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ABSTRACT

The unpredictable number of task arriving at cloud datacentre 
and the rescaling of virtual processing elements can affect the 
provisioning of better Quality of Service expectations during 
task scheduling in cloud computing. Existing researchers have 
contributed several task scheduling algorithms to provide 
better QoS expectations but are characterized with entrapment 
at the local search and high dimensional breakdown due to 
slow convergence speed and imbalance between global and 
local search, resulting from lack of scalability. Dynamic task 
scheduling algorithms that can adjust to long-time changes and 
continue facilitating the provisioning of better QoS are necessary 
for cloud computing environment. In this study, a Cloud Scalable 
Multi-Objective Cat Swarm Optimization-based Simulated 
Annealing algorithm is proposed. In the proposed method, the 
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. orthogonal Taguchi approach is applied to enhance the SA which 
is incorporated into the local search of the proposed CSM-
CSOSA algorithm for scalability performance. A multi-objective 
QoS model based on execution time and execution cost criteria 
is presented to evaluate the efficiency of the proposed algorithm 
on CloudSim tool with two different datasets. Quantitative 
analysis of the algorithm is carried out with metrics of execution 
time, execution cost, QoS and performance improvement rate 
percentage. Meanwhile, the scalability analysis of the proposed 
algorithm using Isospeed-efficiency scalability metric is also 
reported.  The results of the experiment show that the proposed 
CSM-CSOSA has outperformed Multi-Objective Genetic 
Algorithm, Multi-Objective Ant Colony and Multi-Objective 
Particle Swarm Optimization by returning minimum execution 
time and execution cost as well as better scalability acceptance 
rate of 0.4811−0.8990 respectively. The proposed solution 
when implemented in real cloud computing environment could 
possibly meet customers QoS expectations as well as that of the 
service providers.

Keywords: Cloud computing; multi-objective optimization; task scheduling; cat 
swarm optimization; simulated annealing.

INTRODUCTION

The evolution of cloud computing has reshaped Information Technology 
(IT) consumption through the provisioning of high-performance computing 
as well as massive resource storage that are continually channelled across a 
medium called the Internet. The paradigm permits the execution of large-scale 
applications, where distributed collaborative resources which are managed by 
several autonomous domains are made available (Khajehvand et al., 2014; 
Gabi, 2014). Trends toward the development of cloud computing have 
arisen far back when computers are connected and how networking among 
computers moved to distributed computing, which further led to cluster 
computing and from cluster computing to grid computing and eventually 
now, cloud computing (Rani et al., 2015). Presently, services provided by 
cloud computing are available at affordable cost, with high availability and 
scalability for all scales of businesses (Hassan et al., 2017). These services 
include: Software as a Service (SaaS); providing users with opportunities 
to run applications remotely from the cloud. The Infrastructure as a Service 
(IaaS); providing virtualize computer services that ensure better processing 
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power with reserved bandwidth for storage. The Platform as a Service (PaaS); 
providing operating systems and require services for a particular application 
(Furkt, 2010; Raza et al., 2015; Cui et al., 2017). All these services function 
within the delivery model of cloud computing such as Public cloud; that 
permit dynamic allocation of computing resource over the Internet through 
web applications. The Private clouds; built to provide full control over data, 
security as well as the quality of service. The Hybrid cloud; which controls the 
distribution of applications across both public and private cloud (Furkt, 2010). 
One of the fundamental challenges of cloud computing is the level of 
Quality of Service (QoS) satisfaction which has become insufficient to meet 
consumer and service provider expectations. The number of tasks arriving 
cloud datacentre are alarming and the recalling of virtual machines processing 
elements to meet each task expectations is a complex scheduling problem 
(Ibrahim et al., 2015). The cloud consumers sent tasks to cloud virtual resources 
(virtual machines). Each task is characterized with QoS objective(s) expected 
to be met. The cloud consumer demands their submitted task to be processed 
in a short time with less cost of execution. The service provider facilitates 
the provisioning of the required service that can meet this expectation while 
demanding for better pay. This problem can be referred to as a multi-objective 
NP-hard problem (Kalra & Singh, 2015). It has become necessary to develop 
task scheduling algorithm that considers dynamicity of cloud computing 
environment to facilitate efficient mapping of each task on a suitable resource 
and ordering the task on each resource to satisfy performance criteria (Monika 
& Jindal, 2016; Kalra & Singh, 2015; Zhang et al., 2014; Letort et al., 2015).  
Therefore, dynamic optimization algorithms are the potential solutions to 
distributing tasks amongst virtual machines at run-time as well as considering 
the current state of Virtual Machine (VM) information on its capacity to fast 
track next distribution decision (Gabi et al., 2015; Mustaffa et al., 2013; 
Ibrahim et al., 2016). To date, it is vital to design a low-complexity dynamic 
optimization algorithm to adapt the dynamicity of cloud tasks and resources 
while maintaining better QoS performance. 

The Swarm Intelligence (SI) techniques are relatively new promising 
approaches for solving combinatorial optimization problems because of 
their ability in handling large scale problem and produce results in just one 
run.  These techniques are inspired by the collective intelligence of social 
behavioural model of insects and other animals (Singh et al., 2017).   With the 
SI technique, sharing of information is done easily among multiple swarms 
for co-evolution which learn in searching for solution space. The large-scale 
optimization becomes practical with this technique because it allows multiple 
agents to be parallelised easily (Singh et al., 2017; Mustaffa et al., 2015). 
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Some of the examples of SI techniques used by existing researchers to address 
task scheduling problem are; Particle Swarm Optimization (PSO) (Ramezaini 
et al., 2013; Awad et al., 2015; Jena, 2015), Ant Colony Optimization (ACO), 
(Shengjun et al., 2015; Anradha & Selvakumar, 2015), Artificial Bee Colony 
(ABC) (Kumar & Gunasekaram, 2014; Li & Pan, 2015; Gao et al., 2015), 
BAT algorithm (Gandomi & Yang, 2014; Jacob, 2014; George, 2015) & Cat 
Swarm Optimization (CSO) (Bilgaiyan et al., 2015; Gabi et al., 2016).

Cat Swarm Optimization (CSO) is one of the SI approaches introduced in (Chu 
& Tsai, 2007) to address continuous optimization problem. The technique 
converges faster than Particle Swarm Optimization (PSO) in terms of speed 
and convergence (Chu & Tsai, 2007).  Exploring this technique to address a 
discrete optimization problem especially cloud task scheduling problem will 
be a potential solution. The CSO has both global and local search known as the 
seeking and tracing mode and a mixed ratio (MR) that determine the position 
of the cat (Gabi et al., 2016; Chu &Tsai, 2007). Its local search (tracing mode) 
can be enhanced to search for optimality in a multi-dimensional problem.  
Simulated Annealing (SA) is a type of local search and is easy to implement 
probabilistic approximation algorithm, as introduced in (Kirkpatrick et al., 
1983) to solve the NP-hard optimization problem (Wang et al., 2016).  It uses 
a neighbourhood function and a fitness function to avoid being trapped at the 
local optimal, thereby finding a solution closer to global optimum (Jonasson 
& Norgren, 2016; Abdullahi & Ngadi, 2016; Černý, 1985). The strength of 
the SA when searching for an optimal solution can as well be enhanced when 
method like orthogonal Taguchi is introduced (Taguchi et al., 2000).  In this 
study, we proposed a Cloud Scalable Multi-Objective Cat Swarm Optimization 
based Simulated Annealing (CSM-CSOSA) algorithm to address cloud task 
scheduling problem in cloud computing. To determine the effectiveness of 
the algorithm, a multi-objective QoS task scheduling model is presented and 
solved using the proposed (CSM-CSOSA) algorithm.

Several contributions are made possible in this study, i.e. the development 
of a Multi-Objective model based on execution time and execution cost 
objectives for optimal task scheduling on cloud computing environment;  the 
development of CSM-CSOSA task scheduling algorithm to solve the multi-
objective task scheduling model; the implementation of the CSM-CSOSA 
task scheduling algorithm on CloudSim tool; the performance comparison of 
the proposed CSM-CSOSA task scheduling algorithm with multi-objective 
genetic algorithm (Budhiraja & Singh, 2014), multi-objective  scheduling 
optimization method based on ant colony optimization (Zuo et al.¸2015) and 
multi-objective particle swarm optimization (Ramezaini et al., 2013) based 
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on execution time, execution cost, QoS and percentage improvement rate 
percentage. 

RELATED WORK

Several authors have put forward task scheduling optimization algorithms 
to solve task scheduling problem in cloud computing.  Some of which 
are discussed as follows: Zuo et al. (2015) introduced a multi-objective 
optimization scheduling method based on an ant colony. The authors’ aim 
is to optimise both the objective of performance and cost. The authors 
conduct some experiments via simulation to shows the effectiveness of their 
proposed algorithm. The result of the experiment shows that their method 
managed to achieve 56.6% increase in the best-case scenario as compared 
to other algorithms.  However, local trapping is an issue regarding the ant 
colony method as they traverse toward solution finding. The updating process 
of pheromone can lead to long computation time. Besides, the number of 
tasks used for the experiment may not be significant enough to justify whether 
their proposed method is scalable to handle large task size. Similarly, Zuo et 
al. (2016) proposed a multi-objective task scheduling method based on Ant 
Colony Optimization (MOSACO). The objective of the study is to address 
deadline and cost in a hybrid cloud computing environment. The researchers 
have been able to measure the effectiveness of their proposed MOSACO 
algorithm using metrics of task completion time, cost, the number of deadline 
violations, and the degree of private resource utilization. 

