
233

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

Received: 17 October 2017 Accepted: 10 February 2018

How to cite this paper:

Roy, S. S., Ahmed, M., & Akhand, M. A. H. (2018). Noisy image classification using hybrid
deep learning methods. Journal of Information and Communication Technology, 17 (2),
233–269.

NOISY IMAGE CLASSIFICATION USING HYBRID DEEP
LEARNING METHODS

1Sudipta Singha Roy, 2Mahtab Ahmed &
2Muhammad Aminul Haque Akhand

1 Institute of Information and Communication Technology
Khulna University of Engineering & Technology, Khulna, Bangladesh

2 Dept. of Computer Science and Engineering
Khulna University of Engineering & Technology, Khulna, Bangladesh

sudipta.singha.roy@iict.kuet.ac.bd; mahtab@cse.kuet.ac.bd;
akhand@cse.kuet.ac.bd

ABSTRACT

In real-world scenario, image classification models degrade in
performance as the images are corrupted with noise, while these
models are trained with preprocessed data. Although deep neural
networks (DNNs) are found efficient for image classification
due to their deep layer-wise design to emulate latent features
from data, they suffer from the same noise issue. Noise in image
is common phenomena in real life scenarios and a number of
studies have been conducted in the previous couple of decades
with the intention to overcome the effect of noise in the image
data. The aim of this study was to investigate the DNN-based
better noisy image classification system. At first, the autoencoder
(AE)-based denoising techniques were considered to reconstruct
native image from the input noisy image. Then, convolutional
neural network (CNN) is employed to classify the reconstructed
image; as CNN was a prominent DNN method with the ability
to preserve better representation of the internal structure of the
image data. In the denoising step, a variety of existing AEs,
named denoising autoencoder (DAE), convolutional denoising
autoencoder (CDAE) and denoising variational autoencoder

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

234

(DVAE) as well as two hybrid AEs (DAE-CDAE and DVAE-
CDAE) were used. Therefore, this study considered five hybrid
models for noisy image classification termed as: DAE-CNN,
CDAE-CNN, DVAE-CNN, DAE-CDAE-CNN and DVAE-
CDAE-CNN. The proposed hybrid classifiers were validated
by experimenting over two benchmark datasets (i.e. MNIST
and CIFAR-10) after corrupting them with noises of various
proportions. These methods outperformed some of the existing
eminent methods attaining satisfactory recognition accuracy
even when the images were corrupted with 50% noise though
these models were trained with 20% noise in the image. Among
the proposed methods, DVAE-CDAE-CNN was found to be
better than the others while classifying massive noisy images,
and DVAE-CNN was the most appropriate for regular noise. The
main significance of this work is the employment of the hybrid
model with the complementary strengths of AEs and CNN in
noisy image classification. AEs in the hybrid models enhanced
the proficiency of CNN to classify highly noisy data even though
trained with low level noise.

Keywords: Image denoising, CNN, denoising autoencoder, convolutional
denoising autoencoder, variational denoising autoencoder, hybrid architecture.

INTRODUCTION

In recent years, deep learning approaches have been extensively studied
for image classification and image processing tasks such as perceiving the
underlying knowledge from images. Deep neural networks (DNN) utilize
their deep layer-wise design to emulate latent features from data and thus
pick up the possibility to appropriately classify patterns. Arigbabu et al.
(2017) combined Laplacian filters over images with the Pyramid Histogram
of Gradient (PHOG) shape descriptor (Bosch, et al., 2007) to extract face
shape description. Later, they used the Support Vector Machine (SVM)
(Cortes & Vapnik, 1995) for face recognition tasks. One progressive feature of
extracting variants of DNNs, the convolutional neural network (CNN) (LeCun
et al.,1998; Krizhevsky et al.,2012; Schmidhuber, 2015), has surpassed the
vast majority of the image classification methods. Different research work
outcomes boldly indicate that feature selection from deep learning with CNN
should be the primary candidate in most of the image recognition tasks (Sharif
et al. 2014). The convolution and the following pooling (Scherer et al., 2010)

235

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

layers preserve the possession of the corresponding location of features and
along these lines make the CNN empowered to preserve a better epitome
of the input data. Current CNN works are concentrated on computer vision
issues, for example 3D objects recognition, traffic signs and natural images
classification (Huang and LeCun, 2006; Cireşan et al., 2011a; Cireşan et al.,
2011b), image segmentation (Turaga et al., 2010), face detection (Matsugu
et al., 2003), chest pathology identification (Bar et al., 2015), Magnetic
Resonance Image (MRI) segmentation (Bezdek et al., 1993) and so on.
However, the performance of deep CNN highly depends on the tremendous
amount of pre-processed labeled data. Simonyan (2013) proposed an improved
variant of the Fisher vector image encoding method and combined it with a
CNN to develope a hybrid architecture that can classify images requiring a
comparatively smaller computational cost than the traditional models, as well
as assess the performance of the image classification pipeline with increased
depth in layers.

Some variants of deep models, named unsupervised deep networks, learn
underlying representation from input images overcoming the necessity of
these input data to be labeled. One traditional model of this type is stacked
autoencoders (SAE) (Bourlard and Kamp, 1988; Bengio, 2009; Rumelhart,
1985) in which the basic architecture holds a stack of shallow encoders which
enable them to learn features from the data by means of encoding the input data
into a vector and then decoding this vector to its native representation. Shin
et al. (2013) pertained the stacked sparse autoencoders (SSAEs) for medical
image classification task and achieved notable promotion in classification
accuracy. Norouzi et al. (2009) introduced the stacked convolutional restricted
Boltzmann machine (SCRBM) which incorporates dimensional locality and
also weight sharing by maintaining the stack of the convolutional restricted
Boltzmann machine (CRBM) to build deep models. Lee et al. (2009) introduced
convolutional deep belief network (CDBN), which places the CRBM in each
layer instead of RBM unlike the deep belief network (DBN), and utilization
convolution structure to join the layers and thus build hierarchical models.
Contrasted with the conventional DBN, it preserves spatial locality and
enhances the performance of feature representation (Hinton et al., 2006). With
comparable thoughts, Zeiler et al. (2010, 2011) proposed a deconvolutional
deep model in view of the conventional sparse coding technique (Olshausen
and Field, 1997). The deconvolution operation depends on the convolutional
deterioration of information under a sparsity imperative. It is a modification
of the traditional sparse coding methods. Contrasted with sparse coding, it can
learn better feature representation.

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

236

Data subjected to noise is a hinder once to the success of the deep network-
based image recognition systems in real world applications. Nonetheless, in
most of the cases in real life scenarios, during transmission and acquisition,
digital images are adulterated with noise resulting in degenerating the
performance of image classification, medical image diagnosis, etc. One
major issue originating from one of the intrinsic attributes of a DNN is its
affectability to the input data. Because of being sensitive to little perturbance,
DNNs may be misled and misclassify an image having a certain amount of
imperceptible perturbation (Szegedy et al., 2013). As a result, when there
is noise present in the input data, learned features by the DNN may not be
vigorous. As examples, medical imaging techniques which are vulnerable to
noise such as: MRI, X-rays, Computer Tomography (CT) can be considered
(Sanches et al., 2008). Reasons fluctuate from the utilization of various image
acquisition systems to endeavors at diminishing patients’ introduction to
radiation. As the measure of radiation is diminished, there is adulteration of
the images with noise increments (Gondara, 2016; Agostinelli et al., 2013). A
survey conducted by Lu and Weng (2007) investigated the image classification
methods and suggested that image denoising prior to classification is efficient
in case of remotely sensed data in a thematic map such as the geographical
information system (GIS). Even if, the classifier is trained with noisy data, it
does not show a much better performance in case of image classification. So,
image denoising has become a compulsory requirement prior to feeding the
image to the classifier in order to achieve a better classification result.

A notable number of researches have been directed over image denoising in the
time period of the previous couple of years to make the deep learning-based
image classification systems more compatible with practical applications. In
the past, research in this field hasconducted where denoising was accomplished
on the premise of the wavelet transformation technique (Coifman and
Donoho, 1995), the partial differential equation-based methods (Perona and
Malik, 1990; Rudin and Osher, 1994; Subakan et al., 2007), and in addition
conveyed scant coding approaches (Elad and Aharon, 2006; Olshausen and
Field, 1997; Mairal et al., 2009). Singh et al. (2014) proposed an efficient
classification model for multi-class object images subject to Gaussian noise.
They applied wavelet transform-based image denoising techniques by means
of employing the NeighShrink thresholding over the wavelet coefficients to
eliminate wavelet coefficients causing noise in the image and picking up only
useful ones.

237

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

Recent studies have effectively utilized deep learning-based approaches
with the intention to accomplish image denoising (Krizhevsky et al., 2012;
Bengio et al., 2007; Glorot et al., 2011). Burger et al. (2012) demonstrated that
similar execution to the previously described strategies can be accomplished
by applying plain multi-layer perception (MLP). Jain et al. (2009) employed
CNN to denoise images which performed superior to wavelets notwithstanding
utilizing a smaller set of training images. An assortment of autoencoders
(AEs) has been employed to denoise images and these techniques have
definitely surpassed the conventional denoising methods as they are less
restrictive for details of noise generative mechanisms (Cho, 2013; Vincent et
al., 2008; Vincent et al., 2010). Vincent et al. (2008) introduced the denoising
autoencoder (DAE) which figures out how to recreate local images from
adulterated forms by injecting arbitrary noise into the images of the training
set amid the learning period. These DAEs are stacked to develop a deep
unsupervised learning network called stacked DAE (SDAE) for adapting
profound depiction (Vincent et al., 2010). Xie et al. (2012) deployed a
combination of sparse coding along with DAE for tasks of image denoising
and blind inpainting. It was designed to work with images subject to white
Gaussian noise and superimposed text. Cho (2013) employed Boltzmann
machines as well SDAEs for image denoising tasks in case of high level
of noise injected in the images. He employed three distinct depth settings
(one, two and four layers) for both the SDAEs and the Boltzmann machines
to evaluate the performance of noise omission. Agostinelli et al. (2013)
introduced the adaptive multi-column DNN with a combination of multiple-
stacked sparse DAEs (SSDAE) that can denoise various types of noises in the
images in a standalone manner. They computed optimal column weights using
a nonlinear optimization program and later trained the individual networks
to anticipate the optimal weights. One common disadvantage of these DAE-
based models is that they learn the underlying hierarchical features from the
image by reshaping the high dimensional data to vectors and thus discard the
intrinsic structures of the images.

With the intention to solve this problem, Masci et al. (2011) proposed another
variant of the autoencoder called convolutional AE (CAE) which trains itself
for reconstructing images from the input image data in a convolutional manner.
The stacked CAE forces the adjacent CAEs to learn the innate structure of
the input image throughout the series of convolution and pooling operations.
The kernels and other learning parameters of each layer are updated by
backpropagation to convolve the feature maps of the input images into more
abstract features of each layer. Compared to previously specified AEs it has

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

238

proved its capability to preserve more relating structural information. Xu et
al. (2014) developed a deep CNN that can figure out the characteristics of blur
degradation from an image. Gondara (2016) employed DAEs constructed with
convolutional layers for denoising medical images. Du et al (2017) proposed
stacked convolutional denoising autoencoders (SCDAE) by stacking DAEs
in a convolutional way where each layer produces high dimensional feature
maps by means of convolving features of the previous layer trained by a DAE.
 Recently, Kingma and Welling (2014) introduced the variational autoencoder
(VAE), a hybrid of deep learning model along with variational inference that
has prompted remarkable advances in generative modelling. The loss function
used for training VAE is calculated by a variational upper bound on the log-
likelihood of the data. It can figure out and preserve shape variability beyond
the image set as well as reconstruct images given the manifold coordinates.
Unlike other deterministic models, it is a probabilistic generative model
which is trained all through with stochastic gradient descent. Unlike DAE that
corrupts the input images by adding noise at the input level and later learns
to reconstruct the clear image, VAE learns with noise added in its stochastic
hidden layer. Im et al. (2017) proposed that adding noise in not only the
stochastic hidden layer but also in the input layer is beneficial and empowers
the VAE to perform image denoising tasks. They proposed a modified training
criterion for denoising variational autoencoders (DVAE) that resemble a
tractable bound, in case the input image is adulterated with noise.

The intention of this work was to build a few supervised image classifiers
that can demonstrate better classification results across a noisy image set;
thereby, contemplating DAE, CDAE, DVAE and proposing some hybrid
models utilizing CNN along with these AEs. Initially a DAE, a CDAE and
a DVAE were trained with image data subject to lower regular noise level
so that they could omit noise from the input images and reconstruct a native
form of it. To counter the massive noisy images, two hybrid structures (i.e.
DAE-CDAE and DVAE-CDAE) were further investigated where for each of
them two AEs were deployed in a cascaded manner. The reconstructed images
from these AEs were fed to a following CNN for classification, where the
CNN is trained with raw images having zero percent noise injected into it.
The classification performance of this CNN is solely dependent on the quality
of the reconstructed images from the conventional as well the hybrid AE
structures. The DAE-CDAE-CNN as well as DVAE-CDAE-CNN models can
work better with massive noisy images because of their cascaded architectures
and thus omits the requirement of training with images corrupted by noise of
different levels.

239

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

HYBRID DEEP LEARNING-BASED NOISY
IMAGE CLASSIFICATION

Real world image classification tasks suffer from noise and other imperfections
existing in the image data. So, denoising images prior to classification is
compulsory. Noisy image classification tasks incorporate two steps, i.e.
image denoising and image classification. This section first explains some
conventional models for image denoising based on AEs as well as image
classification with CNN. Then it presents the proposed hybrid methods
consisting different cascaded AEs plus CNN.

CONVENTIONAL METHODS FOR IMAGE
DENOISING AND CLASSIFICATION

Convolutional Neural Network (CNN) as Image Classifier

CNNs (LeCun et al., 1998) which are multiple-layered variants of artificial
neural network (ANN) are well applied to classify images and perceive visual
patterns straightforwardly from pixel images. In a CNN architecture, the
information propagation throughout its multiple layers allows it to extract
features from the perceived data at layers apiece by means of applying digital
filtering techniques. CNNs perform on the basis of two main processes:
convolution and subsampling. During the convolution process, a small-sized
kernel is applied over input feature map (IFM) and produces a convolved
feature map (CFM). The first set of CFMs are produced by applying the
convolutional operation over the original input image. Here, a kernel is only
an arrangement of weights and a bias. Every particular point in the CFM is
gained by applying the same kernel over every small portion of the IFM,
called a local receptive field (LRF). In this way, weights are shared among
all positions throughout the convolutional process and spatial locality is
preserved. The CFM computed from an IFM would be,

(1)

where and represent the bias of the kernel activation function
respectively, whereas the 2-D convolution is symbolized by *. Throughout all
the experiments here, the scaled sigmoid activation function as well as a single
bias is used for every latent map used. While particular kernels may create
distinct CFMs from the same IFM operations of numerous kernels are formed
to deliver CFMs for different IFMs.

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = 𝒻𝒻(∑∑𝐾𝐾(𝑖𝑖,𝑗𝑗) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥+𝑖𝑖,𝑦𝑦+𝑗𝑗)

𝐾𝐾𝓌𝓌

𝑗𝑗=1

𝐾𝐾𝒽𝒽

𝑖𝑖=1
+ 𝔅𝔅) (1)

𝔅𝔅

 𝒻𝒻

𝐾𝐾𝒽𝒽 × 𝐾𝐾𝓌𝓌

 𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) = 𝒹𝒹 (∑∑𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑥𝑥−1+𝑖𝑖,𝑦𝑦𝑦𝑦−1+𝑗𝑗)

𝐶𝐶−1

𝑗𝑗=0

𝑅𝑅−1

𝑖𝑖=0
) (2)

 𝔼𝔼(𝑑𝑑𝑜𝑜,𝑦𝑦𝑜𝑜) = 1
2𝑛𝑛∑(𝑑𝑑𝑜𝑜(𝒫𝒫) − 𝑦𝑦𝑜𝑜(𝒫𝒫))2

𝑛𝑛

𝑖𝑖=1
 , (3)

𝑥𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑥̃𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 𝑥̃𝑥 = 𝔇𝔇(𝑥̃𝑥|𝑥𝑥,℘) (3)

 𝑦𝑦 = ℱ(ℳ1𝑥̃𝑥 + ℬ1) (4)

 𝑧𝑧 = ℊ(ℳ2𝑦𝑦 + ℬ2) (5)

 Δ(x, z) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (6)

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = 𝒻𝒻(∑∑𝐾𝐾(𝑖𝑖,𝑗𝑗) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥+𝑖𝑖,𝑦𝑦+𝑗𝑗)

𝐾𝐾𝓌𝓌

𝑗𝑗=1

𝐾𝐾𝒽𝒽

𝑖𝑖=1
+ 𝔅𝔅) (1)

𝔅𝔅

 𝒻𝒻

𝐾𝐾𝒽𝒽 × 𝐾𝐾𝓌𝓌

 𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) = 𝒹𝒹 (∑∑𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑥𝑥−1+𝑖𝑖,𝑦𝑦𝑦𝑦−1+𝑗𝑗)

𝐶𝐶−1

𝑗𝑗=0

𝑅𝑅−1

𝑖𝑖=0
) (2)

 𝔼𝔼(𝑑𝑑𝑜𝑜,𝑦𝑦𝑜𝑜) = 1
2𝑛𝑛∑(𝑑𝑑𝑜𝑜(𝒫𝒫) − 𝑦𝑦𝑜𝑜(𝒫𝒫))2

𝑛𝑛

𝑖𝑖=1
 , (3)

𝑥𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑥̃𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 𝑥̃𝑥 = 𝔇𝔇(𝑥̃𝑥|𝑥𝑥,℘) (3)

 𝑦𝑦 = ℱ(ℳ1𝑥̃𝑥 + ℬ1) (4)

 𝑧𝑧 = ℊ(ℳ2𝑦𝑦 + ℬ2) (5)

 Δ(x, z) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (6)

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = 𝒻𝒻(∑∑𝐾𝐾(𝑖𝑖,𝑗𝑗) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥+𝑖𝑖,𝑦𝑦+𝑗𝑗)

𝐾𝐾𝓌𝓌

𝑗𝑗=1

𝐾𝐾𝒽𝒽

𝑖𝑖=1
+ 𝔅𝔅) (1)

𝔅𝔅

 𝒻𝒻

𝐾𝐾𝒽𝒽 × 𝐾𝐾𝓌𝓌

 𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) = 𝒹𝒹 (∑∑𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑥𝑥−1+𝑖𝑖,𝑦𝑦𝑦𝑦−1+𝑗𝑗)

𝐶𝐶−1

𝑗𝑗=0

𝑅𝑅−1

𝑖𝑖=0
) (2)

 𝔼𝔼(𝑑𝑑𝑜𝑜,𝑦𝑦𝑜𝑜) = 1
2𝑛𝑛∑(𝑑𝑑𝑜𝑜(𝒫𝒫) − 𝑦𝑦𝑜𝑜(𝒫𝒫))2

𝑛𝑛

𝑖𝑖=1
 , (3)

𝑥𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑥̃𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 𝑥̃𝑥 = 𝔇𝔇(𝑥̃𝑥|𝑥𝑥,℘) (3)

 𝑦𝑦 = ℱ(ℳ1𝑥̃𝑥 + ℬ1) (4)

 𝑧𝑧 = ℊ(ℳ2𝑦𝑦 + ℬ2) (5)

 Δ(x, z) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (6)

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = 𝒻𝒻(∑∑𝐾𝐾(𝑖𝑖,𝑗𝑗) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥+𝑖𝑖,𝑦𝑦+𝑗𝑗)

𝐾𝐾𝓌𝓌

𝑗𝑗=1

𝐾𝐾𝒽𝒽

𝑖𝑖=1
+ 𝔅𝔅) (1)

𝔅𝔅

 𝒻𝒻

𝐾𝐾𝒽𝒽 × 𝐾𝐾𝓌𝓌

 𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) = 𝒹𝒹 (∑∑𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑥𝑥−1+𝑖𝑖,𝑦𝑦𝑦𝑦−1+𝑗𝑗)

𝐶𝐶−1

𝑗𝑗=0

𝑅𝑅−1

𝑖𝑖=0
) (2)

 𝔼𝔼(𝑑𝑑𝑜𝑜,𝑦𝑦𝑜𝑜) = 1
2𝑛𝑛∑(𝑑𝑑𝑜𝑜(𝒫𝒫) − 𝑦𝑦𝑜𝑜(𝒫𝒫))2

𝑛𝑛

𝑖𝑖=1
 , (3)

𝑥𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑥̃𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 𝑥̃𝑥 = 𝔇𝔇(𝑥̃𝑥|𝑥𝑥,℘) (3)

 𝑦𝑦 = ℱ(ℳ1𝑥̃𝑥 + ℬ1) (4)

 𝑧𝑧 = ℊ(ℳ2𝑦𝑦 + ℬ2) (5)

 Δ(x, z) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (6)

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

240

In CNN, each convolutional layer is followed by a subsampling layer to simplify
the feature map gained from the convolution operation. This simplification
process is done by selecting significant features from a region and discarding
the rest (Du et al., 2017). Among various sub-sampling methods, max-pooling
(Scherer et al., 2010) was used throughout our experiments. It takes the
maximum incentive over non-overlapping sub-locales and can be defined as:

(2)

where R and C denote size of the pooling area as R × C matrix and d denotes
the subsampling operation on the pooling area. The size of SFM becomes half
of the CFM if R × C is 2 × 2. In max-pooling, each point in the SFM is the
maximum value computed from a particular 2 × 2 locale of the CFM (Akhand
et al., 2016, 2017).

