 2007), its application in

8

while spending most of their time resting and move slowly when observing their environment.

Two modes were actualized which represent the behaviour of cat (Gabi et al., 2016) i.e., the

seeking mode and the tracing mode. The seeking mode is the global search process of the CSO

technique. Four attributes were associated with this mode. The Seeking Memory Pool (SMP);

which indicates the memory size sort by the cat, Seeking Range of selected Dimension (SRD);

for selecting cat dimensions, Counts of Dimension to Change (CDC); used for disclosing how

many dimensions according to cat number varied, and Self-Position Considering (SPC);

represents a Boolean variable that unveil if the position at which the cat is presently standing can

be chosen as the candidates’ position to move into (Gabi et al., 2016). Algorithm 1 shows the

procedure for the seeking mode (Chu & Tsai, 2007). The tracing mode is the local search

procedure of the CSO technique. Algorithm 2 shows the pseudocode for the CSO tracing mode

(Gabi et al., 2016).

Algorithm 1: Pseudocode for CSO seeking mode

Do

1. Generate N copies of cat,

2. Change at random the dimension of cats as per CDC by applying mutation operator

3. Determine all changed cats’ fitness values.

4. Discover most suitable cats (non-dominant) based on their fitness values.

5. Replace the position of the 𝑁𝑁cat after picking a candidate at random

 While Stopping condition is not exceeded.

Algorithm 2: Pseudocode for CSO tracing mode

Begin

1. Compute and update cat velocity using the new velocity in Equation 1:

 𝑉𝑉𝐾𝐾,𝑑𝑑 = 𝑉𝑉𝐾𝐾,𝑑𝑑 + (𝑐𝑐1 × 𝑟𝑟1 × (𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑑𝑑 – 𝑋𝑋𝐾𝐾,𝑑𝑑)) (1)

 𝑑𝑑 = 1, 2, … . . ,𝑀𝑀

Where c; the constant value of acceleration, r; is the uniform distributed random number in the

range of [0, 1].

2. Add new velocity by computing the current (new) position of the cat using Equation 2

 𝑋𝑋𝑘𝑘,𝑑𝑑 = 𝑋𝑋𝑘𝑘,𝑑𝑑 + 𝑉𝑉𝑘𝑘,𝑑𝑑 (2)

3. Calculate the fitness values of all cats.

4. Update and return best cats with the best fitness.

End

8

while spending most of their time resting and move slowly when observing their environment.

Two modes were actualized which represent the behaviour of cat (Gabi et al., 2016) i.e., the

seeking mode and the tracing mode. The seeking mode is the global search process of the CSO

technique. Four attributes were associated with this mode. The Seeking Memory Pool (SMP);

which indicates the memory size sort by the cat, Seeking Range of selected Dimension (SRD);

for selecting cat dimensions, Counts of Dimension to Change (CDC); used for disclosing how

many dimensions according to cat number varied, and Self-Position Considering (SPC);

represents a Boolean variable that unveil if the position at which the cat is presently standing can

be chosen as the candidates’ position to move into (Gabi et al., 2016). Algorithm 1 shows the

procedure for the seeking mode (Chu & Tsai, 2007). The tracing mode is the local search

procedure of the CSO technique. Algorithm 2 shows the pseudocode for the CSO tracing mode

(Gabi et al., 2016).

Algorithm 1: Pseudocode for CSO seeking mode

Do

1. Generate N copies of cat,

2. Change at random the dimension of cats as per CDC by applying mutation operator

3. Determine all changed cats’ fitness values.

4. Discover most suitable cats (non-dominant) based on their fitness values.

5. Replace the position of the 𝑁𝑁cat after picking a candidate at random

 While Stopping condition is not exceeded.

Algorithm 2: Pseudocode for CSO tracing mode

Begin

1. Compute and update cat velocity using the new velocity in Equation 1:

 𝑉𝑉𝐾𝐾,𝑑𝑑 = 𝑉𝑉𝐾𝐾,𝑑𝑑 + (𝑐𝑐1 × 𝑟𝑟1 × (𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑑𝑑 – 𝑋𝑋𝐾𝐾,𝑑𝑑)) (1)

 𝑑𝑑 = 1, 2, … . . ,𝑀𝑀

Where c; the constant value of acceleration, r; is the uniform distributed random number in the

range of [0, 1].

2. Add new velocity by computing the current (new) position of the cat using Equation 2

 𝑋𝑋𝑘𝑘,𝑑𝑑 = 𝑋𝑋𝑘𝑘,𝑑𝑑 + 𝑉𝑉𝑘𝑘,𝑑𝑑 (2)

3. Calculate the fitness values of all cats.

4. Update and return best cats with the best fitness.

End

443

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

cloud computing may require improvement to solve complex task scheduling
optimization problem. The global search optimization process of the CSO
is quite promising. However, this global search alone can not guarantee an
optimal solution without the support of the local search optimization process.
The CSO suffered local entrapment while its global solution finding merit
is preserved. This is because the number of cats going into seeking mode
(global search) all the time always exceed the ones with tracing mode (local
search mode). This may cause the mutation process of the CSO at tracing
(local search) mode to affect performance and may end up not achieving an
optimal solution for cloud task scheduling optimization problem (Gabi et al.,
2016). Similarly, for every iteration, the seeking (global search) mode and
tracing (local search) mode of CSO were carried out independently, causing
its position and velocity update to exhibit similar process. As a result, a very
high computation time is bound to occur (Pradhan & Panda, 2012). Therefore,
a local search optimization algorithm incorporated at the local search of the
CSO is sufficient to address its limitations.

Simulated Annealing

Simulated Annealing (SA) is a local search probabilistic approximation
algorithm introduced by Kirkpatrick et al. (1983). The algorithm uses a
neighbourhood and a fitness function to avoid being trapped at the local optima
(Jonasson & Norgre, 2016). The SA algorithm often begins with an initial
solution according to some neighbourhood function with an updated
solution created . As to how the particle tend to adopt a state which is an
improvement over current one, the algorithm generates a solution when the
fitness value becomes lower than . However, assume has the higher
fitness, it will occasionally be accepted if the defined probability shown in
equation 3 is satisfied (Abdullahi & Ngadi, 2016).

 (3)

Where is the fitness evaluation functions and the current solutions of the
neighbour accordingly; and represents the control parameter called the
temperature. This parameter is determined according to the cooling rate used
in (Abdullahi & Ngadi, 2016).

 (4)

Where: = temperature descending rate, ; the number of times which
neighbour solutions have been generated so far; initial temperature; final
temperature. When the initial value of the temperature is low, the algorithm

9

Limitations of Cat Swarm Optimization to Solve Cloud Task Scheduling Problem

Although the CSO technique has proven to be more efficient than PSO in both computation time

and convergence speed (Chu &Tsai, 2007), its application in cloud computing may require

improvement to solve complex task scheduling optimization problem. The global search

optimization process of the CSO is quite promising. However, this global search alone can not

guarantee an optimal solution without the support of the local search optimization process. The

CSO suffered local entrapment while its global solution finding merit is preserved. This is

because the number of cats going into seeking mode (global search) all the time always exceed

the ones with tracing mode (local search mode). This may cause the mutation process of the CSO

at tracing (local search) mode to affect performance and may end up not achieving an optimal

solution for cloud task scheduling optimization problem (Gabi et al., 2016). Similarly, for every

iteration, the seeking (global search) mode and tracing (local search) mode of CSO were carried

out independently, causing its position and velocity update to exhibit similar process. As a result,

a very high computation time is bound to occur (Pradhan & Panda, 2012). Therefore, a local

search optimization algorithm incorporated at the local search of the CSO is sufficient to address

its limitations.

Simulated Annealing

Simulated Annealing (SA) is a local search probabilistic approximation algorithm introduced by

Kirkpatrick et al. (1983). The algorithm uses a neighbourhood and a fitness function to avoid

being trapped at the local optima (Jonasson & Norgre, 2016). The SA algorithm often begins

with an initial solution 𝑋𝑋 according to some neighbourhood function 𝑁𝑁 with an updated solution

𝑋𝑋′created. As to how the particle tend to adopt a state which is an improvement over current one,

the algorithm generates a solution when the fitness value 𝑓𝑓(𝑋𝑋∗) becomes lower than 𝑓𝑓(𝑋𝑋).

However, assume 𝑋𝑋∗ has the higher fitness, it will occasionally be accepted if the defined

probability shown in equation 3 is satisfied (Abdullahi & Ngadi, 2016).

 𝑃𝑃𝑟𝑟𝑟𝑟(𝑋𝑋,𝑋𝑋∗,𝑇𝑇) = exp [(−(𝑓𝑓(𝑋𝑋∗) − 𝑓𝑓(𝑋𝑋))) ∗ 𝑇𝑇−1] (3)

Where 𝑓𝑓(𝑋𝑋∗) is the fitness evaluation functions and 𝑓𝑓(𝑋𝑋) the current solutions of the neighbour

accordingly; and 𝑇𝑇 represents the control parameter called the temperature. This parameter is

determined according to the cooling rate used in (Abdullahi & Ngadi, 2016).

 𝑇𝑇 = 𝜎𝜎𝑖𝑖 ∗ 𝑇𝑇𝑂𝑂 + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (4)

9

Limitations of Cat Swarm Optimization to Solve Cloud Task Scheduling Problem

Although the CSO technique has proven to be more efficient than PSO in both computation time

and convergence speed (Chu &Tsai, 2007), its application in cloud computing may require

improvement to solve complex task scheduling optimization problem. The global search

optimization process of the CSO is quite promising. However, this global search alone can not

guarantee an optimal solution without the support of the local search optimization process. The

CSO suffered local entrapment while its global solution finding merit is preserved. This is

because the number of cats going into seeking mode (global search) all the time always exceed

the ones with tracing mode (local search mode). This may cause the mutation process of the CSO

at tracing (local search) mode to affect performance and may end up not achieving an optimal

solution for cloud task scheduling optimization problem (Gabi et al., 2016). Similarly, for every

iteration, the seeking (global search) mode and tracing (local search) mode of CSO were carried

out independently, causing its position and velocity update to exhibit similar process. As a result,

a very high computation time is bound to occur (Pradhan & Panda, 2012). Therefore, a local

search optimization algorithm incorporated at the local search of the CSO is sufficient to address

its limitations.

Simulated Annealing

Simulated Annealing (SA) is a local search probabilistic approximation algorithm introduced by

Kirkpatrick et al. (1983). The algorithm uses a neighbourhood and a fitness function to avoid

being trapped at the local optima (Jonasson & Norgre, 2016). The SA algorithm often begins

with an initial solution 𝑋𝑋 according to some neighbourhood function 𝑁𝑁 with an updated solution

𝑋𝑋′created. As to how the particle tend to adopt a state which is an improvement over current one,

the algorithm generates a solution when the fitness value 𝑓𝑓(𝑋𝑋∗) becomes lower than 𝑓𝑓(𝑋𝑋).

However, assume 𝑋𝑋∗ has the higher fitness, it will occasionally be accepted if the defined

probability shown in equation 3 is satisfied (Abdullahi & Ngadi, 2016).

 𝑃𝑃𝑟𝑟𝑟𝑟(𝑋𝑋,𝑋𝑋∗,𝑇𝑇) = exp [(−(𝑓𝑓(𝑋𝑋∗) − 𝑓𝑓(𝑋𝑋))) ∗ 𝑇𝑇−1] (3)

Where 𝑓𝑓(𝑋𝑋∗) is the fitness evaluation functions and 𝑓𝑓(𝑋𝑋) the current solutions of the neighbour

accordingly; and 𝑇𝑇 represents the control parameter called the temperature. This parameter is

determined according to the cooling rate used in (Abdullahi & Ngadi, 2016).

 𝑇𝑇 = 𝜎𝜎𝑖𝑖 ∗ 𝑇𝑇𝑂𝑂 + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (4)

9

Limitations of Cat Swarm Optimization to Solve Cloud Task Scheduling Problem

Although the CSO technique has proven to be more efficient than PSO in both computation time

and convergence speed (Chu &Tsai, 2007), its application in cloud computing may require

improvement to solve complex task scheduling optimization problem. The global search

optimization process of the CSO is quite promising. However, this global search alone can not

guarantee an optimal solution without the support of the local search optimization process. The

CSO suffered local entrapment while its global solution finding merit is preserved. This is

because the number of cats going into seeking mode (global search) all the time always exceed

the ones with tracing mode (local search mode). This may cause the mutation process of the CSO

at tracing (local search) mode to affect performance and may end up not achieving an optimal

solution for cloud task scheduling optimization problem (Gabi et al., 2016). Similarly, for every

iteration, the seeking (global search) mode and tracing (local search) mode of CSO were carried

out independently, causing its position and velocity update to exhibit similar process. As a result,

a very high computation time is bound to occur (Pradhan & Panda, 2012). Therefore, a local

search optimization algorithm incorporated at the local search of the CSO is sufficient to address

its limitations.

Simulated Annealing

Simulated Annealing (SA) is a local search probabilistic approximation algorithm introduced by

Kirkpatrick et al. (1983). The algorithm uses a neighbourhood and a fitness function to avoid

being trapped at the local optima (Jonasson & Norgre, 2016). The SA algorithm often begins

with an initial solution 𝑋𝑋 according to some neighbourhood function 𝑁𝑁 with an updated solution

𝑋𝑋′created. As to how the particle tend to adopt a state which is an improvement over current one,

the algorithm generates a solution when the fitness value 𝑓𝑓(𝑋𝑋∗) becomes lower than 𝑓𝑓(𝑋𝑋).

However, assume 𝑋𝑋∗ has the higher fitness, it will occasionally be accepted if the defined

probability shown in equation 3 is satisfied (Abdullahi & Ngadi, 2016).

 𝑃𝑃𝑟𝑟𝑟𝑟(𝑋𝑋,𝑋𝑋∗,𝑇𝑇) = exp [(−(𝑓𝑓(𝑋𝑋∗) − 𝑓𝑓(𝑋𝑋))) ∗ 𝑇𝑇−1] (3)

Where 𝑓𝑓(𝑋𝑋∗) is the fitness evaluation functions and 𝑓𝑓(𝑋𝑋) the current solutions of the neighbour

accordingly; and 𝑇𝑇 represents the control parameter called the temperature. This parameter is

determined according to the cooling rate used in (Abdullahi & Ngadi, 2016).

 𝑇𝑇 = 𝜎𝜎𝑖𝑖 ∗ 𝑇𝑇𝑂𝑂 + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (4)

9

Limitations of Cat Swarm Optimization to Solve Cloud Task Scheduling Problem

Although the CSO technique has proven to be more efficient than PSO in both computation time

and convergence speed (Chu &Tsai, 2007), its application in cloud computing may require

improvement to solve complex task scheduling optimization problem. The global search

optimization process of the CSO is quite promising. However, this global search alone can not

guarantee an optimal solution without the support of the local search optimization process. The

CSO suffered local entrapment while its global solution finding merit is preserved. This is

because the number of cats going into seeking mode (global search) all the time always exceed

the ones with tracing mode (local search mode). This may cause the mutation process of the CSO

at tracing (local search) mode to affect performance and may end up not achieving an optimal

solution for cloud task scheduling optimization problem (Gabi et al., 2016). Similarly, for every

iteration, the seeking (global search) mode and tracing (local search) mode of CSO were carried

out independently, causing its position and velocity update to exhibit similar process. As a result,

a very high computation time is bound to occur (Pradhan & Panda, 2012). Therefore, a local

search optimization algorithm incorporated at the local search of the CSO is sufficient to address

its limitations.

Simulated Annealing

Simulated Annealing (SA) is a local search probabilistic approximation algorithm introduced by

Kirkpatrick et al. (1983). The algorithm uses a neighbourhood and a fitness function to avoid

being trapped at the local optima (Jonasson & Norgre, 2016). The SA algorithm often begins

with an initial solution 𝑋𝑋 according to some neighbourhood function 𝑁𝑁 with an updated solution

𝑋𝑋′created. As to how the particle tend to adopt a state which is an improvement over current one,

the algorithm generates a solution when the fitness value 𝑓𝑓(𝑋𝑋∗) becomes lower than 𝑓𝑓(𝑋𝑋).

However, assume 𝑋𝑋∗ has the higher fitness, it will occasionally be accepted if the defined

probability shown in equation 3 is satisfied (Abdullahi & Ngadi, 2016).

 𝑃𝑃𝑟𝑟𝑟𝑟(𝑋𝑋,𝑋𝑋∗,𝑇𝑇) = exp [(−(𝑓𝑓(𝑋𝑋∗) − 𝑓𝑓(𝑋𝑋))) ∗ 𝑇𝑇−1] (3)

Where 𝑓𝑓(𝑋𝑋∗) is the fitness evaluation functions and 𝑓𝑓(𝑋𝑋) the current solutions of the neighbour

accordingly; and 𝑇𝑇 represents the control parameter called the temperature. This parameter is

determined according to the cooling rate used in (Abdullahi & Ngadi, 2016).

 𝑇𝑇 = 𝜎𝜎𝑖𝑖 ∗ 𝑇𝑇𝑂𝑂 + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (4)

9

Limitations of Cat Swarm Optimization to Solve Cloud Task Scheduling Problem

Although the CSO technique has proven to be more efficient than PSO in both computation time

and convergence speed (Chu &Tsai, 2007), its application in cloud computing may require

improvement to solve complex task scheduling optimization problem. The global search

optimization process of the CSO is quite promising. However, this global search alone can not

guarantee an optimal solution without the support of the local search optimization process. The

CSO suffered local entrapment while its global solution finding merit is preserved. This is

because the number of cats going into seeking mode (global search) all the time always exceed

the ones with tracing mode (local search mode). This may cause the mutation process of the CSO

at tracing (local search) mode to affect performance and may end up not achieving an optimal

solution for cloud task scheduling optimization problem (Gabi et al., 2016). Similarly, for every

iteration, the seeking (global search) mode and tracing (local search) mode of CSO were carried

out independently, causing its position and velocity update to exhibit similar process. As a result,

a very high computation time is bound to occur (Pradhan & Panda, 2012). Therefore, a local

search optimization algorithm incorporated at the local search of the CSO is sufficient to address

its limitations.