The results of the simulation show that their proposed MOSACO task 
scheduling algorithm can provide the highest optimality. However, scalability 
may be an issue due to the number of tasks used for the experiment, especially 
when considering the dynamicity of cloud computing. In another development, 
Dandhwani and Vekariya (2016) put forward a multi-objective scheduling 
algorithm for cloud computing environments. Their objective is to minimize 
the execution time and makespan of schedule tasks on computing resources.  
The authors reported that simulation results of their proposed method can 
minimize the execution time and makespan time effectively. However, the 
greedy approach may be insufficient to handle large scale tasks scheduling 
problem, especially in a dynamic cloud environment.  Khajehvand et al. 
(2013) dwelled on heuristic scalable cost-time trade-off scheduling algorithm 
for grid computing environments to solve workflow scheduling problem. 
The study makes use of three scheduling constraints (i.e. the task sizes, 
task parallelism, and heterogeneous resources) to evaluate their proposed 
method. The authors revealed that simulation results show that their heuristic 
method has outperformed the comparison method based on performance 
and scalability with different workflow sizes.  However, the heuristic based 
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approach can perform better when centralized scheduling environment is 
considered, where task arrival is known in advance and scheduling is done 
on the capacity of the virtual machines to handle the task demand. Besides, 
their performance in a dynamic cloud environment could be an issue due to 
the volume of tasks and heterogeneity of cloud computing resources. As a 
result, determining the right resource to execute the task demand will be a 
very complex decision. In another development, Lakra and Yadav (2015) 
introduced a multi-objective task scheduling algorithm to increase throughput 
and minimize resource execution cost. The experimental result via simulation 
shows that their proposed method can yield better performance in terms of 
cost and improves throughput. However, its application to address large size 
tasks in an elastic resource condition is still an issue that needs to be addressed. 
Yue et al. (2016) presented an improved multi-objective niched Pareto genetic 
(NPGA) method. The objective of the study is to minimize time consumption 
and financial cost of handling the users’ tasks. The results of the experiment 
via simulation shows that their proposed algorithms can maintain the diversity 
and the distribution of Pareto-optimal solutions in cloud tasks scheduling 
under the same population size and evolution generation than the comparison 
algorithm. However, long computation time is bound to occur due to mutation 
process characterised by the genetic algorithm. Besides, the global solution 
finding merit of the genetic algorithm is insufficient to find an optimal solution 
due to the nature of its chromosome selection using the probability function.  
In their part, Budhiraja and Singh (2014) introduced a multi-objective task 
scheduling algorithm using the genetic technique. The objective of the study 
is to reduce the cost of execution, execution time and ensured scalability 
performance. The result of the simulation as stated by the authors shows that 
their method can obtain a better optimiser in terms of makespan and cost of 
resource usage.  However, it is hard to draw a conclusion on their proposed 
algorithm, since comparison technique has not been considered.  

Hua et al. (2016) presented a PSO-based adaptive multi-objective task 
scheduling algorithm for cloud computing environment. The objective of their 
study is to minimize processing time and the transmission time of scheduled 
tasks in cloud datacentre. The results of the experiment via simulation shows that 
their PSO-based AMTS algorithm can obtain better quasi-optimal solutions in 
task completion time, average cost, and energy consumption compared to the 
genetic algorithm. However, global search process of the PSO is insufficient 
to handle task scheduling optimization problem without incorporating any 
local search optimization technique. Besides, the number of iterations used 
in the experiments is insufficient to justify the performance of the proposed 
algorithm. On the other hand, Letort et al. (2015) presented a greedy-based 
scheduling algorithm that handles task scheduling problem based on resource 
and precedence constraints. The experimental results via simulation show a 
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significant increase in several numbers of cumulative constraints.  However, 
the greedy approach can perform better when considering small scale network 
environment with small task size.  Leena et al. (2016) proposed a bio-
objective task scheduling algorithm based on genetic algorithm for hybrid 
cloud environments. The objective of the study is to minimize the execution 
time and execution cost of task schedule on computing resources.  The authors 
make used of two single objective algorithms each for the execution time and 
execution cost to show the effectiveness of their proposed method.  The result 
of the experiment via simulation shows that their proposed method can reduce 
the execution time and execution cost of all tasks scheduled on computing 
resources as compared to the single objective optimization algorithms. 
However, local entrapment can still be an issue with the genetic technique. 
Ramezani et al. (2013) introduced a multi-objective algorithm to solve 
three conflicting objectives; task execution/transfer time and task execution 
cost. The result of the experiment via simulation on CloudSim tool shows 
remarkable performance than other comparative algorithms. However, the 
PSO can easily get entrapped at the local optima region.

Findings from the Existing Method

Findings show that the heuristic (greedy) task scheduling algorithms are 
applicable to small size scheduling problems. Although some degree of success 
in addressing the NƤ-completeness of the scheduling of a task can be achieved 
by returning a feasible solution, but the dynamic nature of cloud computing 
environment lags the heuristic approach to satisfy scheduling optimization 
problems such as makespan and execution cost. The metaheuristic techniques 
are promising than the heuristic techniques. However, metaheuristic 
techniques used in the existing literature for multi-objective task scheduling 
problem exhibits both global and local search optimization process. The 
global search optimization alone cannot guarantee optimality and local search 
optimization often gets trapped at the local optimal. Hence, intensification 
and diversification will generate focus on exploring the search space in a 
local region using a combination of several methods to help achieve global 
optimality of both the execution time and execution cost objectives. This 
will as well increase the scalability to handle the dynamic changing task and 
resource condition (i.e. the virtual machine processing elements). 

METHODOLOGY

Cat Swarm Optimization 

Chu and Tsai (2007) introduce Cat Swarm Optimization (CSO) technique 
which mimics the common behaviour of a natural cat. As observed by the 
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author, the cats always remain alert while spending most of their time resting and 
move slowly when observing their environment. Two modes were actualized 
which represent the behaviour of cat (Gabi et al., 2016) i.e., the seeking mode 
and the tracing mode. The seeking mode is the global search process of the CSO 
technique. Four attributes were associated with this mode. The Seeking Memory 
Pool (SMP); which indicates the memory size sort by the cat, Seeking Range of 
selected Dimension (SRD); for selecting cat dimensions, Counts of  Dimension to 
Change (CDC); used for disclosing how many dimensions according to cat number 
varied, and Self-Position Considering (SPC); represents a Boolean variable that 
unveil if the position at which the cat is presently standing can be chosen as the 
candidates’ position to move into (Gabi et al., 2016). Algorithm 1 shows the 
procedure for the seeking mode (Chu & Tsai, 2007).  The tracing mode is the local 
search procedure of the CSO technique. Algorithm 2 shows the pseudocode for the 
CSO tracing mode (Gabi et al., 2016).

Algorithm 1: Pseudocode for CSO seeking mode
Do

1.	 Generate N copies of cat, 
1.	 Change at random the dimension of cats as per CDC by applying mutation operator 
2.	 Determine all changed cats’ fitness values.
3.	 Discover most suitable cats (non-dominant) based on their fitness values.
4.	 Replace the position of the N cat after picking a candidate at random 
   While Stopping condition is not exceeded.
Algorithm 2: Pseudocode for CSO tracing mode

Begin
1.	 Compute and update cat velocity using the new velocity in Equation 1:
                                                 

         (1)
         
Where c; the constant value of acceleration, r; is the uniform distributed random 
number in the range of [0, 1].
2.	 Add new velocity by computing the current (new) position of the cat using 

Equation 2                                                          

                                                                                              (2)
3.	 Calculate the fitness values of all cats.    
4.	 Update and return best cats with the best fitness. 
End

Limitations of Cat Swarm Optimization to Solve Cloud Task Scheduling 
Problem

Although the CSO technique has proven to be more efficient than PSO in both 
computation time and convergence speed (Chu &Tsai, 2007), its application in 
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cloud computing may require improvement to solve complex task scheduling 
optimization problem. The global search optimization process of the CSO 
is quite promising. However, this global search alone can not guarantee an 
optimal solution without the support of the local search optimization process.  
The CSO suffered local entrapment while its global solution finding merit 
is preserved. This is because the number of cats going into seeking mode 
(global search) all the time always exceed the ones with tracing mode (local 
search mode). This may cause the mutation process of the CSO at tracing 
(local search) mode to affect performance and may end up not achieving an 
optimal solution for cloud task scheduling optimization problem (Gabi et al., 
2016).  Similarly, for every iteration, the seeking (global search) mode and 
tracing (local search) mode of CSO were carried out independently, causing 
its position and velocity update to exhibit similar process. As a result, a very 
high computation time is bound to occur (Pradhan & Panda, 2012). Therefore, 
a local search optimization algorithm incorporated at the local search of the 
CSO is sufficient to address its limitations.

Simulated Annealing 

Simulated Annealing (SA) is a local search probabilistic approximation 
algorithm introduced by Kirkpatrick et al. (1983). The algorithm uses a 
neighbourhood and a fitness function to avoid being trapped at the local optima 
(Jonasson & Norgre, 2016). The SA algorithm often begins with an initial 
solution     according to some neighbourhood function     with an updated 
solution      created . As to how the particle tend to adopt a state which is an 
improvement over current one, the algorithm generates a solution when the 
fitness value       becomes lower than          . However, assume  has the higher 
fitness, it will occasionally be accepted if the defined probability shown in 
equation 3 is satisfied (Abdullahi & Ngadi, 2016).