In CNN, the series of convolution-subsampling operation is followed by a
hidden layer and then an output layer sequentially. Where nodes of a hidden
layer and output layers are fully connected there lies a linear representation of
terminal SFM values as a hidden layer. The error in the classification task can
be measured from:

(3)

where n is the product of the total number of patterns and the total number of
output nodes in that particular classification task, every particular pattern ,
 and denotes the desired output and obtained output respectively. The learning
parameters are updated during backpropagation. Throughout our experiment,
back-propagation (BP) (Liu et al., 2015; Bouvrie, 2006) was used for training
the CNN. The CNN applied here in our experiment is demonstrated in Fig.1. It
consists of two convolutional layers (conv1 and conv2) and two subsampling
layers (sub1 and sub2) each following a single convolutional layer. Throughout
the experiments, the CNN used here was trained with noiseless raw images.

Denoising Autoencoder (DAE)

The DAE expands the conventional autoencoder alongside some stochastic
augmentations keeping in mind the end goal to attain the ability to reproduce
the native image from its noisy form (Vincent et al., 2008). This noise is usually
included by physically utilizing deterministic distribution. The architecture of
the DAE is demonstrated in Fig. 2.

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = 𝒻𝒻(∑∑𝐾𝐾(𝑖𝑖,𝑗𝑗) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥+𝑖𝑖,𝑦𝑦+𝑗𝑗)

𝐾𝐾𝓌𝓌

𝑗𝑗=1

𝐾𝐾𝒽𝒽

𝑖𝑖=1
+ 𝔅𝔅) (1)

𝔅𝔅

 𝒻𝒻

𝐾𝐾𝒽𝒽 × 𝐾𝐾𝓌𝓌

 𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) = 𝒹𝒹 (∑∑𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑥𝑥−1+𝑖𝑖,𝑦𝑦𝑦𝑦−1+𝑗𝑗)

𝐶𝐶−1

𝑗𝑗=0

𝑅𝑅−1

𝑖𝑖=0
) (2)

 𝔼𝔼(𝑑𝑑𝑜𝑜,𝑦𝑦𝑜𝑜) = 1
2𝑛𝑛∑(𝑑𝑑𝑜𝑜(𝒫𝒫) − 𝑦𝑦𝑜𝑜(𝒫𝒫))2

𝑛𝑛

𝑖𝑖=1
 , (3)

𝑥𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑥̃𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 𝑥̃𝑥 = 𝔇𝔇(𝑥̃𝑥|𝑥𝑥,℘) (3)

 𝑦𝑦 = ℱ(ℳ1𝑥̃𝑥 + ℬ1) (4)

 𝑧𝑧 = ℊ(ℳ2𝑦𝑦 + ℬ2) (5)

 Δ(x, z) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (6)

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = 𝒻𝒻(∑∑𝐾𝐾(𝑖𝑖,𝑗𝑗) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥+𝑖𝑖,𝑦𝑦+𝑗𝑗)

𝐾𝐾𝓌𝓌

𝑗𝑗=1

𝐾𝐾𝒽𝒽

𝑖𝑖=1
+ 𝔅𝔅) (1)

𝔅𝔅

 𝒻𝒻

𝐾𝐾𝒽𝒽 × 𝐾𝐾𝓌𝓌

 𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) = 𝒹𝒹 (∑∑𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑥𝑥−1+𝑖𝑖,𝑦𝑦𝑦𝑦−1+𝑗𝑗)

𝐶𝐶−1

𝑗𝑗=0

𝑅𝑅−1

𝑖𝑖=0
) (2)

 𝔼𝔼(𝑑𝑑𝑜𝑜,𝑦𝑦𝑜𝑜) = 1
2𝑛𝑛∑(𝑑𝑑𝑜𝑜(𝒫𝒫) − 𝑦𝑦𝑜𝑜(𝒫𝒫))2

𝑛𝑛

𝑖𝑖=1
 , (3)

𝑥𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑥̃𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 𝑥̃𝑥 = 𝔇𝔇(𝑥̃𝑥|𝑥𝑥,℘) (3)

 𝑦𝑦 = ℱ(ℳ1𝑥̃𝑥 + ℬ1) (4)

 𝑧𝑧 = ℊ(ℳ2𝑦𝑦 + ℬ2) (5)

 Δ(x, z) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (6)

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = 𝒻𝒻(∑∑𝐾𝐾(𝑖𝑖,𝑗𝑗) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥+𝑖𝑖,𝑦𝑦+𝑗𝑗)

𝐾𝐾𝓌𝓌

𝑗𝑗=1

𝐾𝐾𝒽𝒽

𝑖𝑖=1
+ 𝔅𝔅) (1)

𝔅𝔅

 𝒻𝒻

𝐾𝐾𝒽𝒽 × 𝐾𝐾𝓌𝓌

 𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) = 𝒹𝒹 (∑∑𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑥𝑥−1+𝑖𝑖,𝑦𝑦𝑦𝑦−1+𝑗𝑗)

𝐶𝐶−1

𝑗𝑗=0

𝑅𝑅−1

𝑖𝑖=0
) (2)

 𝔼𝔼(𝑑𝑑𝑜𝑜,𝑦𝑦𝑜𝑜) = 1
2𝑛𝑛∑(𝑑𝑑𝑜𝑜(𝒫𝒫) − 𝑦𝑦𝑜𝑜(𝒫𝒫))2

𝑛𝑛

𝑖𝑖=1
 , (3)

𝑥𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑥̃𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 𝑥̃𝑥 = 𝔇𝔇(𝑥̃𝑥|𝑥𝑥,℘) (3)

 𝑦𝑦 = ℱ(ℳ1𝑥̃𝑥 + ℬ1) (4)

 𝑧𝑧 = ℊ(ℳ2𝑦𝑦 + ℬ2) (5)

 Δ(x, z) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (6)

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = 𝒻𝒻(∑∑𝐾𝐾(𝑖𝑖,𝑗𝑗) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥+𝑖𝑖,𝑦𝑦+𝑗𝑗)

𝐾𝐾𝓌𝓌

𝑗𝑗=1

𝐾𝐾𝒽𝒽

𝑖𝑖=1
+ 𝔅𝔅) (1)

𝔅𝔅

 𝒻𝒻

𝐾𝐾𝒽𝒽 × 𝐾𝐾𝓌𝓌

 𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) = 𝒹𝒹 (∑∑𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑥𝑥−1+𝑖𝑖,𝑦𝑦𝑦𝑦−1+𝑗𝑗)

𝐶𝐶−1

𝑗𝑗=0

𝑅𝑅−1

𝑖𝑖=0
) (2)

 𝔼𝔼(𝑑𝑑𝑜𝑜,𝑦𝑦𝑜𝑜) = 1
2𝑛𝑛∑(𝑑𝑑𝑜𝑜(𝒫𝒫) − 𝑦𝑦𝑜𝑜(𝒫𝒫))2

𝑛𝑛

𝑖𝑖=1
 , (3)

𝑥𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑥̃𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 𝑥̃𝑥 = 𝔇𝔇(𝑥̃𝑥|𝑥𝑥,℘) (3)

 𝑦𝑦 = ℱ(ℳ1𝑥̃𝑥 + ℬ1) (4)

 𝑧𝑧 = ℊ(ℳ2𝑦𝑦 + ℬ2) (5)

 Δ(x, z) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (6)

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = 𝒻𝒻(∑∑𝐾𝐾(𝑖𝑖,𝑗𝑗) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥+𝑖𝑖,𝑦𝑦+𝑗𝑗)

𝐾𝐾𝓌𝓌

𝑗𝑗=1

𝐾𝐾𝒽𝒽

𝑖𝑖=1
+ 𝔅𝔅) (1)

𝔅𝔅

 𝒻𝒻

𝐾𝐾𝒽𝒽 × 𝐾𝐾𝓌𝓌

 𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) = 𝒹𝒹 (∑∑𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑥𝑥−1+𝑖𝑖,𝑦𝑦𝑦𝑦−1+𝑗𝑗)

𝐶𝐶−1

𝑗𝑗=0

𝑅𝑅−1

𝑖𝑖=0
) (2)

 𝔼𝔼(𝑑𝑑𝑜𝑜,𝑦𝑦𝑜𝑜) = 1
2𝑛𝑛∑(𝑑𝑑𝑜𝑜(𝒫𝒫) − 𝑦𝑦𝑜𝑜(𝒫𝒫))2

𝑛𝑛

𝑖𝑖=1
 , (3)

𝑥𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑥̃𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 𝑥̃𝑥 = 𝔇𝔇(𝑥̃𝑥|𝑥𝑥,℘) (3)

 𝑦𝑦 = ℱ(ℳ1𝑥̃𝑥 + ℬ1) (4)

 𝑧𝑧 = ℊ(ℳ2𝑦𝑦 + ℬ2) (5)

 Δ(x, z) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (6)

241

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

For a given input , DAE adulterates x into
with some random noise. It is added with a certain probability using a
stochastic mapping.

(3)

The type of distribution is regulated by the distribution of the original input
x and the kind of arbitrary noise added to it. In practical cases, binomial noise
is used for black and white images, whereas for color images uncorrelated
Gaussian noise is better suited. However, the zero masking (binomial) noise
as well as Gaussian noise were applied throughout the experiments here. Then,
 was mapped to a underlying hidden representation y by means of a nonlinear
deterministic function .

(4)

In the very same way as in the traditional autoencoder, this hidden representation
then mapped to the reconstructed feature, z ∈ [0.1]dimension of by original input
applying another nonlinear deterministic function .

(5)

The construction error was assessed by computing the mean squared error ∆
between input x and the reconstructed feature representation z. This is defined
as:

Figure 1. CNN architecture for classification.

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = 𝒻𝒻(∑∑𝐾𝐾(𝑖𝑖,𝑗𝑗) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥+𝑖𝑖,𝑦𝑦+𝑗𝑗)

𝐾𝐾𝓌𝓌

𝑗𝑗=1

𝐾𝐾𝒽𝒽

𝑖𝑖=1
+ 𝔅𝔅) (1)

𝔅𝔅

 𝒻𝒻

𝐾𝐾𝒽𝒽 × 𝐾𝐾𝓌𝓌

 𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) = 𝒹𝒹 (∑∑𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑥𝑥−1+𝑖𝑖,𝑦𝑦𝑦𝑦−1+𝑗𝑗)

𝐶𝐶−1

𝑗𝑗=0

𝑅𝑅−1

𝑖𝑖=0
) (2)

 𝔼𝔼(𝑑𝑑𝑜𝑜,𝑦𝑦𝑜𝑜) = 1
2𝑛𝑛∑(𝑑𝑑𝑜𝑜(𝒫𝒫) − 𝑦𝑦𝑜𝑜(𝒫𝒫))2

𝑛𝑛

𝑖𝑖=1
 , (3)

𝑥𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑥̃𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 𝑥̃𝑥 = 𝔇𝔇(𝑥̃𝑥|𝑥𝑥,℘) (3)

 𝑦𝑦 = ℱ(ℳ1𝑥̃𝑥 + ℬ1) (4)

 𝑧𝑧 = ℊ(ℳ2𝑦𝑦 + ℬ2) (5)

 Δ(x, z) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (6)

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = 𝒻𝒻(∑∑𝐾𝐾(𝑖𝑖,𝑗𝑗) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥+𝑖𝑖,𝑦𝑦+𝑗𝑗)

𝐾𝐾𝓌𝓌

𝑗𝑗=1

𝐾𝐾𝒽𝒽

𝑖𝑖=1
+ 𝔅𝔅) (1)

𝔅𝔅

 𝒻𝒻

𝐾𝐾𝒽𝒽 × 𝐾𝐾𝓌𝓌

 𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) = 𝒹𝒹 (∑∑𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑥𝑥−1+𝑖𝑖,𝑦𝑦𝑦𝑦−1+𝑗𝑗)

𝐶𝐶−1

𝑗𝑗=0

𝑅𝑅−1

𝑖𝑖=0
) (2)

 𝔼𝔼(𝑑𝑑𝑜𝑜,𝑦𝑦𝑜𝑜) = 1
2𝑛𝑛∑(𝑑𝑑𝑜𝑜(𝒫𝒫) − 𝑦𝑦𝑜𝑜(𝒫𝒫))2

𝑛𝑛

𝑖𝑖=1
 , (3)

𝑥𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑥̃𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 𝑥̃𝑥 = 𝔇𝔇(𝑥̃𝑥|𝑥𝑥,℘) (3)

 𝑦𝑦 = ℱ(ℳ1𝑥̃𝑥 + ℬ1) (4)

 𝑧𝑧 = ℊ(ℳ2𝑦𝑦 + ℬ2) (5)

 Δ(x, z) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (6)

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = 𝒻𝒻(∑∑𝐾𝐾(𝑖𝑖,𝑗𝑗) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥+𝑖𝑖,𝑦𝑦+𝑗𝑗)

𝐾𝐾𝓌𝓌

𝑗𝑗=1

𝐾𝐾𝒽𝒽

𝑖𝑖=1
+ 𝔅𝔅) (1)

𝔅𝔅

 𝒻𝒻

𝐾𝐾𝒽𝒽 × 𝐾𝐾𝓌𝓌

 𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) = 𝒹𝒹 (∑∑𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑥𝑥−1+𝑖𝑖,𝑦𝑦𝑦𝑦−1+𝑗𝑗)

𝐶𝐶−1

𝑗𝑗=0

𝑅𝑅−1

𝑖𝑖=0
) (2)

 𝔼𝔼(𝑑𝑑𝑜𝑜,𝑦𝑦𝑜𝑜) = 1
2𝑛𝑛∑(𝑑𝑑𝑜𝑜(𝒫𝒫) − 𝑦𝑦𝑜𝑜(𝒫𝒫))2

𝑛𝑛

𝑖𝑖=1
 , (3)

𝑥𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑥̃𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 𝑥̃𝑥 = 𝔇𝔇(𝑥̃𝑥|𝑥𝑥,℘) (3)

 𝑦𝑦 = ℱ(ℳ1𝑥̃𝑥 + ℬ1) (4)

 𝑧𝑧 = ℊ(ℳ2𝑦𝑦 + ℬ2) (5)

 Δ(x, z) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (6)

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = 𝒻𝒻(∑∑𝐾𝐾(𝑖𝑖,𝑗𝑗) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥+𝑖𝑖,𝑦𝑦+𝑗𝑗)

𝐾𝐾𝓌𝓌

𝑗𝑗=1

𝐾𝐾𝒽𝒽

𝑖𝑖=1
+ 𝔅𝔅) (1)

𝔅𝔅

 𝒻𝒻

𝐾𝐾𝒽𝒽 × 𝐾𝐾𝓌𝓌

 𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) = 𝒹𝒹 (∑∑𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑥𝑥−1+𝑖𝑖,𝑦𝑦𝑦𝑦−1+𝑗𝑗)

𝐶𝐶−1

𝑗𝑗=0

𝑅𝑅−1

𝑖𝑖=0
) (2)

 𝔼𝔼(𝑑𝑑𝑜𝑜,𝑦𝑦𝑜𝑜) = 1
2𝑛𝑛∑(𝑑𝑑𝑜𝑜(𝒫𝒫) − 𝑦𝑦𝑜𝑜(𝒫𝒫))2

𝑛𝑛

𝑖𝑖=1
 , (3)

𝑥𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑥̃𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 𝑥̃𝑥 = 𝔇𝔇(𝑥̃𝑥|𝑥𝑥,℘) (3)

 𝑦𝑦 = ℱ(ℳ1𝑥̃𝑥 + ℬ1) (4)

 𝑧𝑧 = ℊ(ℳ2𝑦𝑦 + ℬ2) (5)

 Δ(x, z) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (6)

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = 𝒻𝒻(∑∑𝐾𝐾(𝑖𝑖,𝑗𝑗) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥+𝑖𝑖,𝑦𝑦+𝑗𝑗)

𝐾𝐾𝓌𝓌

𝑗𝑗=1

𝐾𝐾𝒽𝒽

𝑖𝑖=1
+ 𝔅𝔅) (1)

𝔅𝔅

 𝒻𝒻

𝐾𝐾𝒽𝒽 × 𝐾𝐾𝓌𝓌

 𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) = 𝒹𝒹 (∑∑𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑥𝑥−1+𝑖𝑖,𝑦𝑦𝑦𝑦−1+𝑗𝑗)

𝐶𝐶−1

𝑗𝑗=0

𝑅𝑅−1

𝑖𝑖=0
) (2)

 𝔼𝔼(𝑑𝑑𝑜𝑜,𝑦𝑦𝑜𝑜) = 1
2𝑛𝑛∑(𝑑𝑑𝑜𝑜(𝒫𝒫) − 𝑦𝑦𝑜𝑜(𝒫𝒫))2

𝑛𝑛

𝑖𝑖=1
 , (3)

𝑥𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑥̃𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 𝑥̃𝑥 = 𝔇𝔇(𝑥̃𝑥|𝑥𝑥,℘) (3)

 𝑦𝑦 = ℱ(ℳ1𝑥̃𝑥 + ℬ1) (4)

 𝑧𝑧 = ℊ(ℳ2𝑦𝑦 + ℬ2) (5)

 Δ(x, z) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (6)

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = 𝒻𝒻(∑∑𝐾𝐾(𝑖𝑖,𝑗𝑗) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥+𝑖𝑖,𝑦𝑦+𝑗𝑗)

𝐾𝐾𝓌𝓌

𝑗𝑗=1

𝐾𝐾𝒽𝒽

𝑖𝑖=1
+ 𝔅𝔅) (1)

𝔅𝔅

 𝒻𝒻

𝐾𝐾𝒽𝒽 × 𝐾𝐾𝓌𝓌

 𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) = 𝒹𝒹 (∑∑𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑥𝑥−1+𝑖𝑖,𝑦𝑦𝑦𝑦−1+𝑗𝑗)

𝐶𝐶−1

𝑗𝑗=0

𝑅𝑅−1

𝑖𝑖=0
) (2)

 𝔼𝔼(𝑑𝑑𝑜𝑜,𝑦𝑦𝑜𝑜) = 1
2𝑛𝑛∑(𝑑𝑑𝑜𝑜(𝒫𝒫) − 𝑦𝑦𝑜𝑜(𝒫𝒫))2

𝑛𝑛

𝑖𝑖=1
 , (3)

𝑥𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑥̃𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 𝑥̃𝑥 = 𝔇𝔇(𝑥̃𝑥|𝑥𝑥,℘) (3)

 𝑦𝑦 = ℱ(ℳ1𝑥̃𝑥 + ℬ1) (4)

 𝑧𝑧 = ℊ(ℳ2𝑦𝑦 + ℬ2) (5)

 Δ(x, z) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (6)

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = 𝒻𝒻(∑∑𝐾𝐾(𝑖𝑖,𝑗𝑗) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥+𝑖𝑖,𝑦𝑦+𝑗𝑗)

𝐾𝐾𝓌𝓌

𝑗𝑗=1

𝐾𝐾𝒽𝒽

𝑖𝑖=1
+ 𝔅𝔅) (1)

𝔅𝔅

 𝒻𝒻

𝐾𝐾𝒽𝒽 × 𝐾𝐾𝓌𝓌

 𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) = 𝒹𝒹 (∑∑𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑥𝑥−1+𝑖𝑖,𝑦𝑦𝑦𝑦−1+𝑗𝑗)

𝐶𝐶−1

𝑗𝑗=0

𝑅𝑅−1

𝑖𝑖=0
) (2)

 𝔼𝔼(𝑑𝑑𝑜𝑜,𝑦𝑦𝑜𝑜) = 1
2𝑛𝑛∑(𝑑𝑑𝑜𝑜(𝒫𝒫) − 𝑦𝑦𝑜𝑜(𝒫𝒫))2

𝑛𝑛

𝑖𝑖=1
 , (3)

𝑥𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑥̃𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 𝑥̃𝑥 = 𝔇𝔇(𝑥̃𝑥|𝑥𝑥,℘) (3)

 𝑦𝑦 = ℱ(ℳ1𝑥̃𝑥 + ℬ1) (4)

 𝑧𝑧 = ℊ(ℳ2𝑦𝑦 + ℬ2) (5)

 Δ(x, z) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (6)

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = 𝒻𝒻(∑∑𝐾𝐾(𝑖𝑖,𝑗𝑗) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥+𝑖𝑖,𝑦𝑦+𝑗𝑗)

𝐾𝐾𝓌𝓌

𝑗𝑗=1

𝐾𝐾𝒽𝒽

𝑖𝑖=1
+ 𝔅𝔅) (1)

𝔅𝔅

 𝒻𝒻

𝐾𝐾𝒽𝒽 × 𝐾𝐾𝓌𝓌

 𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) = 𝒹𝒹 (∑∑𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑥𝑥−1+𝑖𝑖,𝑦𝑦𝑦𝑦−1+𝑗𝑗)

𝐶𝐶−1

𝑗𝑗=0

𝑅𝑅−1

𝑖𝑖=0
) (2)

 𝔼𝔼(𝑑𝑑𝑜𝑜,𝑦𝑦𝑜𝑜) = 1
2𝑛𝑛∑(𝑑𝑑𝑜𝑜(𝒫𝒫) − 𝑦𝑦𝑜𝑜(𝒫𝒫))2

𝑛𝑛

𝑖𝑖=1
 , (3)