Simulated Annealing

Simulated Annealing (SA) is a local search probabilistic approximation algorithm introduced by

Kirkpatrick et al. (1983). The algorithm uses a neighbourhood and a fitness function to avoid

being trapped at the local optima (Jonasson & Norgre, 2016). The SA algorithm often begins

with an initial solution 𝑋𝑋 according to some neighbourhood function 𝑁𝑁 with an updated solution

𝑋𝑋′created. As to how the particle tend to adopt a state which is an improvement over current one,

the algorithm generates a solution when the fitness value 𝑓𝑓(𝑋𝑋∗) becomes lower than 𝑓𝑓(𝑋𝑋).

However, assume 𝑋𝑋∗ has the higher fitness, it will occasionally be accepted if the defined

probability shown in equation 3 is satisfied (Abdullahi & Ngadi, 2016).

 𝑃𝑃𝑟𝑟𝑟𝑟(𝑋𝑋,𝑋𝑋∗,𝑇𝑇) = exp [(−(𝑓𝑓(𝑋𝑋∗) − 𝑓𝑓(𝑋𝑋))) ∗ 𝑇𝑇−1] (3)

Where 𝑓𝑓(𝑋𝑋∗) is the fitness evaluation functions and 𝑓𝑓(𝑋𝑋) the current solutions of the neighbour

accordingly; and 𝑇𝑇 represents the control parameter called the temperature. This parameter is

determined according to the cooling rate used in (Abdullahi & Ngadi, 2016).

 𝑇𝑇 = 𝜎𝜎𝑖𝑖 ∗ 𝑇𝑇𝑂𝑂 + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (4)

9

Limitations of Cat Swarm Optimization to Solve Cloud Task Scheduling Problem

Although the CSO technique has proven to be more efficient than PSO in both computation time

and convergence speed (Chu &Tsai, 2007), its application in cloud computing may require

improvement to solve complex task scheduling optimization problem. The global search

optimization process of the CSO is quite promising. However, this global search alone can not

guarantee an optimal solution without the support of the local search optimization process. The

CSO suffered local entrapment while its global solution finding merit is preserved. This is

because the number of cats going into seeking mode (global search) all the time always exceed

the ones with tracing mode (local search mode). This may cause the mutation process of the CSO

at tracing (local search) mode to affect performance and may end up not achieving an optimal

solution for cloud task scheduling optimization problem (Gabi et al., 2016). Similarly, for every

iteration, the seeking (global search) mode and tracing (local search) mode of CSO were carried

out independently, causing its position and velocity update to exhibit similar process. As a result,

a very high computation time is bound to occur (Pradhan & Panda, 2012). Therefore, a local

search optimization algorithm incorporated at the local search of the CSO is sufficient to address

its limitations.

Simulated Annealing

Simulated Annealing (SA) is a local search probabilistic approximation algorithm introduced by

Kirkpatrick et al. (1983). The algorithm uses a neighbourhood and a fitness function to avoid

being trapped at the local optima (Jonasson & Norgre, 2016). The SA algorithm often begins

with an initial solution 𝑋𝑋 according to some neighbourhood function 𝑁𝑁 with an updated solution

𝑋𝑋′created. As to how the particle tend to adopt a state which is an improvement over current one,

the algorithm generates a solution when the fitness value 𝑓𝑓(𝑋𝑋∗) becomes lower than 𝑓𝑓(𝑋𝑋).

However, assume 𝑋𝑋∗ has the higher fitness, it will occasionally be accepted if the defined

probability shown in equation 3 is satisfied (Abdullahi & Ngadi, 2016).

 𝑃𝑃𝑟𝑟𝑟𝑟(𝑋𝑋,𝑋𝑋∗,𝑇𝑇) = exp [(−(𝑓𝑓(𝑋𝑋∗) − 𝑓𝑓(𝑋𝑋))) ∗ 𝑇𝑇−1] (3)

Where 𝑓𝑓(𝑋𝑋∗) is the fitness evaluation functions and 𝑓𝑓(𝑋𝑋) the current solutions of the neighbour

accordingly; and 𝑇𝑇 represents the control parameter called the temperature. This parameter is

determined according to the cooling rate used in (Abdullahi & Ngadi, 2016).

 𝑇𝑇 = 𝜎𝜎𝑖𝑖 ∗ 𝑇𝑇𝑂𝑂 + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (4)

9

Limitations of Cat Swarm Optimization to Solve Cloud Task Scheduling Problem

Although the CSO technique has proven to be more efficient than PSO in both computation time

and convergence speed (Chu &Tsai, 2007), its application in cloud computing may require

improvement to solve complex task scheduling optimization problem. The global search

optimization process of the CSO is quite promising. However, this global search alone can not

guarantee an optimal solution without the support of the local search optimization process. The

CSO suffered local entrapment while its global solution finding merit is preserved. This is

because the number of cats going into seeking mode (global search) all the time always exceed

the ones with tracing mode (local search mode). This may cause the mutation process of the CSO

at tracing (local search) mode to affect performance and may end up not achieving an optimal

solution for cloud task scheduling optimization problem (Gabi et al., 2016). Similarly, for every

iteration, the seeking (global search) mode and tracing (local search) mode of CSO were carried

out independently, causing its position and velocity update to exhibit similar process. As a result,

a very high computation time is bound to occur (Pradhan & Panda, 2012). Therefore, a local

search optimization algorithm incorporated at the local search of the CSO is sufficient to address

its limitations.

Simulated Annealing

Simulated Annealing (SA) is a local search probabilistic approximation algorithm introduced by

Kirkpatrick et al. (1983). The algorithm uses a neighbourhood and a fitness function to avoid

being trapped at the local optima (Jonasson & Norgre, 2016). The SA algorithm often begins

with an initial solution 𝑋𝑋 according to some neighbourhood function 𝑁𝑁 with an updated solution

𝑋𝑋′created. As to how the particle tend to adopt a state which is an improvement over current one,

the algorithm generates a solution when the fitness value 𝑓𝑓(𝑋𝑋∗) becomes lower than 𝑓𝑓(𝑋𝑋).

However, assume 𝑋𝑋∗ has the higher fitness, it will occasionally be accepted if the defined

probability shown in equation 3 is satisfied (Abdullahi & Ngadi, 2016).

 𝑃𝑃𝑟𝑟𝑟𝑟(𝑋𝑋,𝑋𝑋∗,𝑇𝑇) = exp [(−(𝑓𝑓(𝑋𝑋∗) − 𝑓𝑓(𝑋𝑋))) ∗ 𝑇𝑇−1] (3)

Where 𝑓𝑓(𝑋𝑋∗) is the fitness evaluation functions and 𝑓𝑓(𝑋𝑋) the current solutions of the neighbour

accordingly; and 𝑇𝑇 represents the control parameter called the temperature. This parameter is

determined according to the cooling rate used in (Abdullahi & Ngadi, 2016).

 𝑇𝑇 = 𝜎𝜎𝑖𝑖 ∗ 𝑇𝑇𝑂𝑂 + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (4)

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

444

becomes limited in locating global optimal solution as the computation time of the
algorithm is believed to be shorter (Jonasson & Norgre, 2016; Gabi et al. 2017b).
At each iteration performed by the SA algorithm, the comparison between the
currently obtained solution and a solution newly selected is carried out. A solution
that shows improvement is always accepted (Moschakis & Karatza, 2015). The
non-improving solutions are still accepted since there is a possibility that they
may escape being trapped at local optima while searching for a global optimal
solution. Based on the defined probability in equation 3, the acceptance of the non-
improving ones is often determined by the temperature parameter (Nikolaev &
Jacobson, 2010). This makes SA algorithm one of the most powerful optimization
mechanism.

The basic SA procedure is represented in Algorithm 3.

Limitation of Simulated Annealing to Cloud Task Scheduling

The SA has been regarded as a powerful local search probabilistic algorithm
(Abdullahi & Ngadi, 2016), the SA iterates a number of times before finding
an optimal or near optimal solution. The repeated number of iteration may
affect the computational complexity of the algorithm in solving cloud task

Algorithm 3: SA pseudocode

INPUT: Initialize Temperature 𝑇𝑇𝑜𝑜, Final Temperature 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, Temperature change
counter 𝑝𝑝 = 0, Cooling schedule 𝜎𝜎, Number of iteration 𝑀𝑀𝑝𝑝

OUTPUT: Best Optimum Solution found
1. Generate an initial solution 𝑋𝑋 ∈ 𝐷𝐷
2. Repeat
3. Initialize repetition counter 𝑚𝑚 ← 0
4. Repeat
5. Generate a new solution 𝑋𝑋𝐼𝐼 ∈ 𝑁𝑁, where 𝑁𝑁 is the neighbourhood of 𝑋𝑋
6. Compute the 𝑃𝑃𝑟𝑟𝑟𝑟according to Equation 3
7. If 0 < 𝑃𝑃𝑟𝑟𝑟𝑟 ≪ 0 decide whether to accept or reject a new solution based on

𝑃𝑃𝑟𝑟𝑟𝑟(𝑋𝑋,𝑋𝑋∗,𝑇𝑇)
8. Repeat counter 𝑚𝑚 ← 𝑚𝑚 + 1
9. Memorize the optimum solution so far found
10. Until 𝑚𝑚 = 𝑀𝑀𝑝𝑝

11. 𝑝𝑝 ← 𝑝𝑝 + 1
12. Until stopping criteria is note exceeded

445

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

scheduling problem thereby affecting the computational time. Similarly, the SA
can get entrapped at the local optimal region especially when the problem size is
very large. Its ability to enhance the local search region without the support of the
global search may not guarantee optimality(Wang et al., 2016). Therefore, it can
be a powerful local search optimization process when combined with a greedy
method to overcome its weaknesses.

Orthogonal Taguchi Method

The Orthogonal Taguchi is a greedy-based method developed by Dr. Genichi
Taguchi belonging to Nippon telephones and telegraph company in Japan (Gabi
et al., 2016). One potential benefit of using the Taguchi method is its ability to
solve complex problem while drastically reducing the computation time. The
Taguchi method is used to address both single and multi-objective optimization
problem (Tsai et al., 2012; Tsai et al., 2013). Taguchi proposed a general formula
for establishing an orthogonal array with two levels of Z factors using equation 5
(Chang et al., 2015).

 (5)

Where, n – 1 – symbolizes the column numbers in two-levels orthogonal array; n
= 2k – number of experiments corresponding to the n rows, and columns; number
of required level for each factor Z; k – is a positive integer (k > 1). According to
Taguchi, for any column pairs, the combination of all factors at each level occurs
at an equal number of times. Algorithm 4 shows the pseudocodes for the Taguchi
optimization Method (Gabi et al., 2017a).

Definition 1.1

Given as the solution search space, let f : D → ℜ represents an objective function
defined in the solution search space. Find X* ∈ D ∋ f(X*) << (X) ∀X∈ D. Where

11

 Limitation of Simulated Annealing to Cloud Task Scheduling

The SA has been regarded as a powerful local search probabilistic algorithm (Abdullahi &

Ngadi, 2016), the SA iterates a number of times before finding an optimal or near optimal

solution. The repeated number of iteration may affect the computational complexity of the

algorithm in solving cloud task scheduling problem thereby affecting the computational time.

Similarly, the SA can get entrapped at the local optimal region especially when the problem size

is very large. Its ability to enhance the local search region without the support of the global

search may not guarantee optimality(Wang et al., 2016). Therefore, it can be a powerful local

search optimization process when combined with a greedy method to overcome its weaknesses.

Orthogonal Taguchi Method

The Orthogonal Taguchi is a greedy-based method developed by Dr. Genichi Taguchi belonging

to Nippon telephones and telegraph company in Japan (Gabi et al., 2016). One potential benefit

of using the Taguchi method is its ability to solve complex problem while drastically reducing

the computation time. The Taguchi method is used to address both single and multi-objective

optimization problem (Tsai et al., 2012; Tsai et al., 2013). Taguchi proposed a general formula

for establishing an orthogonal array with two levels of Z factors using equation 5 (Chang et al.,

2015).

 𝐿𝐿𝑛𝑛(2𝑛𝑛−1), (5)

Where, 𝑛𝑛 − 1 −symbolizes the column numbers in two-levels orthogonal array; 𝑛𝑛 = 2𝑘𝑘 −

number of experiments corresponding to the 𝑛𝑛 rows, and columns; 2 − number of required level

for each factor Z; 𝑘𝑘 − is a positive integer (𝑘𝑘 > 1). According to Taguchi, for any column

pairs, the combination of all factors at each level occurs at an equal number of times. Algorithm

4 shows the pseudocodes for the Taguchi optimization Method (Gabi et al., 2017a).

Algorithm 4: Taguchi Optimization Algorithm

Begin

1. Select two-level orthogonal array for matrix experiments such that 𝐿𝐿𝑛𝑛(2𝑛𝑛−1) ∀ 𝑛𝑛 ≥ 𝑁𝑁 +
1, and N represent task numbers.

2. Generate two sets of velocities 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠1𝑘𝑘,𝑑𝑑(𝑡𝑡) and 𝑉𝑉set2k,d(t) according to Equation (6)

3. Update the original velocity for every condition according to Equation (7)

Algorithm 4: Taguchi Optimization Algorithm

Begin
1. Select two-level orthogonal array for matrix experiments such that 𝐿𝐿𝑛𝑛(2𝑛𝑛−1) ∀ 𝑛𝑛 ≥

𝑁𝑁 + 1, and N represent task numbers.
2. Generate two sets of velocities 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠1𝑘𝑘,𝑑𝑑(𝑡𝑡) and 𝑉𝑉set2k,d(t) according to Equation (6)

3. Update the original velocity for every condition according to Equation (7)
4. Add new velocity by computing current (new) position of k-th cat using Equation (8)
5. Calculate cat fitness using Equation (18) such that; 𝑄𝑄𝑄𝑄𝑄𝑄(𝑋𝑋) = 𝜃𝜃 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑗𝑗) +

 (1 – 𝜃𝜃) ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖, 𝑗𝑗) in accordance with the orthogonal array 𝐿𝐿𝑛𝑛(2𝑛𝑛−1).
End

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

446

X is the vector of optimization variables X= {x1, x2,, xn) Therefore, each
function associated with solution X is an optimal solution X* that optimizes f .

The Cloud Scalable Multi-Objective Cat Swarm Optimization Based
Simulated Annealing

Several swarm intelligence techniques get entrapped at the local optima
(Habibi & Navimipour, 2016). The real CSO technique is no different. As
rightly highlighted, the CSO has a control variable called the Mixed Ratio
(MR) that defines the cat position (seeking or tracing mode). Assume the MR
is set to 1, they allow 10% cats into tracing mode (local search) while 90% of
the cats move into seeking (global search) mode. The number of cats that goes
into seeking mode (global search) all the time always exceed that of tracing
mode (local search mode) (Gabi et al., 2016). The mutation process of the CSO
at tracing (local search) mode is bound to affect performance and this may end
up not achieving an optimal for cloud task scheduling optimization problem
(Gabi et al., 2016). Similarly, for every iteration, the seeking (global search)
mode and tracing (local search) mode of CSO are carried out independently,
causing its position and velocity update to exhibit similar process. As a result,
a very high computation time is bound to occur (Pradhan & Panda, 2012).
Although the chances of locating the global optima increased at the global
search process, it may lose the ability to converge faster at tracing mode and that
may have a significant effect to solution finding. Hence, a special mechanism
is needed to incorporate in the tracing (local search) mode procedure of the
CSO to improve its convergence velocity, scalability, and quality of solution
(Abdullahi & Ngadi, 2016). As a powerful local search optimization algorithm,
Simulated Annealing (SA) employs certain probability as prevention from
being trapped at the local optima. Although it can iterate a number of times
after which a near optimal solution can be found. To overcome this, a Taguchi
experimental design procedure can be used to enhance its performance by
reducing the number of iterations. With the combination of SA and Taguchi
method in CSO, a CSM-CSOSA algorithm for scheduling independent non-
preemptive task in cloud datacentre for the purpose of ensuring consumers
QoS expectations is proposed. The methodology that describes this process is
elaborated in the next subsection.

CSM-CSOSA SA Local Search with Taguchi Method

With the proposed CSM-CSOSA algorithm, the tracing (local) search process
can now move out of the local optima region (Abdullahi & Ngadi, 2016).
To control the performance of parameters of the proposed (CSM-CSOSA)
algorithm, the tracing search procedure was further enhanced with the Taguchi

447

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

method and simulated annealing. Two sets of candidate velocities Vk,d1(t) and
Vk,d2(t) (Gabi et al., 2016; Gabi et al., 2017a) were generated using the Taguchi
method as shown in Equation 6. Details about Taguchi method can be found
in (Taguchi et al., 2000). The velocities control the efficiency and accuracy of
the algorithm towards achieving an optimum solution.

(6)

Where, Vk,d(t) is the velocity of the cat; is the constant value of acceleration, r;
is a random number in the range of [0, 1], t; symbolizes the iteration number.
A non-dominant velocity among the generated velocities is selected to update
the new position of the algorithm using the following rule:

 (7)

At each iteration, the comparison between the currently obtained solution and
a solution newly selected is carried out. Hence, a solution that improves better
is always accepted. The probability of accepting neighbour solution into a
new generation of cats using SA is obtained using equation 11 (Abdullahi &
Ngadi, 2016). The velocity set with best convergence speed is selected by the
CSM-CSOSA algorithm to update the new position of the next cat provided
the condition in equation 8 is satisfied (Zuo et al., 2016).

 (8)

Where r; is an integer random number [0,1]. The position of the cat represents
the solution of the cat. The cat with the best fitness is stored in an n × m
archive at each run of the algorithm and is compared with the initial best
solution in the archive based on dominant strategy. Assume ith and jth represent
the positions of two cats in a D-dimensional search space as Xi = (xi2,xi3,...,xid,....
xiD) and Xj = (xj2,xj2,...,xjd,....xjD) respectively. A non-dominant strategy is adopted
to determine the best fitness when the conditions in equations 9 and 10 are
satisfied (Abdullahi and Ngadi, 2016)

 (9)

13

probability as prevention from being trapped at the local optima. Although it can iterate a

number of times after which a near optimal solution can be found. To overcome this, a Taguchi

experimental design procedure can be used to enhance its performance by reducing the number

of iterations. With the combination of SA and Taguchi method in CSO, a CSM-CSOSA

algorithm for scheduling independent non-preemptive task in cloud datacentre for the purpose of

ensuring consumers QoS expectations is proposed. The methodology that describes this process

is elaborated in the next subsection.