                                                                     (3)

Where  is the fitness evaluation functions and  the current solutions of the 
neighbour accordingly; and  represents the control parameter called the 
temperature. This parameter is determined according to the cooling rate used 
in (Abdullahi & Ngadi, 2016). 

                                                                                                                       (4)

Where:  = temperature descending rate, ;  the number of times which 
neighbour solutions have been generated so far;  initial temperature;  final 
temperature. When the initial value of the temperature is low, the algorithm 

 

9 
 

Limitations of Cat Swarm Optimization to Solve Cloud Task Scheduling Problem 

Although the CSO technique has proven to be more efficient than PSO in both computation time 

and convergence speed (Chu &Tsai, 2007), its application in cloud computing may require 

improvement to solve complex task scheduling optimization problem. The global search 

optimization process of the CSO is quite promising. However, this global search alone can not 

guarantee an optimal solution without the support of the local search optimization process.  The 

CSO suffered local entrapment while its global solution finding merit is preserved. This is 

because the number of cats going into seeking mode (global search) all the time always exceed 

the ones with tracing mode (local search mode). This may cause the mutation process of the CSO 

at tracing (local search) mode to affect performance and may end up not achieving an optimal 

solution for cloud task scheduling optimization problem (Gabi et al., 2016).  Similarly, for every 

iteration, the seeking (global search) mode and tracing (local search) mode of CSO were carried 

out independently, causing its position and velocity update to exhibit similar process. As a result, 

a very high computation time is bound to occur (Pradhan & Panda, 2012). Therefore, a local 

search optimization algorithm incorporated at the local search of the CSO is sufficient to address 

its limitations. 

Simulated Annealing  

Simulated Annealing (SA) is a local search probabilistic approximation algorithm introduced by 

Kirkpatrick et al. (1983). The algorithm uses a neighbourhood and a fitness function to avoid 

being trapped at the local optima (Jonasson & Norgre, 2016). The SA algorithm often begins 

with an initial solution 𝑋𝑋 according to some neighbourhood function 𝑁𝑁 with an updated solution 

𝑋𝑋′created. As to how the particle tend to adopt a state which is an improvement over current one, 

the algorithm generates a solution when the fitness value 𝑓𝑓(𝑋𝑋∗) becomes lower than 𝑓𝑓(𝑋𝑋). 

However, assume 𝑋𝑋∗ has the higher fitness, it will occasionally be accepted if the defined 

probability shown in equation 3 is satisfied (Abdullahi & Ngadi, 2016). 

             𝑃𝑃𝑟𝑟𝑟𝑟(𝑋𝑋,𝑋𝑋∗,𝑇𝑇) = exp [(−(𝑓𝑓(𝑋𝑋∗) − 𝑓𝑓(𝑋𝑋))) ∗ 𝑇𝑇−1]                                                        (3) 

Where 𝑓𝑓(𝑋𝑋∗) is the fitness evaluation functions and 𝑓𝑓(𝑋𝑋) the current solutions of the neighbour 

accordingly; and 𝑇𝑇 represents the control parameter called the temperature. This parameter is 

determined according to the cooling rate used in (Abdullahi & Ngadi, 2016).  

            𝑇𝑇 = 𝜎𝜎𝑖𝑖 ∗ 𝑇𝑇𝑂𝑂 + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓                                                                                                           (4) 

 

9 
 

Limitations of Cat Swarm Optimization to Solve Cloud Task Scheduling Problem 

Although the CSO technique has proven to be more efficient than PSO in both computation time 

and convergence speed (Chu &Tsai, 2007), its application in cloud computing may require 

improvement to solve complex task scheduling optimization problem. The global search 

optimization process of the CSO is quite promising. However, this global search alone can not 

guarantee an optimal solution without the support of the local search optimization process.  The 

CSO suffered local entrapment while its global solution finding merit is preserved. This is 

because the number of cats going into seeking mode (global search) all the time always exceed 

the ones with tracing mode (local search mode). This may cause the mutation process of the CSO 

at tracing (local search) mode to affect performance and may end up not achieving an optimal 

solution for cloud task scheduling optimization problem (Gabi et al., 2016).  Similarly, for every 

iteration, the seeking (global search) mode and tracing (local search) mode of CSO were carried 

out independently, causing its position and velocity update to exhibit similar process. As a result, 

a very high computation time is bound to occur (Pradhan & Panda, 2012). Therefore, a local 

search optimization algorithm incorporated at the local search of the CSO is sufficient to address 

its limitations. 

Simulated Annealing  

Simulated Annealing (SA) is a local search probabilistic approximation algorithm introduced by 

Kirkpatrick et al. (1983). The algorithm uses a neighbourhood and a fitness function to avoid 

being trapped at the local optima (Jonasson & Norgre, 2016). The SA algorithm often begins 

with an initial solution 𝑋𝑋 according to some neighbourhood function 𝑁𝑁 with an updated solution 

𝑋𝑋′created. As to how the particle tend to adopt a state which is an improvement over current one, 

the algorithm generates a solution when the fitness value 𝑓𝑓(𝑋𝑋∗) becomes lower than 𝑓𝑓(𝑋𝑋). 

However, assume 𝑋𝑋∗ has the higher fitness, it will occasionally be accepted if the defined 

probability shown in equation 3 is satisfied (Abdullahi & Ngadi, 2016). 

             𝑃𝑃𝑟𝑟𝑟𝑟(𝑋𝑋,𝑋𝑋∗,𝑇𝑇) = exp [(−(𝑓𝑓(𝑋𝑋∗) − 𝑓𝑓(𝑋𝑋))) ∗ 𝑇𝑇−1]                                                        (3) 

Where 𝑓𝑓(𝑋𝑋∗) is the fitness evaluation functions and 𝑓𝑓(𝑋𝑋) the current solutions of the neighbour 

accordingly; and 𝑇𝑇 represents the control parameter called the temperature. This parameter is 

determined according to the cooling rate used in (Abdullahi & Ngadi, 2016).  

            𝑇𝑇 = 𝜎𝜎𝑖𝑖 ∗ 𝑇𝑇𝑂𝑂 + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓                                                                                                           (4) 

 

9 
 

Limitations of Cat Swarm Optimization to Solve Cloud Task Scheduling Problem 

Although the CSO technique has proven to be more efficient than PSO in both computation time 

and convergence speed (Chu &Tsai, 2007), its application in cloud computing may require 

improvement to solve complex task scheduling optimization problem. The global search 

optimization process of the CSO is quite promising. However, this global search alone can not 

guarantee an optimal solution without the support of the local search optimization process.  The 

CSO suffered local entrapment while its global solution finding merit is preserved. This is 

because the number of cats going into seeking mode (global search) all the time always exceed 

the ones with tracing mode (local search mode). This may cause the mutation process of the CSO 

at tracing (local search) mode to affect performance and may end up not achieving an optimal 

solution for cloud task scheduling optimization problem (Gabi et al., 2016).  Similarly, for every 

iteration, the seeking (global search) mode and tracing (local search) mode of CSO were carried 

out independently, causing its position and velocity update to exhibit similar process. As a result, 

a very high computation time is bound to occur (Pradhan & Panda, 2012). Therefore, a local 

search optimization algorithm incorporated at the local search of the CSO is sufficient to address 

its limitations. 

Simulated Annealing  

Simulated Annealing (SA) is a local search probabilistic approximation algorithm introduced by 

Kirkpatrick et al. (1983). The algorithm uses a neighbourhood and a fitness function to avoid 

being trapped at the local optima (Jonasson & Norgre, 2016). The SA algorithm often begins 

with an initial solution 𝑋𝑋 according to some neighbourhood function 𝑁𝑁 with an updated solution 

𝑋𝑋′created. As to how the particle tend to adopt a state which is an improvement over current one, 

the algorithm generates a solution when the fitness value 𝑓𝑓(𝑋𝑋∗) becomes lower than 𝑓𝑓(𝑋𝑋). 

However, assume 𝑋𝑋∗ has the higher fitness, it will occasionally be accepted if the defined 

probability shown in equation 3 is satisfied (Abdullahi & Ngadi, 2016). 

             𝑃𝑃𝑟𝑟𝑟𝑟(𝑋𝑋,𝑋𝑋∗,𝑇𝑇) = exp [(−(𝑓𝑓(𝑋𝑋∗) − 𝑓𝑓(𝑋𝑋))) ∗ 𝑇𝑇−1]                                                        (3) 

Where 𝑓𝑓(𝑋𝑋∗) is the fitness evaluation functions and 𝑓𝑓(𝑋𝑋) the current solutions of the neighbour 

accordingly; and 𝑇𝑇 represents the control parameter called the temperature. This parameter is 

determined according to the cooling rate used in (Abdullahi & Ngadi, 2016).  