𝑥𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑥̃𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 𝑥̃𝑥 = 𝔇𝔇(𝑥̃𝑥|𝑥𝑥,℘) (3)

 𝑦𝑦 = ℱ(ℳ1𝑥̃𝑥 + ℬ1) (4)

 𝑧𝑧 = ℊ(ℳ2𝑦𝑦 + ℬ2) (5)

 Δ(x, z) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (6)

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = 𝒻𝒻(∑∑𝐾𝐾(𝑖𝑖,𝑗𝑗) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥+𝑖𝑖,𝑦𝑦+𝑗𝑗)

𝐾𝐾𝓌𝓌

𝑗𝑗=1

𝐾𝐾𝒽𝒽

𝑖𝑖=1
+ 𝔅𝔅) (1)

𝔅𝔅

 𝒻𝒻

𝐾𝐾𝒽𝒽 × 𝐾𝐾𝓌𝓌

 𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) = 𝒹𝒹 (∑∑𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑥𝑥−1+𝑖𝑖,𝑦𝑦𝑦𝑦−1+𝑗𝑗)

𝐶𝐶−1

𝑗𝑗=0

𝑅𝑅−1

𝑖𝑖=0
) (2)

 𝔼𝔼(𝑑𝑑𝑜𝑜,𝑦𝑦𝑜𝑜) = 1
2𝑛𝑛∑(𝑑𝑑𝑜𝑜(𝒫𝒫) − 𝑦𝑦𝑜𝑜(𝒫𝒫))2

𝑛𝑛

𝑖𝑖=1
 , (3)

𝑥𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑥̃𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 𝑥̃𝑥 = 𝔇𝔇(𝑥̃𝑥|𝑥𝑥,℘) (3)

 𝑦𝑦 = ℱ(ℳ1𝑥̃𝑥 + ℬ1) (4)

 𝑧𝑧 = ℊ(ℳ2𝑦𝑦 + ℬ2) (5)

 Δ(x, z) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (6)

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = 𝒻𝒻(∑∑𝐾𝐾(𝑖𝑖,𝑗𝑗) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥+𝑖𝑖,𝑦𝑦+𝑗𝑗)

𝐾𝐾𝓌𝓌

𝑗𝑗=1

𝐾𝐾𝒽𝒽

𝑖𝑖=1
+ 𝔅𝔅) (1)

𝔅𝔅

 𝒻𝒻

𝐾𝐾𝒽𝒽 × 𝐾𝐾𝓌𝓌

 𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) = 𝒹𝒹 (∑∑𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑥𝑥−1+𝑖𝑖,𝑦𝑦𝑦𝑦−1+𝑗𝑗)

𝐶𝐶−1

𝑗𝑗=0

𝑅𝑅−1

𝑖𝑖=0
) (2)

 𝔼𝔼(𝑑𝑑𝑜𝑜,𝑦𝑦𝑜𝑜) = 1
2𝑛𝑛∑(𝑑𝑑𝑜𝑜(𝒫𝒫) − 𝑦𝑦𝑜𝑜(𝒫𝒫))2

𝑛𝑛

𝑖𝑖=1
 , (3)

𝑥𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑥̃𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 𝑥̃𝑥 = 𝔇𝔇(𝑥̃𝑥|𝑥𝑥,℘) (3)

 𝑦𝑦 = ℱ(ℳ1𝑥̃𝑥 + ℬ1) (4)

 𝑧𝑧 = ℊ(ℳ2𝑦𝑦 + ℬ2) (5)

 Δ(x, z) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (6)

 7

Denoising Autoencoder (DAE)

The DAE expands the conventional autoencoder alongside some stochastic augmentations keeping in
mind the end goal to attain the ability to reproduce the native image from its noisy form (Vincent et al.,
2008). This noise is usually included by physically utilizing deterministic distribution. The architecture of
the DAE is demonstrated in Fig. 2.

For a given input , DAE adulterates into with some random noise.
It is added with a certain probability using a stochastic mapping.

The type of distribution is regulated by the distribution of the original input and the kind of arbitrary
noise added to it. In practical cases, binomial noise is used for black and white images, whereas for color
images uncorrelated Gaussian noise is better suited. However, the zero masking (binomial) noise as well
as Gaussian noise were applied throughout the experiments here. Then, was mapped to a underlying
hidden representation by means of a nonlinear deterministic function .

In the very same way as in the traditional autoencoder, this hidden representation then mapped to the
reconstructed feature, of by original input applying another nonlinear deterministic
function .

The construction error was assessed by computing the mean squared error between input and the
reconstructed feature representation . This is defined
as:

Figure 1. CNN architecture for classification.

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

242

(6)

The main aim of this reconstruction process is to minimize the construction
error and this is done by optimizing the model parameters in such a way that:

(7)

For our experiment, the DAE was trained with images corrupted by 20% noise.

Convolutional Denoising Autoencoder (CDAE)

The fundamental contrast between CDAE (Masci et al., 2011) and conventional
autoencoders is unlike others. CDAE shares weights among all positions in
the input and consequently it conserves spatial locality. Subsequently, the
consequent reconstruction process is finished by a linear combination of all-
important IMAGE PATCHES on the premise of the latent code. For a single
channel input x the latent representation of the kth feature map would be:

(8)

where denotes the bias, represents the activation function and the 2-D
convolution is symbolized by *. The scaled hyperbolic tangent activation
function and a single bias were used for every latent map during the
experiments. The reconstruction was achieved by applying:

(9)

Figure 2. DAE architecture for image denoising.

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = 𝒻𝒻(∑∑𝐾𝐾(𝑖𝑖,𝑗𝑗) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥+𝑖𝑖,𝑦𝑦+𝑗𝑗)

𝐾𝐾𝓌𝓌

𝑗𝑗=1

𝐾𝐾𝒽𝒽

𝑖𝑖=1
+ 𝔅𝔅) (1)

𝔅𝔅

 𝒻𝒻

𝐾𝐾𝒽𝒽 × 𝐾𝐾𝓌𝓌

 𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) = 𝒹𝒹 (∑∑𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑥𝑥−1+𝑖𝑖,𝑦𝑦𝑦𝑦−1+𝑗𝑗)

𝐶𝐶−1

𝑗𝑗=0

𝑅𝑅−1

𝑖𝑖=0
) (2)

 𝔼𝔼(𝑑𝑑𝑜𝑜,𝑦𝑦𝑜𝑜) = 1
2𝑛𝑛∑(𝑑𝑑𝑜𝑜(𝒫𝒫) − 𝑦𝑦𝑜𝑜(𝒫𝒫))2

𝑛𝑛

𝑖𝑖=1
 , (3)

𝑥𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑥̃𝑥 ∈ [0,1]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 𝑥̃𝑥 = 𝔇𝔇(𝑥̃𝑥|𝑥𝑥,℘) (3)

 𝑦𝑦 = ℱ(ℳ1𝑥̃𝑥 + ℬ1) (4)

 𝑧𝑧 = ℊ(ℳ2𝑦𝑦 + ℬ2) (5)

 Δ(x, z) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (6)

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(ℳ1,ℳ2,ℬ1,ℬ2) = arg𝑚𝑚𝑚𝑚𝑚𝑚ℳ1,ℳ2,ℬ1,ℬ2 Δ(𝑥𝑥, 𝑧𝑧) (7)

 ℎ𝑘𝑘 = 𝜚𝜚(𝑥𝑥 ∗ 𝜔𝜔𝑘𝑘 + ℬ𝑘𝑘) (8)

 𝑦𝑦 = 𝜚𝜚 (∑ ℎ𝑘𝑘
𝑛𝑛∈𝐻𝐻

∗ 𝜔̃𝜔𝑘𝑘 + 𝛽𝛽) (9)

 𝜀𝜀(𝑥𝑥,𝑦𝑦) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (10)

 𝓅𝓅𝜃𝜃(𝑥𝑥) = ∫𝓅𝓅𝜃𝜃(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑 = ∫𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)𝓅𝓅(𝑦𝑦)𝑑𝑑𝑑𝑑 (11)

𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥)

 𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥) = 𝒩𝒩(𝜇𝜇𝜙𝜙(𝑥𝑥), 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝜙𝜙2(𝑥𝑥))) (12)

log𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)

 ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃) = −𝐸𝐸𝑦𝑦~𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)[𝑙𝑙𝑙𝑙𝑙𝑙𝓅𝓅𝜃𝜃(𝑥𝑥𝑖𝑖|𝑦𝑦)] + 𝐾𝐾𝐾𝐾(𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)||𝓅𝓅𝜃𝜃(𝑦𝑦)) (13)

 𝐿𝐿 = ∑ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃)
𝑁𝑁

𝑖𝑖=1
 (14)

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(ℳ1,ℳ2,ℬ1,ℬ2) = arg𝑚𝑚𝑚𝑚𝑚𝑚ℳ1,ℳ2,ℬ1,ℬ2 Δ(𝑥𝑥, 𝑧𝑧) (7)

 ℎ𝑘𝑘 = 𝜚𝜚(𝑥𝑥 ∗ 𝜔𝜔𝑘𝑘 + ℬ𝑘𝑘) (8)

 𝑦𝑦 = 𝜚𝜚 (∑ ℎ𝑘𝑘
𝑛𝑛∈𝐻𝐻

∗ 𝜔̃𝜔𝑘𝑘 + 𝛽𝛽) (9)

 𝜀𝜀(𝑥𝑥,𝑦𝑦) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (10)

 𝓅𝓅𝜃𝜃(𝑥𝑥) = ∫𝓅𝓅𝜃𝜃(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑 = ∫𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)𝓅𝓅(𝑦𝑦)𝑑𝑑𝑑𝑑 (11)

𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥)

 𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥) = 𝒩𝒩(𝜇𝜇𝜙𝜙(𝑥𝑥), 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝜙𝜙2(𝑥𝑥))) (12)

log𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)

 ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃) = −𝐸𝐸𝑦𝑦~𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)[𝑙𝑙𝑙𝑙𝑙𝑙𝓅𝓅𝜃𝜃(𝑥𝑥𝑖𝑖|𝑦𝑦)] + 𝐾𝐾𝐾𝐾(𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)||𝓅𝓅𝜃𝜃(𝑦𝑦)) (13)

 𝐿𝐿 = ∑ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃)
𝑁𝑁

𝑖𝑖=1
 (14)

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(ℳ1,ℳ2,ℬ1,ℬ2) = arg𝑚𝑚𝑚𝑚𝑚𝑚ℳ1,ℳ2,ℬ1,ℬ2 Δ(𝑥𝑥, 𝑧𝑧) (7)

 ℎ𝑘𝑘 = 𝜚𝜚(𝑥𝑥 ∗ 𝜔𝜔𝑘𝑘 + ℬ𝑘𝑘) (8)

 𝑦𝑦 = 𝜚𝜚 (∑ ℎ𝑘𝑘
𝑛𝑛∈𝐻𝐻

∗ 𝜔̃𝜔𝑘𝑘 + 𝛽𝛽) (9)

 𝜀𝜀(𝑥𝑥,𝑦𝑦) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (10)

 𝓅𝓅𝜃𝜃(𝑥𝑥) = ∫𝓅𝓅𝜃𝜃(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑 = ∫𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)𝓅𝓅(𝑦𝑦)𝑑𝑑𝑑𝑑 (11)

𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥)

 𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥) = 𝒩𝒩(𝜇𝜇𝜙𝜙(𝑥𝑥), 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝜙𝜙2(𝑥𝑥))) (12)

log𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)

 ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃) = −𝐸𝐸𝑦𝑦~𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)[𝑙𝑙𝑙𝑙𝑙𝑙𝓅𝓅𝜃𝜃(𝑥𝑥𝑖𝑖|𝑦𝑦)] + 𝐾𝐾𝐾𝐾(𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)||𝓅𝓅𝜃𝜃(𝑦𝑦)) (13)

 𝐿𝐿 = ∑ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃)
𝑁𝑁

𝑖𝑖=1
 (14)

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(ℳ1,ℳ2,ℬ1,ℬ2) = arg𝑚𝑚𝑚𝑚𝑚𝑚ℳ1,ℳ2,ℬ1,ℬ2 Δ(𝑥𝑥, 𝑧𝑧) (7)

 ℎ𝑘𝑘 = 𝜚𝜚(𝑥𝑥 ∗ 𝜔𝜔𝑘𝑘 + ℬ𝑘𝑘) (8)

 𝑦𝑦 = 𝜚𝜚 (∑ ℎ𝑘𝑘
𝑛𝑛∈𝐻𝐻

∗ 𝜔̃𝜔𝑘𝑘 + 𝛽𝛽) (9)

 𝜀𝜀(𝑥𝑥,𝑦𝑦) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (10)

 𝓅𝓅𝜃𝜃(𝑥𝑥) = ∫𝓅𝓅𝜃𝜃(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑 = ∫𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)𝓅𝓅(𝑦𝑦)𝑑𝑑𝑑𝑑 (11)

𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥)

 𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥) = 𝒩𝒩(𝜇𝜇𝜙𝜙(𝑥𝑥), 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝜙𝜙2(𝑥𝑥))) (12)

log𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)

 ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃) = −𝐸𝐸𝑦𝑦~𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)[𝑙𝑙𝑙𝑙𝑙𝑙𝓅𝓅𝜃𝜃(𝑥𝑥𝑖𝑖|𝑦𝑦)] + 𝐾𝐾𝐾𝐾(𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)||𝓅𝓅𝜃𝜃(𝑦𝑦)) (13)

 𝐿𝐿 = ∑ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃)
𝑁𝑁

𝑖𝑖=1
 (14)

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(ℳ1,ℳ2,ℬ1,ℬ2) = arg𝑚𝑚𝑚𝑚𝑚𝑚ℳ1,ℳ2,ℬ1,ℬ2 Δ(𝑥𝑥, 𝑧𝑧) (7)

 ℎ𝑘𝑘 = 𝜚𝜚(𝑥𝑥 ∗ 𝜔𝜔𝑘𝑘 + ℬ𝑘𝑘) (8)

 𝑦𝑦 = 𝜚𝜚 (∑ ℎ𝑘𝑘
𝑛𝑛∈𝐻𝐻

∗ 𝜔̃𝜔𝑘𝑘 + 𝛽𝛽) (9)

 𝜀𝜀(𝑥𝑥,𝑦𝑦) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (10)

 𝓅𝓅𝜃𝜃(𝑥𝑥) = ∫𝓅𝓅𝜃𝜃(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑 = ∫𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)𝓅𝓅(𝑦𝑦)𝑑𝑑𝑑𝑑 (11)

𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥)

 𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥) = 𝒩𝒩(𝜇𝜇𝜙𝜙(𝑥𝑥), 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝜙𝜙2(𝑥𝑥))) (12)

log𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)

 ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃) = −𝐸𝐸𝑦𝑦~𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)[𝑙𝑙𝑙𝑙𝑙𝑙𝓅𝓅𝜃𝜃(𝑥𝑥𝑖𝑖|𝑦𝑦)] + 𝐾𝐾𝐾𝐾(𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)||𝓅𝓅𝜃𝜃(𝑦𝑦)) (13)

 𝐿𝐿 = ∑ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃)
𝑁𝑁

𝑖𝑖=1
 (14)

 8

The main aim of this reconstruction process is to minimize the construction error and this is done by
optimizing the model parameters in such a way that:

For our experiment, the DAE was trained with images corrupted by 20% noise.

Convolutional Denoising Autoencoder (CDAE)

The fundamental contrast between CDAE (Masci et al., 2011) and conventional autoencoders is unlike
others. CDAE shares weights among all positions in the input and consequently it conserves spatial
locality. Subsequently, the consequent reconstruction process is finished by a linear combination of all-
important IMAGE PATCHES on the premise of the latent code. For a single channel input the latent
representation of the kth feature map would be:

where denotes the bias, represents the activation function and the 2-D convolution is symbolized by
. The scaled hyperbolic tangent activation function and a single bias were used for every latent map

during the experiments. The reconstruction was achieved by applying:

Figure 2. DAE architecture for image denoising.

243

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

Figure 3. CDAE architecture for image denoising.

As in the previous step, for every input channel, one bias was also used here
also. H denotes the group of underlying feature maps, the flip operation over
one and the other dimensions of the weights are identified by . The error
function used here is defined as:

(10)

The gradient of this error function is computed during the backpropagation
(Liu et al., 2015; Bouvrie, 2006) step. The overall architectural description is
illustrated in Fig. 3. The convolution operation employed here were uniform
to the convolution operation depicted in the CNN section. Amid the training
period the native image was utilized as the output label with a specific end goal
to update the kernel weights and different parameters so that in times of testing
the CDAE could reproduce a noise-omitted picture given a noise-injected one.
In this experiment, the CDAE was trained with 20% noisy images.

Denoising Variational Autoencoder

The denoising variational autoencoder (DVAE) (Ciresan et al., 2011c; Kingma
and Welling, 2013), a modern variant of AE, is a deep directed graphical model
that interprets the output of the encoder by means of variational inference.
There are basically three components as the building block of a DVAE: an
encoder, the following decoder and finally a loss function. The structure of
the DVAE used all through this experiment is demonstrated in Fig. 4. Both the
encoder and the decoder can be any variant of the neural network. It computes
probability distribution and thus finds out the probability distribution
of data x by employing the following equation:

 9

Figure 3. CDAE architecture for image denoising.

As in the previous step, for every input channel, one bias was also used here also. denotes the group
of underlying feature maps, the flip operation over one and the other dimensions of the weights are
identified by . The error function used here is defined as:

The gradient of this error function is computed during the backpropagation (Liu et al., 2015; Bouvrie,
2006) step. The overall architectural description is illustrated in Fig. 3. The convolution operation
employed here were uniform to the convolution operation depicted in the CNN section. Amid the training
period the native image was utilized as the output label with a specific end goal to update the kernel
weights and different parameters so that in times of testing the CDAE could reproduce a noise-omitted
picture given a noise-injected one. In this experiment, the CDAE was trained with 20% noisy images.

Denoising Variational Autoencoder

The denoising variational autoencoder (DVAE) (Ciresan et al., 2011c; Kingma and Welling, 2013), a
modern variant of AE, is a deep directed graphical model that interprets the output of the encoder by
means of variational inference. There are basically three components as the building block of a DVAE: an
encoder, the following decoder and finally a loss function. The structure of the DVAE used all through
this experiment is demonstrated in Fig. 4. Both the encoder and the decoder can be any variant of the
neural network. It computes probability distribution and thus finds out the probability
distribution of data by employing the following equation:

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(ℳ1,ℳ2,ℬ1,ℬ2) = arg𝑚𝑚𝑚𝑚𝑚𝑚ℳ1,ℳ2,ℬ1,ℬ2 Δ(𝑥𝑥, 𝑧𝑧) (7)

 ℎ𝑘𝑘 = 𝜚𝜚(𝑥𝑥 ∗ 𝜔𝜔𝑘𝑘 + ℬ𝑘𝑘) (8)

 𝑦𝑦 = 𝜚𝜚 (∑ ℎ𝑘𝑘
𝑛𝑛∈𝐻𝐻

∗ 𝜔̃𝜔𝑘𝑘 + 𝛽𝛽) (9)

 𝜀𝜀(𝑥𝑥,𝑦𝑦) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (10)

 𝓅𝓅𝜃𝜃(𝑥𝑥) = ∫𝓅𝓅𝜃𝜃(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑 = ∫𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)𝓅𝓅(𝑦𝑦)𝑑𝑑𝑑𝑑 (11)

𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥)

 𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥) = 𝒩𝒩(𝜇𝜇𝜙𝜙(𝑥𝑥), 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝜙𝜙2(𝑥𝑥))) (12)

log𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)

 ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃) = −𝐸𝐸𝑦𝑦~𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)[𝑙𝑙𝑙𝑙𝑙𝑙𝓅𝓅𝜃𝜃(𝑥𝑥𝑖𝑖|𝑦𝑦)] + 𝐾𝐾𝐾𝐾(𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)||𝓅𝓅𝜃𝜃(𝑦𝑦)) (13)

 𝐿𝐿 = ∑ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃)
𝑁𝑁

𝑖𝑖=1
 (14)

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(ℳ1,ℳ2,ℬ1,ℬ2) = arg𝑚𝑚𝑚𝑚𝑚𝑚ℳ1,ℳ2,ℬ1,ℬ2 Δ(𝑥𝑥, 𝑧𝑧) (7)

 ℎ𝑘𝑘 = 𝜚𝜚(𝑥𝑥 ∗ 𝜔𝜔𝑘𝑘 + ℬ𝑘𝑘) (8)

 𝑦𝑦 = 𝜚𝜚 (∑ ℎ𝑘𝑘
𝑛𝑛∈𝐻𝐻

∗ 𝜔̃𝜔𝑘𝑘 + 𝛽𝛽) (9)

 𝜀𝜀(𝑥𝑥,𝑦𝑦) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (10)

 𝓅𝓅𝜃𝜃(𝑥𝑥) = ∫𝓅𝓅𝜃𝜃(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑 = ∫𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)𝓅𝓅(𝑦𝑦)𝑑𝑑𝑑𝑑 (11)

𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥)

 𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥) = 𝒩𝒩(𝜇𝜇𝜙𝜙(𝑥𝑥), 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝜙𝜙2(𝑥𝑥))) (12)

log𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)

 ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃) = −𝐸𝐸𝑦𝑦~𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)[𝑙𝑙𝑙𝑙𝑙𝑙𝓅𝓅𝜃𝜃(𝑥𝑥𝑖𝑖|𝑦𝑦)] + 𝐾𝐾𝐾𝐾(𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)||𝓅𝓅𝜃𝜃(𝑦𝑦)) (13)

 𝐿𝐿 = ∑ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃)
𝑁𝑁

𝑖𝑖=1
 (14)

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(ℳ1,ℳ2,ℬ1,ℬ2) = arg𝑚𝑚𝑚𝑚𝑚𝑚ℳ1,ℳ2,ℬ1,ℬ2 Δ(𝑥𝑥, 𝑧𝑧) (7)

 ℎ𝑘𝑘 = 𝜚𝜚(𝑥𝑥 ∗ 𝜔𝜔𝑘𝑘 + ℬ𝑘𝑘) (8)

 𝑦𝑦 = 𝜚𝜚 (∑ ℎ𝑘𝑘
𝑛𝑛∈𝐻𝐻

∗ 𝜔̃𝜔𝑘𝑘 + 𝛽𝛽) (9)

 𝜀𝜀(𝑥𝑥,𝑦𝑦) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (10)

 𝓅𝓅𝜃𝜃(𝑥𝑥) = ∫𝓅𝓅𝜃𝜃(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑 = ∫𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)𝓅𝓅(𝑦𝑦)𝑑𝑑𝑑𝑑 (11)

𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥)

 𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥) = 𝒩𝒩(𝜇𝜇𝜙𝜙(𝑥𝑥), 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝜙𝜙2(𝑥𝑥))) (12)

log𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)

 ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃) = −𝐸𝐸𝑦𝑦~𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)[𝑙𝑙𝑙𝑙𝑙𝑙𝓅𝓅𝜃𝜃(𝑥𝑥𝑖𝑖|𝑦𝑦)] + 𝐾𝐾𝐾𝐾(𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)||𝓅𝓅𝜃𝜃(𝑦𝑦)) (13)

 𝐿𝐿 = ∑ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃)
𝑁𝑁

𝑖𝑖=1
 (14)

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(ℳ1,ℳ2,ℬ1,ℬ2) = arg𝑚𝑚𝑚𝑚𝑚𝑚ℳ1,ℳ2,ℬ1,ℬ2 Δ(𝑥𝑥, 𝑧𝑧) (7)

 ℎ𝑘𝑘 = 𝜚𝜚(𝑥𝑥 ∗ 𝜔𝜔𝑘𝑘 + ℬ𝑘𝑘) (8)

 𝑦𝑦 = 𝜚𝜚 (∑ ℎ𝑘𝑘
𝑛𝑛∈𝐻𝐻

∗ 𝜔̃𝜔𝑘𝑘 + 𝛽𝛽) (9)

 𝜀𝜀(𝑥𝑥,𝑦𝑦) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (10)

 𝓅𝓅𝜃𝜃(𝑥𝑥) = ∫𝓅𝓅𝜃𝜃(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑 = ∫𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)𝓅𝓅(𝑦𝑦)𝑑𝑑𝑑𝑑 (11)

𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥)

 𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥) = 𝒩𝒩(𝜇𝜇𝜙𝜙(𝑥𝑥), 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝜙𝜙2(𝑥𝑥))) (12)

log𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)

 ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃) = −𝐸𝐸𝑦𝑦~𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)[𝑙𝑙𝑙𝑙𝑙𝑙𝓅𝓅𝜃𝜃(𝑥𝑥𝑖𝑖|𝑦𝑦)] + 𝐾𝐾𝐾𝐾(𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)||𝓅𝓅𝜃𝜃(𝑦𝑦)) (13)

 𝐿𝐿 = ∑ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃)
𝑁𝑁

𝑖𝑖=1
 (14)

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

244

(11)

where denotes the weights and biases of the decoder, is the probability
distribution of the latent variable y which is often the standard normal
distribution (0, I), and is the decoder’s output under noise rumination in
terms of probability distribution of the reconstructed data given latent features.

The encoder neural network takes data point x as input and translates it to
a hidden representation y which has significantly less dimension than x.
As the encoder learns to compress the data into a significantly stochastic
less dimensional space, it produces output parameters which is a Gaussian
probability density . represents the weights and biases of the encoder.
This posterior is the uncorrelated multivariate normal determined by
the encoder:

(12)

where represents the standard normal, and σ denote the mean and the
standard deviation respectively. The decoder neural network takes the latent
feature representation y as input and its outputs are the parameters to the
probability distribution of the data . As the decoder tries to reconstruct
from the real-valued numbers in y with less dimensionality to real-valued
numbers in x of higher dimensionality, some information may be lost. This
reconstruction loss is calculated using log-likelihood .

Unlike other conventional autoencoders, the loss function used in DVAE is the
negative log-likelihood with an additional regularizer. As all the data points
do not share global representation, the loss function is decomposed into just
terms that rely on a single data point. The loss function for a single data
point xi is computed by:

(13)

Thus, for total data points the overall loss would be:

(14)

This DVAE is trained to reconstruct native images from their 20% noisy form.

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(ℳ1,ℳ2,ℬ1,ℬ2) = arg𝑚𝑚𝑚𝑚𝑚𝑚ℳ1,ℳ2,ℬ1,ℬ2 Δ(𝑥𝑥, 𝑧𝑧) (7)

 ℎ𝑘𝑘 = 𝜚𝜚(𝑥𝑥 ∗ 𝜔𝜔𝑘𝑘 + ℬ𝑘𝑘) (8)

 𝑦𝑦 = 𝜚𝜚 (∑ ℎ𝑘𝑘
𝑛𝑛∈𝐻𝐻

∗ 𝜔̃𝜔𝑘𝑘 + 𝛽𝛽) (9)

 𝜀𝜀(𝑥𝑥,𝑦𝑦) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (10)

 𝓅𝓅𝜃𝜃(𝑥𝑥) = ∫𝓅𝓅𝜃𝜃(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑 = ∫𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)𝓅𝓅(𝑦𝑦)𝑑𝑑𝑑𝑑 (11)

𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥)

 𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥) = 𝒩𝒩(𝜇𝜇𝜙𝜙(𝑥𝑥), 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝜙𝜙2(𝑥𝑥))) (12)

log𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)

 ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃) = −𝐸𝐸𝑦𝑦~𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)[𝑙𝑙𝑙𝑙𝑙𝑙𝓅𝓅𝜃𝜃(𝑥𝑥𝑖𝑖|𝑦𝑦)] + 𝐾𝐾𝐾𝐾(𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)||𝓅𝓅𝜃𝜃(𝑦𝑦)) (13)

 𝐿𝐿 = ∑ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃)
𝑁𝑁

𝑖𝑖=1
 (14)

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(ℳ1,ℳ2,ℬ1,ℬ2) = arg𝑚𝑚𝑚𝑚𝑚𝑚ℳ1,ℳ2,ℬ1,ℬ2 Δ(𝑥𝑥, 𝑧𝑧) (7)

 ℎ𝑘𝑘 = 𝜚𝜚(𝑥𝑥 ∗ 𝜔𝜔𝑘𝑘 + ℬ𝑘𝑘) (8)

 𝑦𝑦 = 𝜚𝜚 (∑ ℎ𝑘𝑘
𝑛𝑛∈𝐻𝐻

∗ 𝜔̃𝜔𝑘𝑘 + 𝛽𝛽) (9)

 𝜀𝜀(𝑥𝑥,𝑦𝑦) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (10)

 𝓅𝓅𝜃𝜃(𝑥𝑥) = ∫𝓅𝓅𝜃𝜃(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑 = ∫𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)𝓅𝓅(𝑦𝑦)𝑑𝑑𝑑𝑑 (11)

𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥)

 𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥) = 𝒩𝒩(𝜇𝜇𝜙𝜙(𝑥𝑥), 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝜙𝜙2(𝑥𝑥))) (12)

log𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)

 ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃) = −𝐸𝐸𝑦𝑦~𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)[𝑙𝑙𝑙𝑙𝑙𝑙𝓅𝓅𝜃𝜃(𝑥𝑥𝑖𝑖|𝑦𝑦)] + 𝐾𝐾𝐾𝐾(𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)||𝓅𝓅𝜃𝜃(𝑦𝑦)) (13)

 𝐿𝐿 = ∑ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃)
𝑁𝑁

𝑖𝑖=1
 (14)

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(ℳ1,ℳ2,ℬ1,ℬ2) = arg𝑚𝑚𝑚𝑚𝑚𝑚ℳ1,ℳ2,ℬ1,ℬ2 Δ(𝑥𝑥, 𝑧𝑧) (7)

 ℎ𝑘𝑘 = 𝜚𝜚(𝑥𝑥 ∗ 𝜔𝜔𝑘𝑘 + ℬ𝑘𝑘) (8)

 𝑦𝑦 = 𝜚𝜚 (∑ ℎ𝑘𝑘
𝑛𝑛∈𝐻𝐻

∗ 𝜔̃𝜔𝑘𝑘 + 𝛽𝛽) (9)

 𝜀𝜀(𝑥𝑥,𝑦𝑦) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (10)

 𝓅𝓅𝜃𝜃(𝑥𝑥) = ∫𝓅𝓅𝜃𝜃(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑 = ∫𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)𝓅𝓅(𝑦𝑦)𝑑𝑑𝑑𝑑 (11)

𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥)

 𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥) = 𝒩𝒩(𝜇𝜇𝜙𝜙(𝑥𝑥), 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝜙𝜙2(𝑥𝑥))) (12)

log𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)

 ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃) = −𝐸𝐸𝑦𝑦~𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)[𝑙𝑙𝑙𝑙𝑙𝑙𝓅𝓅𝜃𝜃(𝑥𝑥𝑖𝑖|𝑦𝑦)] + 𝐾𝐾𝐾𝐾(𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)||𝓅𝓅𝜃𝜃(𝑦𝑦)) (13)

 𝐿𝐿 = ∑ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃)
𝑁𝑁

𝑖𝑖=1
 (14)

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(ℳ1,ℳ2,ℬ1,ℬ2) = arg𝑚𝑚𝑚𝑚𝑚𝑚ℳ1,ℳ2,ℬ1,ℬ2 Δ(𝑥𝑥, 𝑧𝑧) (7)

 ℎ𝑘𝑘 = 𝜚𝜚(𝑥𝑥 ∗ 𝜔𝜔𝑘𝑘 + ℬ𝑘𝑘) (8)

 𝑦𝑦 = 𝜚𝜚 (∑ ℎ𝑘𝑘
𝑛𝑛∈𝐻𝐻

∗ 𝜔̃𝜔𝑘𝑘 + 𝛽𝛽) (9)

 𝜀𝜀(𝑥𝑥,𝑦𝑦) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (10)

 𝓅𝓅𝜃𝜃(𝑥𝑥) = ∫𝓅𝓅𝜃𝜃(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑 = ∫𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)𝓅𝓅(𝑦𝑦)𝑑𝑑𝑑𝑑 (11)

𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥)

 𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥) = 𝒩𝒩(𝜇𝜇𝜙𝜙(𝑥𝑥), 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝜙𝜙2(𝑥𝑥))) (12)

log𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)

 ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃) = −𝐸𝐸𝑦𝑦~𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)[𝑙𝑙𝑙𝑙𝑙𝑙𝓅𝓅𝜃𝜃(𝑥𝑥𝑖𝑖|𝑦𝑦)] + 𝐾𝐾𝐾𝐾(𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)||𝓅𝓅𝜃𝜃(𝑦𝑦)) (13)

 𝐿𝐿 = ∑ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃)
𝑁𝑁

𝑖𝑖=1
 (14)

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(ℳ1,ℳ2,ℬ1,ℬ2) = arg𝑚𝑚𝑚𝑚𝑚𝑚ℳ1,ℳ2,ℬ1,ℬ2 Δ(𝑥𝑥, 𝑧𝑧) (7)

 ℎ𝑘𝑘 = 𝜚𝜚(𝑥𝑥 ∗ 𝜔𝜔𝑘𝑘 + ℬ𝑘𝑘) (8)

 𝑦𝑦 = 𝜚𝜚 (∑ ℎ𝑘𝑘
𝑛𝑛∈𝐻𝐻

∗ 𝜔̃𝜔𝑘𝑘 + 𝛽𝛽) (9)

 𝜀𝜀(𝑥𝑥,𝑦𝑦) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (10)

 𝓅𝓅𝜃𝜃(𝑥𝑥) = ∫𝓅𝓅𝜃𝜃(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑 = ∫𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)𝓅𝓅(𝑦𝑦)𝑑𝑑𝑑𝑑 (11)

𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥)

 𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥) = 𝒩𝒩(𝜇𝜇𝜙𝜙(𝑥𝑥), 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝜙𝜙2(𝑥𝑥))) (12)

log𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)

 ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃) = −𝐸𝐸𝑦𝑦~𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)[𝑙𝑙𝑙𝑙𝑙𝑙𝓅𝓅𝜃𝜃(𝑥𝑥𝑖𝑖|𝑦𝑦)] + 𝐾𝐾𝐾𝐾(𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)||𝓅𝓅𝜃𝜃(𝑦𝑦)) (13)

 𝐿𝐿 = ∑ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃)
𝑁𝑁

𝑖𝑖=1
 (14)

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(ℳ1,ℳ2,ℬ1,ℬ2) = arg𝑚𝑚𝑚𝑚𝑚𝑚ℳ1,ℳ2,ℬ1,ℬ2 Δ(𝑥𝑥, 𝑧𝑧) (7)

 ℎ𝑘𝑘 = 𝜚𝜚(𝑥𝑥 ∗ 𝜔𝜔𝑘𝑘 + ℬ𝑘𝑘) (8)

 𝑦𝑦 = 𝜚𝜚 (∑ ℎ𝑘𝑘
𝑛𝑛∈𝐻𝐻

∗ 𝜔̃𝜔𝑘𝑘 + 𝛽𝛽) (9)

 𝜀𝜀(𝑥𝑥,𝑦𝑦) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (10)

 𝓅𝓅𝜃𝜃(𝑥𝑥) = ∫𝓅𝓅𝜃𝜃(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑 = ∫𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)𝓅𝓅(𝑦𝑦)𝑑𝑑𝑑𝑑 (11)

𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥)

 𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥) = 𝒩𝒩(𝜇𝜇𝜙𝜙(𝑥𝑥), 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝜙𝜙2(𝑥𝑥))) (12)

log𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)

 ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃) = −𝐸𝐸𝑦𝑦~𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)[𝑙𝑙𝑙𝑙𝑙𝑙𝓅𝓅𝜃𝜃(𝑥𝑥𝑖𝑖|𝑦𝑦)] + 𝐾𝐾𝐾𝐾(𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)||𝓅𝓅𝜃𝜃(𝑦𝑦)) (13)

 𝐿𝐿 = ∑ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃)
𝑁𝑁

𝑖𝑖=1
 (14)

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(ℳ1,ℳ2,ℬ1,ℬ2) = arg𝑚𝑚𝑚𝑚𝑚𝑚ℳ1,ℳ2,ℬ1,ℬ2 Δ(𝑥𝑥, 𝑧𝑧) (7)

 ℎ𝑘𝑘 = 𝜚𝜚(𝑥𝑥 ∗ 𝜔𝜔𝑘𝑘 + ℬ𝑘𝑘) (8)

 𝑦𝑦 = 𝜚𝜚 (∑ ℎ𝑘𝑘
𝑛𝑛∈𝐻𝐻

∗ 𝜔̃𝜔𝑘𝑘 + 𝛽𝛽) (9)

 𝜀𝜀(𝑥𝑥,𝑦𝑦) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (10)

 𝓅𝓅𝜃𝜃(𝑥𝑥) = ∫𝓅𝓅𝜃𝜃(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑 = ∫𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)𝓅𝓅(𝑦𝑦)𝑑𝑑𝑑𝑑 (11)

𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥)

 𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥) = 𝒩𝒩(𝜇𝜇𝜙𝜙(𝑥𝑥), 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝜙𝜙2(𝑥𝑥))) (12)

log𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)

 ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃) = −𝐸𝐸𝑦𝑦~𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)[𝑙𝑙𝑙𝑙𝑙𝑙𝓅𝓅𝜃𝜃(𝑥𝑥𝑖𝑖|𝑦𝑦)] + 𝐾𝐾𝐾𝐾(𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)||𝓅𝓅𝜃𝜃(𝑦𝑦)) (13)

 𝐿𝐿 = ∑ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃)
𝑁𝑁

𝑖𝑖=1
 (14)

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(ℳ1,ℳ2,ℬ1,ℬ2) = arg𝑚𝑚𝑚𝑚𝑚𝑚ℳ1,ℳ2,ℬ1,ℬ2 Δ(𝑥𝑥, 𝑧𝑧) (7)

 ℎ𝑘𝑘 = 𝜚𝜚(𝑥𝑥 ∗ 𝜔𝜔𝑘𝑘 + ℬ𝑘𝑘) (8)

 𝑦𝑦 = 𝜚𝜚 (∑ ℎ𝑘𝑘
𝑛𝑛∈𝐻𝐻

∗ 𝜔̃𝜔𝑘𝑘 + 𝛽𝛽) (9)

 𝜀𝜀(𝑥𝑥, 𝑦𝑦) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (10)

 𝓅𝓅𝜃𝜃(𝑥𝑥) = ∫𝓅𝓅𝜃𝜃(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑 = ∫𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)𝓅𝓅(𝑦𝑦)𝑑𝑑𝑑𝑑 (11)

𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥)

 𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥) = 𝒩𝒩(𝜇𝜇𝜙𝜙(𝑥𝑥), 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝜙𝜙2(𝑥𝑥))) (12)

log𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)

 ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃) = −𝐸𝐸𝑦𝑦~𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)[𝑙𝑙𝑙𝑙𝑙𝑙𝓅𝓅𝜃𝜃(𝑥𝑥𝑖𝑖|𝑦𝑦)] + 𝐾𝐾𝐾𝐾(𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)||𝓅𝓅𝜃𝜃(𝑦𝑦)) (13)

 𝐿𝐿 = ∑ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃)
𝑁𝑁

𝑖𝑖=1
 (14)

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(ℳ1,ℳ2,ℬ1,ℬ2) = arg𝑚𝑚𝑚𝑚𝑚𝑚ℳ1,ℳ2,ℬ1,ℬ2 Δ(𝑥𝑥, 𝑧𝑧) (7)

 ℎ𝑘𝑘 = 𝜚𝜚(𝑥𝑥 ∗ 𝜔𝜔𝑘𝑘 + ℬ𝑘𝑘) (8)

 𝑦𝑦 = 𝜚𝜚 (∑ ℎ𝑘𝑘
𝑛𝑛∈𝐻𝐻

∗ 𝜔̃𝜔𝑘𝑘 + 𝛽𝛽) (9)

 𝜀𝜀(𝑥𝑥,𝑦𝑦) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (10)

 𝓅𝓅𝜃𝜃(𝑥𝑥) = ∫𝓅𝓅𝜃𝜃(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑 = ∫𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)𝓅𝓅(𝑦𝑦)𝑑𝑑𝑑𝑑 (11)

𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥)

 𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥) = 𝒩𝒩(𝜇𝜇𝜙𝜙(𝑥𝑥), 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝜙𝜙2(𝑥𝑥))) (12)

log𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)

 ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃) = −𝐸𝐸𝑦𝑦~𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)[𝑙𝑙𝑙𝑙𝑙𝑙𝓅𝓅𝜃𝜃(𝑥𝑥𝑖𝑖|𝑦𝑦)] + 𝐾𝐾𝐾𝐾(𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)||𝓅𝓅𝜃𝜃(𝑦𝑦)) (13)

 𝐿𝐿 = ∑ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃)
𝑁𝑁

𝑖𝑖=1
 (14)

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(ℳ1,ℳ2,ℬ1,ℬ2) = arg𝑚𝑚𝑚𝑚𝑚𝑚ℳ1,ℳ2,ℬ1,ℬ2 Δ(𝑥𝑥, 𝑧𝑧) (7)

 ℎ𝑘𝑘 = 𝜚𝜚(𝑥𝑥 ∗ 𝜔𝜔𝑘𝑘 + ℬ𝑘𝑘) (8)

 𝑦𝑦 = 𝜚𝜚 (∑ ℎ𝑘𝑘
𝑛𝑛∈𝐻𝐻

∗ 𝜔̃𝜔𝑘𝑘 + 𝛽𝛽) (9)

 𝜀𝜀(𝑥𝑥,𝑦𝑦) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (10)

 𝓅𝓅𝜃𝜃(𝑥𝑥) = ∫𝓅𝓅𝜃𝜃(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑 = ∫𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)𝓅𝓅(𝑦𝑦)𝑑𝑑𝑑𝑑 (11)

𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥)

 𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥) = 𝒩𝒩(𝜇𝜇𝜙𝜙(𝑥𝑥), 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝜙𝜙2(𝑥𝑥))) (12)

log𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)

 ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃) = −𝐸𝐸𝑦𝑦~𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)[𝑙𝑙𝑙𝑙𝑙𝑙𝓅𝓅𝜃𝜃(𝑥𝑥𝑖𝑖|𝑦𝑦)] + 𝐾𝐾𝐾𝐾(𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)||𝓅𝓅𝜃𝜃(𝑦𝑦)) (13)

 𝐿𝐿 = ∑ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃)
𝑁𝑁

𝑖𝑖=1
 (14)