CSM-CSOSA SA Local Search with Taguchi Method

With the proposed CSM-CSOSA algorithm, the tracing (local) search process can now move out

of the local optima region (Abdullahi & Ngadi, 2016). To control the performance of parameters

of the proposed (CSM-CSOSA) algorithm, the tracing search procedure was further enhanced

with the Taguchi method and simulated annealing. Two sets of candidate velocities 𝑉𝑉𝑘𝑘,𝑑𝑑1(𝑡𝑡) and

𝑉𝑉𝑘𝑘,𝑑𝑑2(𝑡𝑡) (Gabi et al., 2016; Gabi et al., 2017a) were generated using the Taguchi method as

shown in Equation 6. Details about Taguchi method can be found in (Taguchi et al., 2000). The

velocities control the efficiency and accuracy of the algorithm towards achieving an optimum

solution.

 𝑉𝑉𝑘𝑘,𝑑𝑑(𝑡𝑡) = {
𝑉𝑉𝑘𝑘,𝑑𝑑1 (𝑡𝑡) = 𝑉𝑉𝑘𝑘,𝑑𝑑(𝑡𝑡 + 1) + (𝑐𝑐1 × 𝑟𝑟1 × (𝑋𝑋𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑(𝑡𝑡 + 1) – 𝑋𝑋𝑘𝑘,𝑑𝑑(𝑡𝑡 + 1))
𝑉𝑉𝑘𝑘,𝑑𝑑2 (𝑡𝑡) = 𝑉𝑉𝑘𝑘,𝑑𝑑(𝑡𝑡 + 1) + (𝑐𝑐1 × 𝑟𝑟1 × (𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑(𝑡𝑡 + 1) – 𝑋𝑋𝑘𝑘,𝑑𝑑(𝑡𝑡 + 1))

 (6)

 𝑑𝑑 = 1, 2, … . . ,𝑀𝑀

Where, 𝑉𝑉𝑘𝑘,𝑑𝑑(𝑡𝑡) is the velocity of the cat; 𝑐𝑐 is the constant value of acceleration, 𝑟𝑟; is a random

number in the range of [0, 1], 𝑡𝑡; symbolizes the iteration number. A non-dominant velocity

among the generated velocities is selected to update the new position of the algorithm using the

following rule:

 𝑉𝑉𝑘𝑘,𝑑𝑑(𝑡𝑡) = {𝑉𝑉𝑘𝑘,𝑑𝑑1(𝑡𝑡), 𝑖𝑖𝑖𝑖 (𝑉𝑉𝑘𝑘,𝑑𝑑1) > (𝑉𝑉𝑘𝑘,𝑑𝑑2(𝑡𝑡))
𝑉𝑉𝑘𝑘,𝑑𝑑2(𝑡𝑡), 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (7)

At each iteration, the comparison between the currently obtained solution and a solution newly

selected is carried out. Hence, a solution that improves better is always accepted. The

probability of accepting neighbour solution into a new generation of cats using SA is obtained

using equation 11 (Abdullahi and Ngadi, 2016). The velocity set with best convergence speed is

13

probability as prevention from being trapped at the local optima. Although it can iterate a

number of times after which a near optimal solution can be found. To overcome this, a Taguchi

experimental design procedure can be used to enhance its performance by reducing the number

of iterations. With the combination of SA and Taguchi method in CSO, a CSM-CSOSA

algorithm for scheduling independent non-preemptive task in cloud datacentre for the purpose of

ensuring consumers QoS expectations is proposed. The methodology that describes this process

is elaborated in the next subsection.

CSM-CSOSA SA Local Search with Taguchi Method

With the proposed CSM-CSOSA algorithm, the tracing (local) search process can now move out

of the local optima region (Abdullahi & Ngadi, 2016). To control the performance of parameters

of the proposed (CSM-CSOSA) algorithm, the tracing search procedure was further enhanced

with the Taguchi method and simulated annealing. Two sets of candidate velocities 𝑉𝑉𝑘𝑘,𝑑𝑑1(𝑡𝑡) and

𝑉𝑉𝑘𝑘,𝑑𝑑2(𝑡𝑡) (Gabi et al., 2016; Gabi et al., 2017a) were generated using the Taguchi method as

shown in Equation 6. Details about Taguchi method can be found in (Taguchi et al., 2000). The

velocities control the efficiency and accuracy of the algorithm towards achieving an optimum

solution.

 𝑉𝑉𝑘𝑘,𝑑𝑑(𝑡𝑡) = {
𝑉𝑉𝑘𝑘,𝑑𝑑1 (𝑡𝑡) = 𝑉𝑉𝑘𝑘,𝑑𝑑(𝑡𝑡 + 1) + (𝑐𝑐1 × 𝑟𝑟1 × (𝑋𝑋𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑(𝑡𝑡 + 1) – 𝑋𝑋𝑘𝑘,𝑑𝑑(𝑡𝑡 + 1))
𝑉𝑉𝑘𝑘,𝑑𝑑2 (𝑡𝑡) = 𝑉𝑉𝑘𝑘,𝑑𝑑(𝑡𝑡 + 1) + (𝑐𝑐1 × 𝑟𝑟1 × (𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑(𝑡𝑡 + 1) – 𝑋𝑋𝑘𝑘,𝑑𝑑(𝑡𝑡 + 1))

 (6)

 𝑑𝑑 = 1, 2, … . . ,𝑀𝑀

Where, 𝑉𝑉𝑘𝑘,𝑑𝑑(𝑡𝑡) is the velocity of the cat; 𝑐𝑐 is the constant value of acceleration, 𝑟𝑟; is a random

number in the range of [0, 1], 𝑡𝑡; symbolizes the iteration number. A non-dominant velocity

among the generated velocities is selected to update the new position of the algorithm using the

following rule:

 𝑉𝑉𝑘𝑘,𝑑𝑑(𝑡𝑡) = {𝑉𝑉𝑘𝑘,𝑑𝑑1(𝑡𝑡), 𝑖𝑖𝑖𝑖 (𝑉𝑉𝑘𝑘,𝑑𝑑1) > (𝑉𝑉𝑘𝑘,𝑑𝑑2(𝑡𝑡))
𝑉𝑉𝑘𝑘,𝑑𝑑2(𝑡𝑡), 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (7)

At each iteration, the comparison between the currently obtained solution and a solution newly

selected is carried out. Hence, a solution that improves better is always accepted. The

probability of accepting neighbour solution into a new generation of cats using SA is obtained

using equation 11 (Abdullahi and Ngadi, 2016). The velocity set with best convergence speed is

14

selected by the CSM-CSOSA algorithm to update the new position of the next cat provided the

condition in equation 8 is satisfied (Zuo et al., 2016).

 𝑋𝑋𝑘𝑘,𝑑𝑑(𝑡𝑡) = {𝑉𝑉𝑘𝑘,𝑑𝑑(𝑡𝑡) 𝑖𝑖𝑖𝑖 𝑉𝑉𝑘𝑘,𝑑𝑑(𝑡𝑡) ≠ 0
𝑟𝑟 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (8)

Where r ; is an integer random number]1,0[. The position of the cat represents the solution of

the cat. The cat with the best fitness is stored in an 𝑛𝑛 × 𝑚𝑚 archive at each run of the algorithm

and is compared with the initial best solution in the archive based on dominant strategy. Assume

𝑖𝑖𝑡𝑡ℎand 𝑗𝑗𝑡𝑡ℎrepresent the positions of two cats in a 𝐷𝐷-dimensional search space as 𝑋𝑋𝑖𝑖 =
(𝑥𝑥𝑖𝑖2,𝑥𝑥𝑖𝑖3, … , 𝑥𝑥𝑖𝑖𝑖𝑖, … . 𝑥𝑥𝑖𝑖𝑖𝑖) and 𝑋𝑋𝑗𝑗 = (𝑥𝑥𝑗𝑗2,𝑥𝑥𝑗𝑗2, … , 𝑥𝑥𝑗𝑗𝑗𝑗 , … . 𝑥𝑥𝑗𝑗𝑗𝑗) respectively. A non-dominant strategy

is adopted to determine the best fitness when the conditions in equations 9 and 10 are satisfied

(Abdullahi and Ngadi, 2016)

 𝑋𝑋𝑖𝑖 = {𝑋𝑋𝑖𝑖
′ 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑋𝑋𝑖𝑖′) ≻ 𝑓𝑓(𝑋𝑋𝑖𝑖)

𝑋𝑋𝑖𝑖 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑋𝑋𝑖𝑖′) ≼ 𝑓𝑓(𝑋𝑋𝑖𝑖)
 (9)

 𝑋𝑋𝑗𝑗 = {𝑋𝑋𝑗𝑗
′ 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑋𝑋𝑗𝑗′) ≻ 𝑓𝑓(𝑋𝑋𝑗𝑗)

𝑋𝑋𝑗𝑗 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑋𝑋𝑗𝑗′) ≼ 𝑓𝑓(𝑋𝑋𝑗𝑗) (10)

Where 𝑓𝑓(.) denotes the fitness evaluation function. If the fitness value 𝑓𝑓(𝑋𝑋𝑖𝑖′) is better than that

of the 𝑓𝑓(𝑋𝑋𝑖𝑖). For minimization process, the new fitness is accepted for an update with the

probability defined in equation 11.

 𝑃𝑃𝑟𝑟𝑟𝑟(𝑋𝑋,𝑋𝑋′,𝑇𝑇) = exp [(−(𝑓𝑓(𝑋𝑋𝑖𝑖′) − 𝑓𝑓(𝑋𝑋𝑖𝑖))) ∗ 𝑇𝑇−1] (11)

Where)('
iXf and)(iXf denotes fitness functions of the cat and current solutions, T represents the

control parameter which is the temperature. The CSM-CSOSA algorithm is illustrated in

Algorithm 5.

Algorithm 5: Proposed CSM-CSOSA Algorithm
Begin:
Input: Initialize cat parameters: create population of the cats as 𝑋𝑋𝑖𝑖 ∀𝑖𝑖 = {1,2,3 … . .𝑛𝑛},
initialize 𝑋𝑋𝑖𝑖, flag number, Initialize SA parameters: initial Temperature 𝑇𝑇𝑂𝑂, final
Temperature 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, rate of cooling 𝛼𝛼.
Generate an empty non-dominant archive of (n × m) size of uniform random number [0,
1]
Output: Best solution with minimum total execution time and minimum total execution

cost.
 Identify the best optimal solution for the trade-off values as 𝑋𝑋𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐷𝐷∀ 𝑫𝑫 =

14

selected by the CSM-CSOSA algorithm to update the new position of the next cat provided the

condition in equation 8 is satisfied (Zuo et al., 2016).

 𝑋𝑋𝑘𝑘,𝑑𝑑(𝑡𝑡) = {𝑉𝑉𝑘𝑘,𝑑𝑑(𝑡𝑡) 𝑖𝑖𝑖𝑖 𝑉𝑉𝑘𝑘,𝑑𝑑(𝑡𝑡) ≠ 0
𝑟𝑟 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (8)

Where r ; is an integer random number]1,0[. The position of the cat represents the solution of

the cat. The cat with the best fitness is stored in an 𝑛𝑛 × 𝑚𝑚 archive at each run of the algorithm

and is compared with the initial best solution in the archive based on dominant strategy. Assume

𝑖𝑖𝑡𝑡ℎand 𝑗𝑗𝑡𝑡ℎrepresent the positions of two cats in a 𝐷𝐷-dimensional search space as 𝑋𝑋𝑖𝑖 =
(𝑥𝑥𝑖𝑖2,𝑥𝑥𝑖𝑖3, … , 𝑥𝑥𝑖𝑖𝑖𝑖, … . 𝑥𝑥𝑖𝑖𝑖𝑖) and 𝑋𝑋𝑗𝑗 = (𝑥𝑥𝑗𝑗2,𝑥𝑥𝑗𝑗2, … , 𝑥𝑥𝑗𝑗𝑗𝑗 , … . 𝑥𝑥𝑗𝑗𝑗𝑗) respectively. A non-dominant strategy

is adopted to determine the best fitness when the conditions in equations 9 and 10 are satisfied

(Abdullahi and Ngadi, 2016)

 𝑋𝑋𝑖𝑖 = {𝑋𝑋𝑖𝑖
′ 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑋𝑋𝑖𝑖′) ≻ 𝑓𝑓(𝑋𝑋𝑖𝑖)

𝑋𝑋𝑖𝑖 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑋𝑋𝑖𝑖′) ≼ 𝑓𝑓(𝑋𝑋𝑖𝑖)
 (9)

 𝑋𝑋𝑗𝑗 = {𝑋𝑋𝑗𝑗
′ 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑋𝑋𝑗𝑗′) ≻ 𝑓𝑓(𝑋𝑋𝑗𝑗)

𝑋𝑋𝑗𝑗 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑋𝑋𝑗𝑗′) ≼ 𝑓𝑓(𝑋𝑋𝑗𝑗) (10)

Where 𝑓𝑓(.) denotes the fitness evaluation function. If the fitness value 𝑓𝑓(𝑋𝑋𝑖𝑖′) is better than that

of the 𝑓𝑓(𝑋𝑋𝑖𝑖). For minimization process, the new fitness is accepted for an update with the

probability defined in equation 11.

 𝑃𝑃𝑟𝑟𝑟𝑟(𝑋𝑋,𝑋𝑋′,𝑇𝑇) = exp [(−(𝑓𝑓(𝑋𝑋𝑖𝑖′) − 𝑓𝑓(𝑋𝑋𝑖𝑖))) ∗ 𝑇𝑇−1] (11)

Where)('
iXf and)(iXf denotes fitness functions of the cat and current solutions, T represents the

control parameter which is the temperature. The CSM-CSOSA algorithm is illustrated in

Algorithm 5.

Algorithm 5: Proposed CSM-CSOSA Algorithm
Begin:
Input: Initialize cat parameters: create population of the cats as 𝑋𝑋𝑖𝑖 ∀𝑖𝑖 = {1,2,3 … . .𝑛𝑛},
initialize 𝑋𝑋𝑖𝑖, flag number, Initialize SA parameters: initial Temperature 𝑇𝑇𝑂𝑂, final
Temperature 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, rate of cooling 𝛼𝛼.
Generate an empty non-dominant archive of (n × m) size of uniform random number [0,
1]
Output: Best solution with minimum total execution time and minimum total execution

cost.
 Identify the best optimal solution for the trade-off values as 𝑋𝑋𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐷𝐷∀ 𝑫𝑫 =

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

448

 (10)

Where f(.) denotes the fitness evaluation function. If the fitness value is
better than that of the f(Xi). For minimization process, the new fitness is
accepted for an update with the probability defined in equation 11.

 (11)

Where and f(Xi) denotes fitness functions of the cat and current solutions,
represents the control parameter which is the temperature. The CSM-CSOSA
algorithm is illustrated in Algorithm 5.

14

selected by the CSM-CSOSA algorithm to update the new position of the next cat provided the

condition in equation 8 is satisfied (Zuo et al., 2016).

 𝑋𝑋𝑘𝑘,𝑑𝑑(𝑡𝑡) = {𝑉𝑉𝑘𝑘,𝑑𝑑(𝑡𝑡) 𝑖𝑖𝑖𝑖 𝑉𝑉𝑘𝑘,𝑑𝑑(𝑡𝑡) ≠ 0
𝑟𝑟 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (8)

Where r ; is an integer random number]1,0[. The position of the cat represents the solution of

the cat. The cat with the best fitness is stored in an 𝑛𝑛 × 𝑚𝑚 archive at each run of the algorithm

and is compared with the initial best solution in the archive based on dominant strategy. Assume

𝑖𝑖𝑡𝑡ℎand 𝑗𝑗𝑡𝑡ℎrepresent the positions of two cats in a 𝐷𝐷-dimensional search space as 𝑋𝑋𝑖𝑖 =
(𝑥𝑥𝑖𝑖2,𝑥𝑥𝑖𝑖3, … , 𝑥𝑥𝑖𝑖𝑖𝑖, … . 𝑥𝑥𝑖𝑖𝑖𝑖) and 𝑋𝑋𝑗𝑗 = (𝑥𝑥𝑗𝑗2,𝑥𝑥𝑗𝑗2, … , 𝑥𝑥𝑗𝑗𝑗𝑗 , … . 𝑥𝑥𝑗𝑗𝑗𝑗) respectively. A non-dominant strategy

is adopted to determine the best fitness when the conditions in equations 9 and 10 are satisfied

(Abdullahi and Ngadi, 2016)

 𝑋𝑋𝑖𝑖 = {𝑋𝑋𝑖𝑖
′ 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑋𝑋𝑖𝑖′) ≻ 𝑓𝑓(𝑋𝑋𝑖𝑖)

𝑋𝑋𝑖𝑖 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑋𝑋𝑖𝑖′) ≼ 𝑓𝑓(𝑋𝑋𝑖𝑖)
 (9)

 𝑋𝑋𝑗𝑗 = {𝑋𝑋𝑗𝑗
′ 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑋𝑋𝑗𝑗′) ≻ 𝑓𝑓(𝑋𝑋𝑗𝑗)

𝑋𝑋𝑗𝑗 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑋𝑋𝑗𝑗′) ≼ 𝑓𝑓(𝑋𝑋𝑗𝑗) (10)

Where 𝑓𝑓(.) denotes the fitness evaluation function. If the fitness value 𝑓𝑓(𝑋𝑋𝑖𝑖′) is better than that

of the 𝑓𝑓(𝑋𝑋𝑖𝑖). For minimization process, the new fitness is accepted for an update with the

probability defined in equation 11.

 𝑃𝑃𝑟𝑟𝑟𝑟(𝑋𝑋,𝑋𝑋′,𝑇𝑇) = exp [(−(𝑓𝑓(𝑋𝑋𝑖𝑖′) − 𝑓𝑓(𝑋𝑋𝑖𝑖))) ∗ 𝑇𝑇−1] (11)

Where)('
iXf and)(iXf denotes fitness functions of the cat and current solutions, T represents the

control parameter which is the temperature. The CSM-CSOSA algorithm is illustrated in

Algorithm 5.

