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ABSTRACT

In real-world scenario, image classification models degrade in 
performance as the images are corrupted with noise, while these 
models are trained with preprocessed data. Although deep neural 
networks (DNNs) are found efficient for image classification 
due to their deep layer-wise design to emulate latent features 
from data, they suffer from the same noise issue. Noise in image 
is common phenomena in real life scenarios and a number of 
studies have been conducted in the previous couple of decades 
with the intention to overcome the effect of noise in the image 
data. The aim of this study was to investigate the DNN-based 
better noisy image classification system.  At first, the autoencoder 
(AE)-based denoising techniques were considered to reconstruct 
native image from the input noisy image. Then, convolutional 
neural network (CNN) is employed to classify the reconstructed 
image; as CNN was a prominent DNN method with the ability 
to preserve better representation of the internal structure of the 
image data.  In the denoising step, a variety of existing AEs, 
named denoising autoencoder (DAE), convolutional denoising 
autoencoder (CDAE) and denoising variational autoencoder 
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(DVAE) as well as two hybrid AEs (DAE-CDAE and DVAE-
CDAE) were used. Therefore, this study considered five hybrid 
models for noisy image classification termed as: DAE-CNN, 
CDAE-CNN, DVAE-CNN, DAE-CDAE-CNN and DVAE-
CDAE-CNN. The proposed hybrid classifiers were validated 
by experimenting over two benchmark datasets (i.e. MNIST 
and CIFAR-10) after corrupting them with noises of various 
proportions. These methods outperformed some of the existing 
eminent methods attaining satisfactory recognition accuracy 
even when the images were corrupted with 50% noise though 
these models were trained with 20% noise in the image. Among 
the proposed methods, DVAE-CDAE-CNN was found to be 
better than the others while classifying massive noisy images, 
and DVAE-CNN was the most appropriate for regular noise. The 
main significance of this work is the employment of the hybrid 
model with the complementary strengths of AEs and CNN in 
noisy image classification. AEs in the hybrid models enhanced 
the proficiency of CNN to classify highly noisy data even though 
trained with low level noise.

Keywords: Image denoising, CNN, denoising autoencoder, convolutional 
denoising autoencoder, variational denoising autoencoder, hybrid architecture.

INTRODUCTION

In recent years, deep learning approaches have been extensively studied 
for image classification and image processing tasks such as perceiving the 
underlying knowledge from images. Deep neural networks (DNN) utilize 
their deep layer-wise design to emulate latent features from data and thus 
pick up the possibility to appropriately classify patterns. Arigbabu et al. 
(2017) combined Laplacian filters over images with the Pyramid Histogram 
of Gradient (PHOG) shape descriptor (Bosch, et al., 2007) to extract face 
shape description. Later, they used the Support Vector Machine (SVM) 
(Cortes & Vapnik, 1995) for face recognition tasks. One progressive feature of 
extracting variants of DNNs, the convolutional neural network (CNN) (LeCun 
et al.,1998; Krizhevsky et al.,2012; Schmidhuber, 2015), has surpassed the 
vast majority of the image classification methods. Different research work 
outcomes boldly indicate that feature selection from deep learning with CNN 
should be the primary candidate in most of the image recognition tasks (Sharif 
et al. 2014). The convolution and the following pooling (Scherer et al., 2010) 
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layers preserve the possession of the corresponding location of features and 
along these lines make the CNN empowered to preserve a better epitome 
of the input data. Current CNN works are concentrated on computer vision 
issues, for example 3D objects recognition, traffic signs and natural images 
classification (Huang and LeCun, 2006; Cireşan et al., 2011a; Cireşan et al., 
2011b), image segmentation (Turaga et al., 2010), face detection (Matsugu 
et al., 2003), chest pathology identification (Bar et al., 2015), Magnetic 
Resonance Image (MRI) segmentation (Bezdek et al., 1993) and so on. 
However, the performance of deep CNN highly depends on the tremendous 
amount of pre-processed labeled data. Simonyan (2013) proposed an improved 
variant of the Fisher vector image encoding method and combined it with a 
CNN to develope a hybrid architecture that can classify images requiring a 
comparatively smaller computational cost than the traditional models, as well 
as assess the performance of the image classification pipeline with increased 
depth in layers. 

Some variants of deep models, named unsupervised deep networks, learn 
underlying representation from input images overcoming the necessity of 
these input data to be labeled. One traditional model of this type is stacked 
autoencoders (SAE) (Bourlard and Kamp, 1988; Bengio, 2009; Rumelhart, 
1985) in which the basic architecture holds a stack of shallow encoders which 
enable them to learn features from the data by means of encoding the input data 
into a vector and then decoding this vector to its native representation. Shin 
et al. (2013) pertained the stacked sparse autoencoders (SSAEs) for medical 
image classification task and achieved notable promotion in classification 
accuracy. Norouzi et al. (2009) introduced the stacked convolutional restricted 
Boltzmann machine (SCRBM) which incorporates dimensional locality and 
also weight sharing by maintaining the stack of the convolutional restricted 
Boltzmann machine (CRBM) to build deep models. Lee et al. (2009) introduced 
convolutional deep belief network (CDBN), which places the CRBM in each 
layer instead of RBM unlike the deep belief network (DBN), and utilization 
convolution structure to join the layers and thus build hierarchical models. 
Contrasted with the conventional DBN, it preserves spatial locality and 
enhances the performance of feature representation (Hinton et al., 2006). With 
comparable thoughts, Zeiler et al. (2010, 2011) proposed a deconvolutional 
deep model in view of the conventional sparse coding technique (Olshausen 
and Field, 1997). The deconvolution operation depends on the convolutional 
deterioration of information under a sparsity imperative. It is a modification 
of the traditional sparse coding methods. Contrasted with sparse coding, it can 
learn better feature representation.
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Data subjected to noise is a hinder once to the success of the deep network-
based image recognition systems in real world applications. Nonetheless, in 
most of the cases in real life scenarios, during transmission and acquisition, 
digital images are adulterated with noise resulting in degenerating the 
performance of image classification, medical image diagnosis, etc. One 
major issue originating from one of the intrinsic attributes of a DNN is its 
affectability to the input data. Because of being sensitive to little perturbance, 
DNNs may be misled and misclassify an image having a certain amount of 
imperceptible perturbation (Szegedy et al., 2013). As a result, when there 
is noise present in the input data, learned features by the DNN may not be 
vigorous. As examples, medical imaging techniques which are vulnerable to 
noise such as: MRI, X-rays, Computer Tomography (CT) can be considered 
(Sanches et al., 2008). Reasons fluctuate from the utilization of various image 
acquisition systems to endeavors at diminishing patients’ introduction to 
radiation. As the measure of radiation is diminished, there is adulteration of 
the images with noise increments (Gondara, 2016; Agostinelli et al., 2013). A 
survey conducted by Lu and Weng (2007) investigated the image classification 
methods and suggested that image denoising prior to classification is efficient 
in case of remotely sensed data in a thematic map such as the geographical 
information system (GIS).  Even if, the classifier is trained with noisy data, it 
does not show a much better performance in case of image classification. So, 
image denoising has become a compulsory requirement prior to feeding the 
image to the classifier in order to achieve a better classification result. 

A notable number of researches have been directed over image denoising in the 
time period of the previous couple of years to make the deep learning-based 
image classification systems more compatible with practical applications. In 
the past, research in this field hasconducted where denoising was accomplished 
on the premise of the wavelet transformation technique (Coifman and 
Donoho, 1995), the partial differential equation-based methods (Perona and 
Malik, 1990; Rudin and Osher, 1994; Subakan et al., 2007), and in addition 
conveyed scant coding approaches (Elad and Aharon, 2006; Olshausen and 
Field, 1997; Mairal et al., 2009). Singh et al. (2014) proposed an efficient 
classification model for multi-class object images subject to Gaussian noise. 
They applied wavelet transform-based image denoising techniques by means 
of employing the NeighShrink thresholding over the wavelet coefficients to 
eliminate wavelet coefficients causing noise in the image and picking up only 
useful ones.
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Recent studies have effectively utilized deep learning-based approaches 
with the intention to accomplish image denoising (Krizhevsky et al., 2012; 
Bengio et al., 2007; Glorot et al., 2011). Burger et al. (2012) demonstrated that 
similar execution to the previously described strategies can be accomplished 
by applying plain multi-layer perception (MLP). Jain et al. (2009) employed 
CNN to denoise images which performed superior to wavelets notwithstanding 
utilizing a smaller set of training images. An assortment of autoencoders 
(AEs) has been employed to denoise images and these techniques have 
definitely surpassed the conventional denoising methods as they are less 
restrictive for details of noise generative mechanisms (Cho, 2013; Vincent et 
al., 2008; Vincent et al., 2010). Vincent et al. (2008) introduced the denoising 
autoencoder (DAE) which figures out how to recreate local images from 
adulterated forms by injecting arbitrary noise into the images of the training 
set amid the learning period. These DAEs are stacked to develop a deep 
unsupervised learning network called stacked DAE (SDAE) for adapting 
profound depiction (Vincent et al., 2010). Xie et al. (2012) deployed a 
combination of sparse coding along with DAE for tasks of image denoising 
and blind inpainting. It was designed to work with images subject to white 
Gaussian noise and superimposed text. Cho (2013) employed Boltzmann 
machines as well SDAEs for image denoising tasks in case of high level 
of noise injected in the images. He employed three distinct depth settings 
(one, two and four layers) for both the SDAEs and the Boltzmann machines 
to evaluate the performance of noise omission. Agostinelli et al. (2013) 
introduced the adaptive multi-column DNN with a combination of multiple-
stacked sparse DAEs (SSDAE) that can denoise various types of noises in the 
images in a standalone manner. They computed optimal column weights using 
a nonlinear optimization program and later trained the individual networks 
to anticipate the optimal weights. One common disadvantage of these DAE-
based models is that they learn the underlying hierarchical features from the 
image by reshaping the high dimensional data to vectors and thus discard the 
intrinsic structures of the images.

