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ABSTRACT

In recent years, the use of accelerometers embedded in 
smartphones for Human Activity Recognition (HAR) has been 
well considered. Nevertheless, the role of the sensor placement 
is yet to be explored and needs to be further investigated. 
In this study, we investigated the role of sensor placements 
for recognizing various types of physical activities using the 
accelerometer sensor embedded in the smartphone. In fact, most 
of the reported work in HAR utilized traditional multi-class 
classification approaches to determine the types of activities. 
Hence, this study was to recognize the activity based on the 
best sensor placements that are appropriate to the activity 
performed. The traditional multi-class classification approach 
required more manual work and was time consuming to run 
the experiment separately. Thus, this study proposed the multi-
label classification technique with the Label Combination (LC) 
approach in order to tackle this issue. The result was compared 
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with several state-of-the-art traditional multi-class classification 
approaches. The multi-label classification result significantly 
outperformed the traditional multi-class classification methods 
as well as  minimized the model build time. 

   
Keywords: HAR, accelerometer, multi-label classification, multi-class 
classification, smartphones.

INTRODUCTION

The HAR system becomes an emerging discipline in the area of pervasive 
computing in the intelligent computing applications. According to the World 
Health Organization (WHO), the number of diabetic patients among the world 
population drastically increases from time to time (WHO, 2016). Hence, 
dieticians strongly encourage people to do regular physical exercise in daily 
routines in order to reduce potential health problems. In summation, daily 
physical activity could significantly increase the quality of life  as well as 
improve the health level. In order to tackle this issue, several solutions have been 
introduced to tackle this challenge. Nowadays, there are numerous types of high 
tech products and applications in the market; however, sensing technologies 
provide a more beneficial resolution in HAR depending on people’s needs 
and requirements. Three types of sensing applications are widely reported in 
HAR applications, namely wearable, vision and environment-based sensors. 
The environment-based sensor is one of the solutions to solve the problem of 
detecting abnormal behavior and tracking the activity of the resident in a smart 
environment (Mohamed, Perumal, Sulaiman, Mustapha, & Zainudin, 2016). 
This human interaction system application provides an indispensable answer 
to recognize the activities conducted by multi-residents in the smart home 
using several types of sensing technologies (Mohamed, Perumal, Sulaiman, & 
Mustapha, 2017). Temperature, humidity and motion sensors are examples of 
sensors that are widely utilized in HAR. Despite the cost of the implementation 
being significantly high, these varieties of sensors need to be attached in 
fixed locations, including the door, kitchen tap and home appliances as well 
(Noury & Hadidi, 2012). Vision-based sensors are usually applied in various 
applications such as security surveillance (Zainudin, Radi, & Abdullah, 
2012), smart homes (Brezovan & Badica, 2013) and iris recognition (Rahim, 
Othman, Zainudin, Ali, & Ismail, 2012). This approach is not so popular when 
dealing with people’s privacy and confidentiality. Furthermore, coverage and 
lighting play important roles to make this application recognize the activity 
effectively (Fang, He, Si, Liu, & Xie, 2014). The wearable-based sensor 
is the best answer to execute activity recognition in various environments. 
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This application requires a minimum cost and is easy to be implemented to 
recognize human activity (Lara & Labrador, 2012). Small in size and easy to 
get, this approach is becoming popular due to its availability in smartphones. 
These micro-machine electromechanical system (MEMs) sensors have the 
capability to recognize the actions performed by humans when the sensor is 
triggered. The accelerometer and gyroscope sensors are examples of sensors 
equipped with the most cellular technologies. Thus, the invention of multi-
functioning smartphones boosts the usage of activities in order to track HAR 
(Zainudin, Sulaiman, Mustapha, & Perumal, 2015). This kind of opportunity 
provides a good milestone to researchers to pursue more study in this area.