Algorithm 5: Proposed CSM-CSOSA Algorithm
Begin:
Input: Initialize cat parameters: create population of the cats as 𝑋𝑋𝑖𝑖 ∀𝑖𝑖 = {1,2,3 … . .𝑛𝑛},
initialize 𝑋𝑋𝑖𝑖, flag number, Initialize SA parameters: initial Temperature 𝑇𝑇𝑂𝑂, final
Temperature 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, rate of cooling 𝛼𝛼.
Generate an empty non-dominant archive of (n × m) size of uniform random number [0,
1]
Output: Best solution with minimum total execution time and minimum total execution

cost.
 Identify the best optimal solution for the trade-off values as 𝑋𝑋𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐷𝐷∀ 𝑫𝑫 =

14

selected by the CSM-CSOSA algorithm to update the new position of the next cat provided the

condition in equation 8 is satisfied (Zuo et al., 2016).

 𝑋𝑋𝑘𝑘,𝑑𝑑(𝑡𝑡) = {𝑉𝑉𝑘𝑘,𝑑𝑑(𝑡𝑡) 𝑖𝑖𝑖𝑖 𝑉𝑉𝑘𝑘,𝑑𝑑(𝑡𝑡) ≠ 0
𝑟𝑟 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (8)

Where r ; is an integer random number]1,0[. The position of the cat represents the solution of

the cat. The cat with the best fitness is stored in an 𝑛𝑛 × 𝑚𝑚 archive at each run of the algorithm

and is compared with the initial best solution in the archive based on dominant strategy. Assume

𝑖𝑖𝑡𝑡ℎand 𝑗𝑗𝑡𝑡ℎrepresent the positions of two cats in a 𝐷𝐷-dimensional search space as 𝑋𝑋𝑖𝑖 =
(𝑥𝑥𝑖𝑖2,𝑥𝑥𝑖𝑖3, … , 𝑥𝑥𝑖𝑖𝑖𝑖, … . 𝑥𝑥𝑖𝑖𝑖𝑖) and 𝑋𝑋𝑗𝑗 = (𝑥𝑥𝑗𝑗2,𝑥𝑥𝑗𝑗2, … , 𝑥𝑥𝑗𝑗𝑗𝑗 , … . 𝑥𝑥𝑗𝑗𝑗𝑗) respectively. A non-dominant strategy

is adopted to determine the best fitness when the conditions in equations 9 and 10 are satisfied

(Abdullahi and Ngadi, 2016)

 𝑋𝑋𝑖𝑖 = {𝑋𝑋𝑖𝑖
′ 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑋𝑋𝑖𝑖′) ≻ 𝑓𝑓(𝑋𝑋𝑖𝑖)

𝑋𝑋𝑖𝑖 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑋𝑋𝑖𝑖′) ≼ 𝑓𝑓(𝑋𝑋𝑖𝑖)
 (9)

 𝑋𝑋𝑗𝑗 = {𝑋𝑋𝑗𝑗
′ 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑋𝑋𝑗𝑗′) ≻ 𝑓𝑓(𝑋𝑋𝑗𝑗)

𝑋𝑋𝑗𝑗 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑋𝑋𝑗𝑗′) ≼ 𝑓𝑓(𝑋𝑋𝑗𝑗) (10)

Where 𝑓𝑓(.) denotes the fitness evaluation function. If the fitness value 𝑓𝑓(𝑋𝑋𝑖𝑖′) is better than that

of the 𝑓𝑓(𝑋𝑋𝑖𝑖). For minimization process, the new fitness is accepted for an update with the

probability defined in equation 11.

 𝑃𝑃𝑟𝑟𝑟𝑟(𝑋𝑋,𝑋𝑋′,𝑇𝑇) = exp [(−(𝑓𝑓(𝑋𝑋𝑖𝑖′) − 𝑓𝑓(𝑋𝑋𝑖𝑖))) ∗ 𝑇𝑇−1] (11)

Where)('
iXf and)(iXf denotes fitness functions of the cat and current solutions, T represents the

control parameter which is the temperature. The CSM-CSOSA algorithm is illustrated in

Algorithm 5.

Algorithm 5: Proposed CSM-CSOSA Algorithm
Begin:
Input: Initialize cat parameters: create population of the cats as 𝑋𝑋𝑖𝑖 ∀𝑖𝑖 = {1,2,3 … . .𝑛𝑛},
initialize 𝑋𝑋𝑖𝑖, flag number, Initialize SA parameters: initial Temperature 𝑇𝑇𝑂𝑂, final
Temperature 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, rate of cooling 𝛼𝛼.
Generate an empty non-dominant archive of (n × m) size of uniform random number [0,
1]
Output: Best solution with minimum total execution time and minimum total execution

cost.
 Identify the best optimal solution for the trade-off values as 𝑋𝑋𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐷𝐷∀ 𝑫𝑫 =

14

selected by the CSM-CSOSA algorithm to update the new position of the next cat provided the

condition in equation 8 is satisfied (Zuo et al., 2016).

 𝑋𝑋𝑘𝑘,𝑑𝑑(𝑡𝑡) = {𝑉𝑉𝑘𝑘,𝑑𝑑(𝑡𝑡) 𝑖𝑖𝑖𝑖 𝑉𝑉𝑘𝑘,𝑑𝑑(𝑡𝑡) ≠ 0
𝑟𝑟 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (8)

Where r ; is an integer random number]1,0[. The position of the cat represents the solution of

the cat. The cat with the best fitness is stored in an 𝑛𝑛 × 𝑚𝑚 archive at each run of the algorithm

and is compared with the initial best solution in the archive based on dominant strategy. Assume

𝑖𝑖𝑡𝑡ℎand 𝑗𝑗𝑡𝑡ℎrepresent the positions of two cats in a 𝐷𝐷-dimensional search space as 𝑋𝑋𝑖𝑖 =
(𝑥𝑥𝑖𝑖2,𝑥𝑥𝑖𝑖3, … , 𝑥𝑥𝑖𝑖𝑖𝑖, … . 𝑥𝑥𝑖𝑖𝑖𝑖) and 𝑋𝑋𝑗𝑗 = (𝑥𝑥𝑗𝑗2,𝑥𝑥𝑗𝑗2, … , 𝑥𝑥𝑗𝑗𝑗𝑗 , … . 𝑥𝑥𝑗𝑗𝑗𝑗) respectively. A non-dominant strategy

is adopted to determine the best fitness when the conditions in equations 9 and 10 are satisfied

(Abdullahi and Ngadi, 2016)

 𝑋𝑋𝑖𝑖 = {𝑋𝑋𝑖𝑖
′ 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑋𝑋𝑖𝑖′) ≻ 𝑓𝑓(𝑋𝑋𝑖𝑖)

𝑋𝑋𝑖𝑖 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑋𝑋𝑖𝑖′) ≼ 𝑓𝑓(𝑋𝑋𝑖𝑖)
 (9)

 𝑋𝑋𝑗𝑗 = {𝑋𝑋𝑗𝑗
′ 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑋𝑋𝑗𝑗′) ≻ 𝑓𝑓(𝑋𝑋𝑗𝑗)

𝑋𝑋𝑗𝑗 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑋𝑋𝑗𝑗′) ≼ 𝑓𝑓(𝑋𝑋𝑗𝑗) (10)

Where 𝑓𝑓(.) denotes the fitness evaluation function. If the fitness value 𝑓𝑓(𝑋𝑋𝑖𝑖′) is better than that

of the 𝑓𝑓(𝑋𝑋𝑖𝑖). For minimization process, the new fitness is accepted for an update with the

probability defined in equation 11.

 𝑃𝑃𝑟𝑟𝑟𝑟(𝑋𝑋,𝑋𝑋′,𝑇𝑇) = exp [(−(𝑓𝑓(𝑋𝑋𝑖𝑖′) − 𝑓𝑓(𝑋𝑋𝑖𝑖))) ∗ 𝑇𝑇−1] (11)

Where)('
iXf and)(iXf denotes fitness functions of the cat and current solutions, T represents the

control parameter which is the temperature. The CSM-CSOSA algorithm is illustrated in

Algorithm 5.

Algorithm 5: Proposed CSM-CSOSA Algorithm
Begin:
Input: Initialize cat parameters: create population of the cats as 𝑋𝑋𝑖𝑖 ∀𝑖𝑖 = {1,2,3 … . .𝑛𝑛},
initialize 𝑋𝑋𝑖𝑖, flag number, Initialize SA parameters: initial Temperature 𝑇𝑇𝑂𝑂, final
Temperature 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, rate of cooling 𝛼𝛼.
Generate an empty non-dominant archive of (n × m) size of uniform random number [0,
1]
Output: Best solution with minimum total execution time and minimum total execution

cost.
 Identify the best optimal solution for the trade-off values as 𝑋𝑋𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐷𝐷∀ 𝑫𝑫 =

14

selected by the CSM-CSOSA algorithm to update the new position of the next cat provided the

condition in equation 8 is satisfied (Zuo et al., 2016).

 𝑋𝑋𝑘𝑘,𝑑𝑑(𝑡𝑡) = {𝑉𝑉𝑘𝑘,𝑑𝑑(𝑡𝑡) 𝑖𝑖𝑖𝑖 𝑉𝑉𝑘𝑘,𝑑𝑑(𝑡𝑡) ≠ 0
𝑟𝑟 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (8)

Where r ; is an integer random number]1,0[. The position of the cat represents the solution of

the cat. The cat with the best fitness is stored in an 𝑛𝑛 × 𝑚𝑚 archive at each run of the algorithm

and is compared with the initial best solution in the archive based on dominant strategy. Assume

𝑖𝑖𝑡𝑡ℎand 𝑗𝑗𝑡𝑡ℎrepresent the positions of two cats in a 𝐷𝐷-dimensional search space as 𝑋𝑋𝑖𝑖 =
(𝑥𝑥𝑖𝑖2,𝑥𝑥𝑖𝑖3, … , 𝑥𝑥𝑖𝑖𝑖𝑖, … . 𝑥𝑥𝑖𝑖𝑖𝑖) and 𝑋𝑋𝑗𝑗 = (𝑥𝑥𝑗𝑗2,𝑥𝑥𝑗𝑗2, … , 𝑥𝑥𝑗𝑗𝑗𝑗 , … . 𝑥𝑥𝑗𝑗𝑗𝑗) respectively. A non-dominant strategy

is adopted to determine the best fitness when the conditions in equations 9 and 10 are satisfied

(Abdullahi and Ngadi, 2016)

 𝑋𝑋𝑖𝑖 = {𝑋𝑋𝑖𝑖
′ 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑋𝑋𝑖𝑖′) ≻ 𝑓𝑓(𝑋𝑋𝑖𝑖)

𝑋𝑋𝑖𝑖 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑋𝑋𝑖𝑖′) ≼ 𝑓𝑓(𝑋𝑋𝑖𝑖)
 (9)

 𝑋𝑋𝑗𝑗 = {𝑋𝑋𝑗𝑗
′ 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑋𝑋𝑗𝑗′) ≻ 𝑓𝑓(𝑋𝑋𝑗𝑗)

𝑋𝑋𝑗𝑗 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑋𝑋𝑗𝑗′) ≼ 𝑓𝑓(𝑋𝑋𝑗𝑗) (10)

Where 𝑓𝑓(.) denotes the fitness evaluation function. If the fitness value 𝑓𝑓(𝑋𝑋𝑖𝑖′) is better than that

of the 𝑓𝑓(𝑋𝑋𝑖𝑖). For minimization process, the new fitness is accepted for an update with the

probability defined in equation 11.

 𝑃𝑃𝑟𝑟𝑟𝑟(𝑋𝑋,𝑋𝑋′,𝑇𝑇) = exp [(−(𝑓𝑓(𝑋𝑋𝑖𝑖′) − 𝑓𝑓(𝑋𝑋𝑖𝑖))) ∗ 𝑇𝑇−1] (11)

Where)('
iXf and)(iXf denotes fitness functions of the cat and current solutions, T represents the

control parameter which is the temperature. The CSM-CSOSA algorithm is illustrated in

Algorithm 5.

Algorithm 5: Proposed CSM-CSOSA Algorithm
Begin:
Input: Initialize cat parameters: create population of the cats as 𝑋𝑋𝑖𝑖 ∀𝑖𝑖 = {1,2,3 … . .𝑛𝑛},
initialize 𝑋𝑋𝑖𝑖, flag number, Initialize SA parameters: initial Temperature 𝑇𝑇𝑂𝑂, final
Temperature 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, rate of cooling 𝛼𝛼.
Generate an empty non-dominant archive of (n × m) size of uniform random number [0,
1]
Output: Best solution with minimum total execution time and minimum total execution

cost.
 Identify the best optimal solution for the trade-off values as 𝑋𝑋𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐷𝐷∀ 𝑫𝑫 =

(continued)

15

Algorithm 5: Proposed CSM-CSOSA Algorithm
Begin:
1. Input: Initialize cat parameters: create population of the cats as 𝑋𝑋𝑖𝑖 ∀𝑖𝑖 = {1,2,3 … . .𝑛𝑛},

initialize 𝑋𝑋𝑖𝑖, flag number, Initialize SA parameters: initial Temperature 𝑇𝑇𝑂𝑂, final
Temperature 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, rate of cooling 𝛼𝛼.

2. Generate an empty non-dominant archive of (n × m) size of uniform random number
[0, 1]

3. Output: Best solution with minimum total execution time and minimum total
execution cost.

4. Identify the best optimal solution for the trade-off values as 𝑋𝑋𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐷𝐷∀ 𝑫𝑫 =
{𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑}

5. Do // apply seeking mode process to evaluate cat fitness.
 {
6. If (flag← 𝟏𝟏)
7. Execute tracing mode process according to Algorithm 1.
8. Discover the 𝑋𝑋𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 solution
9. If (𝑋𝑋𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is not improved)
10. Else
11. //*** apply tracing mode process to find the 𝑋𝑋𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 using SA and Taguchi

method***//
12. Call………. Algorithm 3 to execute the SA Method
 {
13. While (𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 > 𝑇𝑇𝑜𝑜) do
14. Call ……. Algorithm 4 to execute the Taguchi method
 {
15. Generate new solution 𝑋𝑋𝑖𝑖′ in the neighbourhood of 𝑋𝑋𝑖𝑖 using Equation 7 and Equation

8
16. Compute_𝑓𝑓(𝑋𝑋𝑖𝑖,𝑋𝑋𝑖𝑖𝑖𝑖)
17. 𝑓𝑓 = 𝑓𝑓(𝑋𝑋𝑖𝑖′) − 𝑓𝑓(𝑋𝑋𝑖𝑖)
18. If 𝑓𝑓 ≤ 0 𝑜𝑜𝑜𝑜 exp (−𝑓𝑓𝑇𝑇−1) > 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1)
 // rand (0, 1) is a uniformly random generated number between 0 and 1
19. Apply new fitness selection strategy based on Pareto dominance according to

Equation 9 &10
20. Reduce the temperature using Equation 4
21. 𝑋𝑋𝑖𝑖 ← 𝑋𝑋𝑖𝑖′,
22. Endif
 }
23. Endwhile

 }
24. Endif

 }
25. While condition is not reached.
26. Output optimization solution for the execution time and execution cost.

End.

449

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

Problem Description

In cloud computing, the attributes associated with the task scheduling
problem are Cloud Information System (CIS), Cloud Broker (CB) and Virtual
Machines (VMs). The tasks are referred to as cloudlets in cloud computing.
The CIS receives cloudlets {c1, c2, c3,, cn} from the cloud consumers
which are sent to CB. A query is generated from CIS−CB in each datacenter
n the required service to execute the received cloudlets. Assume {v1, v2, v3, ...
... ., vm} represent heterogeneous VMs (which varies in capacity in both speed
and memory) for executing each cloudlet, then the time a cloudlet spends
executing on VMs will determine the total cost per time quantum on all
VMs. Therefore, the following assumptions are considered necessary for the
scheduling: (i) two datacentres are considered sufficient for the task schedule;
(ii) The two datacentres belong to the same service provider; (iii) Transmission
cost is ignored; (iv) Cloudlets are dynamically assigned to VMs where each
VM handles at most one cloudlet at a time and the total number of all possible
schedules is considered to be (n!)m (Zuo et al., 2015) for the problems with n
cloudlets and m VMs; (v) Pre-emptive allocation policy is not allowed; (vi)
The cost of using VMs for a time quantum varies from one to another per hour
(/hr). Hence, the Expected Time to Compute (ETC) and the Expected Cost to
Compute (ECC) matrix will be used for the scheduling decision.

The modelling of the execution time and execution cost objective is as follows:
Let Ci∀i = {1, 2,, n} denotes set of cloudlets that are independent of one to
the other schedule on virtual machine Vj∀j = {1, 2,, m} . The total execution
time Texeij for all cloudlets executed on Vj can be calculated using Equation 12
and the execution time of cloudlets Ci∀i = {1, 2,, n} on is computed using
equation 13.

15

Algorithm 5: Proposed CSM-CSOSA Algorithm
Begin:
1. Input: Initialize cat parameters: create population of the cats as 𝑋𝑋𝑖𝑖 ∀𝑖𝑖 = {1,2,3 … . .𝑛𝑛},

initialize 𝑋𝑋𝑖𝑖, flag number, Initialize SA parameters: initial Temperature 𝑇𝑇𝑂𝑂, final
Temperature 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, rate of cooling 𝛼𝛼.

2. Generate an empty non-dominant archive of (n × m) size of uniform random number
[0, 1]

3. Output: Best solution with minimum total execution time and minimum total
execution cost.

4. Identify the best optimal solution for the trade-off values as 𝑋𝑋𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐷𝐷∀ 𝑫𝑫 =
{𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑}

5. Do // apply seeking mode process to evaluate cat fitness.
 {
6. If (flag← 𝟏𝟏)
7. Execute tracing mode process according to Algorithm 1.
8. Discover the 𝑋𝑋𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 solution
9. If (𝑋𝑋𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is not improved)
10. Else
11. //*** apply tracing mode process to find the 𝑋𝑋𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 using SA and Taguchi

method***//
12. Call………. Algorithm 3 to execute the SA Method
 {
13. While (𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 > 𝑇𝑇𝑜𝑜) do
14. Call ……. Algorithm 4 to execute the Taguchi method
 {
15. Generate new solution 𝑋𝑋𝑖𝑖′ in the neighbourhood of 𝑋𝑋𝑖𝑖 using Equation 7 and Equation

8
16. Compute_𝑓𝑓(𝑋𝑋𝑖𝑖,𝑋𝑋𝑖𝑖𝑖𝑖)
17. 𝑓𝑓 = 𝑓𝑓(𝑋𝑋𝑖𝑖′) − 𝑓𝑓(𝑋𝑋𝑖𝑖)
18. If 𝑓𝑓 ≤ 0 𝑜𝑜𝑜𝑜 exp (−𝑓𝑓𝑇𝑇−1) > 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1)
 // rand (0, 1) is a uniformly random generated number between 0 and 1
19. Apply new fitness selection strategy based on Pareto dominance according to

Equation 9 &10
20. Reduce the temperature using Equation 4
21. 𝑋𝑋𝑖𝑖 ← 𝑋𝑋𝑖𝑖′,
22. Endif
 }
23. Endwhile

 }
24. Endif

 }
25. While condition is not reached.
26. Output optimization solution for the execution time and execution cost.