With the intention to solve this problem, Masci et al. (2011) proposed another 
variant of the autoencoder called convolutional AE (CAE) which trains itself 
for reconstructing images from the input image data in a convolutional manner. 
The stacked CAE forces the adjacent CAEs to learn the innate structure of 
the input image throughout the series of convolution and pooling operations. 
The kernels and other learning parameters of each layer are updated by 
backpropagation to convolve the feature maps of the input images into more 
abstract features of each layer. Compared to previously specified AEs it has 
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proved its capability to preserve more relating structural information. Xu et 
al. (2014) developed a deep CNN that can figure out the characteristics of blur 
degradation from an image. Gondara (2016) employed DAEs constructed with 
convolutional layers for denoising medical images. Du et al (2017) proposed 
stacked convolutional denoising autoencoders (SCDAE) by stacking DAEs 
in a convolutional way where each layer produces high dimensional feature 
maps by means of convolving features of the previous layer trained by a DAE.  
 Recently, Kingma and Welling (2014) introduced the variational autoencoder 
(VAE), a hybrid of deep learning model along with variational inference that 
has prompted remarkable advances in generative modelling. The loss function 
used for training VAE is calculated by a variational upper bound on the log-
likelihood of the data. It can figure out and preserve shape variability beyond 
the image set as well as reconstruct images given the manifold coordinates. 
Unlike other deterministic models, it is a probabilistic generative model 
which is trained all through with stochastic gradient descent. Unlike DAE that 
corrupts the input images by adding noise at the input level and later learns 
to reconstruct the clear image, VAE learns with noise added in its stochastic 
hidden layer. Im et al. (2017) proposed that adding noise in not only the 
stochastic hidden layer but also in the input layer is beneficial and empowers 
the VAE to perform image denoising tasks. They proposed a modified training 
criterion for denoising variational autoencoders (DVAE) that resemble a 
tractable bound, in case the input image is adulterated with noise.

The intention of this work was to build a few supervised image classifiers 
that can demonstrate better classification results across a noisy image set; 
thereby, contemplating DAE, CDAE, DVAE and proposing some hybrid 
models utilizing CNN along with these AEs. Initially a DAE, a CDAE and 
a DVAE were trained with image data subject to lower regular noise level 
so that they could omit noise from the input images and reconstruct a native 
form of it. To counter the massive noisy images, two hybrid structures (i.e. 
DAE-CDAE and DVAE-CDAE) were further investigated where for each of 
them two AEs were deployed in a cascaded manner. The reconstructed images 
from these AEs were fed to a following CNN for classification, where the 
CNN is trained with raw images having zero percent noise injected into it. 
The classification performance of this CNN is solely dependent on the quality 
of the reconstructed images from the conventional as well the hybrid AE 
structures. The DAE-CDAE-CNN as well as DVAE-CDAE-CNN models can 
work better with massive noisy images because of their cascaded architectures 
and thus omits the requirement of training with images corrupted by noise of 
different levels.     
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HYBRID DEEP LEARNING-BASED NOISY 
IMAGE CLASSIFICATION 

Real world image classification tasks suffer from noise and other imperfections 
existing in the image data. So, denoising images prior to classification is 
compulsory. Noisy image classification tasks incorporate two steps, i.e. 
image denoising and image classification. This section first explains some 
conventional models for image denoising based on AEs as well as image 
classification with CNN. Then it presents the proposed hybrid methods 
consisting different cascaded AEs plus CNN.

CONVENTIONAL METHODS FOR IMAGE 
DENOISING AND CLASSIFICATION

Convolutional Neural Network (CNN) as Image Classifier

CNNs (LeCun et al., 1998) which are multiple-layered variants of artificial 
neural network (ANN) are well applied to classify images and perceive visual 
patterns straightforwardly from pixel images. In a CNN architecture, the 
information propagation throughout its multiple layers allows it to extract 
features from the perceived data at layers apiece by means of applying digital 
filtering techniques. CNNs perform on the basis of two main processes: 
convolution and subsampling. During the convolution process, a small-sized 
kernel is applied over input feature map (IFM) and produces a convolved 
feature map (CFM). The first set of CFMs are produced by applying the 
convolutional operation over the original input image. Here, a kernel is only 
an arrangement of weights and a bias. Every particular point in the CFM is 
gained by applying the same kernel over every small portion of the IFM, 
called a local receptive field (LRF). In this way, weights are shared among 
all positions throughout the convolutional process and spatial locality is 
preserved. The CFM computed from an IFM would be,

(1)

where     and    represent the bias of the kernel                  activation function 
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the experiments here, the scaled sigmoid activation function as well as a single 
bias is used for every latent map used. While particular kernels may create 
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In CNN, each convolutional layer is followed by a subsampling layer to simplify 
the feature map gained from the convolution operation. This simplification 
process is done by selecting significant features from a region and discarding 
the rest (Du et al., 2017). Among various sub-sampling methods, max-pooling 
(Scherer et al., 2010) was used throughout our experiments. It takes the 
maximum incentive over non-overlapping sub-locales and can be defined as:

(2)

where R and C denote size of the pooling area as R × C matrix and d denotes 
the subsampling operation on the pooling area. The size of SFM becomes half 
of the CFM if R × C  is 2 × 2. In max-pooling, each point in the SFM is the 
maximum value computed from a particular 2 × 2  locale of the CFM (Akhand 
et al., 2016, 2017).

In CNN, the series of convolution-subsampling operation is followed by a 
hidden layer and then an output layer sequentially. Where nodes of a hidden 
layer and output layers are fully connected there lies a linear representation of 
terminal SFM values as a hidden layer. The error in the classification task can 
be measured from:

(3)

where n is the product of the total number of patterns and the total number of 
output nodes in that particular classification task, every particular pattern  ,       
       and      denotes the desired output and obtained output respectively. The learning 
parameters are updated during backpropagation. Throughout our experiment, 
back-propagation (BP) (Liu et al., 2015; Bouvrie, 2006) was used for training 
the CNN.  The CNN applied here in our experiment is demonstrated in Fig.1. It 
consists of two convolutional layers (conv1 and conv2) and two subsampling 
layers (sub1 and sub2) each following a single convolutional layer. Throughout 
the experiments, the CNN used here was trained with noiseless raw images.

Denoising Autoencoder (DAE)

The DAE expands the conventional autoencoder alongside some stochastic 
augmentations keeping in mind the end goal to attain the ability to reproduce 
the native image from its noisy form (Vincent et al., 2008). This noise is usually 
included by physically utilizing deterministic distribution. The architecture of 
the DAE is demonstrated in Fig. 2.