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(ℳ1,ℳ2,ℬ1,ℬ2) = arg𝑚𝑚𝑚𝑚𝑚𝑚ℳ1,ℳ2,ℬ1,ℬ2 Δ(𝑥𝑥, 𝑧𝑧) (7)

 ℎ𝑘𝑘 = 𝜚𝜚(𝑥𝑥 ∗ 𝜔𝜔𝑘𝑘 + ℬ𝑘𝑘) (8)

 𝑦𝑦 = 𝜚𝜚 (∑ ℎ𝑘𝑘
𝑛𝑛∈𝐻𝐻

∗ 𝜔̃𝜔𝑘𝑘 + 𝛽𝛽) (9)

 𝜀𝜀(𝑥𝑥,𝑦𝑦) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (10)

 𝓅𝓅𝜃𝜃(𝑥𝑥) = ∫𝓅𝓅𝜃𝜃(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑 = ∫𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)𝓅𝓅(𝑦𝑦)𝑑𝑑𝑑𝑑 (11)

𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥)

 𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥) = 𝒩𝒩(𝜇𝜇𝜙𝜙(𝑥𝑥), 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝜙𝜙2(𝑥𝑥))) (12)

log𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)

 ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃) = −𝐸𝐸𝑦𝑦~𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)[𝑙𝑙𝑙𝑙𝑙𝑙𝓅𝓅𝜃𝜃(𝑥𝑥𝑖𝑖|𝑦𝑦)] + 𝐾𝐾𝐾𝐾(𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)||𝓅𝓅𝜃𝜃(𝑦𝑦)) (13)

 𝐿𝐿 = ∑ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃)
𝑁𝑁

𝑖𝑖=1
 (14)

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(ℳ1,ℳ2,ℬ1,ℬ2) = arg𝑚𝑚𝑚𝑚𝑚𝑚ℳ1,ℳ2,ℬ1,ℬ2 Δ(𝑥𝑥, 𝑧𝑧) (7)

 ℎ𝑘𝑘 = 𝜚𝜚(𝑥𝑥 ∗ 𝜔𝜔𝑘𝑘 + ℬ𝑘𝑘) (8)

 𝑦𝑦 = 𝜚𝜚 (∑ ℎ𝑘𝑘
𝑛𝑛∈𝐻𝐻

∗ 𝜔̃𝜔𝑘𝑘 + 𝛽𝛽) (9)

 𝜀𝜀(𝑥𝑥,𝑦𝑦) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (10)

 𝓅𝓅𝜃𝜃(𝑥𝑥) = ∫𝓅𝓅𝜃𝜃(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑 = ∫𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)𝓅𝓅(𝑦𝑦)𝑑𝑑𝑑𝑑 (11)

𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥)

 𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥) = 𝒩𝒩(𝜇𝜇𝜙𝜙(𝑥𝑥), 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝜙𝜙2(𝑥𝑥))) (12)

log𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)

 ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃) = −𝐸𝐸𝑦𝑦~𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)[𝑙𝑙𝑙𝑙𝑙𝑙𝓅𝓅𝜃𝜃(𝑥𝑥𝑖𝑖|𝑦𝑦)] + 𝐾𝐾𝐾𝐾(𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)||𝓅𝓅𝜃𝜃(𝑦𝑦)) (13)

 𝐿𝐿 = ∑ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃)
𝑁𝑁

𝑖𝑖=1
 (14)

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(ℳ1,ℳ2,ℬ1,ℬ2) = arg𝑚𝑚𝑚𝑚𝑚𝑚ℳ1,ℳ2,ℬ1,ℬ2 Δ(𝑥𝑥, 𝑧𝑧) (7)

 ℎ𝑘𝑘 = 𝜚𝜚(𝑥𝑥 ∗ 𝜔𝜔𝑘𝑘 + ℬ𝑘𝑘) (8)

 𝑦𝑦 = 𝜚𝜚 (∑ ℎ𝑘𝑘
𝑛𝑛∈𝐻𝐻

∗ 𝜔̃𝜔𝑘𝑘 + 𝛽𝛽) (9)

 𝜀𝜀(𝑥𝑥,𝑦𝑦) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (10)

 𝓅𝓅𝜃𝜃(𝑥𝑥) = ∫𝓅𝓅𝜃𝜃(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑 = ∫𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)𝓅𝓅(𝑦𝑦)𝑑𝑑𝑑𝑑 (11)

𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥)

 𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥) = 𝒩𝒩(𝜇𝜇𝜙𝜙(𝑥𝑥), 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝜙𝜙2(𝑥𝑥))) (12)

log𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)

 ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃) = −𝐸𝐸𝑦𝑦~𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)[𝑙𝑙𝑙𝑙𝑙𝑙𝓅𝓅𝜃𝜃(𝑥𝑥𝑖𝑖|𝑦𝑦)] + 𝐾𝐾𝐾𝐾(𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)||𝓅𝓅𝜃𝜃(𝑦𝑦)) (13)

 𝐿𝐿 = ∑ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃)
𝑁𝑁

𝑖𝑖=1
 (14)

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(ℳ1,ℳ2,ℬ1,ℬ2) = arg𝑚𝑚𝑚𝑚𝑚𝑚ℳ1,ℳ2,ℬ1,ℬ2 Δ(𝑥𝑥, 𝑧𝑧) (7)

 ℎ𝑘𝑘 = 𝜚𝜚(𝑥𝑥 ∗ 𝜔𝜔𝑘𝑘 + ℬ𝑘𝑘) (8)

 𝑦𝑦 = 𝜚𝜚 (∑ ℎ𝑘𝑘
𝑛𝑛∈𝐻𝐻

∗ 𝜔̃𝜔𝑘𝑘 + 𝛽𝛽) (9)

 𝜀𝜀(𝑥𝑥,𝑦𝑦) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (10)

 𝓅𝓅𝜃𝜃(𝑥𝑥) = ∫𝓅𝓅𝜃𝜃(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑 = ∫𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)𝓅𝓅(𝑦𝑦)𝑑𝑑𝑑𝑑 (11)

𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥)

 𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥) = 𝒩𝒩(𝜇𝜇𝜙𝜙(𝑥𝑥), 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝜙𝜙2(𝑥𝑥))) (12)

log𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)

 ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃) = −𝐸𝐸𝑦𝑦~𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)[𝑙𝑙𝑙𝑙𝑙𝑙𝓅𝓅𝜃𝜃(𝑥𝑥𝑖𝑖|𝑦𝑦)] + 𝐾𝐾𝐾𝐾(𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)||𝓅𝓅𝜃𝜃(𝑦𝑦)) (13)

 𝐿𝐿 = ∑ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃)
𝑁𝑁

𝑖𝑖=1
 (14)

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(ℳ1,ℳ2,ℬ1,ℬ2) = arg𝑚𝑚𝑚𝑚𝑚𝑚ℳ1,ℳ2,ℬ1,ℬ2 Δ(𝑥𝑥, 𝑧𝑧) (7)

 ℎ𝑘𝑘 = 𝜚𝜚(𝑥𝑥 ∗ 𝜔𝜔𝑘𝑘 + ℬ𝑘𝑘) (8)

 𝑦𝑦 = 𝜚𝜚 (∑ ℎ𝑘𝑘
𝑛𝑛∈𝐻𝐻

∗ 𝜔̃𝜔𝑘𝑘 + 𝛽𝛽) (9)

 𝜀𝜀(𝑥𝑥,𝑦𝑦) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (10)

 𝓅𝓅𝜃𝜃(𝑥𝑥) = ∫𝓅𝓅𝜃𝜃(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑 = ∫𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)𝓅𝓅(𝑦𝑦)𝑑𝑑𝑑𝑑 (11)

𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥)

 𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥) = 𝒩𝒩(𝜇𝜇𝜙𝜙(𝑥𝑥), 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝜙𝜙2(𝑥𝑥))) (12)

log𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)

 ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃) = −𝐸𝐸𝑦𝑦~𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)[𝑙𝑙𝑙𝑙𝑙𝑙𝓅𝓅𝜃𝜃(𝑥𝑥𝑖𝑖|𝑦𝑦)] + 𝐾𝐾𝐾𝐾(𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)||𝓅𝓅𝜃𝜃(𝑦𝑦)) (13)

 𝐿𝐿 = ∑ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃)
𝑁𝑁

𝑖𝑖=1
 (14)

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(ℳ1,ℳ2,ℬ1,ℬ2) = arg𝑚𝑚𝑚𝑚𝑚𝑚ℳ1,ℳ2,ℬ1,ℬ2 Δ(𝑥𝑥, 𝑧𝑧) (7)

 ℎ𝑘𝑘 = 𝜚𝜚(𝑥𝑥 ∗ 𝜔𝜔𝑘𝑘 + ℬ𝑘𝑘) (8)

 𝑦𝑦 = 𝜚𝜚 (∑ ℎ𝑘𝑘
𝑛𝑛∈𝐻𝐻

∗ 𝜔̃𝜔𝑘𝑘 + 𝛽𝛽) (9)

 𝜀𝜀(𝑥𝑥,𝑦𝑦) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (10)

 𝓅𝓅𝜃𝜃(𝑥𝑥) = ∫𝓅𝓅𝜃𝜃(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑 = ∫𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)𝓅𝓅(𝑦𝑦)𝑑𝑑𝑑𝑑 (11)

𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥)

 𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥) = 𝒩𝒩(𝜇𝜇𝜙𝜙(𝑥𝑥), 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝜙𝜙2(𝑥𝑥))) (12)

log𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)

 ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃) = −𝐸𝐸𝑦𝑦~𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)[𝑙𝑙𝑙𝑙𝑙𝑙𝓅𝓅𝜃𝜃(𝑥𝑥𝑖𝑖|𝑦𝑦)] + 𝐾𝐾𝐾𝐾(𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)||𝓅𝓅𝜃𝜃(𝑦𝑦)) (13)

 𝐿𝐿 = ∑ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃)
𝑁𝑁

𝑖𝑖=1
 (14)

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(ℳ1,ℳ2,ℬ1,ℬ2) = arg𝑚𝑚𝑚𝑚𝑚𝑚ℳ1,ℳ2,ℬ1,ℬ2 Δ(𝑥𝑥, 𝑧𝑧) (7)

 ℎ𝑘𝑘 = 𝜚𝜚(𝑥𝑥 ∗ 𝜔𝜔𝑘𝑘 + ℬ𝑘𝑘) (8)

 𝑦𝑦 = 𝜚𝜚 (∑ ℎ𝑘𝑘
𝑛𝑛∈𝐻𝐻

∗ 𝜔̃𝜔𝑘𝑘 + 𝛽𝛽) (9)

 𝜀𝜀(𝑥𝑥,𝑦𝑦) = 1
2𝑛𝑛∑(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (10)

 𝓅𝓅𝜃𝜃(𝑥𝑥) = ∫𝓅𝓅𝜃𝜃(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑 = ∫𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)𝓅𝓅(𝑦𝑦)𝑑𝑑𝑑𝑑 (11)

𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥)

 𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥) = 𝒩𝒩(𝜇𝜇𝜙𝜙(𝑥𝑥), 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜎𝜎𝜙𝜙2(𝑥𝑥))) (12)

log𝓅𝓅𝜃𝜃(𝑥𝑥|𝑦𝑦)

 ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃) = −𝐸𝐸𝑦𝑦~𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)[𝑙𝑙𝑙𝑙𝑙𝑙𝓅𝓅𝜃𝜃(𝑥𝑥𝑖𝑖|𝑦𝑦)] + 𝐾𝐾𝐾𝐾(𝓆𝓆𝜙𝜙(𝑦𝑦|𝑥𝑥𝑖𝑖)||𝓅𝓅𝜃𝜃(𝑦𝑦)) (13)

 𝐿𝐿 = ∑ℓ𝑖𝑖(𝜙𝜙,𝜃𝜃)
𝑁𝑁

𝑖𝑖=1
 (14)

245

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

Figure 4. DVAE architecture for image denoising.

Proposed Hybrid Models for Noisy Image Classification

This section explains the proposed hybrid models DAE-CNN, CDAE-CNN,
DVAE-CNN, DAE-CDAE-CNN and DVAE-CDAE-CNN for noisy image
classification. The common feature of all these models is that a CNN is used as
a classifier which takes denoised image (i.e. reconstructed) from the prior AE
of a particular model. Conventional AE(s) of a model are trained individually
with regular noise and CNN is trained with noise-free image. Finally, AE(s)
and CNN are cascaded to form a particular hybrid model and no further training
is performed. The following subsections explain the architectural description
as well as the working procedures of each individual model.

Hybrid Model 1: DAE-CNN Architecture

The proposed DAE-CNN is a supervised deep network designed in order to
perform image classification regardless of the possibility of they being noisy.
With layer-wise training, the whole architecture of the DAE-CNN is optimized.
Fig. 5 shows the all-inclusive architecture of the proposed DAE-CNN model.
This model is a fusion of DAE and a two-layered CNN. In the first place, the
noisy image is refined by the DAE, and afterward the reconstructed image is
fed to the accompanying CNN. DAE filters the noises from the input images
via the reconstruction process. All the encoder and decoder parameters (the
input-hidden and the hidden-output weights) are initialized by the weights of
the DAE trained before (discussed in the DAE section). The following CNN
is designed with two convolution-subsampling layers; at first, a following
dense layer and finally an output layer. All the parameters of the CNN (the

 11

Thus, for total data points the overall loss would be:

This DVAE is trained to reconstruct native images from their 20% noisy form.

Proposed Hybrid Models for Noisy Image Classification

This section explains the proposed hybrid models DAE-CNN, CDAE-CNN, DVAE-CNN, DAE-CDAE-
CNN and DVAE-CDAE-CNN for noisy image classification. The common feature of all these models is
that a CNN is used as a classifier which takes denoised image (i.e. reconstructed) from the prior AE of a
particular model. Conventional AE(s) of a model are trained individually with regular noise and CNN is
trained with noise-free image. Finally, AE(s) and CNN are cascaded to form a particular hybrid model and
no further training is performed. The following subsections explain the architectural description as well as
the working procedures of each individual model.

Hybrid Model 1: DAE-CNN Architecture

The proposed DAE-CNN is a supervised deep network designed in order to perform image classification
regardless of the possibility of they being noisy. With layer-wise training, the whole architecture of the
DAE-CNN is optimized. Fig. 5 shows the all-inclusive architecture of the proposed DAE-CNN model.
This model is a fusion of DAE and a two-layered CNN. In the first place, the noisy image is refined by
the DAE, and afterward the reconstructed image is fed to the accompanying CNN. DAE filters the noises
from the input images via the reconstruction process. All the encoder and decoder parameters (the input-
hidden and the hidden-output weights) are initialized by the weights of the DAE trained before (discussed
in the DAE section). The following CNN is designed with two convolution-subsampling layers; at first, a
following dense layer and finally an output layer. All the parameters of the CNN (the hidden-output
weights, local averaging parameters, and kernels) are set to the corresponding parameters used in the pre-
trained CNN as discussed in the CNN section. In the end, only via a forward pass, this architecture does

Figure 4. DVAE architecture for image denoising.

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

246

hidden-output weights, local averaging parameters, and kernels) are set to the
corresponding parameters used in the pre-trained CNN as discussed in the
CNN section. In the end, only via a forward pass, this architecture does the
noisy image classification task.

Figure 5. DAE-CNN architecture for noisy image classification.

Hybrid Model 2: CDAE-CNN ArchitectureCDAE-CNN is another
supervised deep network used in this study for classifying noisy images as
shown in Fig. 6. It is a combination of a CDAE at first and follows a two-
layered CNN in the very same manner DAE-CNN architecture incorporates a
DAE as an image reconstructor and a CNN as a classifier. Serving as a filter
as well as a reconstructor, the CDAE reconstructs noise-free images from the
noisy version fed to it and then passes it to the following CNN. The kernel
weights along all the parameters of both CDAE and the CNN used here were
initialized with the value of the corresponding parameters of the pre-trained
CDAE and CNN (discussed in the CDAE and CNN section).

Hybrid Model 3: DVAE-CNN Architecture

The DVAE-CNN architecture incorporates one image reconstructor and a
following classifier like DAE-CNN and CDAE-CNN architecture. In this
model DVAE serves as the noise filter as well as the image reconstructor.
At first the noisy image is fed to the DVAE. Like DAE and CDAE it also
reconstructs noise-free native images from the noisy input images but in a
variational inference manner. Moreover, it uses an additional regularizer along
with the negative log-likelihood which is common in all other traditional
autoencoders. The following two-layered CNN takes this reconstructed
and less noisy image as input and classifies it. The inclusive architecture is
optimized via layer-wise training. Fig. 7 gives a proper demonstration of this

 12

the noisy image classification task.

Hybrid Model 2: CDAE-CNN Architecture

CDAE-CNN is another supervised deep network used in this study for classifying noisy images as shown
in Fig. 6. It is a combination of a CDAE at first and follows a two-layered CNN in the very same manner
DAE-CNN architecture incorporates a DAE as an image reconstructor and a CNN as a classifier. Serving
as a filter as well as a reconstructor, the CDAE reconstructs noise-free images from the noisy version fed
to it and then passes it to the following CNN. The kernel weights along all the parameters of both CDAE
and the CNN used here were initialized with the value of the corresponding parameters of the pre-trained
CDAE and CNN (discussed in the CDAE and CNN section).

Hybrid Model 3: DVAE-CNN Architecture

Figure 5. DAE-CNN architecture for noisy image classification.

Figure 6. CDAE-CNN architecture for noisy-image classification.

247

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

model. All the weights between the input and hidden layers as well as between
the hidden and output layers of the DVAE are initialized with the corresponding
weights of the pretrained DVAE (discussed in the DVAE section). After this,
the classifier CNN is initialized containing two convolution-subsampling
layers, a dense layer and in the end, an output layer. All the parameters of this
CNN are initialized with the ones of the very same parameters used in the pre-
trained CNN (discussed in the CNN section). A simple forward pass would
then employ DVAE-CNN in the classification task.

Figure 6. CDAE-CNN architecture for noisy-image classification.

Hybrid Model 4: DAE-CDAE-CNN Architecture

The hybrid DAE-CDAE-CNN-supervised image classifier incorporates
both the denoising and convolutional approaches (DAE and
CDAE) for filtering noisy images and reconstructing noise-free raw

Figure 7. DVAE-CNN architecture for roisy image classification.

images from them. The all-embracing structure of the DAE-CDAE-CNN is
exhibited in Fig. 8. It has three basic components: first a DAE, them a CDAE,

 12

the noisy image classification task.

Hybrid Model 2: CDAE-CNN Architecture

CDAE-CNN is another supervised deep network used in this study for classifying noisy images as shown
in Fig. 6. It is a combination of a CDAE at first and follows a two-layered CNN in the very same manner
DAE-CNN architecture incorporates a DAE as an image reconstructor and a CNN as a classifier. Serving
as a filter as well as a reconstructor, the CDAE reconstructs noise-free images from the noisy version fed
to it and then passes it to the following CNN. The kernel weights along all the parameters of both CDAE
and the CNN used here were initialized with the value of the corresponding parameters of the pre-trained
CDAE and CNN (discussed in the CDAE and CNN section).

Hybrid Model 3: DVAE-CNN Architecture

Figure 5. DAE-CNN architecture for noisy image classification.

Figure 6. CDAE-CNN architecture for noisy-image classification.

 13

The DVAE-CNN architecture incorporates one image reconstructor and a following classifier like DAE-
CNN and CDAE-CNN architecture. In this model DVAE serves as the noise filter as well as the image
reconstructor. At first the noisy image is fed to the DVAE. Like DAE and CDAE it also reconstructs
noise-free native images from the noisy input images but in a variational inference manner. Moreover, it
uses an additional regularizer along with the negative log-likelihood which is common in all other
traditional autoencoders. The following two-layered CNN takes this reconstructed and less noisy image as
input and classifies it. The inclusive architecture is optimized via layer-wise training. Fig. 7 gives a proper
demonstration of this model. All the weights between the input and hidden layers as well as between the
hidden and output layers of the DVAE are initialized with the corresponding weights of the pretrained
DVAE (discussed in the DVAE section). After this, the classifier CNN is initialized containing two
convolution-subsampling layers, a dense layer and in the end, an output layer. All the parameters of this
CNN are initialized with the ones of the very same parameters used in the pre-trained CNN (discussed in
the CNN section). A simple forward pass would then employ DVAE-CNN in the classification task.

Hybrid Model 4: DAE-CDAE-CNN Architecture
The hybrid DAE-CDAE-CNN-supervised image classifier incorporates both the denoising and
convolutional approaches (DAE and CDAE) for filtering noisy images and reconstructing noise-free raw

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

248

Figure 8. DAE-CDAE-CNN architecture for noisy image classification.

both serving as image reconstructors, and finally a two-layered CNN serving
as an image classifier. The fundamental point of this method is to enhance the
accuracy of the image classification with better reconstructions of the noisy
images by having a good quality. The first image reconstructor DAE’s input-
hidden weights as well as thehidden-output weights are set to the value of the
same pre-trained DAE’s corresponding weights as in DAE-CNN architecture.
DAE tries to reconstruct the raw image emitting the noise from the noisy input
image serving as a filter and outputs a reconstructed image with less noise.
This reconstructed intermediate image is then fed to the CDAE for further
denoising. Compared to DAE, CDAE yields a better reconstruction in case of
images. As this CDAE is fed with less noisy images than the original input,
it outputs a better intermediate representation of the image for the following
classifier. The kernels and other performance parameters of this CDAE are
regulated uniformly to the pre-trained CDAE discussed in the CDAE section.
The two- layered CNN is also regulated uniformly to the CNN, trained with
zero noise added images for classification purpose (discussed in the CNN
section).