End.

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

450

 (12)

 (13)

Such that:

 (14)

Where, exeij is the execution time of running cloudlets on one virtual machine;
Ci is the set of cloudlets in Millions Instruction (MI) assigned on the virtual
machine Vj; Vmips j is the virtual machine speed in Million Instructions per
Seconds (MIPs); is the number of the processing element (Gabi et al., 2016).
Equation 15 is used to compute the cost of executing all cloudlets on all Vj if
and only if the cost of a virtual machine per time quantum is given per hour
(/hr) (Ramezani et al., 2013) while equation 16 computes the cost of executing
cloudlets on Vj .

 (15)

Where TTexecostij is the total cost of executing all cloudlets on Vj, execostij is the
cost of executing cloudlets on Vj (Ramezaini et al., 2013).

 (16)

Vcostj , is the monetary cost of one unit Vj in US dollar per hour. A mathematical
model for the multi-objective task scheduling problem can be expressed as
follows:

 (17)

The fitness for the QoS when the trade-off factors for the time and cost for
consumer service preference can be expressed as follows (Zuo et al., 2015;
Beegom & Rajasree, 2015).

16

datacenter n the required service to execute the received cloudlets. Assume

{𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, … … . , 𝑣𝑣𝑚𝑚} represent heterogeneous VMs (which varies in capacity in both speed and

memory) for executing each cloudlet, then the time a cloudlet spends executing on VMs will

determine the total cost per time quantum on all VMs. Therefore, the following assumptions are

considered necessary for the scheduling: (i) two datacentres are considered sufficient for the task

schedule; (ii) The two datacentres belong to the same service provider; (iii) Transmission cost is

ignored; (iv) Cloudlets are dynamically assigned to VMs where each VM handles at most one

cloudlet at a time and the total number of all possible schedules is considered to be (𝑛𝑛!)𝑚𝑚 (Zuo et

al., 2015) for the problems with 𝑛𝑛 cloudlets and 𝑚𝑚 VMs; (v) Pre-emptive allocation policy is not

allowed; (vi) The cost of using VMs for a time quantum varies from one to another per hour

(/hr). Hence, the Expected Time to Compute (ETC) and the Expected Cost to Compute (ECC)

matrix will be used for the scheduling decision.

The modelling of the execution time and execution cost objective is as follows: Let 𝐶𝐶𝑖𝑖∀𝑖𝑖 =
{1,2, … . ,𝑛𝑛} denotes set of cloudlets that are independent of one to the other schedule on virtual

machine 𝑉𝑉𝑗𝑗∀𝑗𝑗 = {1,2, … … . ,𝑚𝑚}. The total execution time 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 for all cloudlets executed on 𝑉𝑉𝑗𝑗

can be calculated using Equation 12 and the execution time of cloudlets 𝐶𝐶𝑖𝑖∀𝑖𝑖 = {1,2, … . ,𝑛𝑛} on

𝑉𝑉𝑗𝑗 is computed using equation 13.

 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 = ∑ 𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑚𝑚
𝑗𝑗=1 (12)

 𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1 ∗ 𝐶𝐶𝑖𝑖

𝑛𝑛𝑛𝑛𝑒𝑒j×𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗
 , (13)

 Such that:

 𝑥𝑥𝑖𝑖,𝑗𝑗 = {1, 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑀𝑀𝑗𝑗
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (14)

Where, 𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 is the execution time of running cloudlets on one virtual machine; 𝐶𝐶𝑖𝑖 is the set of

cloudlets in Millions Instruction (MI) assigned on the virtual machine 𝑉𝑉𝑗𝑗; 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 is the virtual

machine speed in Million Instructions per Seconds (MIPs); 𝑛𝑛𝑛𝑛𝑒𝑒𝑗𝑗 is the number of the processing

element (Gabi et al., 2016). Equation 15 is used to compute the cost of executing all cloudlets on

all 𝑉𝑉𝑗𝑗 if and only if the cost of a virtual machine per time quantum is given per hour (/hr)

(Ramezani et al., 2013) while equation 16 computes the cost of executing cloudlets on 𝑉𝑉𝑗𝑗.

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 = ∑ 𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖
𝑛𝑛
𝑗𝑗=1 (15)

16

datacenter n the required service to execute the received cloudlets. Assume

{𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, … … . , 𝑣𝑣𝑚𝑚} represent heterogeneous VMs (which varies in capacity in both speed and

memory) for executing each cloudlet, then the time a cloudlet spends executing on VMs will

determine the total cost per time quantum on all VMs. Therefore, the following assumptions are

considered necessary for the scheduling: (i) two datacentres are considered sufficient for the task

schedule; (ii) The two datacentres belong to the same service provider; (iii) Transmission cost is

ignored; (iv) Cloudlets are dynamically assigned to VMs where each VM handles at most one

cloudlet at a time and the total number of all possible schedules is considered to be (𝑛𝑛!)𝑚𝑚 (Zuo et

al., 2015) for the problems with 𝑛𝑛 cloudlets and 𝑚𝑚 VMs; (v) Pre-emptive allocation policy is not

allowed; (vi) The cost of using VMs for a time quantum varies from one to another per hour

(/hr). Hence, the Expected Time to Compute (ETC) and the Expected Cost to Compute (ECC)

matrix will be used for the scheduling decision.

The modelling of the execution time and execution cost objective is as follows: Let 𝐶𝐶𝑖𝑖∀𝑖𝑖 =
{1,2, … . ,𝑛𝑛} denotes set of cloudlets that are independent of one to the other schedule on virtual

machine 𝑉𝑉𝑗𝑗∀𝑗𝑗 = {1,2, … … . ,𝑚𝑚}. The total execution time 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 for all cloudlets executed on 𝑉𝑉𝑗𝑗

can be calculated using Equation 12 and the execution time of cloudlets 𝐶𝐶𝑖𝑖∀𝑖𝑖 = {1,2, … . ,𝑛𝑛} on

𝑉𝑉𝑗𝑗 is computed using equation 13.

 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 = ∑ 𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑚𝑚
𝑗𝑗=1 (12)

 𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1 ∗ 𝐶𝐶𝑖𝑖

𝑛𝑛𝑛𝑛𝑒𝑒j×𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗
 , (13)

 Such that:

 𝑥𝑥𝑖𝑖,𝑗𝑗 = {1, 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑀𝑀𝑗𝑗
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (14)

Where, 𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 is the execution time of running cloudlets on one virtual machine; 𝐶𝐶𝑖𝑖 is the set of

cloudlets in Millions Instruction (MI) assigned on the virtual machine 𝑉𝑉𝑗𝑗; 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 is the virtual

machine speed in Million Instructions per Seconds (MIPs); 𝑛𝑛𝑛𝑛𝑒𝑒𝑗𝑗 is the number of the processing

element (Gabi et al., 2016). Equation 15 is used to compute the cost of executing all cloudlets on

all 𝑉𝑉𝑗𝑗 if and only if the cost of a virtual machine per time quantum is given per hour (/hr)

(Ramezani et al., 2013) while equation 16 computes the cost of executing cloudlets on 𝑉𝑉𝑗𝑗.

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 = ∑ 𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖
𝑛𝑛
𝑗𝑗=1 (15)

16

datacenter n the required service to execute the received cloudlets. Assume

{𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, … … . , 𝑣𝑣𝑚𝑚} represent heterogeneous VMs (which varies in capacity in both speed and

memory) for executing each cloudlet, then the time a cloudlet spends executing on VMs will

determine the total cost per time quantum on all VMs. Therefore, the following assumptions are

considered necessary for the scheduling: (i) two datacentres are considered sufficient for the task

schedule; (ii) The two datacentres belong to the same service provider; (iii) Transmission cost is

ignored; (iv) Cloudlets are dynamically assigned to VMs where each VM handles at most one

cloudlet at a time and the total number of all possible schedules is considered to be (𝑛𝑛!)𝑚𝑚 (Zuo et

al., 2015) for the problems with 𝑛𝑛 cloudlets and 𝑚𝑚 VMs; (v) Pre-emptive allocation policy is not

allowed; (vi) The cost of using VMs for a time quantum varies from one to another per hour

(/hr). Hence, the Expected Time to Compute (ETC) and the Expected Cost to Compute (ECC)

matrix will be used for the scheduling decision.

The modelling of the execution time and execution cost objective is as follows: Let 𝐶𝐶𝑖𝑖∀𝑖𝑖 =
{1,2, … . ,𝑛𝑛} denotes set of cloudlets that are independent of one to the other schedule on virtual

machine 𝑉𝑉𝑗𝑗∀𝑗𝑗 = {1,2, … … . ,𝑚𝑚}. The total execution time 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 for all cloudlets executed on 𝑉𝑉𝑗𝑗

can be calculated using Equation 12 and the execution time of cloudlets 𝐶𝐶𝑖𝑖∀𝑖𝑖 = {1,2, … . ,𝑛𝑛} on

𝑉𝑉𝑗𝑗 is computed using equation 13.

 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 = ∑ 𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑚𝑚
𝑗𝑗=1 (12)

 𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1 ∗ 𝐶𝐶𝑖𝑖

𝑛𝑛𝑛𝑛𝑒𝑒j×𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗
 , (13)

 Such that:

 𝑥𝑥𝑖𝑖,𝑗𝑗 = {1, 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑀𝑀𝑗𝑗
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (14)

Where, 𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 is the execution time of running cloudlets on one virtual machine; 𝐶𝐶𝑖𝑖 is the set of

cloudlets in Millions Instruction (MI) assigned on the virtual machine 𝑉𝑉𝑗𝑗; 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 is the virtual

machine speed in Million Instructions per Seconds (MIPs); 𝑛𝑛𝑛𝑛𝑒𝑒𝑗𝑗 is the number of the processing

element (Gabi et al., 2016). Equation 15 is used to compute the cost of executing all cloudlets on

all 𝑉𝑉𝑗𝑗 if and only if the cost of a virtual machine per time quantum is given per hour (/hr)

(Ramezani et al., 2013) while equation 16 computes the cost of executing cloudlets on 𝑉𝑉𝑗𝑗.

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 = ∑ 𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖
𝑛𝑛
𝑗𝑗=1 (15)

16

datacenter n the required service to execute the received cloudlets. Assume

{𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, … … . , 𝑣𝑣𝑚𝑚} represent heterogeneous VMs (which varies in capacity in both speed and

memory) for executing each cloudlet, then the time a cloudlet spends executing on VMs will

determine the total cost per time quantum on all VMs. Therefore, the following assumptions are

considered necessary for the scheduling: (i) two datacentres are considered sufficient for the task

schedule; (ii) The two datacentres belong to the same service provider; (iii) Transmission cost is

ignored; (iv) Cloudlets are dynamically assigned to VMs where each VM handles at most one

cloudlet at a time and the total number of all possible schedules is considered to be (𝑛𝑛!)𝑚𝑚 (Zuo et

al., 2015) for the problems with 𝑛𝑛 cloudlets and 𝑚𝑚 VMs; (v) Pre-emptive allocation policy is not

allowed; (vi) The cost of using VMs for a time quantum varies from one to another per hour

(/hr). Hence, the Expected Time to Compute (ETC) and the Expected Cost to Compute (ECC)

matrix will be used for the scheduling decision.

The modelling of the execution time and execution cost objective is as follows: Let 𝐶𝐶𝑖𝑖∀𝑖𝑖 =
{1,2, … . ,𝑛𝑛} denotes set of cloudlets that are independent of one to the other schedule on virtual

machine 𝑉𝑉𝑗𝑗∀𝑗𝑗 = {1,2, … … . ,𝑚𝑚}. The total execution time 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 for all cloudlets executed on 𝑉𝑉𝑗𝑗

can be calculated using Equation 12 and the execution time of cloudlets 𝐶𝐶𝑖𝑖∀𝑖𝑖 = {1,2, … . ,𝑛𝑛} on

𝑉𝑉𝑗𝑗 is computed using equation 13.

 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 = ∑ 𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑚𝑚
𝑗𝑗=1 (12)

 𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1 ∗ 𝐶𝐶𝑖𝑖

𝑛𝑛𝑛𝑛𝑒𝑒j×𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗
 , (13)

 Such that:

 𝑥𝑥𝑖𝑖,𝑗𝑗 = {1, 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑉𝑉𝑀𝑀𝑗𝑗
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (14)

Where, 𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 is the execution time of running cloudlets on one virtual machine; 𝐶𝐶𝑖𝑖 is the set of

cloudlets in Millions Instruction (MI) assigned on the virtual machine 𝑉𝑉𝑗𝑗; 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 is the virtual

machine speed in Million Instructions per Seconds (MIPs); 𝑛𝑛𝑛𝑛𝑒𝑒𝑗𝑗 is the number of the processing

element (Gabi et al., 2016). Equation 15 is used to compute the cost of executing all cloudlets on

all 𝑉𝑉𝑗𝑗 if and only if the cost of a virtual machine per time quantum is given per hour (/hr)

(Ramezani et al., 2013) while equation 16 computes the cost of executing cloudlets on 𝑉𝑉𝑗𝑗.

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 = ∑ 𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖
𝑛𝑛
𝑗𝑗=1 (15)

17

Where 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 is the total cost of executing all cloudlets on 𝑉𝑉𝑗𝑗, 𝑒𝑒𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 is the cost of

executing cloudlets on 𝑉𝑉𝑗𝑗 (Ramezaini et al., 2013).

 𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡𝑗𝑗 ∗ (1
3600 ∗ ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗 ∗ 𝑛𝑛

𝑖𝑖=1 𝐶𝐶𝑖𝑖
𝑛𝑛𝑛𝑛𝑒𝑒𝑗𝑗 ∗𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑗𝑗

) (16)

 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡𝑗𝑗, is the monetary cost of one unit 𝑉𝑉𝑗𝑗 in US dollar per hour. A mathematical model for the

multi-objective task scheduling problem can be expressed as follows:

 𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹(𝑋𝑋) = {(𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑖𝑖𝑖𝑖,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖} (17)

 Subject to:

 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 = 1, ∀ 𝑖𝑖 = 1,2, … … ,𝑛𝑛𝑗𝑗=1 ; 𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0,1},∀𝑖𝑖, 𝑗𝑗

The fitness for the QoS when the trade-off factors for the time and cost for consumer service

preference can be expressed as follows (Zuo et al., 2015; Beegom and Rajasree, 2015).

 𝑄𝑄𝑄𝑄𝑄𝑄(𝑋𝑋) = 𝜃𝜃 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 + (1 – θ) ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑖𝑖𝑖𝑖 (18)

 ∀{(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) ∈ 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}

Where, 𝜃𝜃[0,1]is the control factor for selection of consumer service preference based on time

and cost objectives.

Evaluation Metrics

The metrics used for evaluation are execution time, execution cost using the model presented in

equation (12) and (15) and the QoS (fitness) model in equation (18) as well as the statistical

analysis based on percentage improvement rate percentage (PIR%) using equation (19).

 𝑃𝑃𝑃𝑃𝑃𝑃% = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒)−𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝐶𝐶𝑆𝑆𝑆𝑆−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒) ∗ 100 (19)

RESULTS AND DISCUSSION

The CloudSim simulator tool (Buyya et al., 2010) is used for the experiment. The CloudBroker

policy of the CloudSim is used to implement the algorithm and run with two (2) different

Datasets. The parameter setting for the datacentres (as shown in Table 2) were based on (Gabi et

al., 2016; Abdullahi & Ngadi, 2016). The comparison with multi-objective task scheduling

17

Where 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 is the total cost of executing all cloudlets on 𝑉𝑉𝑗𝑗, 𝑒𝑒𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 is the cost of

executing cloudlets on 𝑉𝑉𝑗𝑗 (Ramezaini et al., 2013).

 𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡𝑗𝑗 ∗ (1
3600 ∗ ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗 ∗ 𝑛𝑛

𝑖𝑖=1 𝐶𝐶𝑖𝑖
𝑛𝑛𝑛𝑛𝑒𝑒𝑗𝑗 ∗𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑗𝑗

) (16)

 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡𝑗𝑗, is the monetary cost of one unit 𝑉𝑉𝑗𝑗 in US dollar per hour. A mathematical model for the

multi-objective task scheduling problem can be expressed as follows:

 𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹(𝑋𝑋) = {(𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑖𝑖𝑖𝑖,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖} (17)

 Subject to:

 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 = 1, ∀ 𝑖𝑖 = 1,2, … … ,𝑛𝑛𝑗𝑗=1 ; 𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0,1},∀𝑖𝑖, 𝑗𝑗

The fitness for the QoS when the trade-off factors for the time and cost for consumer service

preference can be expressed as follows (Zuo et al., 2015; Beegom and Rajasree, 2015).

 𝑄𝑄𝑄𝑄𝑄𝑄(𝑋𝑋) = 𝜃𝜃 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 + (1 – θ) ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑖𝑖𝑖𝑖 (18)

 ∀{(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) ∈ 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}

Where, 𝜃𝜃[0,1]is the control factor for selection of consumer service preference based on time

and cost objectives.

Evaluation Metrics

The metrics used for evaluation are execution time, execution cost using the model presented in

equation (12) and (15) and the QoS (fitness) model in equation (18) as well as the statistical

analysis based on percentage improvement rate percentage (PIR%) using equation (19).