Several challenges need to be tackled in order to produce a good HAR solution. 
In order to recognize human activity in  an online fashion, the criteria and 
procedure of the implementation need to be clearly investigated. It is either 
from the data level or at the implementation level. One of the challenges in 
activity detection in HAR is to find the best sensor placement and at the same 
time be able to recognize various types of physical activities with high accuracy 
and great model performance (Miyamoto & Ogawa, 2014; Shoaib, Bosch, 
Durmaz Incel, Scholten, & Havinga, 2014). The accuracy of HAR depends on 
the best sensor placement. (Arif, Bilal, & Kattan, 2014; Shoaib et al., 2014). 
Some of the work reported that the thigh is the best place to recognize walking 
activities (Bao & Intille, 2004; Mannini, Sabatini, & Intille, 2015). However, 
the thigh position addresses different types of stair activities (Catal, Tufekci, 
Pirmit, & Kocabag, 2015; Kwapisz, Weiss, & Moore, 2011). Other works 
add more sensors the human body in performing various types of activities 
in order to determine the best possible sensor placement. Consequently, using 
the traditional multi-class classification strategy might not a good solution 
since more than one class label appear. It consumes a lot of time to undergo a 
classification process involving a bunch of data consisting of different types of 
sensor positions. Hence, a multi-label classification problem may take place to 
overcome this issue. The recognition of the activities is possible from various 
sensor placements and at the same time lots of manual work is eliminated. On 
top of that, the accuracy and build time model also improves. 

There are several contributions from this study. A multi-label classification 
problem is applied to recognize various physical human activities with 
different sensor placements using accelerometer sensor data. The proposed 
Label Combination (LC) approach is incorporated with several well-known 
base classifiers in order to analyze its performance. Last but not least, 
we compare the results with several state-of- -art traditional multi-class 
classification approaches and measure the performance in terms of the model’s 
effectiveness and efficiency. The rest of this paper is organized as follows. Part 
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2 investigates the previous work related to HAR applications. Part 3 describes 
the materials and methods proposed in this study. Part 4 presents the results 
and discussions. Part 5 explains the conclusion of the overall experiments 
conducted.     

HUMAN ACTIVITY RECOGNITION APPLICATIONS

The earliest work on HAR was in the 90s by Foerster et al. (Foerster, Smeja, 
& Fahrenberg, 1999). Their work was  to detect a posture and action using the  
accelerometer sensor. Later Bao and Intille (2014) used the wearable-based 
sensor in order to detect physical activities (Bao & Intille, 2004). In this study, 
they utilized five biaxial accelerometer sensors attached to selected areas of 
human bodies. Mannini et al. (2013) used more sensors in a human body in 
order to investigate the effectiveness of sensor placements with regards to the 
types of activities (Mannini, Intille, Rosenberger, Sabatini, & Haskell, 2013). 
They attached the sensors in two different positions; the wrist and the ankle. 
Later, they added another three sensor positions into their study such as the 
thigh, hip and arm and compared the results in terms of recognition accuracy 
(Mannini et al., 2015). Other works reported that thigh positions were the best 
sensor placement for determining activities involving leg motions (Kwapisz 
et al., 2011). Catal et al. (2015) reported the work on recognition of physical 
activities using voting classifier models. They used the dataset collected by 
Kwapisz and the result significantly improved the model’s performance (Catal 
et al., 2015). Arif et al. (2014, 2015) utilized two physical activity datasets, 
namely WISDM and PAMAP2 in their study. The result showed that wrist 
placements were able to recognize dominant hand movement effectively. 
Meanwhile, chest placement was able to recognize stationary activities such 
as sitting and standing, and the best sensor placement for leg movement 
was the ankle. They utilized several experiments independently based on 
three placements and they reported that the outcome had improved when 
all the sensor data were combined (Arif et al., 2014; Arif & Kattan, 2015; 
M.a, A.a, & S.I.b, 2015) . Shoaib et al. (2013) collected six physical activity 
dataset from four different sensor placements; arm, belt, pocket and wrist. 
Each of the placements was tested and evaluated in terms of its accuracy. 
They also assessed the use of the gyroscope and magnetometer to produce 
good performance and a high accuracy model when both of these sensors 
were integrated with the accelerometer sensor (Shoaib et al., 2014; Shoaib, 
Scholten, & Havinga, 2013).  

This study mainly used four main classifiers in the experiments in both the 
traditional and multi-label classification approaches as the base classifiers. 
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They were Rotation Forest (RF), Support Vector Machine (SVM), decision 
tree (J48) and Multilayer Perceptron (MLP). Rotation forest is one of the 
ensemble classifier models introduced to build precise and diverse classifiers 
(Rodríguez, Kuncheva, & Alonso, 2006). This ensemble model might differ 
from other models like bagging and boosting since this classifier employs the 
feature extraction method to make the feature subsets by reconstructing a full 
feature set of each classifier in the ensemble. Initially, the base training model 
classifier was created by randomly splitting it into K subsets and the number 
of decision trees were trained from different subsets of features independently. 
The value of K represents the parameter of the algorithm. For each subset 
created, the feature extraction process was applied to form new features from a 
base classifier. The Principle Component Analysis (PCA) is a common feature 
extraction method which utilizes all principle components in order to retain 
and preserve the information variability of the data. PCA is used for global 
feature extraction and is a powerful technique for extracting global structures 
from high-dimensional datasets. This method is also useful to reduce the 
dimensionality of the features and has been extensively applied in the facial 
expression recognition tasks (Zainudin et al., 2012) and emotional recognition 
from verbal communication (Hasrul Mohd Nazid, Hariharan Muthusamy, & 
Vikneswaran Vijean, 2015). 