Hybrid Model 5: DVAE-CDAE-CNN Architecture

DVAE-CDAE-CNN (shown in Fig. 9) works in the same manner as the
DAE-CDAE-CNN architecture (discussed in the section on Hybrid Model 4:
DAE-CDAE-CNN Architecture) and contains two image reconstructors: at
initial point, a DVAE, and then a CDAE. As DVAE performs better image
reconstruction than the traditional DAE (Im et al., 2017) the input image
for CDAE is better in quality here compared to the DAE-CDAE-CNN
architecture. As a result, the hybrid image reconstructor DVAE-CDAE outputs
better images for the following CNN classifier compared to the DAE-CDAE-
CNN architecture resulting in a better image classification in case the image
is noisy. All the parameters in this DVAE are tuned to the corresponding

 14

Figure 8. DAE-CDAE-CNN architecture for noisy image classification

images from them. The all-embracing structure of the DAE-CDAE-CNN is exhibited in Fig. 8. It has
three basic components: first a DAE, them a CDAE, both serving as image reconstructors, and finally a
two-layered CNN serving as an image classifier. The fundamental point of this method is to enhance the
accuracy of the image classification with better reconstructions of the noisy images by having a good
quality. The first image reconstructor DAE’s input-hidden weights as well as thehidden-output weights
are set to the value of the same pre-trained DAE’s corresponding weights as in DAE-CNN architecture.
DAE tries to reconstruct the raw image emitting the noise from the noisy input image serving as a filter
and outputs a reconstructed image with less noise. This reconstructed intermediate image is then fed to
the CDAE for further denoising. Compared to DAE, CDAE yields a better reconstruction in case of
images. As this CDAE is fed with less noisy images than the original input, it outputs a better
intermediate representation of the image for the following classifier. The kernels and other performance
parameters of this CDAE are regulated uniformly to the pre-trained CDAE discussed in the CDAE
section. The two- layered CNN is also regulated uniformly to the CNN, trained with zero noise added
images for classification purpose (discussed in the CNN section).

Hybrid Model 5: DVAE-CDAE-CNN Architecture

DVAE-CDAE-CNN (shown in Fig. 9) works in the same manner as the DAE-CDAE-CNN architecture
(discussed in the section on Hybrid Model 4: DAE-CDAE-CNN Architecture) and contains two image
reconstructors: at initial point, a DVAE, and then a CDAE. As DVAE performs better image
reconstruction than the traditional DAE (Im et al., 2017) the input image for CDAE is better in quality
here compared to the DAE-CDAE-CNN architecture. As a result, the hybrid image reconstructor DVAE-
CDAE outputs better images for the following CNN classifier compared to the DAE-CDAE-CNN
architecture resulting in a better image classification in case the image is noisy. All the parameters in this
DVAE are tuned to the corresponding parameters’ value of the pre-trained DVAE (as specified in the
DVAE section). The kernels, hidden-output weights along with the local averaging parameters used in
this structure are initialized with corresponding parameter values of the CDAE and CNN previously
trained (discussed in the CDAE and the CNN section).

249

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

parameters’ value of the pre-trained DVAE (as specified in the DVAE section).
The kernels, hidden-output weights along with the local averaging parameters
used in this structure are initialized with corresponding parameter values of
the CDAE and CNN previously trained (discussed in the CDAE and the CNN
section).

Figure 9. DVAE-CDAE-CNN architecture for recreating native images
from debased configurations of them because of noise.

PERFORMANCE EVALUATION

This section investigates the performances of the proposed hybrid models on
the benchmark datasets of two different categories: MNIST numeral images
and CIFAR-10 object images. This section first describes the datasets and
the experimental setups used to work over these datasets. Experiments were
conducted at different noise levels and the proficiency of the models were
compared against existing models. These models were implemented in Matlab
R2015a. The performance analysis was conducted on MacBook Pro Laptop
(CPU: Intel Core i5 @ 2.70 GHz and RAM: 8.00 GB) in OS-X Yosemite
environment.

Data Description

Image data corrupted with noise to occurs while dealing with real life practical
applications. Even when a well-established system is employed on real-life
data that system might fail only because of the inappropriateness of the
data. Therefore, it is highly required to preprocess those image data prior to
applying them in the practical application plot. With the intention to cope
with this type of scenario, and at the same time to show the significance of
the proposed models we considered two benchmark datasets: MNIST (LeCun
et al. 2010) and CIFAR-10 (Coates et al. 2011), in this study. A large number

 15

Figure 9. DVAE-CDAE-CNN architecture for recreating native images from debased configurations of
them because of noise.

PERFORMANCE EVALUATION

This section investigates the performances of the proposed hybrid models on the benchmark datasets of
two different categories: MNIST numeral images and CIFAR-10 object images. This section first
describes the datasets and the experimental setups used to work over these datasets. Experiments were
conducted at different noise levels and the proficiency of the models were compared against existing
models. These models were implemented in Matlab R2015a. The performance analysis was conducted on
MacBook Pro Laptop (CPU: Intel Core i5 @ 2.70 GHz and RAM: 8.00 GB) in OS-X Yosemite
environment.

Data Description

Image data corrupted with noise to occurs while dealing with real life practical applications. Even when a
well-established system is employed on real-life data that system might fail only because of the
inappropriateness of the data. Therefore, it is highly required to preprocess those image data prior to
applying them in the practical application plot. With the intention to cope with this type of scenario, and
at the same time to show the significance of the proposed models we considered two benchmark datasets:
MNIST (LeCun et al. 2010) and CIFAR-10 (Coates et al. 2011), in this study. A large number of recent
studies utilized these two datasets considering the image data as a source (LeCun et al., 1998; Vincent et
al., 2008; Vincent et al., 2010; Masci et al., 2011).

MNIST Dataset: The dataset contains 70000 28x28-sized sample images with a large variety of distinct
numeral images from various individuals rehearsing distinctive individual writing patterns. The images

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

250

of recent studies utilized these two datasets considering the image data as a
source (LeCun et al., 1998; Vincent et al., 2008; Vincent et al., 2010; Masci
et al., 2011).

MNIST Dataset: The dataset contains 70000 28x28-sized sample images with
a large variety of distinct numeral images from various individuals rehearsing
distinctive individual writing patterns. The images are divided into training
and test sets. The test set holds 10000 images having 1000 samples for each
of the 10 numerals and the training set contains 60000 images having 6000
images for every individual digit. Fig. 10(a) displays few sample images of
every handwritten numeralCIFAR-10 Dataset: This dataset contains 32x32-
sized 60000 samples of colored images of ten different

Figure 10. Samples of some images from MNIST and CIFAR-10 datasets.

objects (airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck).
The training set consists of 50000 distinct images having 6000 samples of
every class. The remining 10000 sample images are used as test set. In the test
set, each of every object has exactly 1000 sample images which are mutually
exclusive. A few images from each class are shown in Fig. 10(b). For the
experiments, these images were converted to grey-scale.

Experimental Setup

We experimented the proposed hybrid models over MNIST and grey-scaled
CIFAR-10 datasets. Images in these two datasets were different in size.
MNIST contained images of size 28x28 whereas images in CIFAR-10 were of
size 32x32 forcing us to apply different architecture for the proposed models.
This section describes the actual architectural setup used to work with MNIST
and CIFAR-10 datasets.

A uniform experimental environment was set up for fair investigation among
the proposed and the existing methods. As the images from the dataset were
of size 28×28 (MNIST) and 32×32 (CIFAR-10), each of these classifiers

 16

are divided into training and test sets. The test set holds 10000 images having 1000 samples for each of
the 10 numerals and the training set contains 60000 images having 6000 images for every individual digit.
Fig. 10(a) displays few sample images of every handwritten numeral.

CIFAR-10 Dataset: This dataset contains 32x32-sized 60000 samples of colored images of ten different

Figure 10. Samples of some images from MNIST and CIFAR-10 datasets.

objects (airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck). The training set consists of
50000 distinct images having 6000 samples of every class. The remining 10000 sample images are used
as test set. In the test set, each of every object has exactly 1000 sample images which are mutually
exclusive. A few images from each class are shown in Fig. 10(b). For the experiments, these images were
converted to grey-scale.

Experimental Setup

We experimented the proposed hybrid models over MNIST and grey-scaled CIFAR-10 datasets. Images
in these two datasets were different in size. MNIST contained images of size 28x28 whereas images in
CIFAR-10 were of size 32x32 forcing us to apply different architecture for the proposed models. This
section describes the actual architectural setup used to work with MNIST and CIFAR-10 datasets.

A uniform experimental environment was set up for fair investigation among the proposed and the
existing methods. As the images from the dataset were of size 28×28 (MNIST) and 32×32 (CIFAR-10),
each of these classifiers had 784 (and 1024) input units so as to take the linearized version of the data. As

(a) MNIST

(b) CIFAR-10

251

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

had 784 (and 1024) input units so as to take the linearized version of the
data. As the data was divided into 10 classes, each of these classifiers had
10 units in the output layer. The intermediate portion of each of the network
varied based on its architecture. DAE and DVAE had hidden layer size of
500 (and 700). Additionally, DVAE had an additional latent representation
layer of size two. On the other hand, CDAE had kernel size of 5×5 and a
subsample window of 2×2 local averaging area. Throughout the experiments,
a two-layered CNN was used with all of the AEs (conventional and hybrid)
having two convolution-subsampling layers. For both convolutional layers,
the kernel size remained fixed and was 5 × 5 , in both subsampling layers; the
size of the pooling area was 2 × 2.

Due to the large-sized training set, batch-wise training was performed; and
all of the experiments were conducted with a fixed batch size of 50. Weights
of each of these networks were updated once for a batch of image patterns
and batch size (BS), i.e. the number of patterns in a batch, was considered as
a user-defined parameter in such a way that the total training patterns were
completely divisible by the BS value. For the experiments, the learning rate
(i.e. eta) values were varied in the range of 0.1 to 1.0.

EXPERIMENTAL RESULTS AND ANALYSIS

As these models were validated against two datasets, the experimental results
and analysis are presented in two different subsections.

Result on MNIST Dataset

This section illustrates the performance of the proposed models over the MNIST
data set with noise of different proportions injected in it. Fig. 11 delineates
the result of the noise removal step utilizing DAE, CDAE, DAE-CDAE,
DVAE-CNN, DVAE-CDAE-CNN separately on 50% noisy image data and
these reconstructed images were fed to the following CNN classifier. Initially,
the images in the dataset were pre-processed and without any additional
noise added in it. With a specific end goal to assess the performance of these
proposed hybrid classifiers on noisy images, noise was added manually to
the images in the dataset. Zero masking noise was used for conducting the
experiments in which an arbitrary matrix with the equal size of training image
data was initialized where some of the pixels being arbitrarily OFF having the
probability of 20% for both training and test cases and then 50% only for the
test case. It can be clearly seen that the reconstructed image from DAE-CDAE
and DVAE-CDAE were much better than the reconstructed ones from the

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

252

standalone AEs. Because of DVAE using the variational upper bound on the
log-likelihood of the data as loss function rather than normal reconstruction
error as DAE, it produces better representation of the reconstructed images
than DAE. However, DVAE produced a little blurry image but it kept the
shapes of the objects more accurate than DAE. So, when a CDAE was used in
a cascaded manner after DVAE this blurriness also got omitted resulting in the
DVAE-CDAE architecture to output better reconstructed images than DAE-
CDAE in terms of 50% noisy input images.

Figure 11. Sample of original images from MNIST dataset with and without
noise and their reconstruction using different AEs.

The test set classification performance of all five models proposed in this
study along with a simple CNN for both scenarios when the images were
corrupted with 20% noise as well as 50% noise are portrayed in Fig. 12.
The classification accuracy notes up to 400 interactions and Fig. 12(a) gives
evidence that the DVAE-CNN architecture surpasses all other architecture
in terms of 20% noisy image classification with 98.84 % accuracy. CDAE-
CNN confirms the second position with 98.69% accuracy. The accuracy
recorded for DAE-CNN, DAE-CDAE-CNN, DVAE-CDAE-CNN and simple
CNN architectures are 98.01%, 97.40%, 97.43% and 97.76% respectively.
In Fig. 12(b) it is clearly visible that whenever the same test set images are
corrupted with 50% noise, the DVAE-CDAE-CNN architecture surpasses
all other models attaining 96.74% accuracy whereas it shows least accurate
classification result in the previous case. The reason behind this contradictory
scene is that if we compare 50% noisy images against the 20% noisy image

 18

The test set classification performance of all five models proposed in this study along with a simple CNN
for both scenarios when the images were corrupted with 20% noise as well as 50% noise are portrayed in
Fig. 12. The classification accuracy notes up to 400 interactions and Fig. 12(a) gives evidence that the
DVAE-CNN architecture surpasses all other architecture in terms of 20% noisy image classification with
98.84 % accuracy. CDAE-CNN confirms the second position with 98.69% accuracy. The accuracy
recorded for DAE-CNN, DAE-CDAE-CNN, DVAE-CDAE-CNN and simple CNN architectures are
98.01%, 97.40%, 97.43% and 97.76% respectively. In Fig. 12(b) it is clearly visible that whenever the
same test set images are corrupted with 50% noise, the DVAE-CDAE-CNN architecture surpasses all
other models attaining 96.74% accuracy whereas it shows least accurate classification result in the
previous case. The reason behind this contradictory scene is that if we compare 50% noisy images against
the 20% noisy image data set, a larger number of pixels are found to be forcefully turned ON/OFF for
50% noisy images. That’s why, whenever the frontier DVAE trained to work with 20% noisy images is
fed with 50% noisy images it forces a portion of the turned OFF pixels due to zero mask noise to get
turned ON. As the following CDAE works with this intermediate image it reconstructs other affected
pixels completely making the classification task for the CNN easier. For the very same reasons, the DAE-
CDAE-CNN architecture performs better than DAE-CNN, CDAE-CNN, DVAE-CNN architectures and
achieves classification accuracy of 96.34%. The 50% noisy image recognition accuracy obtained by
DAE-CNN, CDA-CNN, DVAE-CNN are 95.01%, 94.22% and 95.63% respectively. When these 50%
noisy data are fed to the CNN classifier without any additional denoising and reconstruction process, the
performance shown by the simple CNN is the worst and attains the lowest classification accuracy
(85.15%) compared to the other models. Fig. 12(b) supports the fact that, whenever each of these hybrid
supervised classifiers give more than 95% accuracy with just 50 iterations, a simple CNN’s accuracy was

Original Image

With 50% noise

R
ec

on
st

ru
ct

ed
 Im

ag
e

DAE

CDAE

DVAE

DAE - CDAE

DVAE-CDAE

Figure 11. Sample of original images from MNIST dataset with and without noise and their reconstruction
using different AEs.

253

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

data set, a larger number of pixels are found to be forcefully turned ON/OFF
for 50% noisy images. That’s why, whenever the frontier DVAE trained to
work with 20% noisy images is fed with 50% noisy images it forces a portion
of the turned OFF pixels due to zero mask noise to get turned ON. As the
following CDAE works with this intermediate image it reconstructs other
affected pixels completely making the classification task for the CNN easier.
For the very same reasons, the DAE-CDAE-CNN architecture performs
better than DAE-CNN, CDAE-CNN, DVAE-CNN architectures and achieves
classification accuracy of 96.34%. The 50% noisy image recognition accuracy
obtained by DAE-CNN, CDA-CNN, DVAE-CNN are 95.01%, 94.22% and
95.63% respectively. When these 50% noisy data are fed to the CNN classifier
without any additional denoising and reconstruction process, the performance
shown by the simple CNN is the worst and attains the lowest classification
accuracy (85.15%) compared to the other models. Fig. 12(b) supports the
fact that, whenever each of these hybrid supervised classifiers give more
than 95% accuracy with just 50 iterations, a simple CNN’s accuracy was less

Figure 12. Test set recognition accuracy over MNIST dataset with batch
size 50 and learning rate 1.0 for different networks.

than 85% at that time. In times of few initial iterations, the test set accuracy
was lower compared to later iterations. This incident was not unexpected as
these samples were not conspicuous by these hybrid networks during training
period. Still, the classification accuracy improved significantly for test image
sets quickly at a lower number of iterations (e.g. up to 100).

Table 1 details the classification of each class individually by all the proposed
hybrid models for test set samples after fixed 400 epochs with 20% noise. For

(a) 20% noise (b) 50% noise

Figure 12. Test set recognition accuracy over MNIST dataset with batch size 50 and learning rate 1.0 for
different networks.

95

96

97

98

99

0 100 200 300 400

Ac
cu

ra
cy

CDAE-CNN
DAE-CNN
DAE-CDAE-CNN
DVAE-CNN
DVAE-CDAE-CNN
CNN

80

84

88

92

96

0 100 200 300 400

Ac
cu

ra
cy

CDAE-CNN
DAE-CNN
DAE-CDAE-CNN
DVAE-CNN
DVAE-CDAE-CNN
CNN

iteration iteration

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

254

Ta
bl

e
1

C
la

ss
ifi

ca
tio

n
Pe

rf
or

m
an

ce
 o

f t
he

 H
yb

ri
d

M
od

el
s i

n
C

as
e

of
 In

di
vi

du
al

 O
bj

ec
ts

 fr
om

 M
N

IS
T

D
at

as
et

N
oi

se
Le

ve
l

M
od

el
s

A
cc

ur
at

e
C

la
ss

ifi
ca

tio
n

(o
ut

 o
f 1

00
0

te
st

 sa
m

pl
e

of
 e

ac
h

cl
as

s)
A

cc
ur

ac
y

(%
)

0
1

2
3

4
5

6
7

8
9

20
%

D
A

E-
C

N
N

99
5

99
2

98
3

97
6

96
8

95
7

98
3

98
3

98
5

97
8

98
.0

1

C
D

A
E-

C
N

N
99

7
99

4
98

9
98

4
98

3
97

6
98

8
98

7
99

4
97

7
98

.6
9

D
VA

E-
C

N
N

99
9

99
0

99
0

98
6

98
4

97
8

98
9

98
8

99
5

98
0

98
.8

4

D
A

E-
C

D
A

E-
C

N
N

99
7

99
1

98
1

96
5

94
0

93
8

98
5

98
0

98
4

97
9

97
.4

0

D
VA

E-
C

D
A

E-
C

N
N

99
7

99
0

98
1

96
5

94
4

94
0

98
5

98
0

98
3

98
0

97
.4

3

50
%

D
A

E-
C

N
N

98
1

96
1

95
7

93
8

93
6

92
9

94
8

96
5

94
7

95
9

95
.0

1

C
D

A
E-

C
N

N
97

9
95

5
95

1
92

8
92

5
91

7
94

1
96

0
93

8
92

8
94

.2
2

D
VA

E-
C

N
N

98
2

96
5

96
0

94
4

94
7

93
7

95
6

96
8

95
6

94
8

95
.6

3

D
A

E-
C

D
A

E-
C

N
N

98
7

97
1

97
0

95
5

95
8

94
4

96
2

97
5

95
8

95
4

96
.3

4

D
VA

E-
C

D
A

E-
C

N
N

98
8

97
3

97
2

95
9

95
8

95
5

96
6

97
7

96
6

96
0

96
.7

4

255

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

DAE-CNN and CDAE-CNN, it is obviously noticeable from the table
that they most exceedingly horrendously performed for the numeral “5”
and out of 1000 test cases, they classified accurately 957 and 976 cases
respectively. The DVAE-CNN classifier performed worst while classifying
“5” as well. Still, it performed better than all the other models. For numeral
“0” it showed the best classification result. In 999 cases, out of 1000 cases
it classified “0” correctly. The DAE-CDAE-CNN and DVAE-CDAE-CNN
architecture also misclassified the same digit 62 and 60 times respectivelyly.
These perplexities in a couple of manually written numeral images are a
result of various handwriting styles of individuals, and furthermore, the
arbitrary noise injected in the images slightly misconstrue the patterns
with each other. In any case, the proposed models have accomplished best
classification for “0” by classifying it correctly 995, 997, 999, 997, 997 cases
out of 1000 experiments for DAE-CNN, CDAE-CNN, DVAE-CNN, DAE-
CDAE-CNN and DVAE-CDAE-CNN individually. Among the majority of
the cases DVAE-CNN accomplished a decent noisy image classification
task misclassifying just 116 cases though DAE-CNN, CDAE-CNN, DAE-
CDAE-CNN and DVAE-CDAE-CNN misclassified 199, 131, 260 and
257 cases respectively. In the case of 50% noisy images, the worst case
occurred with all the models while classifying numeral character “5”. It was
misclassified in 71 cases throughout the experiments. The accuracy achieved
by the CDAE-CNN, DVAE-CNN, DAE-CDAE-CNN and DVAE-CDAE-
CNN architectures in case of classifying “5” are 91.7%, 93.7%, 94.4% and
95.5% respectively. The accuracies calculated in the case of classifying “3”
are quite similar: 93.8% for DAE-CNN, 92.8% for CDAE-CNN, 94.4% for
DVAE-CNN, 95.5% for DAE-CDAE-CNN and 95.9% for DVAE-CDAE-
CNN architectures. These models performed best for classifying numeral
“0”. In this case, the classification precisions for DAE-CNN, CDAE-CNN,
DVAE-CNN, DAE-CDAE-CNN and DVAE-CDAE-CNN models were
98.1%, 97.9%, 98.2%, 98.7% and 98.8% respectively. Moreover, in most
of the cases the occurrences of other numerals misclassified as “0” were
few. For all models, the error that occurred mostly were for numerals “8”,
“9” , “5” and “3” in the descending order. As this time test set images were
corrupted with 50% noises, the shapes of the handwritten numerals were
almost totally distorted resulting in less accurate classification performances
for the hybrid models than in the case of 20% noisy images because when the
images were adulterated with 50% noise it was quite difficult to recognize
them even with clear eyes.