 𝑃𝑃𝑃𝑃𝑃𝑃% = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒)−𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝐶𝐶𝑆𝑆𝑆𝑆−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒) ∗ 100 (19)

RESULTS AND DISCUSSION

The CloudSim simulator tool (Buyya et al., 2010) is used for the experiment. The CloudBroker

policy of the CloudSim is used to implement the algorithm and run with two (2) different

Datasets. The parameter setting for the datacentres (as shown in Table 2) were based on (Gabi et

al., 2016; Abdullahi & Ngadi, 2016). The comparison with multi-objective task scheduling

451

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

 (18)

Where, θ[0,1] is the control factor for selection of consumer service preference
based on time and cost objectives.

Evaluation Metrics

The metrics used for evaluation are execution time, execution cost using
the model presented in equation (12) and (15) and the QoS (fitness) model
in equation (18) as well as the statistical analysis based on percentage
improvement rate percentage (PIR%) using equation (19).

 (19)

RESULTS AND DISCUSSION

The CloudSim simulator tool (Buyya et al., 2010) is used for the experiment.
The CloudBroker policy of the CloudSim is used to implement the algorithm
and run with two (2) different datasets. The settings for each algorithm are
shown in Table 1. The comparison with multi-objective task scheduling
algorithms discussed in the introduction were used, i.e. the Multi-Objective
Genetic Algorithm (Budhiraja & Singh, 2014), Multi-Objective scheduling
method based on Ant Colony Optimization (Zuo et al., 2016) & Multi-
Objective Particle Swarm Optimization (Ramezaini et al., 2013).

Table 1

The parameter setting for the four task scheduling algorithms

Algorithm Parameter Value
MOPSO Particle size 100

Self-recognition coefficients (c1, c2) 2.0
Uniform random number (R1) [0,1]
Maximum iteration 1000
Variable Inertia weight(W) 90-40%

CSM-CSOSA Cat size 100

17

Where 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 is the total cost of executing all cloudlets on 𝑉𝑉𝑗𝑗, 𝑒𝑒𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 is the cost of

executing cloudlets on 𝑉𝑉𝑗𝑗 (Ramezaini et al., 2013).

 𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡𝑗𝑗 ∗ (1
3600 ∗ ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗 ∗ 𝑛𝑛

𝑖𝑖=1 𝐶𝐶𝑖𝑖
𝑛𝑛𝑛𝑛𝑒𝑒𝑗𝑗 ∗𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑗𝑗

) (16)

 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡𝑗𝑗, is the monetary cost of one unit 𝑉𝑉𝑗𝑗 in US dollar per hour. A mathematical model for the

multi-objective task scheduling problem can be expressed as follows:

 𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹(𝑋𝑋) = {(𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑖𝑖𝑖𝑖,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖} (17)

 Subject to:

 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 = 1, ∀ 𝑖𝑖 = 1,2, … … ,𝑛𝑛𝑗𝑗=1 ; 𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0,1},∀𝑖𝑖, 𝑗𝑗

The fitness for the QoS when the trade-off factors for the time and cost for consumer service

preference can be expressed as follows (Zuo et al., 2015; Beegom and Rajasree, 2015).

 𝑄𝑄𝑄𝑄𝑄𝑄(𝑋𝑋) = 𝜃𝜃 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 + (1 – θ) ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑖𝑖𝑖𝑖 (18)

 ∀{(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) ∈ 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}

Where, 𝜃𝜃[0,1]is the control factor for selection of consumer service preference based on time

and cost objectives.

Evaluation Metrics

The metrics used for evaluation are execution time, execution cost using the model presented in

equation (12) and (15) and the QoS (fitness) model in equation (18) as well as the statistical

analysis based on percentage improvement rate percentage (PIR%) using equation (19).

 𝑃𝑃𝑃𝑃𝑃𝑃% = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒)−𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝐶𝐶𝑆𝑆𝑆𝑆−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒) ∗ 100 (19)

RESULTS AND DISCUSSION

The CloudSim simulator tool (Buyya et al., 2010) is used for the experiment. The CloudBroker

policy of the CloudSim is used to implement the algorithm and run with two (2) different

Datasets. The parameter setting for the datacentres (as shown in Table 2) were based on (Gabi et

al., 2016; Abdullahi & Ngadi, 2016). The comparison with multi-objective task scheduling

17

Where 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 is the total cost of executing all cloudlets on 𝑉𝑉𝑗𝑗, 𝑒𝑒𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 is the cost of

executing cloudlets on 𝑉𝑉𝑗𝑗 (Ramezaini et al., 2013).

 𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡𝑗𝑗 ∗ (1
3600 ∗ ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗 ∗ 𝑛𝑛

𝑖𝑖=1 𝐶𝐶𝑖𝑖
𝑛𝑛𝑛𝑛𝑒𝑒𝑗𝑗 ∗𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑗𝑗

) (16)

 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡𝑗𝑗, is the monetary cost of one unit 𝑉𝑉𝑗𝑗 in US dollar per hour. A mathematical model for the

multi-objective task scheduling problem can be expressed as follows:

 𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹(𝑋𝑋) = {(𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑖𝑖𝑖𝑖,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖} (17)

 Subject to:

 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 = 1, ∀ 𝑖𝑖 = 1,2, … … ,𝑛𝑛𝑗𝑗=1 ; 𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0,1},∀𝑖𝑖, 𝑗𝑗

The fitness for the QoS when the trade-off factors for the time and cost for consumer service

preference can be expressed as follows (Zuo et al., 2015; Beegom and Rajasree, 2015).

 𝑄𝑄𝑄𝑄𝑄𝑄(𝑋𝑋) = 𝜃𝜃 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 + (1 – θ) ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑖𝑖𝑖𝑖 (18)

 ∀{(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) ∈ 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}

Where, 𝜃𝜃[0,1]is the control factor for selection of consumer service preference based on time

and cost objectives.

Evaluation Metrics

The metrics used for evaluation are execution time, execution cost using the model presented in

equation (12) and (15) and the QoS (fitness) model in equation (18) as well as the statistical

analysis based on percentage improvement rate percentage (PIR%) using equation (19).

 𝑃𝑃𝑃𝑃𝑃𝑃% = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒)−𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝐶𝐶𝑆𝑆𝑆𝑆−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒) ∗ 100 (19)

RESULTS AND DISCUSSION

The CloudSim simulator tool (Buyya et al., 2010) is used for the experiment. The CloudBroker

policy of the CloudSim is used to implement the algorithm and run with two (2) different

Datasets. The parameter setting for the datacentres (as shown in Table 2) were based on (Gabi et

al., 2016; Abdullahi & Ngadi, 2016). The comparison with multi-objective task scheduling

(continued)

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

452

Algorithm Parameter Value
Count Dimension to Change 5%
Self-recognition coefficients (c1) 2.0
Uniform random number (R1) [0,1]
Maximum iteration 1000
 Mixed ratio 2%
Initial Temperature 10
Final temperature 0.001
Cooling rate 0.9

MOSACO Pheromone persistence α 0.3
Importance of pheromone (γ) 1
Importance of resource innate attribute (β) 1
Pheromone evaporation value (ρ) 0.3
Iteration number 1000
Number of ant m 100

MOGA Population size 100
Maximal iteration 1000
Crossover rate 0.5
Mutation rate 0.1

The parameter setting for the datacentres as shown in Table 2 were based on
Gabi et al. (2016) and, Abdullahi and Ngadi (2016).

Table 2

Parameter Settings for the Cloud Computing Datacentre

DATACENTER Parameter Values
No. of datacentre 2
No. of host in a datacenter 1

HOST Host RAM 2GB
Storage ITB
Bandwidths 10GB/s
Accumulated host processing power 1000000 MIPS

CLOUDLETS No. of Cloudlets [100-1000]
Lengths [100, 1000] MIs
File size [200, 400] MB
Output size [300]

VIRTUAL MACHINE VM id [1-20]
VMs Monitor Xen

(continued)

453

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

DATACENTER Parameter Values
Accumulated Ram 0.5GB
Accumulated Storage 10GB
Bandwidth 1GB/s
VMs processing power 1000-10000 MIPS
Number of processing elements 1 to 4

5 to 50
VM Policy Time-shared
Cost per unit VM [0.17−1.25$/hour]
Cost of using memory 0.05$/hour

The performance of the proposed CSM-CSOSA (on minimization of task
execution time and execution cost) with the variation of its control parameters
for consumer service selection preference is evaluated. The results are
compared for the objective of execution time and execution cost as an
extremely critical parameter for consumer QoS for varying number of tasks
namely 100-1000 respectively. These experiments on two benchmark datasets,
i.e., the normal distributed dataset & the HPC2N dataset (Abdullahi & Ngadi,
2016) where the experimental results are compared with three task scheduling
algorithms (MOGA, MOSACO & MOPSO). Therefore, each algorithm runs
30 simulation times and the average value is taken as the comparison. In Tables
3 and 4, the conducted experiment shows the effectiveness of scheduling
algorithms. The result of the experiments is summarized via an average value
for a total of 30 simulation runs.

Table 3

Comparison on Execution time(sec) and Execution Cost(/hr)− Normal
distributed dataset

Task MOGA MOSACO MOPSO CSM-CSOSA

Execution
time

Execution
cost

Execution
time

Execution
cost

Execution
time

Execution
cost

Execution
time

Execution
cost

100 6058.27 1332.82 88284.51 19422.59 4948.99 1088.77 4044.54 889.79

200 7059.25 1553.04 97392.78 21426.41 19383.69 4264.41 15879.07 3493.39

300 93137.01 20490.14 98499.76 21669.95 42941.44 9447.11 35153.95 7733.86

400 124651.76 27423.39 109194.01 24022.68 76178.27 16759.22 62431.91 13735.02

500 134063.75 29494.03 109298.76 24045.73 118307.78 26027.71 97050.19 21351.04

600 191371.01 42101.62 117094.76 25760.84 173652.70 38203.59 142451.62 31339.35

(continued)

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

454

Task MOGA MOSACO MOPSO CSM-CSOSA

Execution
time

Execution
cost

Execution
time

Execution
cost

Execution
time

Execution
cost

Execution
time

Execution
cost

700 223455.51 49160.21 183455.75 40360.26 234024.61 192413.25 42330.91

800 325969.03 323662.26 71205.69 308448.97 253340.68 55734.95

900 510860.71 425393.01 93586.46 389884.04 320557.41 70522.63

1000 707862.76 631498.76 138929.72 483529.84 397058.65 87352.90

Table 4

Comparison on Execution time(sec) and Execution Cost− HPC2N dataset

Task MOGA MOSACO MOPSO CSM-CSOSA

Execution
time

Execution
cost

Execution
time

Execution
cost

Execution
time

Execution
cost

Execution
time

Execution
cost

100 2149.55 472.90 8065.18 1774.33 852.106 187.46 1193.18 262.5

200 3176.66 698.86 8426.87 1853.91 2757.82 606.72 2893.53 632.57

300 4519.46 994.28 11721.81 2578.79 4847.71 1066.49 6975.66 1534.64

400 13868.47 3051.06 21323.50 4691.17 8261.82 1817.60 10411.32 2290.49

500 27376.30 6022.78 23722.67 5218.98 11905.35 2619.17 11458.76 2520.92

600 32964.88 7252.27 26875.12 5912.52 16063.94 3534.06 12764.87 2808.27

700 34756.75 7646.48 27772.62 6109.97 19253.01 4235.66 14023.48 3085.16

800 38861.56 8549.55 29721.44 6538.72 24622.87 5417.033 18513.75 4073.02

900 43382.02 9544.19 30152.42 6633.53 28902.72 6358.59 23278.9 5121.35

1000 45182.42 9940.13 36228.91 7970.36 27301.05 8206.23 26867.23 5910.79

According to this average value illustrated in Tables 3 and 4 precisely, it
is clear that for the execution time and execution cost multi-objectives, the
proposed CSM-CSOSA algorithm has balanced both the total execution time
and total execution cost as consumer requirement which makes it superior
compared to MOGA, MOSACO and MOPSO. In both tables (3 & 4) based
on the two different datasets used, it can be seen that for CSM-CSOSA task
scheduling, the execution time and execution cost spent to complete tasks

455

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

is very much minimal as compared to the execution time and execution cost
spent to complete the tasks with MOGA, MOSACO and MOPSO algorithm.
It is shown that the execution time obtained has an influence on the cost
performance.

Moreover, to have a better sense of the performance of the algorithms,
some figures are illustrated to show the performance of the algorithms more
explicitly. As the task keeps increasing from 100-1000, all the four scheduling
algorithms increase in terms of execution time and execution cost. Figures 1-4
are plotted for execution time and execution cost based on the two different
datasets used respectively. According to these figures, as the number of tasks
keep increasing, both the execution time and the execution cost increase as well.
On the execution time and execution cost minimization, the proposed CSM-
CSOSA task scheduling algorithm has a better operation and outperforms the
MOGA, MOSACO and MOPSO task scheduling algorithms. The increase
in task size and the performance obtained also show that the proposed CSM-
CSOSA is scalable as well as capable of scheduling huge tasks with the lowest
execution time in the heterogeneous environment. However, it also confirms
that the CSM-CSOSA algorithm has shown to increase its quality of solutions
by balancing task on the best virtual machine with minimum execution time
and execution cost.

Figure 1. Average execution time-Normal distribution dataset.

21

900 43382.02 9544.19 30152.42 6633.53 28902.72 6358.59 23278.9 5121.35

1000 45182.42 9940.13 36228.91 7970.36 27301.05 8206.23 26867.23 5910.79

According to this average value illustrated in Tables 3 & 4 precisely, it is clear that for the

execution time and execution cost multi-objectives, the proposed CSM-CSOSA algorithm has

balanced both the total execution time and total execution cost as consumer requirement which

makes it superior compared to MOGA, MOSACO & MOPSO. In both tables (3 & 4) based on

the two different datasets used, it can be seen that for CSM-CSOSA task scheduling, the

execution time and execution cost spent to complete tasks is very much minimal as compared to

the execution time and execution cost spent to complete the tasks with MOGA, MOSACO &

MOPSO algorithm. It is shown that the execution time obtained has an influence on the cost

performance.

Figure 1. Average execution time-Normal distribution dataset

Figure 2. Average execution cost-Normal distribution dataset

100 200 300 400 500 600 700 800 900 1000

0

100000

200000

300000

400000

500000

600000

700000

800000

Av
er

ag
e E

xe
cu

tio
n t

im
e(

se
c)

Number of Tasks

 MOGA
 MOSACO
 MOPSO
 CSMCSOSA

100 200 300 400 500 600 700 800 900 1000

0

20000

40000

60000

80000

100000

120000

140000

160000

Av
er

ag
e E

xe
cu

tio
n c

os
t(h

r)

Number of Tasks

 MOGA
 MOSACO
 MOPSO
 CSMCSOSA

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

456

Figure 2. Average execution cost-Normal distribution dataset.

Figure 3. Average execution time-HPC2N dataset.

22

Figure 3. Average execution time-HPC2N dataset

Figure 4. Average execution cost-HPC2N dataset

Moreover, to have a better sense of the performance of the algorithms, some figures are

illustrated to show the performance of the algorithms more explicitly. As the task keeps

increasing from 100-1000, all the four scheduling algorithms increase in terms of execution time

and execution cost. Figure 1 to Figure 4 are plotted for execution time and execution cost based

on the two different datasets used respectively. According to these figures, as the number of

tasks keep increasing, both the execution time and the execution cost increase as well. On the

execution time and execution cost minimization, the proposed CSM-CSOSA task scheduling

algorithm has a better operation and outperforms the MOGA, MOSACO & MOPSO task

scheduling algorithms. The increase in task size and the performance obtained also show that the

proposed CSM-CSOSA is scalable as well as capable of scheduling huge tasks with the lowest

execution time in the heterogeneous environment. However, it also confirms that the CSM-

100 200 300 400 500 600 700 800 900 1000

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

Av
er

ag
e

Ex
ec

ut
ion

 tim
e(

se
c)

Number of Tasks

 MOGA
 MOSACO
 MOPSO
 CSMCSOSA

100 200 300 400 500 600 700 800 900 1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Av
er

ag
e

Ex
ec

ut
ion

 co
st(

hr
)

Number of Tasks

 MOGA
 MOSACO
 MOPSO
 CSMCSOSA

21

900 43382.02 9544.19 30152.42 6633.53 28902.72 6358.59 23278.9 5121.35

1000 45182.42 9940.13 36228.91 7970.36 27301.05 8206.23 26867.23 5910.79

According to this average value illustrated in Tables 3 & 4 precisely, it is clear that for the

execution time and execution cost multi-objectives, the proposed CSM-CSOSA algorithm has

balanced both the total execution time and total execution cost as consumer requirement which

makes it superior compared to MOGA, MOSACO & MOPSO. In both tables (3 & 4) based on

the two different datasets used, it can be seen that for CSM-CSOSA task scheduling, the

execution time and execution cost spent to complete tasks is very much minimal as compared to

the execution time and execution cost spent to complete the tasks with MOGA, MOSACO &

MOPSO algorithm. It is shown that the execution time obtained has an influence on the cost

performance.

Figure 1. Average execution time-Normal distribution dataset

Figure 2. Average execution cost-Normal distribution dataset

100 200 300 400 500 600 700 800 900 1000

0

100000

200000

300000

400000

500000

600000

700000

800000

Av
er

ag
e E

xe
cu

tio
n t

im
e(

se
c)

Number of Tasks

 MOGA
 MOSACO
 MOPSO
 CSMCSOSA

100 200 300 400 500 600 700 800 900 1000

0

20000

40000

60000

80000

100000

120000

140000

160000

Av
er

ag
e E

xe
cu

tio
n c

os
t(h

r)

Number of Tasks

 MOGA
 MOSACO
 MOPSO
 CSMCSOSA

457

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

22

Figure 3. Average execution time-HPC2N dataset

Figure 4. Average execution cost-HPC2N dataset

Moreover, to have a better sense of the performance of the algorithms, some figures are

illustrated to show the performance of the algorithms more explicitly. As the task keeps

increasing from 100-1000, all the four scheduling algorithms increase in terms of execution time

and execution cost. Figure 1 to Figure 4 are plotted for execution time and execution cost based

on the two different datasets used respectively. According to these figures, as the number of

tasks keep increasing, both the execution time and the execution cost increase as well. On the

execution time and execution cost minimization, the proposed CSM-CSOSA task scheduling

algorithm has a better operation and outperforms the MOGA, MOSACO & MOPSO task

scheduling algorithms. The increase in task size and the performance obtained also show that the

proposed CSM-CSOSA is scalable as well as capable of scheduling huge tasks with the lowest

execution time in the heterogeneous environment. However, it also confirms that the CSM-

100 200 300 400 500 600 700 800 900 1000

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

Av
er

ag
e

Ex
ec

ut
ion

 tim
e(

se
c)

Number of Tasks

 MOGA
 MOSACO
 MOPSO
 CSMCSOSA

100 200 300 400 500 600 700 800 900 1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
Av

er
ag

e
Ex

ec
ut

ion
 co

st(
hr

)

Number of Tasks

 MOGA
 MOSACO
 MOPSO
 CSMCSOSA

Figure 4. Average execution cost-HPC2N dataset.