                                                𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = 𝒻𝒻(∑∑𝐾𝐾(𝑖𝑖,𝑗𝑗) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥+𝑖𝑖,𝑦𝑦+𝑗𝑗)

𝐾𝐾𝓌𝓌

𝑗𝑗=1

𝐾𝐾𝒽𝒽

𝑖𝑖=1
+ 𝔅𝔅)                                (1) 

𝔅𝔅   

 

 𝒻𝒻 

 

𝐾𝐾𝒽𝒽 × 𝐾𝐾𝓌𝓌 

 

                                                       𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) =  𝒹𝒹 (∑∑𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑥𝑥−1+𝑖𝑖,𝑦𝑦𝑦𝑦−1+𝑗𝑗)

𝐶𝐶−1

𝑗𝑗=0

𝑅𝑅−1

𝑖𝑖=0
)                                           (2) 

 

                                                           𝔼𝔼(𝑑𝑑𝑜𝑜,𝑦𝑦𝑜𝑜) =  1
2𝑛𝑛∑(𝑑𝑑𝑜𝑜(𝒫𝒫) − 𝑦𝑦𝑜𝑜(𝒫𝒫))2

𝑛𝑛

𝑖𝑖=1
 ,                                                (3) 

 

𝑥𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 

𝑥̃𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 

                                                                                   𝑥̃𝑥 = 𝔇𝔇( 𝑥̃𝑥|𝑥𝑥,℘ )                                                                       (3) 

 

                                                                       𝑦𝑦 = ℱ(ℳ1𝑥̃𝑥 + ℬ1)                                                              (4) 

 

                                                                        𝑧𝑧 = ℊ(ℳ2𝑦𝑦 + ℬ2)                                                              (5) 

 

                                                                Δ(x, z) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
                                                       (6) 

                                                𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = 𝒻𝒻(∑∑𝐾𝐾(𝑖𝑖,𝑗𝑗) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥+𝑖𝑖,𝑦𝑦+𝑗𝑗)

𝐾𝐾𝓌𝓌

𝑗𝑗=1

𝐾𝐾𝒽𝒽

𝑖𝑖=1
+ 𝔅𝔅)                                (1) 

𝔅𝔅   

 

 𝒻𝒻 

 

𝐾𝐾𝒽𝒽 × 𝐾𝐾𝓌𝓌 

 

                                                       𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) =  𝒹𝒹 (∑∑𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑥𝑥−1+𝑖𝑖,𝑦𝑦𝑦𝑦−1+𝑗𝑗)

𝐶𝐶−1

𝑗𝑗=0

𝑅𝑅−1

𝑖𝑖=0
)                                           (2) 

 

                                                           𝔼𝔼(𝑑𝑑𝑜𝑜,𝑦𝑦𝑜𝑜) =  1
2𝑛𝑛∑(𝑑𝑑𝑜𝑜(𝒫𝒫) − 𝑦𝑦𝑜𝑜(𝒫𝒫))2

𝑛𝑛

𝑖𝑖=1
 ,                                                (3) 

 

𝑥𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 

𝑥̃𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 

                                                                                   𝑥̃𝑥 = 𝔇𝔇( 𝑥̃𝑥|𝑥𝑥,℘ )                                                                       (3) 

 

                                                                       𝑦𝑦 = ℱ(ℳ1𝑥̃𝑥 + ℬ1)                                                              (4) 

 

                                                                        𝑧𝑧 = ℊ(ℳ2𝑦𝑦 + ℬ2)                                                              (5) 

 

                                                                Δ(x, z) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
                                                       (6) 

                                                𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = 𝒻𝒻(∑∑𝐾𝐾(𝑖𝑖,𝑗𝑗) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥+𝑖𝑖,𝑦𝑦+𝑗𝑗)

𝐾𝐾𝓌𝓌

𝑗𝑗=1

𝐾𝐾𝒽𝒽

𝑖𝑖=1
+ 𝔅𝔅)                                (1) 

𝔅𝔅   

 

 𝒻𝒻 

 

𝐾𝐾𝒽𝒽 × 𝐾𝐾𝓌𝓌 

 

                                                       𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) =  𝒹𝒹 (∑∑𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑥𝑥−1+𝑖𝑖,𝑦𝑦𝑦𝑦−1+𝑗𝑗)

𝐶𝐶−1

𝑗𝑗=0

𝑅𝑅−1

𝑖𝑖=0
)                                           (2) 

 

                                                           𝔼𝔼(𝑑𝑑𝑜𝑜,𝑦𝑦𝑜𝑜) =  1
2𝑛𝑛∑(𝑑𝑑𝑜𝑜(𝒫𝒫) − 𝑦𝑦𝑜𝑜(𝒫𝒫))2

𝑛𝑛

𝑖𝑖=1
 ,                                                (3) 

 

𝑥𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 

𝑥̃𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 

                                                                                   𝑥̃𝑥 = 𝔇𝔇( 𝑥̃𝑥|𝑥𝑥,℘ )                                                                       (3) 

 

                                                                       𝑦𝑦 = ℱ(ℳ1𝑥̃𝑥 + ℬ1)                                                              (4) 

 

                                                                        𝑧𝑧 = ℊ(ℳ2𝑦𝑦 + ℬ2)                                                              (5) 

 

                                                                Δ(x, z) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
                                                       (6) 

                                                𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = 𝒻𝒻(∑∑𝐾𝐾(𝑖𝑖,𝑗𝑗) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥+𝑖𝑖,𝑦𝑦+𝑗𝑗)

𝐾𝐾𝓌𝓌

𝑗𝑗=1

𝐾𝐾𝒽𝒽

𝑖𝑖=1
+ 𝔅𝔅)                                (1) 

𝔅𝔅   

 

 𝒻𝒻 

 

𝐾𝐾𝒽𝒽 × 𝐾𝐾𝓌𝓌 

 

                                                       𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) =  𝒹𝒹 (∑∑𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑥𝑥−1+𝑖𝑖,𝑦𝑦𝑦𝑦−1+𝑗𝑗)

𝐶𝐶−1

𝑗𝑗=0

𝑅𝑅−1

𝑖𝑖=0
)                                           (2) 

 

                                                           𝔼𝔼(𝑑𝑑𝑜𝑜,𝑦𝑦𝑜𝑜) =  1
2𝑛𝑛∑(𝑑𝑑𝑜𝑜(𝒫𝒫) − 𝑦𝑦𝑜𝑜(𝒫𝒫))2

𝑛𝑛

𝑖𝑖=1
 ,                                                (3) 

 

𝑥𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 

𝑥̃𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 

                                                                                   𝑥̃𝑥 = 𝔇𝔇( 𝑥̃𝑥|𝑥𝑥,℘ )                                                                       (3) 

 

                                                                       𝑦𝑦 = ℱ(ℳ1𝑥̃𝑥 + ℬ1)                                                              (4) 

 

                                                                        𝑧𝑧 = ℊ(ℳ2𝑦𝑦 + ℬ2)                                                              (5) 

 

                                                                Δ(x, z) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
                                                       (6) 

                                                𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = 𝒻𝒻(∑∑𝐾𝐾(𝑖𝑖,𝑗𝑗) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥+𝑖𝑖,𝑦𝑦+𝑗𝑗)

𝐾𝐾𝓌𝓌

𝑗𝑗=1

𝐾𝐾𝒽𝒽

𝑖𝑖=1
+ 𝔅𝔅)                                (1) 

𝔅𝔅   

 

 𝒻𝒻 

 

𝐾𝐾𝒽𝒽 × 𝐾𝐾𝓌𝓌 

 

                                                       𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) =  𝒹𝒹 (∑∑𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑥𝑥−1+𝑖𝑖,𝑦𝑦𝑦𝑦−1+𝑗𝑗)

𝐶𝐶−1

𝑗𝑗=0

𝑅𝑅−1

𝑖𝑖=0
)                                           (2) 

 

                                                           𝔼𝔼(𝑑𝑑𝑜𝑜,𝑦𝑦𝑜𝑜) =  1
2𝑛𝑛∑(𝑑𝑑𝑜𝑜(𝒫𝒫) − 𝑦𝑦𝑜𝑜(𝒫𝒫))2

𝑛𝑛

𝑖𝑖=1
 ,                                                (3) 

 

𝑥𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 

𝑥̃𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 

                                                                                   𝑥̃𝑥 = 𝔇𝔇( 𝑥̃𝑥|𝑥𝑥,℘ )                                                                       (3) 

 

                                                                       𝑦𝑦 = ℱ(ℳ1𝑥̃𝑥 + ℬ1)                                                              (4) 

 

                                                                        𝑧𝑧 = ℊ(ℳ2𝑦𝑦 + ℬ2)                                                              (5) 

 

                                                                Δ(x, z) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
                                                       (6) 



241

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

For a given input                             , DAE adulterates x into               
with some random noise. It is added with a certain probability   using a 
stochastic mapping.

(3)

The type of distribution    is regulated by the distribution of the original input  
x and the kind of arbitrary noise added to it. In practical cases, binomial noise 
is used for black and white images, whereas for color images uncorrelated 
Gaussian noise is better suited. However, the zero masking (binomial) noise 
as well as Gaussian noise were applied throughout the experiments here. Then,   
    was mapped to a underlying hidden representation  y by means of a nonlinear 
deterministic function   .

(4)

In the very same way as in the traditional autoencoder, this hidden representation 
then mapped to the reconstructed feature, z ∈ [0.1]dimension of by original input 
applying another nonlinear deterministic function   .