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

256

Table 2

Sample Handwritten Numeral Images along with their Original and Predicted
Class Labels

Sample
Image

Actual
Label

Classification using

DAE-CNN CDAE-CNN DVAE-CNN DAE-
CDAE-CNN

DVAE-
CDAE-CNN

2 2 2 2 8 8

4 6 4 4 8 8

3 3 5 3 3 3

7 2 2 2 9 9

Table 2 demonstrates some handwritten numeral images and their corresponding
class labels in the original as well as in the reconstructed form. It is clearly
seen that the first image was classified correctly as “2” when reconstructed
with DAE, CDAE and DVAE, but the reconstruction using DAE-CDAE
as well as DVAE-CDAE distorted the pattern, thereby causing the CNN to
classify it as “8”. Numeral “4” was classified correctly when reconstructed
using CDAE and DVAE, but misclassified as “6” in the case of DAE-CNN
and “8” by DAE-CDAE-CNN as well as DVAE-CDAE-CNN. However, the
third pattern was classified correctly using all the models expect CDAE-CNN
which misclassified it as “5”. On the other hand, the fourth pattern from the
table was misclassified by all of the networks. It is important to that all of these
patterns are pretty difficult to identify even by humans because of the diverse
writing styles of different persons and adding noise with these ambiguous
patterns makes their classification even more difficult.

Table 3 portrays the consequences of the proposed techniques with different
prominent works. It, moreover, displays specific feature(s) of individual
procedures. It is striking that the proposed models did not use any feature
extraction procedure while the vast majority of the current techniques use
possibly more than one or maybe a couple of feature extraction techniques.
Without utilizing any extra technique for feature extraction, the proposed
DAE-CNN, CDAE-CNN, DVAE-CNN, DAE-CDAE-CNN and DVAE-
CDAE-CNN models seem to beat the existing strategies. According to the

 21

Table 2. Sample Handwritten Numeral Images along with their Original and Predicted Class Labels

Table 2 demonstrates some handwritten numeral images and their corresponding class labels in the
original as well as in the reconstructed form. It is clearly seen that the first image was classified correctly
as “2” when reconstructed with DAE, CDAE and DVAE, but the reconstruction using DAE-CDAE as
well as DVAE-CDAE distorted the pattern, thereby causing the CNN to classify it as “8”. Numeral “4”
was classified correctly when reconstructed using CDAE and DVAE, but misclassified as “6” in the case
of DAE-CNN and “8” by DAE-CDAE-CNN as well as DVAE-CDAE-CNN. However, the third pattern
was classified correctly using all the models expect CDAE-CNN which misclassified it as “5”. On the
other hand, the fourth pattern from the table was misclassified by all of the networks. It is important to
that all of these patterns are pretty difficult to identify even by humans because of the diverse writing
styles of different persons and adding noise with these ambiguous patterns makes their classification even
more difficult.

Sample
Image

Actual
Label

Classification using

DAE-CNN CDAE-CNN DVAE-CNN
DAE-CDAE-

CNN
DVAE-

CDAE-CNN

2 2 2 2 8 8

4 6 4 4 8 8

3 3 5 3 3 3

7 2 2 2 9 9

 21

Table 2. Sample Handwritten Numeral Images along with their Original and Predicted Class Labels

Table 2 demonstrates some handwritten numeral images and their corresponding class labels in the
original as well as in the reconstructed form. It is clearly seen that the first image was classified correctly
as “2” when reconstructed with DAE, CDAE and DVAE, but the reconstruction using DAE-CDAE as
well as DVAE-CDAE distorted the pattern, thereby causing the CNN to classify it as “8”. Numeral “4”
was classified correctly when reconstructed using CDAE and DVAE, but misclassified as “6” in the case
of DAE-CNN and “8” by DAE-CDAE-CNN as well as DVAE-CDAE-CNN. However, the third pattern
was classified correctly using all the models expect CDAE-CNN which misclassified it as “5”. On the
other hand, the fourth pattern from the table was misclassified by all of the networks. It is important to
that all of these patterns are pretty difficult to identify even by humans because of the diverse writing
styles of different persons and adding noise with these ambiguous patterns makes their classification even
more difficult.

Sample
Image

Actual
Label

Classification using

DAE-CNN CDAE-CNN DVAE-CNN
DAE-CDAE-

CNN
DVAE-

CDAE-CNN

2 2 2 2 8 8

4 6 4 4 8 8

3 3 5 3 3 3

7 2 2 2 9 9

 21

Table 2. Sample Handwritten Numeral Images along with their Original and Predicted Class Labels

Table 2 demonstrates some handwritten numeral images and their corresponding class labels in the
original as well as in the reconstructed form. It is clearly seen that the first image was classified correctly
as “2” when reconstructed with DAE, CDAE and DVAE, but the reconstruction using DAE-CDAE as
well as DVAE-CDAE distorted the pattern, thereby causing the CNN to classify it as “8”. Numeral “4”
was classified correctly when reconstructed using CDAE and DVAE, but misclassified as “6” in the case
of DAE-CNN and “8” by DAE-CDAE-CNN as well as DVAE-CDAE-CNN. However, the third pattern
was classified correctly using all the models expect CDAE-CNN which misclassified it as “5”. On the
other hand, the fourth pattern from the table was misclassified by all of the networks. It is important to
that all of these patterns are pretty difficult to identify even by humans because of the diverse writing
styles of different persons and adding noise with these ambiguous patterns makes their classification even
more difficult.

Sample
Image

Actual
Label

Classification using

DAE-CNN CDAE-CNN DVAE-CNN
DAE-CDAE-

CNN
DVAE-

CDAE-CNN

2 2 2 2 8 8

4 6 4 4 8 8

3 3 5 3 3 3

7 2 2 2 9 9

 21

Table 2. Sample Handwritten Numeral Images along with their Original and Predicted Class Labels

Table 2 demonstrates some handwritten numeral images and their corresponding class labels in the
original as well as in the reconstructed form. It is clearly seen that the first image was classified correctly
as “2” when reconstructed with DAE, CDAE and DVAE, but the reconstruction using DAE-CDAE as
well as DVAE-CDAE distorted the pattern, thereby causing the CNN to classify it as “8”. Numeral “4”
was classified correctly when reconstructed using CDAE and DVAE, but misclassified as “6” in the case
of DAE-CNN and “8” by DAE-CDAE-CNN as well as DVAE-CDAE-CNN. However, the third pattern
was classified correctly using all the models expect CDAE-CNN which misclassified it as “5”. On the
other hand, the fourth pattern from the table was misclassified by all of the networks. It is important to
that all of these patterns are pretty difficult to identify even by humans because of the diverse writing
styles of different persons and adding noise with these ambiguous patterns makes their classification even
more difficult.

Sample
Image

Actual
Label

Classification using

DAE-CNN CDAE-CNN DVAE-CNN
DAE-CDAE-

CNN
DVAE-

CDAE-CNN

2 2 2 2 8 8

4 6 4 4 8 8

3 3 5 3 3 3

7 2 2 2 9 9

257

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

table, test set classification accuracies when they are corrupted with 50%
noise are 95.01%, 94.22%, 95.63%, 96.34%, and 96.74% and with 20% noisy
test set images, the accuracies are 98.01%, 98.69%, 98.84%, 97.40 % and
96.74% for DAE-CNN, CDAE-CNN, DVAE-CNN, DAE-CDAE-CNN and
DVAE-CDAE-CNN architectures individually. It is clearly visible from the
table that DAE-CNN, CDAE-CNN, DVAE-CNN outperform the other two
models along with the existing models in case of classifying images subject to
regular noise. But whenever it comes to classifying massive noisy images the
DAE-CDAE-CNN and DVAE-CDAE-CNN play the frontier role.

Classification Result on CIFAR-10 Dataset

In this section, the proposed methods were tested over the CIFAR-10 data
set. From the grey-scaled CIFAR-10 dataset, 50000 sample images were
considered for training purpose and 10000 for testing. Sample images were
uniformly distributed over the elementary 10 classes. Noiseless initial data
were adulterated with 20% Gaussian noise for the training of the autoencoders,
whereas 50% noise was injected for the testing purpose only with the intention
to check the performances of the proposed models in the noisy environment.
Fig. 13 displays some reconstructed images after the noise removal steps
using DAE, CDAE, DVAE, DAE-CDAE, DVAE-CDAE respectively in case
the images were corrupted with 50% noise. Without any doubt, the DVAE-
CDAE provides the best reconstruction in the case of 50% noisy images and
the reconstructed images displayed in the figure show the evidence of the
statement.

Table 3

A Comparative Description of the Proposed DAE-CNN, CDAE-CNN, DVAE-CNN,
DAE-CDAE-CNN and DVAE-CDAE-CNN with Some Contemporary Methods

Work reference Classification Noise Recog. acc.

Bengio et al. (2007)
DBN 0% 98.50%

Deep net 0% 98.4%
Shallow net 0% 95%

Glorot (2011) Sparse rectifier neural network 25% 98.43%
Vincent et al. (2008) SDAE-3 10% 97.20% %

Vincent et al. (2010)
SVM 25% 98.37%

SDAE-3 25% 98.5%

Proposed DAE-CNN CNN
20% 98.01%
50% 95.01%

(continued)

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

258

Work reference Classification Noise Recog. acc.

Proposed CDAE-
CNN CNN

20% 98.69%
50% 94.22%

Proposed DVAE-
CNN CNN

20% 98.84%
50% 95.63%

Proposed DAE-
CDAE-CNN CNN

20% 97.40 %
50% 96.34%

Proposed DVAE-
CDAE-CNN CNN

20% 97.43 %
50% 96.74%

Figure 13. Sample of original images from CIFAR -10 dataset with and
without noise and their reconstruction using AEs.

Figure 14 shows the noisy-image classification accuracy of the different
proposed models along with a simple CNN in case the images were corrupted
with 20% noise as well as 50% noise. The reported values were captured up to
400 iterations. Figure 14(a) depicts the fact that DVAE-CNN performs the best
with 20% noisy images achieving an accuracy of 62.8%. The classification
performance of DAE-CNN, CDAE-CNN, DAE-CDAE-CNN, DVAE-CDAE-
CNN and the simple CNN are 62.37%, 62.69%, 61.88%, 61.93% and 62.04%

 23

50% noise. Without any doubt, the DVAE-CDAE provides the best reconstruction in the case of 50%
noisy images and the reconstructed images displayed in the figure show the evidence of the statement.

Figure 14 shows the noisy-image classification accuracy of the different proposed models along with a
simple CNN in case the images were corrupted with 20% noise as well as 50% noise. The reported values
were captured up to 400 iterations. Figure 14(a) depicts the fact that DVAE-CNN performs the best with
20% noisy images achieving an accuracy of 62.8%. The classification performance of DAE-CNN,
CDAE-CNN, DAE-CDAE-CNN, DVAE-CDAE-CNN and the simple CNN are 62.37%, 62.69%,
61.88%, 61.93% and 62.04% respectively. Fig. 14(b) shows the classification accuracy of the proposed
models in the case of classifying 50% noisy image data up to 400 epochs. This time, the DVAE-CDAE-
CNN architecture achieved the first place with 53.91% accuracy. The DAE-CNN, CDAE-CNN, DVAE-
CNN and DAE-CDAE-CNN showed a reasonable classification accuracy (52.95%, 52.5%, 52.64% and
53.63% respectively.). It is clearly visible that the classification accuracy of these models degraded while
working with the CIFAR-10 dataset compared to the performance of the models over the MNIST data set.
The main reason behind this issue was that in the tiny pictures in the CIFAR-10 data set (32x32 sized) do
not give a clear representation of the objects in the image within such a small region. Moreover, the
objects were captured in images with different orientations.

Original image

50% noise added

R
ec

on
st

ru
ct

ed
 im

ag
e

DAE

CDAE

DVAE

DAE – CDAE

DVAE-CDAE

Figure 13. Sample of original images from CIFAR -10 dataset with and without noise and their
reconstruction using AEs.

259

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

respectively. Fig. 14(b) shows the classification accuracy of the proposed
models in the case of classifying 50% noisy image data up to 400 epochs.
This time, the DVAE-CDAE-CNN architecture achieved the first place with
53.91% accuracy. The DAE-CNN, CDAE-CNN, DVAE-CNN and DAE-
CDAE-CNN showed a reasonable classification accuracy (52.95%, 52.5%,
52.64% and 53.63% respectively.). It is clearly visible that the classification
accuracy of these models degraded while working with the CIFAR-10 dataset
compared to the performance of the models over the MNIST data set. The
main reason behind this issue was that in the tiny pictures in the CIFAR-10
data set (32x32 sized) do not give a clear representation of the objects in the
image within such a small region. Moreover, the objects were captured in
images with different orientationTable 4 details the classification accuracy for
each individual object for the test set images after 400 epochs with 20% as
well as 50% noise. All the models showed best classification accuracy for
the object “Frog”. The DAE-CNN, CDAE-CNN and DVAE-CNN recognized
it correctly 704, 702 and 707times respectively. Both the DAE-CDAE-CNN
and the DVAE-CDAE-CNN accurately classified it in 699 cases. The worst
classification happened while classifying the object “Deer”. Even, the DVAE-
CNN architecture that showed the best performance while classifying 20%
noisy images misclassified it in 49% cases. In case of classifying 50% noisy
images, all the models performed worst for the object “Deer”. The CDAE-CNN
architecture misclassified it 626 times which was the highest misclassification
result. The DAE-CNN architecture classified it correctly only 7 times more
than the CDAE-CNN architecture. The DVAE-CNN, DAE-CDAE-CNN and
DVAE-CDAE-CNN architecture showed 42.9%, 37.6% and 39.4% accuracy
respectively. The classification result was not up to the mark for the object
“Dog”. The DAE-CNN, CDAE-CNN, DVAE-CNN, DAE-CDAE-CNN
and DVAE-CDAE-CNN models’ classification accuracies in the case of
classifying “Dog” were 39.8%, 39.4%, 39.5%, 40.9% and 41.1% respectively.
These models performed best for the object “Frog” with 63%, 62.8%, 62.8%,
63.5% and 63.8% accuracies achieved by DAE-CNN, CDAE-CNN, DVAE-
CNN, DAE-CDAE-CNN, DVAE-CDAE-CNN respectively.

Table 5 demonstrates some sample images from the CIFAR-10 datasets and
their corresponding class labels in the original as well as in the reconstructed
form. The first image was of “Airplane”. All the models misclassified it as
“Bird”. All the models except the DAE-CNN classified the second image
correctly as “Horse”, whereas DAE-CNN classified it as “Dog”. The third
image of a “Ship” was classified accurately by all the models. The last image
was of “Truck”. Only DAE-CDAE-CNN and DVAE-CDAE-CNN classified
it correctly.

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

260

Figure 1. Cyber risk assessment (CRA) conceptual framework.

Table 5

Sample Objects from CIFAR-10 Dataset along with their Original and Predicted
Class Labels

Original
image

Actual
label

Classified with hybrid methods

DAE-
CNN

CDAE-
CNN

DVAE-
CNN

DAE-
CDAE-
CNN

DVAE-
CDAE-
CNN

Airplane Bird Bird Bird Bird Bird

Horse Dog Horse Horse Horse Horse

Ship Ship Ship Ship Ship Ship

Truck Automobile Automobile Automobile Truck Truck

Table 6 compares the result of the proposed hybrid noisy image classifiers with
other prominent works while working over the CIFAR-10 data set along with
the particular feature(s) of those models. As per the table, test set accuracies
with 50% noise were 52.95%, 52.5%, 52.64%, 53.68% and 53.91%, while
with the 20% noise test set, accuracies were 62.37%, 62.69%, 62.8%, 61.88%

 24

Table 4 details the classification accuracy for each individual object for the test set images after 400
epochs with 20% as well as 50% noise. All the models showed best classification accuracy for the object
“Frog”. The DAE-CNN, CDAE-CNN and DVAE-CNN recognized it correctly 704, 702 and 707times
respectively. Both the DAE-CDAE-CNN and the DVAE-CDAE-CNN accurately classified it in 699
cases. The worst classification happened while classifying the object “Deer”. Even, the DVAE-CNN
architecture that showed the best performance while classifying 20% noisy images misclassified it in 49%
cases. In case of classifying 50% noisy images, all the models performed worst for the object “Deer”. The
CDAE-CNN architecture misclassified it 626 times which was the highest misclassification result. The
DAE-CNN architecture classified it correctly only 7 times more than the CDAE-CNN architecture. The
DVAE-CNN, DAE-CDAE-CNN and DVAE-CDAE-CNN architecture showed 42.9%, 37.6% and 39.4%
accuracy respectively. The classification result was not up to the mark for the object “Dog”. The DAE-
CNN, CDAE-CNN, DVAE-CNN, DAE-CDAE-CNN and DVAE-CDAE-CNN models’ classification
accuracies in the case of classifying “Dog” were 39.8%, 39.4%, 39.5%, 40.9% and 41.1% respectively.
These models performed best for the object “Frog” with 63%, 62.8%, 62.8%, 63.5% and 63.8%
accuracies achieved by DAE-CNN, CDAE-CNN, DVAE-CNN, DAE-CDAE-CNN, DVAE-CDAE-CNN
respectively.

Table 5 demonstrates some sample images from the CIFAR-10 datasets and their corresponding class
labels in the original as well as in the reconstructed form. The first image was of “Airplane”. All the
models misclassified it as “Bird”. All the models except the DAE-CNN classified the second image
correctly as “Horse”, whereas DAE-CNN classified it as “Dog”. The third image of a “Ship” was
classified accurately by all the models. The last image was of “Truck”. Only DAE-CDAE-CNN and

(a) 20% noise (b) 50% noise

Figure 14. Test set recognition accuracy over CIFAR-10 dataset with batch size 50 and learning rate 1.0 for
different networks.

 Table 4. Classification Performance of the Hybrid Models in Case of Individual Objects from CIFAR-10 Dataset.

Noise Models

Accurate classification
(out of 1000 test samples of each class) Accuracy

 25

DVAE-CDAE-CNN classified it correctly.

Table 6 compares the result of the proposed hybrid noisy image classifiers with other prominent works
while working over the CIFAR-10 data set along with the particular feature(s) of those models. As per the
table, test set accuracies with 50% noise were 52.95%, 52.5%, 52.64%, 53.68% and 53.91%, while with
the 20% noise test set, accuracies were 62.37%, 62.69%, 62.8%, 61.88% and 61.93% for DAE-CNN,
CDAE-CNN, DVAE-CNN, DAE-CDAE-CNN and DVAE-CDAE-CNN models respectively. From this
table, it is clearly visible that our proposed models outperform some of the existing prominent models in
the case of classifying noisy images, especially when the images were subject to massive noises.
Moreover, the classifier was the CNN. All the autoencoders and their hybrid models served only for the
image denoising task. From the table, it is clearly observable that without prior image denoising by the

Table 5. Sample Objects from CIFAR-10 dataset along with Their Original and Predicted Class Labels

Original
image

Actual
label

Classified with hybrid methods

DAE-CNN CDAE-CNN DVAE-CNN
DAE-CDAE-

CNN
DVAE-CDAE-

CNN

Airplane Bird Bird Bird Bird Bird

Horse Dog Horse Horse Horse Horse

Ship Ship Ship Ship Ship Ship

Truck Automobile Automobile Automobile Truck Truck

Table 6. A Comparative Description of the Proposed DAE-CNN, CDAE-CNN, DVAE-CNN, DAE-CDAE-CNN
and DVAE-CDAE-CNN with Some Contemporary Methods while Experimenting over CIFAR-10.

Work reference Classification Noise Recog. acc.

Glorot et al. (2011) Sparse rectifier
neural network 25% 50.48%

Traditional CNN (LeCun et al.,
1998) CNN

20% 62.04%
50% 41.42%

Proposed DAE-CNN CNN
20% 62.37%
50% 52.95%

Proposed CDAE-CNN CNN
20% 62.69%
50% 52.5%

Proposed DVAE- CNN CNN
20% 62.8 %
50% 52.64%

Proposed DAE-CDAE-CNN CNN
20% 61.88%
50% 53.68%

Proposed DVAE-CDAE-CNN CNN
20% 61.93%
50% 53.91%

 25

DVAE-CDAE-CNN classified it correctly.