            𝑇𝑇 = 𝜎𝜎𝑖𝑖 ∗ 𝑇𝑇𝑂𝑂 + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓                                                                                                           (4) 

 

9 
 

Limitations of Cat Swarm Optimization to Solve Cloud Task Scheduling Problem 

Although the CSO technique has proven to be more efficient than PSO in both computation time 

and convergence speed (Chu &Tsai, 2007), its application in cloud computing may require 

improvement to solve complex task scheduling optimization problem. The global search 

optimization process of the CSO is quite promising. However, this global search alone can not 

guarantee an optimal solution without the support of the local search optimization process.  The 

CSO suffered local entrapment while its global solution finding merit is preserved. This is 

because the number of cats going into seeking mode (global search) all the time always exceed 

the ones with tracing mode (local search mode). This may cause the mutation process of the CSO 

at tracing (local search) mode to affect performance and may end up not achieving an optimal 

solution for cloud task scheduling optimization problem (Gabi et al., 2016).  Similarly, for every 

iteration, the seeking (global search) mode and tracing (local search) mode of CSO were carried 

out independently, causing its position and velocity update to exhibit similar process. As a result, 

a very high computation time is bound to occur (Pradhan & Panda, 2012). Therefore, a local 

search optimization algorithm incorporated at the local search of the CSO is sufficient to address 

its limitations. 

Simulated Annealing  

Simulated Annealing (SA) is a local search probabilistic approximation algorithm introduced by 

Kirkpatrick et al. (1983). The algorithm uses a neighbourhood and a fitness function to avoid 

being trapped at the local optima (Jonasson & Norgre, 2016). The SA algorithm often begins 

with an initial solution 𝑋𝑋 according to some neighbourhood function 𝑁𝑁 with an updated solution 

𝑋𝑋′created. As to how the particle tend to adopt a state which is an improvement over current one, 

the algorithm generates a solution when the fitness value 𝑓𝑓(𝑋𝑋∗) becomes lower than 𝑓𝑓(𝑋𝑋). 

However, assume 𝑋𝑋∗ has the higher fitness, it will occasionally be accepted if the defined 

probability shown in equation 3 is satisfied (Abdullahi & Ngadi, 2016). 

             𝑃𝑃𝑟𝑟𝑟𝑟(𝑋𝑋,𝑋𝑋∗,𝑇𝑇) = exp [(−(𝑓𝑓(𝑋𝑋∗) − 𝑓𝑓(𝑋𝑋))) ∗ 𝑇𝑇−1]                                                        (3) 

Where 𝑓𝑓(𝑋𝑋∗) is the fitness evaluation functions and 𝑓𝑓(𝑋𝑋) the current solutions of the neighbour 

accordingly; and 𝑇𝑇 represents the control parameter called the temperature. This parameter is 

determined according to the cooling rate used in (Abdullahi & Ngadi, 2016).  

            𝑇𝑇 = 𝜎𝜎𝑖𝑖 ∗ 𝑇𝑇𝑂𝑂 + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓                                                                                                           (4) 

 

9 
 

Limitations of Cat Swarm Optimization to Solve Cloud Task Scheduling Problem 

Although the CSO technique has proven to be more efficient than PSO in both computation time 

and convergence speed (Chu &Tsai, 2007), its application in cloud computing may require 

improvement to solve complex task scheduling optimization problem. The global search 

optimization process of the CSO is quite promising. However, this global search alone can not 

guarantee an optimal solution without the support of the local search optimization process.  The 

CSO suffered local entrapment while its global solution finding merit is preserved. This is 

because the number of cats going into seeking mode (global search) all the time always exceed 

the ones with tracing mode (local search mode). This may cause the mutation process of the CSO 

at tracing (local search) mode to affect performance and may end up not achieving an optimal 

solution for cloud task scheduling optimization problem (Gabi et al., 2016).  Similarly, for every 

iteration, the seeking (global search) mode and tracing (local search) mode of CSO were carried 

out independently, causing its position and velocity update to exhibit similar process. As a result, 

a very high computation time is bound to occur (Pradhan & Panda, 2012). Therefore, a local 

search optimization algorithm incorporated at the local search of the CSO is sufficient to address 

its limitations. 

Simulated Annealing  

Simulated Annealing (SA) is a local search probabilistic approximation algorithm introduced by 

Kirkpatrick et al. (1983). The algorithm uses a neighbourhood and a fitness function to avoid 

being trapped at the local optima (Jonasson & Norgre, 2016). The SA algorithm often begins 

with an initial solution 𝑋𝑋 according to some neighbourhood function 𝑁𝑁 with an updated solution 

𝑋𝑋′created. As to how the particle tend to adopt a state which is an improvement over current one, 

the algorithm generates a solution when the fitness value 𝑓𝑓(𝑋𝑋∗) becomes lower than 𝑓𝑓(𝑋𝑋). 

However, assume 𝑋𝑋∗ has the higher fitness, it will occasionally be accepted if the defined 

probability shown in equation 3 is satisfied (Abdullahi & Ngadi, 2016). 

             𝑃𝑃𝑟𝑟𝑟𝑟(𝑋𝑋,𝑋𝑋∗,𝑇𝑇) = exp [(−(𝑓𝑓(𝑋𝑋∗) − 𝑓𝑓(𝑋𝑋))) ∗ 𝑇𝑇−1]                                                        (3) 

Where 𝑓𝑓(𝑋𝑋∗) is the fitness evaluation functions and 𝑓𝑓(𝑋𝑋) the current solutions of the neighbour 

accordingly; and 𝑇𝑇 represents the control parameter called the temperature. This parameter is 

determined according to the cooling rate used in (Abdullahi & Ngadi, 2016).  

            𝑇𝑇 = 𝜎𝜎𝑖𝑖 ∗ 𝑇𝑇𝑂𝑂 + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓                                                                                                           (4) 

 

9 
 

Limitations of Cat Swarm Optimization to Solve Cloud Task Scheduling Problem 

Although the CSO technique has proven to be more efficient than PSO in both computation time 

and convergence speed (Chu &Tsai, 2007), its application in cloud computing may require 

improvement to solve complex task scheduling optimization problem. The global search 

optimization process of the CSO is quite promising. However, this global search alone can not 

guarantee an optimal solution without the support of the local search optimization process.  The 

CSO suffered local entrapment while its global solution finding merit is preserved. This is 

because the number of cats going into seeking mode (global search) all the time always exceed 

the ones with tracing mode (local search mode). This may cause the mutation process of the CSO 

at tracing (local search) mode to affect performance and may end up not achieving an optimal 

solution for cloud task scheduling optimization problem (Gabi et al., 2016).  Similarly, for every 

iteration, the seeking (global search) mode and tracing (local search) mode of CSO were carried 

out independently, causing its position and velocity update to exhibit similar process. As a result, 

a very high computation time is bound to occur (Pradhan & Panda, 2012). Therefore, a local 

search optimization algorithm incorporated at the local search of the CSO is sufficient to address 

its limitations. 

Simulated Annealing  

Simulated Annealing (SA) is a local search probabilistic approximation algorithm introduced by 

Kirkpatrick et al. (1983). The algorithm uses a neighbourhood and a fitness function to avoid 

being trapped at the local optima (Jonasson & Norgre, 2016). The SA algorithm often begins 

with an initial solution 𝑋𝑋 according to some neighbourhood function 𝑁𝑁 with an updated solution 

𝑋𝑋′created. As to how the particle tend to adopt a state which is an improvement over current one, 

the algorithm generates a solution when the fitness value 𝑓𝑓(𝑋𝑋∗) becomes lower than 𝑓𝑓(𝑋𝑋). 

However, assume 𝑋𝑋∗ has the higher fitness, it will occasionally be accepted if the defined 

probability shown in equation 3 is satisfied (Abdullahi & Ngadi, 2016). 

             𝑃𝑃𝑟𝑟𝑟𝑟(𝑋𝑋,𝑋𝑋∗,𝑇𝑇) = exp [(−(𝑓𝑓(𝑋𝑋∗) − 𝑓𝑓(𝑋𝑋))) ∗ 𝑇𝑇−1]                                                        (3) 

Where 𝑓𝑓(𝑋𝑋∗) is the fitness evaluation functions and 𝑓𝑓(𝑋𝑋) the current solutions of the neighbour 

accordingly; and 𝑇𝑇 represents the control parameter called the temperature. This parameter is 

determined according to the cooling rate used in (Abdullahi & Ngadi, 2016).  

            𝑇𝑇 = 𝜎𝜎𝑖𝑖 ∗ 𝑇𝑇𝑂𝑂 + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓                                                                                                           (4) 

 

9 
 

Limitations of Cat Swarm Optimization to Solve Cloud Task Scheduling Problem 

Although the CSO technique has proven to be more efficient than PSO in both computation time 

and convergence speed (Chu &Tsai, 2007), its application in cloud computing may require 

improvement to solve complex task scheduling optimization problem. The global search 

optimization process of the CSO is quite promising. However, this global search alone can not 

guarantee an optimal solution without the support of the local search optimization process.  The 

CSO suffered local entrapment while its global solution finding merit is preserved. This is 

because the number of cats going into seeking mode (global search) all the time always exceed 

the ones with tracing mode (local search mode). This may cause the mutation process of the CSO 

at tracing (local search) mode to affect performance and may end up not achieving an optimal 

solution for cloud task scheduling optimization problem (Gabi et al., 2016).  Similarly, for every 

iteration, the seeking (global search) mode and tracing (local search) mode of CSO were carried 

out independently, causing its position and velocity update to exhibit similar process. As a result, 

a very high computation time is bound to occur (Pradhan & Panda, 2012). Therefore, a local 

search optimization algorithm incorporated at the local search of the CSO is sufficient to address 

its limitations. 