(5)

The construction error was assessed by computing the mean squared error  ∆ 
between input x and the reconstructed feature representation z. This is defined
as:

Figure 1. CNN architecture for classification.
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Denoising Autoencoder (DAE) 

The DAE expands the conventional autoencoder alongside some stochastic augmentations keeping in 
mind the end goal to attain the ability to reproduce the native image from its noisy form (Vincent et al., 
2008). This noise is usually included by physically utilizing deterministic distribution. The architecture of 
the DAE is demonstrated in Fig. 2. 

For a given input , DAE adulterates  into  with some random noise. 
It is added with a certain probability  using a stochastic mapping. 

 

The type of distribution  is regulated by the distribution of the original input  and the kind of arbitrary 
noise added to it. In practical cases, binomial noise is used for black and white images, whereas for color 
images uncorrelated Gaussian noise is better suited. However, the zero masking (binomial) noise as well 
as Gaussian noise were applied throughout the experiments here. Then,  was mapped to a underlying 
hidden representation  by means of a nonlinear deterministic function . 

 

In the very same way as in the traditional autoencoder, this hidden representation then mapped to the 
reconstructed feature,  of by original input applying another nonlinear deterministic 
function . 

 

The construction error was assessed by computing the mean squared error  between input  and the 
reconstructed feature representation . This is defined 
as:

 

 

 
Figure 1. CNN architecture for classification. 
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(6)

The main aim of this reconstruction process is to minimize the construction 
error and this is done by optimizing the model parameters in such a way that:

(7)

For our experiment, the DAE was trained with images corrupted by 20% noise.

Convolutional Denoising Autoencoder (CDAE)

The fundamental contrast between CDAE (Masci et al., 2011) and conventional 
autoencoders is unlike others. CDAE shares weights among all positions in 
the input and consequently it conserves spatial locality. Subsequently, the 
consequent reconstruction process is finished by a linear combination of all-
important IMAGE PATCHES on the premise of the latent code. For a single 
channel input x the latent representation of the kth feature map would be:

(8)

where   denotes the bias,  represents the activation function and the 2-D 
convolution is symbolized by *. The scaled hyperbolic tangent activation 
function and a single bias were used for every latent map during the 
experiments. The reconstruction was achieved by applying:

(9)

Figure 2. DAE architecture for image denoising.
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The main aim of this reconstruction process is to minimize the construction error and this is done by 
optimizing the model parameters in such a way that: 

 

 
 

For our experiment, the DAE was trained with images corrupted by 20% noise. 
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important IMAGE PATCHES on the premise of the latent code. For a single channel input  the latent 
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Figure 3. CDAE architecture for image denoising.

As in the previous step, for every input channel, one bias    was also used here 
also. H denotes the group of underlying feature maps, the flip operation over 
one and the other dimensions of the weights are identified by   . The error 
function used here is defined as:

(10)

The gradient of this error function is computed during the backpropagation 
(Liu et al., 2015; Bouvrie, 2006) step. The overall architectural description is 
illustrated in Fig. 3. The convolution operation employed here were uniform 
to the convolution operation depicted in the CNN section. Amid the training 
period the native image was utilized as the output label with a specific end goal 
to update the kernel weights and different parameters so that in times of testing 
the CDAE could reproduce a noise-omitted picture given a noise-injected one. 
In this experiment, the CDAE was trained with 20% noisy images.

Denoising Variational Autoencoder

The denoising variational autoencoder (DVAE) (Ciresan et al., 2011c; Kingma 
and Welling, 2013), a modern variant of AE, is a deep directed graphical model 
that interprets the output of the encoder by means of variational inference. 
There are basically three components as the building block of a DVAE: an 
encoder, the following decoder and finally a loss function. The structure of 
the DVAE used all through this experiment is demonstrated in Fig. 4. Both the 
encoder and the decoder can be any variant of the neural network. It computes 
probability distribution                  and thus finds out the probability distribution 
of data x by employing the following equation:

      9 
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(11)

where     denotes the weights and biases of the decoder,           is the probability 
distribution of the latent variable y which is often the standard normal 
distribution       (0, I), and                   is the decoder’s output under noise rumination in 
terms of probability distribution of the reconstructed data given latent features.

The encoder neural network takes data point x as input and translates it to 
a hidden representation y which has significantly less dimension than x. 
As the encoder learns to compress the data into a significantly stochastic 
less dimensional space, it produces output parameters which is a Gaussian 
probability density                .      represents the weights and biases of the encoder. 
This posterior               is the uncorrelated multivariate normal determined by 
the encoder:

(12)

where    represents the standard normal,     and σ  denote the mean and the 
standard deviation respectively. The decoder neural network takes the latent 
feature representation y as input and its outputs are the parameters to the 
probability distribution of the data              .  As the decoder tries to reconstruct 
from the real-valued numbers in  y with less dimensionality to real-valued 
numbers in  x of higher dimensionality, some information may be lost. This 
reconstruction loss is calculated using log-likelihood .

Unlike other conventional autoencoders, the loss function used in DVAE is the 
negative log-likelihood with an additional regularizer. As all the data points 
do not share global representation, the loss function is decomposed into just 
terms that rely on a single data point. The loss function     for a single data 
point xi is computed by:

(13)

Thus, for total  data points the overall loss  would be:

(14)

This DVAE is trained to reconstruct native images from their 20% noisy form.
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Figure 4. DVAE architecture for image denoising.

Proposed Hybrid Models for Noisy Image Classification

This section explains the proposed hybrid models DAE-CNN, CDAE-CNN, 
DVAE-CNN, DAE-CDAE-CNN and DVAE-CDAE-CNN for noisy image 
classification. The common feature of all these models is that a CNN is used as 
a classifier which takes denoised image (i.e. reconstructed) from the prior AE 
of a particular model. Conventional AE(s) of a model are trained individually 
with regular noise and CNN is trained with noise-free image. Finally, AE(s) 
and CNN are cascaded to form a particular hybrid model and no further training 
is performed. The following subsections explain the architectural description 
as well as the working procedures of each individual model. 

Hybrid Model 1: DAE-CNN Architecture

The proposed DAE-CNN is a supervised deep network designed in order to 
perform image classification regardless of the possibility of they being noisy. 
With layer-wise training, the whole architecture of the DAE-CNN is optimized. 
Fig. 5 shows the all-inclusive architecture of the proposed DAE-CNN model. 
This model is a fusion of DAE and a two-layered CNN. In the first place, the 
noisy image is refined by the DAE, and afterward the reconstructed image is 
fed to the accompanying CNN. DAE filters the noises from the input images 
via the reconstruction process. All the encoder and decoder parameters (the 
input-hidden and the hidden-output weights) are initialized by the weights of 
the DAE trained before (discussed in the DAE section). The following CNN 
is designed with two convolution-subsampling layers; at first, a following 
dense layer and finally an output layer. All the parameters of the CNN (the 
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hidden-output weights, local averaging parameters, and kernels) are set to the 
corresponding parameters used in the pre-trained CNN as discussed in the 
CNN section. In the end, only via a forward pass, this architecture does the 
noisy image classification task.

Figure 5. DAE-CNN architecture for noisy image classification.

Hybrid Model 2: CDAE-CNN ArchitectureCDAE-CNN is another 
supervised deep network used in this study for classifying noisy images as 
shown in Fig. 6. It is a combination of a CDAE at first and follows a two-
layered CNN in the very same manner DAE-CNN architecture incorporates a 
DAE as an image reconstructor and a CNN as a classifier. Serving as a filter 
as well as a reconstructor, the CDAE reconstructs noise-free images from the 
noisy version fed to it and then passes it to the following CNN. The kernel 
weights along all the parameters of both CDAE and the CNN used here were 
initialized with the value of the corresponding parameters of the pre-trained 
CDAE and CNN (discussed in the CDAE and CNN section).

Hybrid Model 3: DVAE-CNN Architecture

The DVAE-CNN architecture incorporates one image reconstructor and a 
following classifier like DAE-CNN and CDAE-CNN architecture. In this 
model DVAE serves as the noise filter as well as the image reconstructor. 
At first the noisy image is fed to the DVAE. Like DAE and CDAE it also 
reconstructs noise-free native images from the noisy input images but in a 
variational inference manner. Moreover, it uses an additional regularizer along 
with the negative log-likelihood which is common in all other traditional 
autoencoders. The following two-layered CNN takes this reconstructed 
and less noisy image as input and classifies it. The inclusive architecture is 
optimized via layer-wise training. Fig. 7 gives a proper demonstration of this 
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model. All the weights between the input and hidden layers as well as between 
the hidden and output layers of the DVAE are initialized with the corresponding 
weights of the pretrained DVAE (discussed in the DVAE section). After this, 
the classifier CNN is initialized containing two convolution-subsampling 
layers, a dense layer and in the end, an output layer. All the parameters of this 
CNN are initialized with the ones of the very same parameters used in the pre-
trained CNN (discussed in the CNN section). A simple forward pass would 
then employ DVAE-CNN in the classification task.