Table 6 compares the result of the proposed hybrid noisy image classifiers with other prominent works
while working over the CIFAR-10 data set along with the particular feature(s) of those models. As per the
table, test set accuracies with 50% noise were 52.95%, 52.5%, 52.64%, 53.68% and 53.91%, while with
the 20% noise test set, accuracies were 62.37%, 62.69%, 62.8%, 61.88% and 61.93% for DAE-CNN,
CDAE-CNN, DVAE-CNN, DAE-CDAE-CNN and DVAE-CDAE-CNN models respectively. From this
table, it is clearly visible that our proposed models outperform some of the existing prominent models in
the case of classifying noisy images, especially when the images were subject to massive noises.
Moreover, the classifier was the CNN. All the autoencoders and their hybrid models served only for the
image denoising task. From the table, it is clearly observable that without prior image denoising by the

Table 5. Sample Objects from CIFAR-10 dataset along with Their Original and Predicted Class Labels

Original
image

Actual
label

Classified with hybrid methods

DAE-CNN CDAE-CNN DVAE-CNN
DAE-CDAE-

CNN
DVAE-CDAE-

CNN

Airplane Bird Bird Bird Bird Bird

Horse Dog Horse Horse Horse Horse

Ship Ship Ship Ship Ship Ship

Truck Automobile Automobile Automobile Truck Truck

Table 6. A Comparative Description of the Proposed DAE-CNN, CDAE-CNN, DVAE-CNN, DAE-CDAE-CNN
and DVAE-CDAE-CNN with Some Contemporary Methods while Experimenting over CIFAR-10.

Work reference Classification Noise Recog. acc.

Glorot et al. (2011) Sparse rectifier
neural network 25% 50.48%

Traditional CNN (LeCun et al.,
1998) CNN

20% 62.04%
50% 41.42%

Proposed DAE-CNN CNN
20% 62.37%
50% 52.95%

Proposed CDAE-CNN CNN
20% 62.69%
50% 52.5%

Proposed DVAE- CNN CNN
20% 62.8 %
50% 52.64%

Proposed DAE-CDAE-CNN CNN
20% 61.88%
50% 53.68%

Proposed DVAE-CDAE-CNN CNN
20% 61.93%
50% 53.91%

 25

DVAE-CDAE-CNN classified it correctly.

Table 6 compares the result of the proposed hybrid noisy image classifiers with other prominent works
while working over the CIFAR-10 data set along with the particular feature(s) of those models. As per the
table, test set accuracies with 50% noise were 52.95%, 52.5%, 52.64%, 53.68% and 53.91%, while with
the 20% noise test set, accuracies were 62.37%, 62.69%, 62.8%, 61.88% and 61.93% for DAE-CNN,
CDAE-CNN, DVAE-CNN, DAE-CDAE-CNN and DVAE-CDAE-CNN models respectively. From this
table, it is clearly visible that our proposed models outperform some of the existing prominent models in
the case of classifying noisy images, especially when the images were subject to massive noises.
Moreover, the classifier was the CNN. All the autoencoders and their hybrid models served only for the
image denoising task. From the table, it is clearly observable that without prior image denoising by the

Table 5. Sample Objects from CIFAR-10 dataset along with Their Original and Predicted Class Labels

Original
image

Actual
label

Classified with hybrid methods

DAE-CNN CDAE-CNN DVAE-CNN
DAE-CDAE-

CNN
DVAE-CDAE-

CNN

Airplane Bird Bird Bird Bird Bird

Horse Dog Horse Horse Horse Horse

Ship Ship Ship Ship Ship Ship

Truck Automobile Automobile Automobile Truck Truck

Table 6. A Comparative Description of the Proposed DAE-CNN, CDAE-CNN, DVAE-CNN, DAE-CDAE-CNN
and DVAE-CDAE-CNN with Some Contemporary Methods while Experimenting over CIFAR-10.

Work reference Classification Noise Recog. acc.

Glorot et al. (2011) Sparse rectifier
neural network 25% 50.48%

Traditional CNN (LeCun et al.,
1998) CNN

20% 62.04%
50% 41.42%

Proposed DAE-CNN CNN
20% 62.37%
50% 52.95%

Proposed CDAE-CNN CNN
20% 62.69%
50% 52.5%

Proposed DVAE- CNN CNN
20% 62.8 %
50% 52.64%

Proposed DAE-CDAE-CNN CNN
20% 61.88%
50% 53.68%

Proposed DVAE-CDAE-CNN CNN
20% 61.93%
50% 53.91%

 25

DVAE-CDAE-CNN classified it correctly.

Table 6 compares the result of the proposed hybrid noisy image classifiers with other prominent works
while working over the CIFAR-10 data set along with the particular feature(s) of those models. As per the
table, test set accuracies with 50% noise were 52.95%, 52.5%, 52.64%, 53.68% and 53.91%, while with
the 20% noise test set, accuracies were 62.37%, 62.69%, 62.8%, 61.88% and 61.93% for DAE-CNN,
CDAE-CNN, DVAE-CNN, DAE-CDAE-CNN and DVAE-CDAE-CNN models respectively. From this
table, it is clearly visible that our proposed models outperform some of the existing prominent models in
the case of classifying noisy images, especially when the images were subject to massive noises.
Moreover, the classifier was the CNN. All the autoencoders and their hybrid models served only for the
image denoising task. From the table, it is clearly observable that without prior image denoising by the

Table 5. Sample Objects from CIFAR-10 dataset along with Their Original and Predicted Class Labels

Original
image

Actual
label

Classified with hybrid methods

DAE-CNN CDAE-CNN DVAE-CNN
DAE-CDAE-

CNN
DVAE-CDAE-

CNN

Airplane Bird Bird Bird Bird Bird

Horse Dog Horse Horse Horse Horse

Ship Ship Ship Ship Ship Ship

Truck Automobile Automobile Automobile Truck Truck

Table 6. A Comparative Description of the Proposed DAE-CNN, CDAE-CNN, DVAE-CNN, DAE-CDAE-CNN
and DVAE-CDAE-CNN with Some Contemporary Methods while Experimenting over CIFAR-10.

Work reference Classification Noise Recog. acc.

Glorot et al. (2011) Sparse rectifier
neural network 25% 50.48%

Traditional CNN (LeCun et al.,
1998) CNN

20% 62.04%
50% 41.42%

Proposed DAE-CNN CNN
20% 62.37%
50% 52.95%

Proposed CDAE-CNN CNN
20% 62.69%
50% 52.5%

Proposed DVAE- CNN CNN
20% 62.8 %
50% 52.64%

Proposed DAE-CDAE-CNN CNN
20% 61.88%
50% 53.68%

Proposed DVAE-CDAE-CNN CNN
20% 61.93%
50% 53.91%

261

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

and 61.93% for DAE-CNN, CDAE-CNN, DVAE-CNN, DAE-CDAE-CNN
and DVAE-CDAE-CNN models respectively. From this table, it is clearly
visible that our proposed models outperform some of the existing prominent
models in the case of classifying noisy images, especially when the images
were subject to massive noises. Moreover, the classifier was the CNN. All the
autoencoders and their hybrid models served only for the image denoising
task. From the table, it is clearly observable that without prior image denoising
by the autoencoders, the performance of the classifier would be disastrous.
It is also notable that our models do not need to be trained with images
corrupted with noises of different proportions. The DAE, CDAE, DVAE were
trained with 20% noisy images only and the CNN was trained with noise-
free raw images. Still, the DAE-CDAE-CNN and the DVAE-CDAE-CNN
models classified 50% noisy images with very good classification accuracy
omitting the necessity for the noisy-image classifiers to be trained with 50%
noisy images. The cascading structures of the DAE-CDAE-CNN and DVAE-
CDAE-CNN enabled them to show such great performances over the massive
noisy data.

Table 6

A Comparative Description of the Proposed DAE-CNN, CDAE-CNN, DVAE-CNN,
DAE-CDAE-CNN and DVAE-CDAE-CNN with some Contemporary Methods while
Experimenting over CIFAR-10.

Work reference Classification Noise Recog. acc.

Glorot et al. (2011) Sparse rectifier neural
network 25% 50.48%

Traditional CNN (LeCun et al., 1998) CNN
20% 62.04%

50% 41.42%

Proposed DAE-CNN CNN
20% 62.37%

50% 52.95%

Proposed CDAE-CNN CNN
20% 62.69%

50% 52.5%

Proposed DVAE- CNN CNN
20% 62.8 %

50% 52.64%

Proposed DAE-CDAE-CNN CNN
20% 61.88%

50% 53.68%

Proposed DVAE-CDAE-CNN CNN
20% 61.93%

50% 53.91%

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

262

Significance of the Proposed Hybrid Models

There are several significant differences between the proposed hybrid methods
and the existing ones in terms of noisy-image classification. Conventional
models train AEs for denoising in a stacked or standalone way, whereas
AEs are trained independently and then cascaded for denoising in any of the
proposed hybrid models. The proposed methods use CNN as a classifier rather
than MLP or other classifiers as CNN performs well for image classification.
The experimental results on benchmark datasets revealed the effectiveness of
the proposed hybrid models for both regular and massive noise.

Deep learning-based models have the dependency over training data; therefore,
existing models perform well only when they work with the images corrupted
with the very same proportion of noise as in the training data and performance
degrades when noise level increases. Our proposed hybrid models DAE-
CDAE-CNN and DVAE-CDAE-CNN have overcome this problem. Both the
architectures are very good at classifying images injected with massive noisy
data even if they are trained with images corrupted with regular noise. The
underlying cascaded structures of these two models make it possible for them
to perform well in this case. These two models use two AEs as image denoiser
and both the AEs are trained to reconstruct native images from images subject
to the same level of regular noises. So, in both cases, the frontier AE omits
a proportion of noise from the input image and the reconstructed image is
passed to the following AE for further filtering. As a result, whenever the
percentage of noise is massive in the input images these two noisy-image
classifiers perform better than other models.

On the other hand, the proposed DAE-CNN, CDAE-CNN and DVAE-CNN
models performed well for regular noise. As single AEs in these three models
are trained with regular level noisy images, their standalone structure is
sufficient to denoise regular noisy images which are later easy to classify with
CNN.

CONCLUSION

Conventional image classifiers perform really well with preprocessed data
generated in the laboratory. But when they are employed to classify real world
data, most often these images are corrupted with noise during acquisition
and transmission. As a result, there is a high chance that they would fail
drastically when applied in real life tasks. The solution to this problem is
to denoise the images prior to feeding to the classifier. This research work
proposed five supervised deep architectures named DAE-CNN, CDAE-

263

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

CNN, DVAE-CNN, DAE-CDAE-CNN and DVAE-CDAE-CNN among
which the first three perform well when the images are subjected to a small
amount of noise, whereas, the last two are for classifying massive noisy data.
These models utilize the ideas of various autoencoders and along with CNN
construct classifiers for noisy image data. These deep models have the ability
to filter noise from the image data and classify them by learning latent feature
representations from them. These models’ classification accuracy over MNIST
and CIFAR-10 datasets (corrupted with noise of different proportions) gives
evidence that they have the capability to learn hierarchical representations
of the images. Still, there are scopes for further developments in future. The
different hybrid models proposed here are good with a different level of
noises. Our future research work would focus on building a standalone model
using these techniques that would be able to classify images adulterated with
any proportion of noise.

REFERENCES

Agostinelli, F., Anderson, M. R., & Lee, H. (2013). Adaptive multi-column
deep neural networks with application to robust image denoising.
Proceedings of the Advances in Neural Information Processing Systems,
1493-1501.

Akhand, M. A. H., Ahmed, M., & Rahman, M. H. (2016). Convolutional
neural network based handwritten Bengali and Bengali-English mixed
numeral recognition. International Journal of Image, Graphics and
Signal Processing, 8(9), 40-50. doi: 10.5815/ijigsp.2016.09.06

Akhand, M. A. H., Ahmed, M., Rahman, M. H. & Islam, M. M. (2017).
Convolutional neural network training incorporating rotation based
generated patterns and handwritten numeral recognition of major
indian scripts. IETE Journal of Research (TIJR), Taylor & Francis,
63(Online), 19 pages. doi: 10.1080/03772063.2017.1351322

Arigbabu, O. A., Ahmad, S. M. S., Adnan, W. A. W., Yussof, S., & Mahmood,
S. (2017). Soft biometrics: Gender recognition from unconstrained face
images using local feature descriptor. arXiv Preprint arXiv:1702.02537.

Bar, Y., Diamant, I., Wolf, L., & Greenspan, H. (2015, March). Deep learning
with non-medical training used for chest pathology identification.
Proceedings of Society for Optics and Photonics, 94140V-94140V. doi:
10.1117/12.2083124.

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

264

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-
wise training of deep networks. Proceedings of the Advances in Neural
Information Processing Systems, 153-160.

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and
Trends® in Machine Learning, 2(1), 1-127.

Bezdek, J. C., Hall, L. O., & Clarke, L. (1993). Review of MR image
segmentation techniques using pattern recognition. Medical Physics,
20(4), 1033-1048.

Bosch, A., Zisserman, A., & Munoz, X. (2007, July). Representing shape with
a spatial pyramid kernel. Proceedings of the 6th ACM International
Conference on Image and Video Retrieval, 401-408.

Bourlard, H., & Kamp, Y. (1988). Auto-association by multilayer perceptrons
and singular value decomposition. Biological Cybernetics, 59(4), 291-
294.

Bouvrie, J. (2006). Notes on convolutional neural networks, Center for
Biological and Computational Learning, Department of Brain and
Cognitive Sciences, MIT, Cambridge.

Burger, H. C., Schuler, C. J., & Harmeling, S. (2012, June). Image denoising:
Can plain neural networks compete with BM3D?. Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2392-2399.

Cho, K. (2013). Boltzmann machines and denoising autoencoders for image
denoising. arXiv Preprint arXiv:1301.3468.

Cireşan, D. C., Meier, U., Masci, J., Gambardella, L. M., & Schmidhuber,
J. (2011). High-performance neural networks for visual object
classification. arXiv Preprint arXiv:1102.0183.

Cireşan, D., Meier, U., Masci, J., & Schmidhuber, J. (2011, July). A committee
of neural networks for traffic sign classification. Proceedings of the
2011 International Joint Conference on Neural Networks (IJCNN),
1918-1921.

Ciresan, D. C., Meier, U., Gambardella, L. M., & Schmidhuber, J. (2011,
September). Convolutional neural network committees for handwritten

265

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

character classification. Proceedings of the 2011 International
Conference on Document Analysis and Recognition (ICDAR), 1135-
1139.

Coates, A., Ng, A., & Lee, H. (2011, June). An analysis of single-layer networks
in unsupervised feature learning. Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, 215-
223.

Coifman, R. R., & Donoho, D. L. (1995). Translation-invariant de-noising.
Wavelets and Statistics, 103, 125-150.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine
Learning, 20(3), 273-297.

Du, B., Xiong, W., Wu, J., Zhang, L., Zhang, L., & Tao, D. (2017). Stacked
convolutional denoising auto encoders for feature representation. IEEE
Transactions on Cybernetics, 47(4), 1017-1027.

Elad, M., & Aharon, M. (2006). Image denoising via sparse and redundant
representations over learned dictionaries. IEEE Transactions on Image
Processing, 15(12), 3736-3745.

Glorot, X., Bordes, A., & Bengio, Y. (2011, June). Deep sparse rectifier neural
networks. Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics, 315-323.

Gondara, L. (2016, December). Medical image denoising using convolutional
denoising autoencoders. Proceedings of the 2016 IEEE 16th
International Conference on Data Mining Workshops (ICDMW), 241-
246.

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for
deep belief nets. Neural Computation, 18(7), 1527-1554.

Huang, F. J., & LeCun, Y. (2006). Large-scale learning with svm and
convolutional nets for generic object recognition. Proceedings of the
2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 1-8.

Im, D. J., Ahn, S., Memisevic, R., & Bengio, Y. (2017). Denoising criterion for
variational auto-encoding framework. Association for the Advancement
of Artificial Intelligence, 2059-2065.

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

266

Jain, V., & Seung, S. (2009). Natural image denoising with convolutional
networks. Proceedings of the Advances in Neural Information
Processing Systems, 769-776.

Kingma, D. P., & Welling, M. (2013). Auto encoding variational bayes. arXiv
Preprint arXiv:1312.6114.

Kingma, D. P., & Welling, M. (2014). Stochastic gradient VB and the
variational auto encoder. Proceedings of the Second International
Conference on Learning Representations (ICLR), 1-14.Krizhevsky, A.,
Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. Proceedings of the Advances in Neural
Information Processing Systems, 1097-1105.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based
learning applied to document recognition. Proceedings of the IEEE,
86(11), 2278-2324. doi: 10.1109/5.726791

LeCun, Y., Cortes, C., & Burges, C. J. (2010). MNIST handwritten digit
database. AT&T Labs [Online]. Retrieved from: http://yann. lecun.
com/exdb/mnist

Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2009). Convolutional deep
belief networks for scalable unsupervised learning of hierarchical
representations. Proceedings of the 26th Annual International
Conference on Machine Learning, 609-616.

Liu, T., Fang, S., Zhao, Y., Wang, P., & Zhang, J. (2015). Implementation
of training convolutional neural networks. arXiv Preprint
arXiv:1506.01195.

Lu, D., & Weng, Q. (2007). A survey of image classification methods and
techniques for improving classification performance. International
Journal of Remote Sensing, 28(5), 823-870.

Mairal, J., Bach, F., Ponce, J., & Sapiro, G. (2009). Online dictionary learning
for sparse coding. Proceedings of the 26th Annual International
Conference on Machine Learning, 689-696.

Masci, J., Meier, U., Cireşan, D., & Schmidhuber, J. (2011). Stacked
convolutional auto-encoders for hierarchical feature extraction.
Artificial Neural Networks and Machine Learning (ICANN), 52-59.

267

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

Matsugu, M., Mori, K., Mitari, Y., & Kaneda, Y. (2003). Subject independent
facial expression recognition with robust face detection using a
convolutional neural network. Neural Networks, 16(5), 555-559.

Norouzi, M., Ranjbar, M., & Mori, G. (2009, June). Stacks of convolutional
restricted Boltzmann machines for shift-invariant feature learning.
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVRP), 2735-2742.

Olshausen, B. A., & Field, D. J. (1997). Sparse coding with an overcomplete
basis set: A strategy employed by V1? Vision Research, 37(23), 3311-
3325.

Perona, P., & Malik, J. (1990). Scale-space and edge detection using
anisotropic diffusion. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 12(7), 629-639.

Rudin, L. I., & Osher, S. (1994). Total variation-based image restoration
with free local constraints. Proceedings of the IEEE International
Conference on Image Processing, 1, 31-35.

Sanches, J. M., Nascimento, J. C., & Marques, J. S. (2008). Medical-
image noise reduction using the Sylvester–Lyapunov equation. IEEE
Transactions on Image Processing, 17(9), 1522-1539.

Scherer, D., Müller, A., & Behnke, S. (2010). Evaluation of pooling operations
in convolutional architectures for object recognition. Proceedings of
the International Conference on Artificial Neural Networks (ICANN),
92-101.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview.
Neural Networks, 61, 85-117.

Sharif Razavian, A., Azizpour, H., Sullivan, J., & Carlsson, S. (2014).
CNN features off-the-shelf: An astounding baseline for recognition.
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 806-813.

Shin, H. C., Orton, M. R., Collins, D. J., Doran, S. J., & Leach, M. O. (2013).
Stacked autoencoders for unsupervised feature learning and multiple
organ detection in a pilot study using 4D-patient data. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 35(8), 1930-1943.

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

268

Singh, A. K., Shukla, V. P., Biradar, S. R., & Tiwari 1, S. (2014). Multiclass
noisy image classification based on optimal threshold and neighboring
window denoising. International Journal of Computer Engineering
Science (IJCES), 4(3), 1-11.

Simonyan, K., Vedaldi, A., & Zisserman, A. (2013). Deep fisher networks
for large-scale image classification. Advances in Neural Information
Processing Systems, 163-171.

Subakan, O., Jian, B., Vemuri, B. C., & Vallejos, C. E. (2007). Feature-
preserving image-smoothing using a continuous mixture of tensors.
Proceedings of the 11th International Conference on Computer Vision
(ICCV), 1-6.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.,
& Fergus, R. (2013). Intriguing properties of neural networks. arXiv
Preprint arXiv:1312.6199.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal
representations by error propagation. Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, 1, 318-362.

Turaga, S. C., Murray, J. F., Jain, V., Roth, F., Helmstaedter, M., Briggman,
K., et al. (2010). Convolutional networks can learn to generate affinity
graphs for image segmentation. Neural Computation, 22(2), 511-538.

Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. A. (2008). Extracting and
composing robust features with denoising autoencoders. Proceedings
of the 25th International Conference on Machine Learning, 1096-1103.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P. A. (2010).
Stacked denoising autoencoders: Learning useful representations in
a deep network with a local denoising criterion. Journal of Machine
Learning Research, 11(Dec), 3371-3408.

Xie, J., Xu, L., & Chen, E. (2012). Image denoising and inpainting with deep
neural networks. Proceedings of the Advances in Neural Information
Processing Systems, 341-349.

Xu, L., Ren, J. S., Liu, C., & Jia, J. (2014). Deep convolutional neural network
for image deconvolution. Proceedings of the Advances in Neural
Information Processing Systems, 1790-1798.

269

Journal of ICT, 17, No. 2 (April) 2018, pp: 233–269

Zeiler, M. D., Krishnan, D., Taylor, G. W., & Fergus, R. (2010). Deconvolutional
networks. Proceedings of the 2010 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2528-2535.

Zeiler, M. D., Taylor, G. W., & Fergus, R. (2011). Adaptive deconvolutional
networks for mid- and high-level feature learning. Proceedings of the
2011 IEEE International Conference on Computer Vision (ICCV),
2018-2025.