Simulated Annealing  

Simulated Annealing (SA) is a local search probabilistic approximation algorithm introduced by 

Kirkpatrick et al. (1983). The algorithm uses a neighbourhood and a fitness function to avoid 

being trapped at the local optima (Jonasson & Norgre, 2016). The SA algorithm often begins 

with an initial solution 𝑋𝑋 according to some neighbourhood function 𝑁𝑁 with an updated solution 

𝑋𝑋′created. As to how the particle tend to adopt a state which is an improvement over current one, 

the algorithm generates a solution when the fitness value 𝑓𝑓(𝑋𝑋∗) becomes lower than 𝑓𝑓(𝑋𝑋). 

However, assume 𝑋𝑋∗ has the higher fitness, it will occasionally be accepted if the defined 

probability shown in equation 3 is satisfied (Abdullahi & Ngadi, 2016). 

             𝑃𝑃𝑟𝑟𝑟𝑟(𝑋𝑋,𝑋𝑋∗,𝑇𝑇) = exp [(−(𝑓𝑓(𝑋𝑋∗) − 𝑓𝑓(𝑋𝑋))) ∗ 𝑇𝑇−1]                                                        (3) 

Where 𝑓𝑓(𝑋𝑋∗) is the fitness evaluation functions and 𝑓𝑓(𝑋𝑋) the current solutions of the neighbour 

accordingly; and 𝑇𝑇 represents the control parameter called the temperature. This parameter is 

determined according to the cooling rate used in (Abdullahi & Ngadi, 2016).  

            𝑇𝑇 = 𝜎𝜎𝑖𝑖 ∗ 𝑇𝑇𝑂𝑂 + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓                                                                                                           (4) 



Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

444

becomes limited in locating global optimal solution as the computation time of the 
algorithm is believed to be shorter (Jonasson & Norgre, 2016; Gabi et al. 2017b). 
At each iteration performed by the SA algorithm, the comparison between the 
currently obtained solution and a solution newly selected is carried out. A solution 
that shows improvement is always accepted (Moschakis & Karatza, 2015). The 
non-improving solutions are still accepted since there is a possibility that they 
may escape being trapped at local optima while searching for a global optimal 
solution. Based on the defined probability in equation 3, the acceptance of the non-
improving ones is often determined by the temperature parameter (Nikolaev & 
Jacobson, 2010). This makes SA algorithm one of the most powerful optimization 
mechanism. 

The basic SA procedure is represented in Algorithm 3.

Limitation of Simulated Annealing to Cloud Task Scheduling

The SA has been regarded as a powerful local search probabilistic algorithm 
(Abdullahi & Ngadi, 2016), the SA iterates a number of times before finding 
an optimal or near optimal solution. The repeated number of iteration may 
affect the computational complexity of the algorithm in solving cloud task 

 

Algorithm 3: SA pseudocode 

INPUT: Initialize Temperature 𝑇𝑇𝑜𝑜,  Final Temperature 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, Temperature change 
counter 𝑝𝑝 = 0, Cooling schedule 𝜎𝜎, Number of iteration 𝑀𝑀𝑝𝑝 

OUTPUT: Best Optimum Solution found 
1. Generate an initial solution 𝑋𝑋 ∈ 𝐷𝐷 
2. Repeat  
3. Initialize repetition counter 𝑚𝑚 ← 0  
4. Repeat 
5. Generate a new solution 𝑋𝑋𝐼𝐼 ∈ 𝑁𝑁, where 𝑁𝑁 is the neighbourhood of 𝑋𝑋 
6. Compute the 𝑃𝑃𝑟𝑟𝑟𝑟according to Equation 3  
7. If 0 < 𝑃𝑃𝑟𝑟𝑟𝑟 ≪ 0 decide  whether to accept or reject a new solution based on 

𝑃𝑃𝑟𝑟𝑟𝑟(𝑋𝑋,𝑋𝑋∗,𝑇𝑇)  
8. Repeat counter 𝑚𝑚 ← 𝑚𝑚 + 1 
9. Memorize the optimum solution so far found  
10. Until 𝑚𝑚 = 𝑀𝑀𝑝𝑝  

11. 𝑝𝑝 ← 𝑝𝑝 + 1 
12. Until stopping criteria is note exceeded 

 

 

 

 

 

 

 

 

 

 



445

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

scheduling problem thereby affecting the computational time. Similarly, the SA 
can get entrapped at the local optimal region especially when the problem size is 
very large. Its ability to enhance the local search region without the support of the 
global search may not guarantee optimality(Wang et al., 2016). Therefore, it can 
be a powerful local search optimization process when combined with a greedy 
method to overcome its weaknesses.  

Orthogonal Taguchi Method

The Orthogonal Taguchi is a greedy-based method developed by Dr. Genichi 
Taguchi belonging to Nippon telephones and telegraph company in Japan (Gabi 
et al., 2016). One potential benefit of using the Taguchi method is its ability to 
solve complex problem while drastically reducing the computation time. The 
Taguchi method is used to address both single and multi-objective optimization 
problem (Tsai et al., 2012; Tsai et al., 2013). Taguchi proposed a general formula 
for establishing an orthogonal array with two levels of Z factors using equation 5 
(Chang et al., 2015). 

                 (5)

Where, n – 1 – symbolizes the column numbers in two-levels orthogonal array;  n 
= 2k – number of experiments corresponding to the n rows, and columns;  number 
of required level for each factor Z;  k – is a positive integer  (k > 1).  According to 
Taguchi, for any column pairs, the combination of all factors at each level occurs 
at an equal number of times. Algorithm 4 shows the pseudocodes for the Taguchi 
optimization Method (Gabi et al., 2017a).

Definition 1.1

Given  as the solution search space, let f : D → ℜ  represents an objective function 
defined in the solution search space. Find  X* ∈ D ∋ f(X*) << (X) ∀X∈ D.  Where   
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Algorithm 4: Taguchi Optimization Algorithm 

Begin 

1. Select two-level orthogonal array for matrix experiments such that 𝐿𝐿𝑛𝑛(2𝑛𝑛−1) ∀ 𝑛𝑛 ≥ 𝑁𝑁 +
1, and N represent task numbers. 

2. Generate two sets of velocities 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠1𝑘𝑘,𝑑𝑑(𝑡𝑡) and 𝑉𝑉set2k,d(t) according to Equation (6) 
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3. Update the original velocity for every condition according to Equation (7) 
4. Add new velocity by computing current (new) position of k-th cat using Equation (8) 
5. Calculate cat fitness using Equation (18) such that;  𝑄𝑄𝑄𝑄𝑄𝑄(𝑋𝑋) = 𝜃𝜃 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑗𝑗)  +
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End 
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X is the vector of optimization variables X= {x1, x2, ....., xn)  Therefore, each 
function associated with solution X is an optimal solution X* that optimizes f .  

The Cloud Scalable Multi-Objective Cat Swarm Optimization Based 
Simulated Annealing   

Several swarm intelligence techniques get entrapped at the local optima 
(Habibi & Navimipour, 2016). The real CSO technique is no different. As 
rightly highlighted, the CSO has a control variable called the Mixed Ratio 
(MR) that defines the cat position (seeking or tracing mode). Assume the MR 
is set to 1, they allow 10% cats into tracing mode (local search) while  90% of 
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into seeking mode (global search) all the time always exceed that of tracing 
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up not achieving an optimal for cloud task scheduling optimization problem 
(Gabi et al., 2016).  Similarly, for every iteration, the seeking (global search) 
mode and tracing (local search) mode of CSO are carried out independently, 
causing its position and velocity update to exhibit similar process. As a result, 
a very high computation time is bound to occur (Pradhan & Panda, 2012). 
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Simulated Annealing (SA) employs certain probability as prevention from 
being trapped at the local optima. Although it can iterate a number of times 
after which a near optimal solution can be found. To overcome this, a Taguchi 
experimental design procedure can be used to enhance its performance  by 
reducing the number of iterations. With the combination of SA and Taguchi 
method in CSO, a CSM-CSOSA algorithm for scheduling independent non-
preemptive task in cloud datacentre for the purpose of ensuring consumers 
QoS expectations is proposed. The methodology that describes this process is 
elaborated in the next subsection.

CSM-CSOSA SA Local Search with Taguchi Method

With the proposed CSM-CSOSA algorithm, the tracing (local) search process 
can now move out of the local optima region (Abdullahi & Ngadi, 2016). 
To control the performance of parameters of the proposed (CSM-CSOSA) 
algorithm, the tracing search procedure was further enhanced with the Taguchi 
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method and simulated annealing. Two sets of candidate velocities Vk,d1(t) and 
Vk,d2(t)  (Gabi et al., 2016; Gabi et al., 2017a) were generated using the Taguchi 
method as shown in Equation 6. Details about Taguchi method can be found 
in (Taguchi et al., 2000). The velocities control the efficiency and accuracy of 
the algorithm towards achieving an optimum solution.