In addition, the fitness (QoS) function formula in equation (18) is used to guide
the target to optimize the performance of global best in the CSM-CSOSA
algorithm and the MOGA, MOSACO and MOPSO task scheduling algorithm.
The result is shown in Table 5. In all cases, the CSM-CSOSA shows the best
performance.

Table 5

Comparison on Estimated total QoS Minimized

Datasets MOGA MOSACO MOPSO CSM-CSOSA

Normal distributed dataset 316359.91 218444.14 185186.51 152009.92

HPC2N Workload 24631.40 22407.86 15480.64 12842.05

In Table 6, the improvement of the proposed CSM-CSOSA algorithm over the
three comparative scheduling algorithms using the normal distributed dataset
shows our proposed algorithm has managed to achieve 34.59%, 30.37%
and 17.87% in terms of total average execution time. A similar analysis is
reported using the HPC2N dataset where the result is shown in Table 7 in

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

458

Table 6

Comparison on Improvement (%) based on Execution Time − Normal
Distributed Dataset

MOGA MOSACO MOPSO CSM-CSOSA

Total Average
execution time

2324489.06 2183774.36 1851300.33 1520381.27

PIR% over MOGA 6.05 20.35 34.59

PIR% over MOSACO 15.22 30.37
PIR% over MOPSO 17.87

Table 7

Comparison on Improvement (%) based on Execution Time −HPC2N Dataset

MOGA MOSACO MOPSO CSM-CSOSA

Total Average execution
time

246238.07 224010.54 144768.40 128380.68

PIR% over MOGA 9.03 41.21 47.86

PIR% over MOSACO 35.37 42.68
PIR% over MOPSO 11.31

terms of execution time. In Table 7, the performance improvement achieved
by the four scheduling algorithms is reported. The result of the analysis
shows the CSM-CSOSA which was able to reduce the execution time by
obtaining 47.86%, 42.68% and 11.31% compared to MOGA, MOSACO and
MOPSO. The performance recorded by our proposed algorithm is due to the
combination of Simulated Annealing (SA) and the Taguchi approach which is
incorporated at the local search of the CSM-CSOSA that guides the algorithm
toward position updating without affecting the computational complexity.
This approach also helps our proposed algorithm returns local best solution as
fast as possible which is also attributed to the significant choice of velocity.
The CSM-CSOSA has shown to improve its quality of solutions at the latter
stage of search procedure, making it more efficient for cloud task scheduling
(Gabi et al., 2018).

Scalability Analysis of the Scheduling Algorithms

To further unveil performance of our proposed CSM-CSOSA task scheduling
algorithm together with the three comparative algorithms, a scalability analysis

459

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

is conducted. This process enables us to gain insight on the scalability of the
proposed algorithm towards scaling with large workloads and the changes
on the number of virtual processing elements (Chen et al., 2008). Kumar and
Kao (1987) put forward measuring criteria known as Isoefficiency metric to
account for the scalability of a system. In the context of cloud computing,
scalability can be seen as an algorithm-Virtual Machine (VM) combination.
According to Sun and Rover (1994), scalability of an algorithm in relation to
VM combination is when an average execution time exhibited remain constant
even when a re-scaled in processing element and problem size occurs. Hence,
considering the heterogeneity of cloud computing resources, an Isospeed-
efficiency scalability metric proposed in (Chen et al., 2008) for
calculating the scalability of an algorithm based on machine dependance is
adopted for the scalability investigation. In this study, the expected value
for the scalability performance is considered to be in the ranges .
The Isospeed-efficiency scalability function for computing the
scalability is illustrated in equation 20 (Chen et al., 2008).

(20)

Where, is the initial execution time achieved by the algorithms based on
configured number of processing elements on virtual machines, C is the scaled
execution time when the processing element increases on virtual machine,W is the
initial workload (tasks) assigned on virtual machine, WI is the rescaled workload
(tasks) assigned on virtual machines. To compute the scalability of the proposed
algorithm, one Parallel Workload, i.e., the HPC2N dataset with 527, 371 tasks were
considered and 5000−14000 tasks instances drawn from the workload were used in
the experiment. Processing elements from 5−50 are assigned to virtual machines.
The results associated with each algorithm based on the obtained execution time is
shown in Table 8, while computed scalability performance is reported in Table 9.
The scalability computation for each algorithm is carried out using the following
example for MOGA algorithm shown in equation 21.

 (21)

Table 8

Average Total Execution Time(sec)−HPC2N Dataset

Workloads
Configured processing
elements on VM0.195

MOGA MOSACO MOPSO CSM-CSOSA

5000 5 60749.54 68224.11 98218.37 85691.89

(continued)

24

MOSACO & MOPSO. The performance recorded by our proposed algorithm is due to the

combination of Simulated Annealing (SA) and the Taguchi approach which is incorporated at the

local search of the CSM-CSOSA that guides the algorithm toward position updating without

affecting the computational complexity. This approach also helps our proposed algorithm returns

local best solution as fast as possible which is also attributed to the significant choice of velocity.

The CSM-CSOSA has shown to improve its quality of solutions at the latter stage of search

procedure, making it more efficient for cloud task scheduling (Gabi et al., 2018).

Scalability Analysis of the Scheduling Algorithms

To further unveil performance of our proposed CSM-CSOSA task scheduling algorithm together

with the three comparative algorithms, a scalability analysis is conducted. This process enables

us to gain insight on the scalability of the proposed algorithm towards scaling with large

workloads and the changes on the number of virtual processing elements (Chen et al., 2008).

Kumar & Kao (1987) put forward measuring criteria known as Isoefficiency metric to account

for the scalability of a system. In the context of cloud computing, scalability can be seen as an

algorithm-Virtual Machine (VM) combination. According to Sun & Rover (1994), scalability of

an algorithm in relation to VM combination is when an average execution time exhibited remain

constant even when a re-scaled in processing element and problem size occurs. Hence,

considering the heterogeneity of cloud computing resources, an Isospeed-efficiency scalability

metric 𝜓𝜓(𝐶𝐶,𝐶𝐶′) proposed in (Chen et al., 2008) for calculating the scalability of an algorithm

based on machine dependance is adopted for the scalability investigation. In this study, the

expected value for the scalability performance is considered to be in the ranges 0 < 𝜓𝜓 < 1. The

Isospeed-efficiency scalability function 𝜓𝜓 (𝐶𝐶,𝐶𝐶′) for computing the scalability is illustrated in

equation 20 (Chen et al., 2008).

 𝜓𝜓(𝐶𝐶,𝐶𝐶′) = 𝐶𝐶′∗ 𝑊𝑊
𝐶𝐶∗ 𝑊𝑊′ (20)

Where, 𝐶𝐶𝐼𝐼is the initial execution time achieved by the algorithms based on configured number of

processing elements on virtual machines,𝐶𝐶is the scaled execution time when the processing

element increases on virtual machine, 𝑊𝑊𝐼𝐼 is the initial workload (tasks) assigned on virtual

machine, 𝑊𝑊 is the rescaled workload (tasks) assigned on virtual machines. To compute the

scalability of the proposed algorithm, one Parallel Workload, i.e., the HPC2N dataset with 527,

371 tasks were considered and 5000−14000 tasks instances drawn from the workload were used

24

MOSACO & MOPSO. The performance recorded by our proposed algorithm is due to the

combination of Simulated Annealing (SA) and the Taguchi approach which is incorporated at the

local search of the CSM-CSOSA that guides the algorithm toward position updating without

affecting the computational complexity. This approach also helps our proposed algorithm returns

local best solution as fast as possible which is also attributed to the significant choice of velocity.

The CSM-CSOSA has shown to improve its quality of solutions at the latter stage of search

procedure, making it more efficient for cloud task scheduling (Gabi et al., 2018).

Scalability Analysis of the Scheduling Algorithms

To further unveil performance of our proposed CSM-CSOSA task scheduling algorithm together

with the three comparative algorithms, a scalability analysis is conducted. This process enables

us to gain insight on the scalability of the proposed algorithm towards scaling with large

workloads and the changes on the number of virtual processing elements (Chen et al., 2008).

Kumar & Kao (1987) put forward measuring criteria known as Isoefficiency metric to account

for the scalability of a system. In the context of cloud computing, scalability can be seen as an

algorithm-Virtual Machine (VM) combination. According to Sun & Rover (1994), scalability of

an algorithm in relation to VM combination is when an average execution time exhibited remain

constant even when a re-scaled in processing element and problem size occurs. Hence,

considering the heterogeneity of cloud computing resources, an Isospeed-efficiency scalability

metric 𝜓𝜓(𝐶𝐶,𝐶𝐶′) proposed in (Chen et al., 2008) for calculating the scalability of an algorithm

based on machine dependance is adopted for the scalability investigation. In this study, the

expected value for the scalability performance is considered to be in the ranges 0 < 𝜓𝜓 < 1. The

Isospeed-efficiency scalability function 𝜓𝜓 (𝐶𝐶,𝐶𝐶′) for computing the scalability is illustrated in

equation 20 (Chen et al., 2008).

 𝜓𝜓(𝐶𝐶,𝐶𝐶′) = 𝐶𝐶′∗ 𝑊𝑊
𝐶𝐶∗ 𝑊𝑊′ (20)

Where, 𝐶𝐶𝐼𝐼is the initial execution time achieved by the algorithms based on configured number of

processing elements on virtual machines,𝐶𝐶is the scaled execution time when the processing

element increases on virtual machine, 𝑊𝑊𝐼𝐼 is the initial workload (tasks) assigned on virtual

machine, 𝑊𝑊 is the rescaled workload (tasks) assigned on virtual machines. To compute the

scalability of the proposed algorithm, one Parallel Workload, i.e., the HPC2N dataset with 527,

371 tasks were considered and 5000−14000 tasks instances drawn from the workload were used

24

MOSACO & MOPSO. The performance recorded by our proposed algorithm is due to the

combination of Simulated Annealing (SA) and the Taguchi approach which is incorporated at the

local search of the CSM-CSOSA that guides the algorithm toward position updating without

affecting the computational complexity. This approach also helps our proposed algorithm returns

local best solution as fast as possible which is also attributed to the significant choice of velocity.

The CSM-CSOSA has shown to improve its quality of solutions at the latter stage of search

procedure, making it more efficient for cloud task scheduling (Gabi et al., 2018).

Scalability Analysis of the Scheduling Algorithms

To further unveil performance of our proposed CSM-CSOSA task scheduling algorithm together

with the three comparative algorithms, a scalability analysis is conducted. This process enables

us to gain insight on the scalability of the proposed algorithm towards scaling with large

workloads and the changes on the number of virtual processing elements (Chen et al., 2008).

Kumar & Kao (1987) put forward measuring criteria known as Isoefficiency metric to account

for the scalability of a system. In the context of cloud computing, scalability can be seen as an

algorithm-Virtual Machine (VM) combination. According to Sun & Rover (1994), scalability of

an algorithm in relation to VM combination is when an average execution time exhibited remain

constant even when a re-scaled in processing element and problem size occurs. Hence,

considering the heterogeneity of cloud computing resources, an Isospeed-efficiency scalability

metric 𝜓𝜓(𝐶𝐶,𝐶𝐶′) proposed in (Chen et al., 2008) for calculating the scalability of an algorithm

based on machine dependance is adopted for the scalability investigation. In this study, the

expected value for the scalability performance is considered to be in the ranges 0 < 𝜓𝜓 < 1. The

Isospeed-efficiency scalability function 𝜓𝜓 (𝐶𝐶,𝐶𝐶′) for computing the scalability is illustrated in

equation 20 (Chen et al., 2008).

 𝜓𝜓(𝐶𝐶,𝐶𝐶′) = 𝐶𝐶′∗ 𝑊𝑊
𝐶𝐶∗ 𝑊𝑊′ (20)

Where, 𝐶𝐶𝐼𝐼is the initial execution time achieved by the algorithms based on configured number of

processing elements on virtual machines,𝐶𝐶is the scaled execution time when the processing

element increases on virtual machine, 𝑊𝑊𝐼𝐼 is the initial workload (tasks) assigned on virtual

machine, 𝑊𝑊 is the rescaled workload (tasks) assigned on virtual machines. To compute the

scalability of the proposed algorithm, one Parallel Workload, i.e., the HPC2N dataset with 527,

371 tasks were considered and 5000−14000 tasks instances drawn from the workload were used

24

MOSACO & MOPSO. The performance recorded by our proposed algorithm is due to the

combination of Simulated Annealing (SA) and the Taguchi approach which is incorporated at the

local search of the CSM-CSOSA that guides the algorithm toward position updating without

affecting the computational complexity. This approach also helps our proposed algorithm returns

local best solution as fast as possible which is also attributed to the significant choice of velocity.

The CSM-CSOSA has shown to improve its quality of solutions at the latter stage of search

procedure, making it more efficient for cloud task scheduling (Gabi et al., 2018).

Scalability Analysis of the Scheduling Algorithms

To further unveil performance of our proposed CSM-CSOSA task scheduling algorithm together

with the three comparative algorithms, a scalability analysis is conducted. This process enables

us to gain insight on the scalability of the proposed algorithm towards scaling with large

workloads and the changes on the number of virtual processing elements (Chen et al., 2008).

Kumar & Kao (1987) put forward measuring criteria known as Isoefficiency metric to account

for the scalability of a system. In the context of cloud computing, scalability can be seen as an

algorithm-Virtual Machine (VM) combination. According to Sun & Rover (1994), scalability of

an algorithm in relation to VM combination is when an average execution time exhibited remain

constant even when a re-scaled in processing element and problem size occurs. Hence,

considering the heterogeneity of cloud computing resources, an Isospeed-efficiency scalability

metric 𝜓𝜓(𝐶𝐶,𝐶𝐶′) proposed in (Chen et al., 2008) for calculating the scalability of an algorithm

based on machine dependance is adopted for the scalability investigation. In this study, the

expected value for the scalability performance is considered to be in the ranges 0 < 𝜓𝜓 < 1. The

Isospeed-efficiency scalability function 𝜓𝜓 (𝐶𝐶,𝐶𝐶′) for computing the scalability is illustrated in

equation 20 (Chen et al., 2008).

 𝜓𝜓(𝐶𝐶,𝐶𝐶′) = 𝐶𝐶′∗ 𝑊𝑊
𝐶𝐶∗ 𝑊𝑊′ (20)

Where, 𝐶𝐶𝐼𝐼is the initial execution time achieved by the algorithms based on configured number of

processing elements on virtual machines,𝐶𝐶is the scaled execution time when the processing

element increases on virtual machine, 𝑊𝑊𝐼𝐼 is the initial workload (tasks) assigned on virtual

machine, 𝑊𝑊 is the rescaled workload (tasks) assigned on virtual machines. To compute the

scalability of the proposed algorithm, one Parallel Workload, i.e., the HPC2N dataset with 527,

371 tasks were considered and 5000−14000 tasks instances drawn from the workload were used

24

MOSACO & MOPSO. The performance recorded by our proposed algorithm is due to the

combination of Simulated Annealing (SA) and the Taguchi approach which is incorporated at the

local search of the CSM-CSOSA that guides the algorithm toward position updating without

affecting the computational complexity. This approach also helps our proposed algorithm returns

local best solution as fast as possible which is also attributed to the significant choice of velocity.

The CSM-CSOSA has shown to improve its quality of solutions at the latter stage of search

procedure, making it more efficient for cloud task scheduling (Gabi et al., 2018).

Scalability Analysis of the Scheduling Algorithms

To further unveil performance of our proposed CSM-CSOSA task scheduling algorithm together

with the three comparative algorithms, a scalability analysis is conducted. This process enables

us to gain insight on the scalability of the proposed algorithm towards scaling with large

workloads and the changes on the number of virtual processing elements (Chen et al., 2008).

Kumar & Kao (1987) put forward measuring criteria known as Isoefficiency metric to account

for the scalability of a system. In the context of cloud computing, scalability can be seen as an

algorithm-Virtual Machine (VM) combination. According to Sun & Rover (1994), scalability of

an algorithm in relation to VM combination is when an average execution time exhibited remain

constant even when a re-scaled in processing element and problem size occurs. Hence,

considering the heterogeneity of cloud computing resources, an Isospeed-efficiency scalability

metric 𝜓𝜓(𝐶𝐶,𝐶𝐶′) proposed in (Chen et al., 2008) for calculating the scalability of an algorithm

based on machine dependance is adopted for the scalability investigation. In this study, the

expected value for the scalability performance is considered to be in the ranges 0 < 𝜓𝜓 < 1. The

Isospeed-efficiency scalability function 𝜓𝜓 (𝐶𝐶,𝐶𝐶′) for computing the scalability is illustrated in

equation 20 (Chen et al., 2008).

 𝜓𝜓(𝐶𝐶,𝐶𝐶′) = 𝐶𝐶′∗ 𝑊𝑊
𝐶𝐶∗ 𝑊𝑊′ (20)

Where, 𝐶𝐶𝐼𝐼is the initial execution time achieved by the algorithms based on configured number of

processing elements on virtual machines,𝐶𝐶is the scaled execution time when the processing

element increases on virtual machine, 𝑊𝑊𝐼𝐼 is the initial workload (tasks) assigned on virtual

machine, 𝑊𝑊 is the rescaled workload (tasks) assigned on virtual machines. To compute the

scalability of the proposed algorithm, one Parallel Workload, i.e., the HPC2N dataset with 527,

371 tasks were considered and 5000−14000 tasks instances drawn from the workload were used

25

in the experiment. Processing elements from 5−50 are assigned to virtual machines. The results

associated with each algorithm based on the obtained execution time is shown in Table 8, while

computed scalability performance is reported in Table 9. The scalability computation for each

algorithm is carried out using the following example for MOGA algorithm shown in equation 21.