Figure 6. CDAE-CNN architecture for noisy-image classification.

Hybrid Model 4: DAE-CDAE-CNN Architecture

The hybrid DAE-CDAE-CNN-supervised image classifier incorporates 
both the denoising and convolutional approaches (DAE and 
CDAE) for filtering noisy images and reconstructing noise-free raw 
 

Figure 7. DVAE-CNN architecture for roisy image classification.

images from them. The all-embracing structure of the DAE-CDAE-CNN is 
exhibited in Fig. 8. It has three basic components: first a DAE, them a CDAE,  
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The DVAE-CNN architecture incorporates one image reconstructor and a following classifier like DAE-
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Figure 8. DAE-CDAE-CNN architecture for noisy image classification. 

both serving as image reconstructors, and finally a two-layered CNN serving 
as an image classifier. The fundamental point of this method is to enhance the 
accuracy of the image classification with better reconstructions of the noisy 
images by having a good quality. The first image reconstructor DAE’s input-
hidden weights as well as thehidden-output weights are set to the value of the 
same pre-trained DAE’s corresponding weights as in DAE-CNN architecture. 
DAE tries to reconstruct the raw image emitting the noise from the noisy input 
image serving as a filter and outputs a reconstructed image with less noise. 
This reconstructed intermediate image is then fed to the CDAE for further 
denoising. Compared to DAE, CDAE yields a better reconstruction in case of 
images. As this CDAE is fed with less noisy images than the original input, 
it outputs a better intermediate representation of the image for the following 
classifier. The kernels and other performance parameters of this CDAE are 
regulated uniformly to the pre-trained CDAE discussed in the CDAE section. 
The two- layered CNN is also regulated uniformly to the CNN, trained with 
zero noise added images for classification purpose (discussed in the CNN 
section).

Hybrid Model 5: DVAE-CDAE-CNN Architecture

DVAE-CDAE-CNN (shown in Fig. 9) works in the same manner as the 
DAE-CDAE-CNN architecture (discussed in the section on Hybrid Model 4: 
DAE-CDAE-CNN Architecture) and contains two image reconstructors: at 
initial point, a DVAE, and then a CDAE. As DVAE performs better image 
reconstruction than the traditional DAE (Im et al., 2017) the input image 
for CDAE is better in quality here compared to the DAE-CDAE-CNN 
architecture. As a result, the hybrid image reconstructor DVAE-CDAE outputs 
better images for the following CNN classifier compared to the DAE-CDAE-
CNN architecture resulting in a better image classification in case the image 
is noisy. All the parameters in this DVAE are tuned to the corresponding 
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parameters’ value of the pre-trained DVAE (as specified in the DVAE section). 
The kernels, hidden-output weights along with the local averaging parameters 
used in this structure are initialized with corresponding parameter values of 
the CDAE and CNN previously trained (discussed in the CDAE and the CNN 
section).

Figure 9. DVAE-CDAE-CNN architecture for recreating native images 
from debased configurations of them because of noise.

PERFORMANCE EVALUATION

This section investigates the performances of the proposed hybrid models on 
the benchmark datasets of two different categories: MNIST numeral images 
and CIFAR-10 object images. This section first describes the datasets and 
the experimental setups used to work over these datasets. Experiments  were 
conducted at different noise levels and the proficiency of the models were 
compared against existing models. These models were implemented in Matlab 
R2015a. The performance analysis was conducted on MacBook Pro Laptop 
(CPU: Intel Core i5 @ 2.70 GHz and RAM: 8.00 GB) in OS-X Yosemite 
environment. 

Data Description

Image data corrupted with noise to occurs while dealing with real life practical 
applications. Even when a well-established system is employed on real-life 
data that system might fail only because of the inappropriateness of the 
data. Therefore, it is highly required to preprocess those image data prior to 
applying them in the practical application plot. With the intention to cope 
with this type of scenario, and at the same time to show the significance of 
the proposed models we considered two benchmark datasets: MNIST (LeCun 
et al. 2010) and CIFAR-10 (Coates et al. 2011), in this study. A large number 
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models. These models were implemented in Matlab R2015a. The performance analysis was conducted on 
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environment.  

Data Description 

Image data corrupted with noise to occurs while dealing with real life practical applications. Even when a 
well-established system is employed on real-life data that system might fail only because of the 
inappropriateness of the data. Therefore, it is highly required to preprocess those image data prior to 
applying them in the practical application plot. With the intention to cope with this type of scenario, and 
at the same time to show the significance of the proposed models we considered two benchmark datasets: 
MNIST (LeCun et al. 2010) and CIFAR-10 (Coates et al. 2011), in this study. A large number of recent 
studies utilized these two datasets considering the image data as a source (LeCun et al., 1998; Vincent et 
al., 2008; Vincent et al., 2010; Masci et al., 2011).  

MNIST Dataset: The dataset contains 70000 28x28-sized sample images with a large variety of distinct 
numeral images from various individuals rehearsing distinctive individual writing patterns. The images 
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of recent studies utilized these two datasets considering the image data as a 
source (LeCun et al., 1998; Vincent et al., 2008; Vincent et al., 2010; Masci 
et al., 2011). 

MNIST Dataset: The dataset contains 70000 28x28-sized sample images with 
a large variety of distinct numeral images from various individuals rehearsing 
distinctive individual writing patterns. The images are divided into training 
and test sets. The test set holds 10000 images having 1000 samples for each 
of the 10 numerals and the training set contains 60000 images having 6000 
images for every individual digit. Fig. 10(a) displays few sample images of 
every handwritten numeralCIFAR-10 Dataset: This dataset contains 32x32-
sized 60000 samples of colored images of ten different 

Figure 10. Samples of some images from MNIST and CIFAR-10 datasets.

objects (airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck). 
The training set consists of 50000 distinct images having 6000 samples of 
every class. The remining 10000 sample images are used as test set. In the test 
set, each of every object has exactly 1000 sample images which are mutually 
exclusive. A few images from each class are shown in Fig. 10(b). For the 
experiments, these images were converted to grey-scale. 

Experimental Setup

We experimented the proposed hybrid models over MNIST and grey-scaled 
CIFAR-10 datasets. Images in these two datasets were different in size. 
MNIST contained images of size 28x28 whereas images in CIFAR-10 were of 
size 32x32 forcing us to apply different architecture for the proposed models. 
This section describes the actual architectural setup used to work with MNIST 
and CIFAR-10 datasets.

A uniform experimental environment was set up for fair investigation among 
the proposed and the existing methods. As the images from the dataset were 
of size 28×28 (MNIST) and 32×32 (CIFAR-10), each of these classifiers 
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had 784 (and 1024) input units so as to take the linearized version of the 
data. As the data was divided into 10 classes, each of these classifiers had 
10 units in the output layer. The intermediate portion of each of the network 
varied based on its architecture. DAE and DVAE had hidden layer size of 
500 (and 700). Additionally, DVAE had an additional latent representation 
layer of size two. On the other hand, CDAE had kernel size of 5×5 and a 
subsample window of 2×2 local averaging area. Throughout the experiments, 
a two-layered CNN was used with all of the AEs (conventional and hybrid) 
having two convolution-subsampling layers. For both convolutional layers, 
the kernel size remained fixed and was 5 × 5  , in both subsampling layers; the 
size of the pooling area was 2 × 2. 

Due to the large-sized training set, batch-wise training was performed; and 
all of the experiments were conducted with a fixed batch size of 50. Weights 
of each of these networks were updated once for a batch of image patterns 
and batch size (BS), i.e. the number of patterns in a batch, was considered as 
a user-defined parameter in such a way that the total training patterns were 
completely divisible by the BS value. For the experiments, the learning rate 
(i.e. eta) values were varied in the range of 0.1 to 1.0.

EXPERIMENTAL RESULTS AND ANALYSIS

As these models were validated against two datasets, the experimental results 
and analysis are presented in two different subsections.