            
(6)

             

Where, Vk,d(t) is the velocity of the cat;  is the constant value of acceleration, r; 
is a random number in the range of [0, 1], t; symbolizes the iteration number. 
A non-dominant velocity among the generated velocities is selected to update 
the new position of the algorithm using the following rule:     
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At each iteration, the comparison between the currently obtained solution and 
a solution newly selected is carried out.  Hence, a solution that improves better 
is always accepted. The probability of accepting neighbour solution into a 
new generation of cats using SA is obtained using equation 11 (Abdullahi & 
Ngadi, 2016). The velocity set with best convergence speed is selected by the 
CSM-CSOSA algorithm to update the new position of the next cat provided 
the condition in equation 8 is satisfied (Zuo et al., 2016). 
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archive at each run of the algorithm and is compared with the initial best 
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xiD) and Xj = (xj2,xj2,...,xjd,....xjD) respectively. A non-dominant strategy is adopted 
to determine the best fitness when the conditions in equations 9 and 10 are 
satisfied (Abdullahi and Ngadi, 2016) 
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selected by the CSM-CSOSA algorithm to update the new position of the next cat provided the 

condition in equation 8 is satisfied (Zuo et al., 2016).  
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Where r ; is an integer random number ]1,0[ .  The position of the cat represents the solution of 

the cat.  The cat with the best fitness is stored in an 𝑛𝑛 × 𝑚𝑚 archive at each run of the algorithm 

and is compared with the initial best solution in the archive based on dominant strategy. Assume 

𝑖𝑖𝑡𝑡ℎand 𝑗𝑗𝑡𝑡ℎrepresent the positions of two cats in a 𝐷𝐷-dimensional search space as 𝑋𝑋𝑖𝑖 =
(𝑥𝑥𝑖𝑖2,𝑥𝑥𝑖𝑖3, … , 𝑥𝑥𝑖𝑖𝑖𝑖, … . 𝑥𝑥𝑖𝑖𝑖𝑖) and 𝑋𝑋𝑗𝑗 = (𝑥𝑥𝑗𝑗2,𝑥𝑥𝑗𝑗2, … , 𝑥𝑥𝑗𝑗𝑗𝑗 , … . 𝑥𝑥𝑗𝑗𝑗𝑗) respectively. A non-dominant strategy 

is adopted to determine the best fitness when the conditions in equations 9 and 10 are satisfied 

(Abdullahi and Ngadi, 2016)  

        𝑋𝑋𝑖𝑖 = {𝑋𝑋𝑖𝑖
′         𝑖𝑖𝑖𝑖       𝑓𝑓(𝑋𝑋𝑖𝑖′) ≻ 𝑓𝑓(𝑋𝑋𝑖𝑖)

𝑋𝑋𝑖𝑖          𝑖𝑖𝑖𝑖       𝑓𝑓(𝑋𝑋𝑖𝑖′) ≼ 𝑓𝑓(𝑋𝑋𝑖𝑖)
                                                                            (9) 

         𝑋𝑋𝑗𝑗 = {𝑋𝑋𝑗𝑗
′         𝑖𝑖𝑖𝑖       𝑓𝑓(𝑋𝑋𝑗𝑗′) ≻ 𝑓𝑓(𝑋𝑋𝑗𝑗)

𝑋𝑋𝑗𝑗           𝑖𝑖𝑖𝑖       𝑓𝑓(𝑋𝑋𝑗𝑗′) ≼ 𝑓𝑓(𝑋𝑋𝑗𝑗)                                                                          (10) 

Where 𝑓𝑓(. ) denotes the fitness evaluation function. If the fitness value 𝑓𝑓(𝑋𝑋𝑖𝑖′) is better than that 

of the 𝑓𝑓(𝑋𝑋𝑖𝑖). For minimization process, the new fitness is accepted for an update with the 

probability defined in equation 11.  

              𝑃𝑃𝑟𝑟𝑟𝑟(𝑋𝑋,𝑋𝑋′,𝑇𝑇) = exp [(−(𝑓𝑓(𝑋𝑋𝑖𝑖′) − 𝑓𝑓(𝑋𝑋𝑖𝑖))) ∗ 𝑇𝑇−1]                                                       (11)                      

Where )( '
iXf and )( iXf denotes fitness functions of the cat and current solutions, T represents the 

control parameter which is the temperature. The CSM-CSOSA algorithm is illustrated in 

Algorithm 5.  

Algorithm 5: Proposed CSM-CSOSA Algorithm 
Begin: 
Input: Initialize cat parameters: create population of the cats as 𝑋𝑋𝑖𝑖 ∀𝑖𝑖 = {1,2,3 … . .𝑛𝑛}, 
initialize 𝑋𝑋𝑖𝑖, flag number, Initialize SA parameters: initial Temperature 𝑇𝑇𝑂𝑂, final 
Temperature 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, rate of cooling 𝛼𝛼. 
Generate an empty non-dominant archive of (n × m) size of uniform random number [0, 
1] 
Output: Best solution with minimum total execution time and minimum total execution 

cost. 
 Identify the best optimal solution for the trade-off values as 𝑋𝑋𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐷𝐷∀ 𝑫𝑫 =
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Where f(.) denotes the fitness evaluation function. If the fitness value               is 
better than that of the f(Xi). For minimization process, the new fitness is 
accepted for an update with the probability defined in equation 11. 

                                                                     (11)    

Where              and f(Xi) denotes fitness functions of the cat and current solutions, 
represents the control parameter which is the temperature. The CSM-CSOSA 
algorithm is illustrated in Algorithm 5. 
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Algorithm 5: Proposed CSM-CSOSA Algorithm 
Begin: 
1. Input: Initialize cat parameters: create population of the cats as 𝑋𝑋𝑖𝑖 ∀𝑖𝑖 = {1,2,3 … . .𝑛𝑛}, 

initialize 𝑋𝑋𝑖𝑖, flag number, Initialize SA parameters: initial Temperature 𝑇𝑇𝑂𝑂, final 
Temperature 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, rate of cooling 𝛼𝛼. 

2. Generate an empty non-dominant archive of (n × m) size of uniform random number 
[0, 1] 

3. Output: Best solution with minimum total execution time and minimum total 
execution cost. 

4. Identify the best optimal solution for the trade-off values as 𝑋𝑋𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐷𝐷∀ 𝑫𝑫 =
{𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑} 

5. Do // apply seeking mode process to evaluate cat fitness.     
            { 
6. If (flag← 𝟏𝟏)  
7.  Execute tracing mode process according to Algorithm 1. 
8.  Discover the 𝑋𝑋𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 solution 
9.  If (𝑋𝑋𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is not improved) 
10.  Else       
11.  //*** apply tracing mode process to find the 𝑋𝑋𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 using SA and Taguchi 

method***// 
12.  Call………. Algorithm 3 to execute the SA Method      
        {      
13. While (𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 > 𝑇𝑇𝑜𝑜)  do 
14.  Call ……. Algorithm 4    to execute the Taguchi method 
       { 
15. Generate new solution 𝑋𝑋𝑖𝑖′ in the neighbourhood of 𝑋𝑋𝑖𝑖 using Equation 7 and Equation 

8 
16. Compute_𝑓𝑓(𝑋𝑋𝑖𝑖,𝑋𝑋𝑖𝑖𝑖𝑖)  
17.   𝑓𝑓 = 𝑓𝑓(𝑋𝑋𝑖𝑖′) − 𝑓𝑓(𝑋𝑋𝑖𝑖) 
18.  If 𝑓𝑓 ≤ 0 𝑜𝑜𝑜𝑜 exp (−𝑓𝑓𝑇𝑇−1) > 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1) 
       // rand (0, 1) is a uniformly random generated number between 0 and 1 
19. Apply new fitness selection strategy based on Pareto dominance according to 

Equation 9 &10 
20. Reduce the temperature using Equation 4  
21. 𝑋𝑋𝑖𝑖 ← 𝑋𝑋𝑖𝑖′,  
22. Endif   
       } 
23.    Endwhile 

         } 
24. Endif 

        } 
25. While condition is not reached. 
26.  Output optimization solution for the execution time and execution cost. 

End.   
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Problem Description

In cloud computing, the attributes associated with the task scheduling 
problem are Cloud Information System (CIS), Cloud Broker (CB) and Virtual 
Machines (VMs).  The tasks are referred to as cloudlets in cloud computing. 
The CIS receives cloudlets {c1, c2, c3, ... ... .., cn} from the cloud consumers 
which are sent to CB. A query is generated from CIS−CB in each datacenter 
n the required service to execute the received cloudlets. Assume {v1, v2, v3, ... 
... ., vm}  represent heterogeneous VMs (which varies in capacity in both speed 
and memory) for executing each cloudlet, then the time a cloudlet spends 
executing on VMs will determine the total cost per time quantum on all 
VMs. Therefore, the following assumptions are considered necessary for the 
scheduling: (i) two datacentres are considered sufficient for the task schedule; 
(ii) The two datacentres belong to the same service provider; (iii) Transmission 
cost is ignored; (iv) Cloudlets are dynamically assigned to VMs  where each 
VM handles at most one cloudlet at a time and the total number of all possible 
schedules is considered to be (n!)m (Zuo et al., 2015) for the problems with n 
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 (12)

                                                                                        (13)
 

Such that:

                                                                     (14)

Where, exeij is the execution time of running cloudlets on one virtual machine; 
Ci is the set of cloudlets in Millions Instruction (MI) assigned on the virtual 
machine Vj;  Vmips j is the virtual machine speed in Million Instructions per 
Seconds (MIPs);  is the number of the processing element (Gabi et al., 2016). 
Equation 15 is used to compute the cost of executing all cloudlets on all Vj if 
and only if the cost of a virtual machine per time quantum is given per hour  
(/hr) (Ramezani et al., 2013) while equation 16 computes the cost of executing 
cloudlets on Vj .

                                                                                                         
 (15)

Where TTexecostij is the total cost of executing all cloudlets on Vj, execostij is the 
cost of executing cloudlets on Vj (Ramezaini et al., 2013).