The classifier Support Vector Machine (SVM) was introduced by Vapnik in 
the 90s and this classifier model promises excellent results in fluctuations of 
two-class classification problems (Qian, Mao, Xiang, & Wang, 2010). The 
SVM classifier is able to maximize the margin between two categories besides 
distinguishing them and could be used for training with small sets of data 
(Fleury, Vacher, & Noury, 2010). Several works on HAR reported that this 
classifier model achieved better performance in recognizing various types of 
physical activities (Abidine & Fergani, 2012; Antos, Albert, & Kording, 2014; 
Guiry, van de Ven, Nelson, Warmerdam, & Riper, 2014).  Secondly, we used 
the Decision tree that was introduced by Quinlan by applying the technology 
for building knowledge-based systems by inductive inference from examples 
(Quinlan, 1986). Due to its less complexity and excellent interpretation, 
the decision tree is always employed as the main classifier in most activity 
recognition applications (Kwapisz et al., 2011; Walse, Dharaskar, & Thakare, 
2016; Wu, Dasgupta, Ramirez, Peterson, & Norman, 2012). C4.5 is one of 
the decision tree classifier models implemented in Java and is called J48. The 
limitation of the decision tree lies in model updating and once the decision 
tree model is made, it might be costly to update the model to suit new training 
examples (Su, Tong, & Ji, 2014). Lastly, we used the Multilayer Perceptron 
(MLP) neural network classifier for the classification task due to its flexibility 
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structure and nonlinearity transformation to accommodate various patterns 
(Goh et al., 2014). The number of neurons in the hidden layer (hidden 
nodes) affect the performance result; the least number of nodes will result 
in under fitting and more nodes will result in over fitting. This is because 
more nodes will memorize the form of information instead of generalizing the 
patterns. Few works related to HAR claimed that MLP yielded good accuracy 
(Reyes Ortiz, 2015; Shoaib et al., 2013) but consumed a longer time in its 
implementation (Alsheikh et al., 2015). MLP also showed great performance 
in another domain area such as forex trend movement in order to analyse the 
trend pattern based on historical performance (Tiong, Ow, Chek, Ngo, & Lee, 
2016). 

Moreover, this study also highlighted the significance of the multi-class 
classification approach to manage the problem domain. In multi-label learning, 
the example of a single instance of the feature vector can be associated with 
many class labels simultaneously (Zhang & Zhou, 2014). There are two main 
categories of multi-label classification: Problem Transformation (PT) and 
Algorithm Adapations (AA) methods(Tsoumakas & Katakis, 2007). The PT 
approach always deals with transforming the multi-label problem into a single 
label problem. It can use any off-the-shelf single label classifier to suit the 
requirements of the problem domain. For example, the Binary Relevance (BR) 
approach transforms the multi-label classification problem into separate and 
independent binary classification problems. Classifier Chains (CC) overcome 
the label independence assumption in BR. The Label Combination (LC) was 
introduced to tackle the lack of BR and CC in terms of label correlations 
(Tsoumakas, Katakis, & Vlahanas, 2010; Madjarov, Kocev, Gjorgjevikj, & 
Dzeroski, 2012; Read & Hollmen, 2014).  Meanwhile, AA adapts a single label 
algorithm to produce multi-label outputs. It takes benefits from the specific 
classifier advantage. In other words, this approach adapts the algorithm to the 
data and extends the learning algorithm to handle multi-labels directly. Mostly 
in the literature, algorithms such as C4.5 (Struyf, Džeroski, Blockeel, & Clare, 
2005; Blockeel, Schietgat, Struyf, & Clare, 2008; AdaBoost, Schapire & 
Singer, 2000) have been  manipulated  as AA methods.

MATERIALS AND METHODS

Details of the work regarding this study are explained in this section. The 
datasets, pre-processing stage and classification stage for traditional multi-
class classification and multi-label classification presented in Figure 1 are 
discussed in the following subsections. 
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Figure 1. Overall process of the proposed work.