Result on MNIST Dataset

This section illustrates the performance of the proposed models over the MNIST 
data set with noise of different proportions injected in it. Fig. 11 delineates 
the result of the noise removal step utilizing DAE, CDAE, DAE-CDAE, 
DVAE-CNN, DVAE-CDAE-CNN separately on 50% noisy image data and 
these reconstructed images were fed to the following CNN classifier. Initially, 
the images in the dataset were pre-processed and without any additional 
noise added in it. With a specific end goal to assess the performance of these 
proposed hybrid classifiers on noisy images, noise was added manually to 
the images in the dataset. Zero masking noise was used for conducting the 
experiments in which an arbitrary matrix with the equal size of training image 
data was initialized where some of the pixels being arbitrarily OFF having the 
probability of 20% for both training and test cases and then 50% only for the 
test case. It can be clearly seen that the reconstructed image from DAE-CDAE 
and DVAE-CDAE were much better than the reconstructed ones from the 
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standalone AEs. Because of DVAE using the variational upper bound on the 
log-likelihood of the data as loss function rather than normal reconstruction 
error as DAE, it produces better representation of the reconstructed images 
than DAE. However, DVAE produced a little blurry image but it kept the 
shapes of the objects more accurate than DAE. So, when a CDAE was used in 
a cascaded manner after DVAE this blurriness also got omitted resulting in the 
DVAE-CDAE architecture to output better reconstructed images than DAE-
CDAE in terms of 50% noisy input images.

Figure 11. Sample of original images from MNIST dataset with and without 
noise and their reconstruction using different AEs.

The test set classification performance of all five models proposed in this 
study along with a simple CNN for both scenarios when the images were 
corrupted with 20% noise as well as 50% noise are portrayed in Fig. 12. 
The classification accuracy notes up to 400 interactions and Fig. 12(a) gives 
evidence that the DVAE-CNN architecture surpasses all other architecture 
in terms of 20% noisy image classification with 98.84 % accuracy. CDAE-
CNN confirms the second position with 98.69% accuracy. The accuracy 
recorded for DAE-CNN, DAE-CDAE-CNN, DVAE-CDAE-CNN and simple 
CNN architectures are 98.01%, 97.40%, 97.43% and 97.76% respectively. 
In Fig. 12(b) it is clearly visible that whenever the same test set images are 
corrupted with 50% noise, the DVAE-CDAE-CNN architecture surpasses 
all other models attaining 96.74% accuracy whereas it shows least accurate 
classification result in the previous case. The reason behind this contradictory 
scene is that if we compare 50% noisy images against the 20% noisy image 
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data set, a larger number of pixels are found to be forcefully turned ON/OFF 
for 50% noisy images. That’s why, whenever the frontier DVAE trained to 
work with 20% noisy images is fed with 50% noisy images it forces a portion 
of the turned OFF pixels due to zero mask noise to get turned ON. As the 
following CDAE works with this intermediate image it reconstructs other 
affected pixels completely making the classification task for the CNN easier. 
For the very same reasons, the DAE-CDAE-CNN architecture performs 
better than DAE-CNN, CDAE-CNN, DVAE-CNN architectures and achieves 
classification accuracy of 96.34%. The 50% noisy image recognition accuracy 
obtained by DAE-CNN, CDA-CNN, DVAE-CNN are 95.01%, 94.22% and 
95.63% respectively. When these 50% noisy data are fed to the CNN classifier 
without any additional denoising and reconstruction process, the performance 
shown by the simple CNN is the worst and attains the lowest classification 
accuracy (85.15%) compared to the other models. Fig. 12(b) supports the 
fact that, whenever each of these hybrid supervised classifiers give more 
than 95% accuracy with just 50 iterations, a simple CNN’s accuracy was less 

Figure 12. Test set recognition accuracy over MNIST dataset with batch 
size 50 and learning rate 1.0 for different networks.

than 85% at that time. In times of few initial iterations, the test set accuracy 
was lower compared to later iterations. This incident was not unexpected as 
these samples were not conspicuous by these hybrid networks during training 
period. Still, the classification accuracy improved significantly for test image 
sets quickly at a lower number of iterations (e.g. up to 100).

Table 1 details the classification of each class individually by all the proposed 
hybrid models for test set samples after fixed 400 epochs with 20% noise. For
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DAE-CNN and CDAE-CNN, it is obviously noticeable from the table 
that they most exceedingly horrendously performed for the numeral “5” 
and out of 1000 test cases, they classified accurately 957 and 976 cases 
respectively. The DVAE-CNN classifier performed worst while classifying 
“5” as well. Still, it performed better than all the other models. For numeral 
“0” it showed the best classification result. In 999 cases, out of 1000 cases 
it classified “0” correctly. The DAE-CDAE-CNN and DVAE-CDAE-CNN 
architecture also misclassified the same digit 62 and 60 times respectivelyly. 
These perplexities in a couple of manually written numeral images are a 
result of various handwriting styles of individuals, and furthermore, the 
arbitrary noise injected in the images slightly misconstrue the patterns 
with each other. In any case, the proposed models have accomplished best 
classification for “0” by classifying it correctly 995, 997, 999, 997, 997 cases 
out of 1000 experiments for DAE-CNN, CDAE-CNN, DVAE-CNN, DAE-
CDAE-CNN and DVAE-CDAE-CNN individually. Among the majority of 
the cases DVAE-CNN accomplished a decent noisy image classification 
task misclassifying just 116 cases though DAE-CNN, CDAE-CNN, DAE-
CDAE-CNN and DVAE-CDAE-CNN misclassified 199, 131, 260 and 
257 cases respectively. In the case of 50% noisy images, the worst case 
occurred with all the models while classifying numeral character “5”. It was 
misclassified in 71 cases throughout the experiments. The accuracy achieved 
by the CDAE-CNN, DVAE-CNN, DAE-CDAE-CNN and DVAE-CDAE-
CNN architectures in case of classifying “5” are 91.7%, 93.7%, 94.4% and 
95.5% respectively. The accuracies calculated in the case of classifying “3” 
are quite similar: 93.8% for DAE-CNN, 92.8% for CDAE-CNN, 94.4% for 
DVAE-CNN, 95.5% for DAE-CDAE-CNN and 95.9% for DVAE-CDAE-
CNN architectures. These models performed best for classifying numeral 
“0”. In this case, the classification precisions for DAE-CNN, CDAE-CNN, 
DVAE-CNN, DAE-CDAE-CNN and DVAE-CDAE-CNN models were 
98.1%, 97.9%, 98.2%, 98.7% and 98.8% respectively. Moreover, in most 
of the cases the occurrences of other numerals misclassified as “0” were 
few. For all models, the error that occurred mostly were for numerals “8”, 
“9” , “5” and “3” in the descending order.  As this time test set images were 
corrupted with 50% noises, the shapes of the handwritten numerals were 
almost totally distorted resulting in less accurate classification performances 
for the hybrid models than in the case of 20% noisy images because when the 
images were adulterated with 50% noise it was quite difficult to recognize 
them even with clear eyes.
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Table 2

Sample Handwritten Numeral Images along with their Original and Predicted 
Class Labels

Sample 
Image

Actual
Label

Classification using

DAE-CNN CDAE-CNN DVAE-CNN DAE-
CDAE-CNN

DVAE-
CDAE-CNN

2 2 2 2 8 8

4 6 4 4 8 8

3 3 5 3 3 3

7 2 2 2 9 9

Table 2 demonstrates some handwritten numeral images and their corresponding 
class labels in the original as well as in the reconstructed form. It is clearly 
seen that the first image was classified correctly as “2” when reconstructed 
with DAE, CDAE and DVAE, but the reconstruction using DAE-CDAE 
as well as DVAE-CDAE distorted the pattern, thereby causing the CNN to 
classify it as “8”. Numeral “4” was classified correctly when reconstructed 
using CDAE and DVAE, but misclassified as “6” in the case of DAE-CNN 
and “8” by DAE-CDAE-CNN as well as DVAE-CDAE-CNN. However, the 
third pattern was classified correctly using all the models expect CDAE-CNN 
which misclassified it as “5”. On the other hand, the fourth pattern from the 
table was misclassified by all of the networks. It is important to that all of these 
patterns are pretty difficult to identify even by humans because of the diverse 
writing styles of different persons and adding noise with these ambiguous 
patterns makes their classification even more difficult.

Table 3 portrays the consequences of the proposed techniques with different 
prominent works. It, moreover, displays specific feature(s) of individual 
procedures. It is striking that the proposed models did not use any feature 
extraction procedure while the vast majority of the current techniques use 
possibly more than one or maybe a couple of feature extraction techniques. 
Without utilizing any extra technique for feature extraction, the proposed 
DAE-CNN, CDAE-CNN, DVAE-CNN, DAE-CDAE-CNN and DVAE-
CDAE-CNN models seem to beat the existing strategies. According to the 

      21 
 

Table 2. Sample Handwritten Numeral Images along with their Original and Predicted Class Labels 
 

 

 

 

 

 

Table 2 demonstrates some handwritten numeral images and their corresponding class labels in the 
original as well as in the reconstructed form. It is clearly seen that the first image was classified correctly 
as “2” when reconstructed with DAE, CDAE and DVAE, but the reconstruction using DAE-CDAE as 
well as DVAE-CDAE distorted the pattern, thereby causing the CNN to classify it as “8”. Numeral “4” 
was classified correctly when reconstructed using CDAE and DVAE, but misclassified as “6” in the case 
of DAE-CNN and “8” by DAE-CDAE-CNN as well as DVAE-CDAE-CNN. However, the third pattern 
was classified correctly using all the models expect CDAE-CNN which misclassified it as “5”. On the 
other hand, the fourth pattern from the table was misclassified by all of the networks. It is important to 
that all of these patterns are pretty difficult to identify even by humans because of the diverse writing 
styles of different persons and adding noise with these ambiguous patterns makes their classification even 
more difficult. 