                                                               
   (16)

Vcostj , is the monetary cost of one unit Vj in US dollar per hour.  A mathematical 
model for the multi-objective task scheduling problem can be expressed as 
follows:

                                                                                   

    (17)

  
The fitness for the QoS when the trade-off factors for the time and cost for 
consumer service preference can be expressed as follows (Zuo et al., 2015; 
Beegom & Rajasree, 2015).
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            𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛
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RESULTS AND DISCUSSION 

The CloudSim simulator tool (Buyya et al., 2010) is used for the experiment. The CloudBroker 

policy of the CloudSim is used to implement the algorithm and run with two (2) different 

Datasets. The parameter setting for the datacentres (as shown in Table 2) were based on (Gabi et 

al., 2016; Abdullahi & Ngadi, 2016). The comparison with multi-objective task scheduling 
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                                                                    (18)
          

Where, θ[0,1] is the control factor for selection of consumer service preference 
based on time and cost objectives. 

Evaluation Metrics

The metrics used for evaluation are execution time, execution cost using 
the model presented in equation (12) and (15) and the QoS (fitness) model 
in equation (18) as well as the statistical analysis based on percentage 
improvement rate percentage (PIR%) using equation (19). 

                                     (19)

RESULTS AND DISCUSSION

The CloudSim simulator tool (Buyya et al., 2010) is used for the experiment. 
The CloudBroker policy of the CloudSim is used to implement the algorithm 
and run with two (2) different datasets. The settings for each algorithm are 
shown in Table 1. The comparison with multi-objective task scheduling 
algorithms discussed in the introduction were used, i.e. the Multi-Objective 
Genetic Algorithm (Budhiraja & Singh, 2014), Multi-Objective scheduling 
method based on Ant Colony Optimization (Zuo et al., 2016) & Multi-
Objective Particle Swarm Optimization (Ramezaini et al., 2013).  

Table 1

The parameter setting for the four task scheduling algorithms

Algorithm Parameter Value
MOPSO Particle size 100

Self-recognition coefficients (c1, c2) 2.0
Uniform random number (R1) [0,1]
Maximum iteration 1000
Variable Inertia weight(W) 90-40%

CSM-CSOSA Cat size 100
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Algorithm Parameter Value
Count Dimension to Change 5%
Self-recognition coefficients (c1) 2.0
Uniform random number (R1) [0,1]
Maximum iteration 1000
 Mixed ratio 2%
Initial Temperature 10
Final temperature 0.001
Cooling rate 0.9

MOSACO Pheromone persistence  α 0.3
Importance of pheromone (γ) 1
Importance of resource innate attribute (β) 1
Pheromone evaporation value (ρ) 0.3
Iteration number 1000
Number of ant m 100

MOGA Population size 100
Maximal iteration 1000
Crossover rate 0.5
Mutation rate 0.1

The parameter setting for the datacentres as shown in Table 2 were based on 
Gabi et al. (2016) and, Abdullahi and Ngadi (2016).

Table 2

Parameter Settings for the Cloud Computing Datacentre

DATACENTER Parameter Values
No. of datacentre 2
No. of host in a datacenter 1 

HOST Host RAM 2GB
Storage ITB
Bandwidths 10GB/s
Accumulated host processing power 1000000 MIPS

CLOUDLETS No. of Cloudlets [100-1000]
Lengths [100, 1000] MIs
File size [200, 400] MB
Output size [300]

VIRTUAL MACHINE VM id [1-20]
VMs Monitor Xen

(continued)
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DATACENTER Parameter Values
Accumulated Ram 0.5GB
Accumulated Storage 10GB
Bandwidth 1GB/s
VMs processing power 1000-10000 MIPS
Number of processing elements 1 to 4

5 to 50
VM Policy Time-shared
Cost per unit VM [0.17−1.25$/hour]
Cost of using memory 0.05$/hour

The performance of the proposed CSM-CSOSA (on minimization of task 
execution time and execution cost) with the variation of its control parameters 
for consumer service selection preference is evaluated.  The results are 
compared for the objective of execution time and execution cost as an 
extremely critical parameter for consumer QoS for varying number of tasks 
namely 100-1000 respectively. These experiments on two benchmark datasets, 
i.e., the normal distributed dataset & the HPC2N dataset (Abdullahi & Ngadi, 
2016) where the experimental results are compared with three task scheduling 
algorithms (MOGA, MOSACO & MOPSO). Therefore, each algorithm runs 
30 simulation times and the average value is taken as the comparison. In Tables 
3 and 4, the conducted experiment shows the effectiveness of scheduling 
algorithms.  The result of the experiments is summarized via an average value 
for a total of 30 simulation runs. 

Table 3

Comparison on Execution time(sec) and Execution Cost(/hr)− Normal 
distributed dataset

Task MOGA MOSACO MOPSO CSM-CSOSA

Execution 
time

Execution 
cost

Execution 
time

Execution 
cost

Execution 
time

Execution 
cost

Execution 
time

Execution 
cost

100 6058.27 1332.82 88284.51 19422.59 4948.99 1088.77 4044.54 889.79

200 7059.25 1553.04 97392.78 21426.41 19383.69 4264.41 15879.07 3493.39

300 93137.01 20490.14 98499.76 21669.95 42941.44 9447.11 35153.95 7733.86

400 124651.76 27423.39 109194.01 24022.68 76178.27 16759.22 62431.91 13735.02

500 134063.75 29494.03 109298.76 24045.73 118307.78 26027.71 97050.19 21351.04

600 191371.01 42101.62 117094.76 25760.84 173652.70 38203.59 142451.62 31339.35

(continued)
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Task MOGA MOSACO MOPSO CSM-CSOSA

Execution 
time

Execution 
cost

Execution 
time

Execution 
cost

Execution 
time

Execution 
cost

Execution 
time

Execution 
cost

700 223455.51 49160.21 183455.75 40360.26 234024.61 192413.25 42330.91

800 325969.03 323662.26 71205.69 308448.97 253340.68 55734.95

900 510860.71 425393.01 93586.46 389884.04 320557.41 70522.63

1000 707862.76 631498.76 138929.72 483529.84 397058.65 87352.90

Table 4

Comparison on Execution time(sec) and Execution Cost− HPC2N dataset

Task MOGA MOSACO MOPSO CSM-CSOSA

Execution 
time

Execution 
cost

Execution 
time

Execution 
cost

Execution 
time

Execution 
cost

Execution 
time

Execution 
cost

100 2149.55 472.90 8065.18 1774.33 852.106 187.46 1193.18 262.5

200 3176.66 698.86 8426.87 1853.91 2757.82 606.72 2893.53 632.57

300 4519.46 994.28 11721.81 2578.79 4847.71 1066.49 6975.66 1534.64

400 13868.47 3051.06 21323.50 4691.17 8261.82 1817.60 10411.32 2290.49

500 27376.30 6022.78 23722.67 5218.98 11905.35 2619.17 11458.76 2520.92

600 32964.88 7252.27 26875.12 5912.52 16063.94 3534.06 12764.87 2808.27

700 34756.75 7646.48 27772.62 6109.97 19253.01 4235.66 14023.48 3085.16

800 38861.56 8549.55 29721.44 6538.72 24622.87 5417.033 18513.75 4073.02

900 43382.02 9544.19 30152.42 6633.53 28902.72 6358.59 23278.9 5121.35

1000 45182.42 9940.13 36228.91 7970.36 27301.05 8206.23 26867.23 5910.79

According to this average value illustrated in Tables 3 and 4 precisely, it 
is clear that for the execution time and execution cost multi-objectives, the 
proposed CSM-CSOSA algorithm has balanced both the total execution time 
and total execution cost as consumer requirement which makes it superior 
compared to MOGA, MOSACO and MOPSO.  In both tables (3 & 4) based 
on the two different datasets used, it can be seen that for CSM-CSOSA task 
scheduling, the execution time and execution cost spent to complete tasks 



455

Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

is very much minimal as compared to the execution time and execution cost 
spent to complete the tasks with MOGA, MOSACO and MOPSO algorithm. 
It is shown that the execution time obtained has an influence on the cost 
performance.      

Moreover, to have a better sense of the performance of the algorithms, 
some figures are illustrated to show the performance of the algorithms more 
explicitly. As the task keeps increasing from 100-1000, all the four scheduling 
algorithms increase in terms of execution time and execution cost.  Figures 1-4  
are plotted for execution time and execution cost based on the two different 
datasets used respectively. According to these figures, as the number of tasks 
keep increasing, both the execution time and the execution cost increase as well. 
On the execution time and execution cost minimization, the proposed CSM-
CSOSA task scheduling algorithm has a better operation and outperforms the 
MOGA, MOSACO and MOPSO task scheduling algorithms. The increase 
in task size and the performance obtained also show that the proposed CSM-
CSOSA is scalable as well as capable of scheduling huge tasks with the lowest 
execution time in the heterogeneous environment. However, it also confirms 
that the CSM-CSOSA algorithm has shown to increase its quality of solutions 
by balancing task on the best virtual machine with minimum execution time 
and execution cost.
       

Figure 1.   Average execution time-Normal distribution dataset.
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Figure 2.  Average execution cost-Normal distribution dataset.

Figure 3.  Average execution time-HPC2N dataset.
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Figure 4. Average execution  cost-HPC2N dataset.