 𝜓𝜓(𝐶𝐶,𝐶𝐶′) = 𝐶𝐶′∗ 𝑊𝑊
𝐶𝐶∗ 𝑊𝑊′ = 60749.54∗8000

734420.83 ∗5000 = 0.1323 (21)

Table 8. Average total execution time(sec)−HPC2N dataset

Workloads

Configured
processing

elements on VM

MOGA MOSACO MOPSO CSM-
CSOSA

5000 5 60749.54 68224.11 98218.37 85691.89

8000 20 734420.83 836672.18 403092.86 284977.74

10000 30 1908232.46 920394.46 611319.66 509939.30

12000 40 2021129.03 1864725.72 1909903.79 808999.24

14000 50 3490413.07 3143443.18 2077310.12 2020078.67

Table 9. Computed scalability with− HPC2N dataset

Scalability Configured
processing
elements on
VM

MOGA MOSACO MOPSO CSM-CSOSA

𝜓𝜓(𝐶𝐶,𝐶𝐶′) (5,20) 0.1323 0.1878 0.3898 0.4811

𝜓𝜓(𝐶𝐶,𝐶𝐶′) (20,30) 0.4810 1.1363 0.8242 0.6986

𝜓𝜓(𝐶𝐶,𝐶𝐶′) (30,40) 1.1329 1.0373 0.9287 0.8630

𝜓𝜓(𝐶𝐶,𝐶𝐶′) (40, 50) 0.6755 1.0864 0.9238 0.8990

In the aforementioned Table 9, the proposed CSM-CSOSA algorithm is able to maintain better

scalability performance by returning an acceptable value of 0.4811, 0.6986, 0.8630, 0.8990 for

the HPC2N dataset compared to that of MOGA, MOSACO and MOPSO task scheduling

algorithms. These values, however, shows that the proposed algorithm can respond to the

dynamic changing cloud task and resource condition than the comparative algorithms under

consideration.

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

460

Workloads
Configured processing
elements on VM0.195

MOGA MOSACO MOPSO CSM-CSOSA

8000 20 734420.83 836672.18 403092.86 284977.74

10000 30 1908232.46 920394.46 611319.66 509939.30

12000 40 2021129.03 1864725.72 1909903.79 808999.24

14000 50 3490413.07 3143443.18 2077310.12 2020078.67

Table 9

Computed Scalability with− HPC2N Dataset

Scalability Configured
processing
elements on
VM

MOGA MOSACO MOPSO CSM-CSOSA

(5,20) 0.1323 0.1878 0.3898 0.4811

(20,30) 0.4810 1.1363 0.8242 0.6986

(30,40) 1.1329 1.0373 0.9287 0.8630

(40, 50) 0.6755 1.0864 0.9238 0.8990

In the aforementioned Table 9, the proposed CSM-CSOSA algorithm is able
to maintain better scalability performance by returning an acceptable value
of 0.4811, 0.6986, 0.8630, 0.8990 for the HPC2N dataset compared to that of
MOGA, MOSACO and MOPSO task scheduling algorithms. These values,
however, shows that the proposed algorithm can respond to the dynamic
changing cloud task and resource condition than the comparative algorithms
under consideration.

CONCLUSION

The unpredictable number of task arriving at cloud datacentre and the rescaling
of virtual machine processing elements during task scheduling affects the
provisioning of better QoS expectations. Dynamic task scheduling algorithms
are considered to be effective for addressing this kind of problem but are truly
complex to develop. Previous authors have contributed immensely through
the provision of several task scheduling algorithms but at the expense of
scalability. In this study, we introduce Cloud Scalable Multi-Objective Cat
Swarm Optimization based on Simulated Annealing (CSM-CSOSA) that
considers the dynamicity of cloud computing environment to improve better
QoS. The effectiveness of the algorithm is evaluated using a multi-objective
model for the time and cost criteria. The novelty of the proposed method is

461

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

based on the use of SA and Taguchi method that enhance the local search
procedure of the algorithm in exploring larger search space which eventually
yield better optimum solutions. Comparison of the performance of CSM-
CSOSA with some of the existing metaheuristics (MOPSO, MOSACO and
MOGA) task scheduling algorithms is carried out with one dataset and one
parallel workload. The results obtained shows that the proposed method has
achieved a remarkable performance by returning good QoS as well as better
scalability performance with 0.4811, 0.6986, 0.8630 and 0.8990 compared to
the comparative algorithms. In the future, the study aims to look at privacy
aware scheduling in such a way that protects the sensitive information
associated with tasks.

ACKNOWLEDGEMENT

This work was sponsored by the Nigerian Tertiary Education Trust Fund
(TETFund) in collaboration with Kebbi State University of Science and
Technology Aliero, Nigeria.

REFERENCES

Abdullahi, M., & Ngadi, M. A. (2016). Hybrid symbiotic organisms search
optimization algorithm for scheduling of tasks on cloud computing
environment. PLoS ONE, 11(6), e0158229. doi: 10.1371/journal.
pone.0158229, 2016.

Abubaker, A., Baharum, A., & Alrefaei, M. (2016). Multi-Objective particle
swarm optimization and simulated annealing in practice. Applied
Mathematical Sciences, 10(42), 2087 – 2103.

Anuradha, M., & Selvakumar, S. (2015). ACO based task scheduling algorithm
for hybrid cloud. International Journal of Emergence Technology in
Computer Science & Electronics (IJETCSE),13(1), 373-377.

Awad, A. I., El-Hefnawy, N. A., & Andel_Kader, H. M. (2015). Enhanced
particle swarm optimization for task scheduling in cloud computing
environments. Procedia Computer Science, 65, 920-929.

Beegom, A. A. & Rajasree, M. (2015). Genetic algorithm framework for bi-
objective task scheduling in cloud computing systems. In R. Natarajan,
G. Barua, Patra, M. R. (Eds.), Lecture notes in Computer Science (pp.
356-359). London, UK: Springer

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

462

Bilgaiyan, S., Sagnika, S., & Das, M. (2015). A multi-objective cat swarm
optimization algorithm for workflow scheduling in cloud computing
environment. 308, 73–84.

Budhiraja, S., & Singh, D. (2014). An efficient approach for task scheduling
based on multi-objective genetic algorithm in cloud computing
environment. IJCSC, 5(2), 110−115.	

Buyya, R., Calheiros, R. N., Ranjan, R., Beloglazov, A., & De Rose, C. A.
F. (2010). CloudSim: A toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning
algorithms. Software-Practice and Experience, 41(1), 23-50.

Chen, Y., Sun, X.-H., & Wu, M. (2008). Algorithm-system scalability of
heterogeneous computing. Journal Parallel Distribution Computer, 68
(2008), 1403–1412.

Chang, H.-C., Chen, Y.-P., Liu, T.-K. & Chou, J.-H. (2015). Solving the flexible
job shop scheduling problem with makespan optimization by using a
hybrid Taguchi-Genetic algorithm. IEEE Journals & Magazines, (3),
1740-1754.

Černý, V. (1985). Thermodynamical approach to the traveling salesman
problem: An efficient simulation algorithm. Journal of Optimization
Theory and Applications, 45(1), 41–51.

Chu, S.-C., & Tsai, P.-W. (2007). Computational intelligence based on
the behavior of cats. International Journal Innovation Computer
Information Control, 3(2007), 163–173.

Cui, H., Liu, X., Yu, T., Zhang, H., Fang, Y., & Xia, Z. (2017). Cloud service
algorithm research and optimization. Security and Communication
Networks,1-7.

Dandhwani, V., & Vekariya, V. (2016). Multi-Objective task scheduling
using K-mean algorithm in cloud computing. International Journal of
Innovative Research in Computer and Communication Engineering,
4(11), 19521−19524.

Furht, B. (2010). Cloud Computing Fundamentals. Furht, B., & Escalante, A.
(Eds.). Handbook of cloud computing. Springer New York Dordrecht
Heidelberg London, 3-19. Springer.

463

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

Gabi, D., Ismail, A.S., Zainal, A., Zakaria, Z., & Abraham, A. (2016).
Orthogonal Taguchi-based cat algorithm for solving task scheduling
problem in cloud computing. Neural Computer & Application, 1-19.
doi:10.1007/s00521-016-2816-4

Gabi, D., Ismail, A.S., & Zainal, A. (2015). Systematic review on existing
load balancing techniques in cloud computing. International Journal
of Computer Applications, 125(9), 16-24.

Gabi, D., Ismail, A.S., Zainal, A., & Zakaria, Z. (2017a). Solving task
scheduling problem in cloud computing environment using Orthogonal
Taguchi-Cat algorithm. International Journal of Electrical and
Computer Engineering (IJECE), 7(3),1489-1497.

Gabi, D., Ismail, A. S., Zainal, A. Zakaria, Z. & Al-Khasawneh, A. (2017b).
Cloud scalable multi-objective task scheduling algorithm for cloud
computing using cat swarm optimization and simulated annealing.
Proceedings of the 8th International Conference on Information
Technology (ICIT). 17-18 May. Amman, Jordan, 1007-1012.

Gabi, D., Ismail, A.S., Zainal, A., & Zakaria, Z. (2018). Quality of service
(QoS) task scheduling algorithm with Taguchi orthogonal approach
for cloud computing environment. In Saeed F., Gazem N., Patnaik S.,
Saed Balaid A., Mohammed F. (Eds.), Recent Trends in Information
and Communication Technology. IRICT 2017. Lecture Notes on Data
Engineering and Communications Technologies, 5, Springer, Cham,
641-649.

Gabi, D. (2014). Surveillance on security issues in cloud computing: A view on
forensic perspective. International Journal of Scientific & Engineering
Research, 5(5), 1246-1252.

Gandomi, A. H., & Yang, X. S. (2014). Chaotic bat algorithm. Journal of
Computational Science, 5(2), 224-232.

Gao, K. Z., Suganthan, P. N., Chua, T. J., Chong, C. S., Cai, T. X., & Pan,
Q. K. (2015). A two-stage artificial bee colony algorithm scheduling
flexible job-shop scheduling problem with new job insertion. Expert
Systems with Applications, 42(21), 7652-7663.

George, S. (2015). Hybrid PSO-MOBA for profit maximization in cloud
computing. International Journal of Advanced Computer Science and
Applications (IJACSA), 6(2), 159–163.

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

464

Habibi, M., & Navimipour, N. J. (2016). Multi-Objective task scheduling in
cloud computing using an imperialist competitive algorithm. (IJACSA)
International Journal of Advanced Computer Science and Applications,
7(5), 289−293.

Hassan, H., Nasir, M. H. M., Khairuden, N., & Adon, I. (2017). Factors
influencing cloud computing adoption in small and medium enterprises.
Journal of Information and Communication Technology, 16(1), 21–41.

Hua, H., Guangquan, X., Shanchen, P., & Zenghua, Z. (2016). AMTS:
Adaptive multi-objective task scheduling strategy in cloud computing.
China Communications, 13(4), 162–171.

Ibrahim, M., Ibrahim, H., Abdullah, A., & Latip, R. (2016). A high performance
UCON And Semantic-Based Authorization Framework for Grid
Computing. Journal of Information and Communication Technology,
15 (1), 183–202.

Ibrahim, A. O., Shamsuddin, S. M., & Qasem, S. N. (2015). Hybrid NSGA-II
optimization for improving the three-term BP network for multiclass
classification problems. Journal of Information and Communication
Technology, 14, 21–38.

Jacob L. (2014). Bat algorithm for resource scheduling in cloud computing.
International Journal for Research in Applied Science & English
Technolology, 2, 53–57.

Jena, R. K. (2015). Multi-objective task scheduling in cloud computing
environment using nested PSO framework. Procedia Computer
Science, 57, 1219-1227.

Jonasson, J., & Norgren, E. (2016). Investigating a genetic algorithm simulated
annealing hybrid applied to university course time tabling problem.
KTH Royal Institute of Technology School of Computer Science and
Communication. Degree Project Technology: Stockholm Sweden.

Kalra, M., & Singh, S. (2015). A review of metaheuristic scheduling techniques
in cloud computing. Egyptian Informatics Journal, 16, 275–295.

Kumar, R. S., & Gunasekaran, S. (2014). Improving task scheduling in
large scale cloud computing environment using artificial bee colony
algorithm. International Journal of Computer Applications, 103(5), 29-
32.

465

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

Kumar, V., & Rao, V.N. (1987). Parallel depth-first Search on multi-processors
part II: Analysis. International Journal of Parallel Programming, 16(6),
501-519.

Kirkpatrick, S., Jr. Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by
simulated annealing. Science, 220(4598), 671–680.

Khajehvand, V., Pedram, H., & Zandieh, M. (2014). Multi-objective and
scalable heuristic algorithm for workflow task scheduling in utility grids.
Journal of Optimization in Industrial Engineering, 14 (2014), 27−36.

Khajehvand, V., Pedram, H. & Zandieh, M. (2013). SCTTS: Scalable cost-time
trade-off scheduling for workflow application in grids. KSII Transactions
On Internet and Information Systems, 7(12), 3096- 3117.

Lakra, A. V., & Yadav, D. K. (2015). Multi-objective tasks scheduling algorithm
for cloud computing throughput optimization. Procedia Computer
Science, 48 (2015), 107–113.

Leena, V. A., Ajeena, B. A. S., & Rajassree, M. S. (2016). Genetic algorithm
based bi-objective task scheduling in hybrid cloud platform. International
Journal of Computer Theory and Engineering, 8(1), 7-13.

Letort, A., Carlsson, M., & Beldiceanu, N. (2015). Synchronized sweep
algorithms for scalable scheduling constraints. Constraints, 20, 183–
234.

Li, J. Q., & Pan, & Q. K. (2015). Solving the large-scale hybride flow shop
scheduling problem with limited buffers by a hybrid artificial bee colony
algorithm. Information Sciences, 316, 487-502.

Mustaffa, Z., Yusof, Y., & Kamaruddin, S. S. (2013). Enhanced ABC-
LSSVM FOR Energy Fuel Price Prediction. Journal of Information and
Communication Technology, 12, 73–101.

Mustaffa, Z., Sulaiman, M. H., & Yusof, Y. (2015). An application of grey
wolf optimizer for commodity price forecasting. Applied Mechanics and
Materials, 785, 73-478. doi:10.4028/www.scientific.net/AMM.785.473.

Moschakis, I. A., & Karatza, H. D. (2015). Multi-criteria scheduling of Bag-of-
Tasks applications on heterogeneous interlinked clouds with simulated
annealing. Journal of Systems and Software, 101, 1–14.

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

466

Monika, & Jindal, A, (2016). Optimization of task scheduling algorithm
through QoS parameters for cloud computing. MATEC Web of
Conferences, 57, 02009 (2016). doi: 10.1051/matecconf/2016570.

Nikolaev, A. G., & Jacobson, S. H. (2010). Simulated annealing. In Gendreau,
M., & Potvin, J.-Y. (Eds.), International series in operations research
& management science. Handbook on Metaheuristic, 146: Second
Edition: Springer Science+Business Media, 1−39.

Pradhan, P.M., & Panda G. (2012). Solving multi-objective problems using
cat swarm optimization. International Journal Expert System with
Application, 39(2012), 2956–2964.

Ramezani, F., Lu, J., & Hussain, F. (2013). Task scheduling optimization in
cloud computing applying multi-objective particle swarm optimization.
LNCS 8274, 237–251.

Ramezani, F., Lu, J., Taheri, J., & Hussain, F. K. (2015). Evolutionary
algorithm-based multi-objective task scheduling optimization model in
cloud environments. World Wide Web, 18, 1737–1757.

Rani, K. B., Rani, P. B., & Babu, V. A. (2015). Cloud computing and inter-
clouds-types, topologies and research issues. Procedia Computer
Science, 50 (2015), 24-29.

Raza, H. M., Adenola, F. A., Nafarieh, A., & Robertson, W. (2015). The slow
adoption of cloud computing and IT workforce. Procedia Computer
Science, 52 (2015), 1114-1119.

Shengjun, X., Mengying, L., Xiaolong, X., & Jingyi, C. (2014). An ACO-LB
algorithm for task scheduling in cloud computing environment. Journal
of Software, 9(2), 466-473.

Singh, P., Dutta, M., & Aggarwal, N. (2017). A review of task scheduling
based on meta-heuristics approach in cloud computing. Knowledge and
Information Systems, 52(1), 1-51.

Sun, X., & Rover, D.T. (1994). Scalability of parallel algorithm-machine
combinations. IEEE Transactions on Parallel and Distributed Systems,
5(6), 599-613.

Tsai, P.-W., Pan, J.-S., Chen, S.-M., & Liao, B.-Y. (2012). Enhanced parallel
cat swarm optimization based on the Taguchi method. Expert Systems
with Applications, 39 (2012), 6309–6319.

467

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

Taguchi, G., Chowdhury, S., & Taguchi, S. (2000). Robust engineering. New
York: McGraw-Hill.

Tsai, J-T., Fang, J.-C., & Chou, J.-H. (2013) Optimized tasks scheduling and
resource allocation on cloud computing environment using improved
differential evolution algorithm. Computers & Operations Research,
40, 3045–3055.

Wang, J., Zhou, B., & Zhou, S. (2016). An improved cuckoo search
optimization algorithm for the problem of chaotic systems parameter
estimation. Computational Intelligence and Neuroscience, 1-8. doi:
http://dx.doi.org/10.1155/2016/2959370.

Yue, P., Shengjun, X., & Mengying, L. (2016). An improved multi-objective
optimization algorithm based on NPGA for cloud task scheduling.
International Journal of Grid and Distributed Computing, 9(4), 161-
176.

Zuo, L., Shu, L., Dongy, S., Chen, Y., & Yan, L. (2016). A multi-objective
hybrid cloud resource scheduling method based on deadline and cost
constraints. IEEE Access. doi: 10.1109/ACCESS.2016.2633288.

Zuo, L., Shu, L., Dong, S., Zhu, C., & Hara, T. (2015). A multi-objective
optimization scheduling method based on the ant colony algorithm in
cloud computing. IEEE Access, 2687−2699.

Zhang, F., Cao, J., Li, K., Khan, S. U. & Hwang, K. (2014). Multi-objective
scheduling of many tasks in cloud platforms. Future Generation
Computer Systems, 37, 309–320.