Sample 
Image 

Actual 
Label 

Classification using 

DAE-CNN CDAE-CNN DVAE-CNN 
DAE-CDAE-

CNN 
DVAE-

CDAE-CNN 

 
2 2 2 2 8 8 

 
4 6 4 4 8 8 

 
3 3 5 3 3 3 

 
7 2 2 2 9 9 

      21 
 

Table 2. Sample Handwritten Numeral Images along with their Original and Predicted Class Labels 
 

 

 

 

 

 

Table 2 demonstrates some handwritten numeral images and their corresponding class labels in the 
original as well as in the reconstructed form. It is clearly seen that the first image was classified correctly 
as “2” when reconstructed with DAE, CDAE and DVAE, but the reconstruction using DAE-CDAE as 
well as DVAE-CDAE distorted the pattern, thereby causing the CNN to classify it as “8”. Numeral “4” 
was classified correctly when reconstructed using CDAE and DVAE, but misclassified as “6” in the case 
of DAE-CNN and “8” by DAE-CDAE-CNN as well as DVAE-CDAE-CNN. However, the third pattern 
was classified correctly using all the models expect CDAE-CNN which misclassified it as “5”. On the 
other hand, the fourth pattern from the table was misclassified by all of the networks. It is important to 
that all of these patterns are pretty difficult to identify even by humans because of the diverse writing 
styles of different persons and adding noise with these ambiguous patterns makes their classification even 
more difficult. 

Sample 
Image 

Actual 
Label 

Classification using 

DAE-CNN CDAE-CNN DVAE-CNN 
DAE-CDAE-

CNN 
DVAE-

CDAE-CNN 

 
2 2 2 2 8 8 

 
4 6 4 4 8 8 

 
3 3 5 3 3 3 

 
7 2 2 2 9 9 

      21 
 

Table 2. Sample Handwritten Numeral Images along with their Original and Predicted Class Labels 
 

 

 

 

 

 

Table 2 demonstrates some handwritten numeral images and their corresponding class labels in the 
original as well as in the reconstructed form. It is clearly seen that the first image was classified correctly 
as “2” when reconstructed with DAE, CDAE and DVAE, but the reconstruction using DAE-CDAE as 
well as DVAE-CDAE distorted the pattern, thereby causing the CNN to classify it as “8”. Numeral “4” 
was classified correctly when reconstructed using CDAE and DVAE, but misclassified as “6” in the case 
of DAE-CNN and “8” by DAE-CDAE-CNN as well as DVAE-CDAE-CNN. However, the third pattern 
was classified correctly using all the models expect CDAE-CNN which misclassified it as “5”. On the 
other hand, the fourth pattern from the table was misclassified by all of the networks. It is important to 
that all of these patterns are pretty difficult to identify even by humans because of the diverse writing 
styles of different persons and adding noise with these ambiguous patterns makes their classification even 
more difficult. 

Sample 
Image 

Actual 
Label 

Classification using 

DAE-CNN CDAE-CNN DVAE-CNN 
DAE-CDAE-

CNN 
DVAE-

CDAE-CNN 

 
2 2 2 2 8 8 

 
4 6 4 4 8 8 

 
3 3 5 3 3 3 

 
7 2 2 2 9 9 

      21 
 

Table 2. Sample Handwritten Numeral Images along with their Original and Predicted Class Labels 
 

 

 

 

 

 

Table 2 demonstrates some handwritten numeral images and their corresponding class labels in the 
original as well as in the reconstructed form. It is clearly seen that the first image was classified correctly 
as “2” when reconstructed with DAE, CDAE and DVAE, but the reconstruction using DAE-CDAE as 
well as DVAE-CDAE distorted the pattern, thereby causing the CNN to classify it as “8”. Numeral “4” 
was classified correctly when reconstructed using CDAE and DVAE, but misclassified as “6” in the case 
of DAE-CNN and “8” by DAE-CDAE-CNN as well as DVAE-CDAE-CNN. However, the third pattern 
was classified correctly using all the models expect CDAE-CNN which misclassified it as “5”. On the 
other hand, the fourth pattern from the table was misclassified by all of the networks. It is important to 
that all of these patterns are pretty difficult to identify even by humans because of the diverse writing 
styles of different persons and adding noise with these ambiguous patterns makes their classification even 
more difficult. 

Sample 
Image 

Actual 
Label 

Classification using 

DAE-CNN CDAE-CNN DVAE-CNN 
DAE-CDAE-

CNN 
DVAE-

CDAE-CNN 

 
2 2 2 2 8 8 

 
4 6 4 4 8 8 

 
3 3 5 3 3 3 

 
7 2 2 2 9 9 



257

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

table, test set classification accuracies when they are corrupted with 50% 
noise are 95.01%, 94.22%, 95.63%, 96.34%, and 96.74% and with 20% noisy 
test set images, the accuracies are 98.01%, 98.69%, 98.84%, 97.40 % and 
96.74% for DAE-CNN, CDAE-CNN, DVAE-CNN, DAE-CDAE-CNN and 
DVAE-CDAE-CNN architectures individually. It is clearly visible from the 
table that DAE-CNN, CDAE-CNN, DVAE-CNN outperform the other two 
models along with the existing models in case of classifying images subject to 
regular noise. But whenever it comes to classifying massive noisy images the 
DAE-CDAE-CNN and DVAE-CDAE-CNN play the frontier role.

Classification Result on CIFAR-10 Dataset

In this section, the proposed methods were tested over the CIFAR-10 data 
set. From the grey-scaled CIFAR-10 dataset, 50000 sample images were 
considered for training purpose and 10000 for testing. Sample images were 
uniformly distributed over the elementary 10 classes. Noiseless initial data 
were adulterated with 20% Gaussian noise for the training of the autoencoders, 
whereas 50% noise was injected for the testing purpose only with the intention 
to check the performances of the proposed models in the noisy environment. 
Fig. 13 displays some reconstructed images after the noise removal steps 
using DAE, CDAE, DVAE, DAE-CDAE, DVAE-CDAE respectively in case 
the images were corrupted with 50% noise. Without any doubt, the DVAE-
CDAE provides the best reconstruction in the case of 50% noisy images and 
the reconstructed images displayed in the figure show the evidence of the 
statement.

Table 3

A Comparative Description of the Proposed DAE-CNN, CDAE-CNN, DVAE-CNN, 
DAE-CDAE-CNN and DVAE-CDAE-CNN with Some Contemporary Methods

Work reference Classification Noise Recog. acc.

Bengio et al. (2007)
DBN 0% 98.50%

Deep net 0% 98.4%
Shallow net 0% 95%

Glorot (2011) Sparse rectifier neural network 25% 98.43%
Vincent et al. (2008) SDAE-3 10% 97.20% %

Vincent et al. (2010)
SVM 25% 98.37%

SDAE-3 25% 98.5%

Proposed DAE-CNN CNN
20% 98.01%
50% 95.01%

(continued)
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Work reference Classification Noise Recog. acc.

Proposed CDAE-
CNN CNN

20% 98.69%
50% 94.22%

Proposed DVAE-
CNN CNN

20% 98.84%
50% 95.63%

Proposed DAE-
CDAE-CNN CNN

20% 97.40 %
50% 96.34%

Proposed DVAE-
CDAE-CNN CNN

20% 97.43 %
50% 96.74%

Figure 13. Sample of original images from CIFAR -10 dataset with and 
without noise and their reconstruction using AEs.