In addition, the fitness (QoS) function formula in equation (18) is used to guide 
the target to optimize the performance of global best in the CSM-CSOSA 
algorithm and the MOGA, MOSACO and MOPSO task scheduling algorithm. 
The result is shown in Table 5. In all cases, the CSM-CSOSA shows the best 
performance.  

Table 5

Comparison on Estimated total QoS Minimized

Datasets MOGA MOSACO MOPSO CSM-CSOSA

Normal distributed dataset 316359.91 218444.14 185186.51 152009.92

HPC2N Workload 24631.40 22407.86 15480.64 12842.05

In Table 6, the improvement of the proposed CSM-CSOSA algorithm over the 
three comparative scheduling algorithms using the normal distributed dataset 
shows our proposed algorithm has managed to achieve 34.59%, 30.37% 
and 17.87% in terms of total average execution time.  A similar analysis is 
reported using the HPC2N dataset where the result is shown in Table 7 in 



Journal of ICT, 17, No. 3 (July) 2018, pp: 435–467

458

Table 6

Comparison on Improvement (%) based on Execution Time − Normal 
Distributed Dataset

MOGA MOSACO MOPSO CSM-CSOSA

Total Average 
execution time

2324489.06 2183774.36 1851300.33 1520381.27

PIR% over MOGA 6.05 20.35 34.59

PIR% over MOSACO 15.22 30.37
PIR% over MOPSO 17.87

Table 7

Comparison on Improvement (%) based on Execution Time −HPC2N Dataset

MOGA MOSACO MOPSO CSM-CSOSA

Total Average execution 
time

246238.07 224010.54 144768.40 128380.68

PIR% over MOGA 9.03 41.21 47.86

PIR% over MOSACO 35.37 42.68
PIR% over MOPSO 11.31

terms of execution time. In Table 7, the performance improvement achieved 
by the four scheduling algorithms is reported. The result of the analysis 
shows the CSM-CSOSA which was able to reduce the execution time by 
obtaining 47.86%, 42.68% and 11.31% compared to MOGA, MOSACO and 
MOPSO. The performance recorded by our proposed algorithm is due to the 
combination of Simulated Annealing (SA) and the Taguchi approach which is 
incorporated at the local search of the CSM-CSOSA that guides the algorithm 
toward position updating without affecting the computational complexity. 
This approach also helps our proposed algorithm returns local best solution as 
fast as possible which is also attributed to the significant choice of velocity. 
The CSM-CSOSA has shown to improve its quality of solutions at the latter 
stage of search procedure, making it more efficient for cloud task scheduling 
(Gabi et al., 2018).

Scalability Analysis of the Scheduling Algorithms

To further unveil performance of our proposed CSM-CSOSA task scheduling 
algorithm together with the three comparative algorithms,  a scalability analysis 
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is conducted. This process enables us to gain insight on the scalability of the 
proposed algorithm towards scaling with large workloads and the changes 
on the number of virtual processing elements (Chen et al., 2008). Kumar and 
Kao (1987) put forward measuring criteria known as Isoefficiency metric to 
account for the scalability of a system. In the context of cloud computing, 
scalability can be seen as an algorithm-Virtual Machine (VM) combination. 
According to Sun and Rover (1994), scalability of an algorithm in relation to 
VM combination is when an average execution time exhibited remain constant 
even when a re-scaled in processing element and problem size occurs. Hence, 
considering the heterogeneity of cloud computing resources, an Isospeed-
efficiency scalability metric              proposed in (Chen et al., 2008) for 
calculating the scalability of an algorithm based on machine dependance is 
adopted for the scalability investigation. In this study, the expected value 
for the scalability performance is considered to be in the ranges             .  
The Isospeed-efficiency scalability function              for computing the 
scalability is illustrated in equation 20 (Chen et al., 2008). 
                                                                                                                             

(20)

Where,  is the initial execution time achieved by the algorithms based on 
configured number of processing elements on virtual machines, C  is the scaled 
execution time when the processing element increases on virtual machine,W is the 
initial workload (tasks) assigned on virtual machine, WI  is the rescaled workload 
(tasks) assigned on virtual machines. To compute the scalability of the proposed 
algorithm, one Parallel Workload, i.e., the HPC2N dataset with 527, 371 tasks were 
considered and 5000−14000 tasks instances drawn from the workload were used in 
the experiment. Processing elements from 5−50 are assigned to virtual machines. 
The results associated with each algorithm based on the obtained execution time is 
shown in Table 8, while computed scalability performance is reported in Table 9. 
The scalability computation for each algorithm is carried out using the following 
example for MOGA algorithm shown in equation 21.

                                       
                                                                             (21)

     
Table 8

Average Total Execution Time(sec)−HPC2N Dataset

Workloads
Configured processing 
elements on VM0.195

MOGA MOSACO MOPSO CSM-CSOSA

5000 5 60749.54 68224.11 98218.37 85691.89

(continued)
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in the experiment. Processing elements from 5−50 are assigned to virtual machines. The results 

associated with each algorithm based on the obtained execution time is shown in Table 8, while 

computed scalability performance is reported in Table 9. The scalability computation for each 

algorithm is carried out using the following example for MOGA algorithm shown in equation 21. 

                                        

           𝜓𝜓(𝐶𝐶,𝐶𝐶′) = 𝐶𝐶′∗ 𝑊𝑊
𝐶𝐶∗ 𝑊𝑊′ =   60749.54∗8000

734420.83 ∗5000 = 0.1323                                                                   (21) 

 

      
Table 8. Average total execution time(sec)−HPC2N dataset 

 
Workloads 

Configured 
processing 

elements on VM 

MOGA  MOSACO  MOPSO CSM-
CSOSA 

5000 5 60749.54 68224.11 98218.37 85691.89 

8000 20 734420.83 836672.18 403092.86 284977.74 

10000 30 1908232.46 920394.46 611319.66 509939.30 

12000 40 2021129.03 1864725.72 1909903.79 808999.24 

14000 50 3490413.07 3143443.18 2077310.12 2020078.67 

 
 
 
Table 9. Computed scalability with− HPC2N dataset 

Scalability Configured 
processing 
elements on 
VM 

MOGA MOSACO MOPSO CSM-CSOSA 

𝜓𝜓(𝐶𝐶,𝐶𝐶′) (5,20) 0.1323 0.1878 0.3898 0.4811 

𝜓𝜓(𝐶𝐶,𝐶𝐶′) (20,30) 0.4810 1.1363 0.8242 0.6986 

𝜓𝜓(𝐶𝐶,𝐶𝐶′) (30,40) 1.1329 1.0373 0.9287 0.8630 

𝜓𝜓(𝐶𝐶,𝐶𝐶′) (40, 50) 0.6755 1.0864 0.9238 0.8990 

 
 
In the aforementioned Table 9, the proposed CSM-CSOSA algorithm is able to maintain better 

scalability performance by returning an acceptable value of 0.4811, 0.6986, 0.8630, 0.8990 for 

the HPC2N dataset compared to that of MOGA, MOSACO and MOPSO task scheduling 

algorithms.  These values, however, shows that the proposed algorithm can respond to the 

dynamic changing cloud task and resource condition than the comparative algorithms under 

consideration. 
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Table 9

Computed Scalability with− HPC2N Dataset

Scalability Configured 
processing 
elements on 
VM

MOGA MOSACO MOPSO CSM-CSOSA

(5,20) 0.1323 0.1878 0.3898 0.4811

(20,30) 0.4810 1.1363 0.8242 0.6986

(30,40) 1.1329 1.0373 0.9287 0.8630

(40, 50) 0.6755 1.0864 0.9238 0.8990

In the aforementioned Table 9, the proposed CSM-CSOSA algorithm is able 
to maintain better scalability performance by returning an acceptable value 
of 0.4811, 0.6986, 0.8630, 0.8990 for the HPC2N dataset compared to that of 
MOGA, MOSACO and MOPSO task scheduling algorithms.  These values, 
however, shows that the proposed algorithm can respond to the dynamic 
changing cloud task and resource condition than the comparative algorithms 
under consideration.

CONCLUSION

The unpredictable number of task arriving at cloud datacentre and the rescaling 
of virtual machine processing elements during task scheduling affects the 
provisioning of better QoS expectations. Dynamic task scheduling algorithms 
are considered to be effective for addressing this kind of problem but are truly 
complex to develop.  Previous authors have contributed immensely through 
the provision of several task scheduling algorithms but at the expense of 
scalability. In this study, we introduce Cloud Scalable Multi-Objective Cat 
Swarm Optimization based on Simulated Annealing (CSM-CSOSA) that 
considers the dynamicity of cloud computing environment to improve better 
QoS. The effectiveness of the algorithm is evaluated using a multi-objective 
model for the time and cost criteria.  The novelty of the proposed method is 
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based on the use of SA and Taguchi method that enhance the local search 
procedure of the algorithm in exploring larger search space which eventually 
yield better optimum solutions. Comparison of the performance of CSM-
CSOSA with some of the existing metaheuristics (MOPSO, MOSACO and 
MOGA) task scheduling algorithms is carried out with one dataset and one 
parallel workload. The results obtained shows that the proposed method has 
achieved a remarkable performance by returning good QoS as well as better 
scalability performance with 0.4811, 0.6986, 0.8630 and 0.8990 compared to 
the comparative algorithms.  In the future, the study aims to look at privacy 
aware scheduling in such a way that protects the sensitive information 
associated with tasks.
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