Figure 14 shows the noisy-image classification accuracy of the different 
proposed models along with a simple CNN in case the images were corrupted 
with 20% noise as well as 50% noise. The reported values were captured up to 
400 iterations. Figure 14(a) depicts the fact that DVAE-CNN performs the best 
with 20% noisy images achieving an accuracy of 62.8%. The classification 
performance of DAE-CNN, CDAE-CNN, DAE-CDAE-CNN, DVAE-CDAE-
CNN and the simple CNN are 62.37%, 62.69%, 61.88%, 61.93% and 62.04% 
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respectively. Fig. 14(b) shows the classification accuracy of the proposed 
models in the case of classifying 50% noisy image data up to 400 epochs. 
This time, the DVAE-CDAE-CNN architecture achieved the first place with 
53.91% accuracy. The DAE-CNN, CDAE-CNN, DVAE-CNN and DAE-
CDAE-CNN showed a reasonable classification accuracy (52.95%, 52.5%, 
52.64% and 53.63% respectively.). It is clearly visible that the classification 
accuracy of these models degraded while working with the CIFAR-10 dataset 
compared to the performance of the models over the MNIST data set. The 
main reason behind this issue was that in the tiny pictures in the CIFAR-10 
data set (32x32 sized) do not give a clear representation of the objects in the 
image within such a small region. Moreover, the objects were captured in 
images with different orientationTable 4 details the classification accuracy for 
each individual object for the test set images after 400 epochs with 20% as 
well as 50% noise. All the models showed best classification accuracy for 
the object “Frog”. The DAE-CNN, CDAE-CNN and DVAE-CNN recognized 
it correctly 704, 702 and 707times respectively. Both the DAE-CDAE-CNN 
and the DVAE-CDAE-CNN accurately classified it in 699 cases. The worst 
classification happened while classifying the object “Deer”. Even, the DVAE-
CNN architecture that showed the best performance while classifying 20% 
noisy images misclassified it in 49% cases. In case of classifying 50% noisy 
images, all the models performed worst for the object “Deer”. The CDAE-CNN 
architecture misclassified it 626 times which was the highest misclassification 
result. The DAE-CNN architecture classified it correctly only 7 times more 
than the CDAE-CNN architecture. The DVAE-CNN, DAE-CDAE-CNN and 
DVAE-CDAE-CNN architecture showed 42.9%, 37.6% and 39.4% accuracy 
respectively. The classification result was not up to the mark for the object 
“Dog”. The DAE-CNN, CDAE-CNN, DVAE-CNN, DAE-CDAE-CNN 
and DVAE-CDAE-CNN models’ classification accuracies in the case of 
classifying “Dog” were 39.8%, 39.4%, 39.5%, 40.9% and 41.1% respectively. 
These models performed best for the object “Frog” with 63%, 62.8%, 62.8%, 
63.5% and 63.8% accuracies achieved by DAE-CNN, CDAE-CNN, DVAE-
CNN, DAE-CDAE-CNN, DVAE-CDAE-CNN respectively.

Table 5 demonstrates some sample images from the CIFAR-10 datasets and 
their corresponding class labels in the original as well as in the reconstructed 
form. The first image was of “Airplane”. All the models misclassified it as 
“Bird”. All the models except the DAE-CNN classified the second image 
correctly as “Horse”, whereas DAE-CNN classified it as “Dog”. The third 
image of a “Ship” was classified accurately by all the models. The last image 
was of “Truck”. Only DAE-CDAE-CNN and DVAE-CDAE-CNN classified 
it correctly. 
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Figure 1.  Cyber risk assessment (CRA) conceptual framework.

Table 5

Sample Objects from CIFAR-10 Dataset along with their Original and Predicted 
Class Labels

Original 
image

Actual
label

Classified with hybrid methods

DAE-
CNN

CDAE-
CNN

DVAE-
CNN

DAE-
CDAE-
CNN

DVAE-
CDAE-
CNN

Airplane Bird Bird Bird Bird Bird

Horse Dog Horse Horse Horse Horse

Ship Ship Ship Ship Ship Ship

Truck Automobile Automobile Automobile Truck Truck

Table 6 compares the result of the proposed hybrid noisy image classifiers with 
other prominent works while working over the CIFAR-10 data set along with 
the particular feature(s) of those models. As per the table, test set accuracies 
with 50% noise were 52.95%, 52.5%, 52.64%, 53.68% and 53.91%, while 
with the 20% noise test set, accuracies were 62.37%, 62.69%, 62.8%, 61.88% 
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Figure 14. Test set recognition accuracy over CIFAR-10 dataset with batch size 50 and learning rate 1.0 for 
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and 61.93% for DAE-CNN, CDAE-CNN, DVAE-CNN, DAE-CDAE-CNN 
and DVAE-CDAE-CNN models respectively. From this table, it is clearly 
visible that our proposed models outperform some of the existing prominent 
models in the case of classifying noisy images, especially when the images 
were subject to massive noises. Moreover, the classifier was the CNN. All the 
autoencoders and their hybrid models served only for the image denoising 
task. From the table, it is clearly observable that without prior image denoising 
by the autoencoders, the performance of the classifier would be disastrous. 
It is also notable that our models do not need to be trained with images 
corrupted with noises of different proportions. The DAE, CDAE, DVAE were 
trained with 20% noisy images only and the CNN was trained with noise-
free raw images. Still, the DAE-CDAE-CNN and the DVAE-CDAE-CNN 
models classified 50% noisy images with very good classification accuracy 
omitting the necessity for the noisy-image classifiers to be trained with 50% 
noisy images. The cascading structures of the DAE-CDAE-CNN and DVAE-
CDAE-CNN enabled them to show such great performances over the massive 
noisy data.

Table 6

A Comparative Description of the Proposed DAE-CNN, CDAE-CNN, DVAE-CNN, 
DAE-CDAE-CNN and DVAE-CDAE-CNN with some Contemporary Methods while 
Experimenting over CIFAR-10.

Work reference Classification Noise Recog. acc.

Glorot et al. (2011) Sparse rectifier neural 
network 25% 50.48%

Traditional CNN (LeCun et al., 1998) CNN
20% 62.04%

50% 41.42%

Proposed DAE-CNN CNN
20% 62.37%

50% 52.95%

Proposed CDAE-CNN CNN
20% 62.69%

50% 52.5%

Proposed DVAE- CNN CNN
20% 62.8 %

50% 52.64%

Proposed DAE-CDAE-CNN CNN
20% 61.88%

50% 53.68%

Proposed DVAE-CDAE-CNN CNN
20% 61.93%

50% 53.91%
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Significance of the Proposed Hybrid Models

There are several significant differences between the proposed hybrid methods 
and the existing ones in terms of noisy-image classification. Conventional 
models train AEs for denoising in a stacked or standalone way, whereas 
AEs are trained independently and then cascaded for denoising in any of the 
proposed hybrid models. The proposed methods use CNN as a classifier rather 
than MLP or other classifiers as CNN performs well for image classification. 
The experimental results on benchmark datasets revealed the effectiveness of 
the proposed hybrid models for both regular and massive noise.

Deep learning-based models have the dependency over training data; therefore, 
existing models perform well only when they work with the images corrupted 
with the very same proportion of noise as in the training data and performance 
degrades when noise level increases. Our proposed hybrid models DAE-
CDAE-CNN and DVAE-CDAE-CNN have overcome this problem. Both the 
architectures are very good at classifying images injected with massive noisy 
data even if they are trained with images corrupted with regular noise. The 
underlying cascaded structures of these two models make it possible for them 
to perform well in this case. These two models use two AEs as image denoiser 
and both the AEs are trained to reconstruct native images from images subject 
to the same level of regular noises. So, in both cases, the frontier AE omits 
a proportion of noise from the input image and the reconstructed image is 
passed to the following AE for further filtering. As a result, whenever the 
percentage of noise is massive in the input images these two noisy-image 
classifiers perform better than other models. 

On the other hand, the proposed DAE-CNN, CDAE-CNN and DVAE-CNN 
models performed well for regular noise. As single AEs in these three models 
are trained with regular level noisy images, their standalone structure is 
sufficient to denoise regular noisy images which are later easy to classify with 
CNN.   

CONCLUSION

Conventional image classifiers perform really well with preprocessed data 
generated in the laboratory. But when they are employed to classify real world 
data, most often these images are corrupted with noise during acquisition 
and transmission. As a result, there is a high chance that they would fail 
drastically when applied in real life tasks. The solution to this problem is 
to denoise the images prior to feeding to the classifier. This research work 
proposed five supervised deep architectures named DAE-CNN, CDAE-
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CNN, DVAE-CNN, DAE-CDAE-CNN and DVAE-CDAE-CNN among 
which the first three perform well when the images are subjected to a small 
amount of noise, whereas, the last two are for classifying massive noisy data. 
These models utilize the ideas of various autoencoders and along with CNN 
construct classifiers for noisy image data. These deep models have the ability 
to filter noise from the image data and classify them by learning latent feature 
representations from them. These models’ classification accuracy over MNIST 
and CIFAR-10 datasets (corrupted with noise of different proportions) gives 
evidence that they have the capability to learn hierarchical representations 
of the images. Still, there are scopes for further developments in future. The 
different hybrid models proposed here are good with a different level of 
noises. Our future research work would focus on building a standalone model 
using these techniques that would be able to classify images adulterated with 
any proportion of noise.
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