Physical Activity Dataset

In order to evaluate the effectiveness of the proposed method, publicly 
available activity datasets were selected for this experiment. Pervasive Systems 
Research Group, University of Twente, collected six physical activity datasets 
such as walking, walking downstairs, walking upstairs, running, sitting and 
standing (Shoaib et al., 2013). During data collection, four Samsung Galaxy 
S2 smartphones were utilized and attached to several parts of the subjects’ 
bodies. Jeans pocket, arm, wrist and belt positions were used to attach each 
of the smartphones. Three types of sensors; accelerometer, gyroscope and 
magnetometer were used to collect the signals for each of the activities in three 
different axes; x-axis, y-axis and z-axis. 50 samples per second were recorded 
for each of the activity durations from 3 to 5 minutes. Four male subjects were 
required to perform each of the activities in the university building. Walking 
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and running were performed in the department corridor; office space was used 
for the sitting activity and the standing activity and the data was collected 
during the coffee break. For ascending and descending activities, 5stairs of 
floor were used. In order to reduce the number of sensors and the complexity 
of the classifier model, this study only utilized the data from the accelerometer 
sensor signals.   

Signal Segmentation and Feature Extraction  

The main stage (Figure 1) is about the pre-processing stage involving signal 
filtering, segmentation and feature extractions. The signal received from 
the sensor needs to undergo this stage to ensure all the information has 
been segmented and extracted before proceeding to the classification stage. 
Generally, the accelerometer sensor produces two different signals; body 
and gravitational acceleration. Gravitational acceleration consists of high-
frequency components that are generated based on gravitational forces due to 
sensor sensitivity. Thus, this high-frequency component needs to be separated 
from the low-frequency component represented in the body acceleration signal. 
We used the Fourier analysis to translate the signal from the time domain into 
the frequency domain. This procedure was required in order to trace how the 
signals changed over the time period. Then, the Butterworth low-pass filter 
was used to separate the body acceleration from the gravitational acceleration 
signals (Acharjee, Mukherjee, Mandal, & Mukherjee, 2015; Anguita, Ghio, 
Oneto, Parra, & Reyes-Ortiz, 2013; Arif et al., 2014; Machado, Luisa Gomes, 
Gamboa, Paixao, & Costa, 2015; Reyes Ortiz, 2015; Sun, Zhang, Li, Guo, & 
Li, 2010). The remaining body acceleration signals later would be used for 
further process. 

Basically, before the extraction process , we use the sliding window 
segmentation technique for the signal to be divided into the particular size 
(Banos, Galvez, Damas, Pomares, & Rojas, 2014). The raw signals from 
each dimension (x-axis, y-axis, and z-axis) are split into several numbers of 
window segments. Two common approaches are usually used in this method; 
with overlapping or without overlapping. The first approach is conducted by 
segmenting the window with overlapping between two consecutive window 
segments. Otherwise, there is no overlapping between two consecutive 
window segments in the second approach. Each of the generated window 
segments later will undergo the next process for extracting additional features.        
It is hard for any classifier model to determine the characteristic of the class 
categories with a very minimum number of characteristics. In addition, it is 
impossible to obtain good accurate performance using three original input 
features (x, y and z). Therefore, extra characteristics or attributes need to be 
extracted from each of the window segments. There are two common feature 
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categories that are reported and widely applied in HAR; statistical and spectral 
analysis features. 

Simply and directly computed from each of the window segments, time domain 
features are widely utilized in most activity recognition problems. Several 
statistical features are derived from this analysis before it can be used as an 
input for the classifier. Furthermore, this feature is able to recognize stationary 
activities since the signal produced from each of the dimensions is not varied. 
Spectral analysis features place since they are considered less susceptible to 
signal quality variations and be able to correlate to the periodic nature of the 
specific action.  Features extracted from each window segment are referred 
to as a feature vector. Later, it would be utilized as an input predictor for 
the classification. The lists of the features extracted from both categories are 
tabulated in Table 1.    

Table 1

Feature Extraction from both Categories

Features Groups

Minimum and maximum

Statistical descriptors

Mean 
Variance 
Standard deviation
Skewness 
Kurtosis 
Harmonic mean
Power bandwidth

Spectral analysis Band power
Occupied bandwidth 

Traditional Multi-class Classification Methods

The final stage in Figure 1 involves two approaches of the machine learning 
technique: (a) traditional multi-class classification and (b) multi-label 
classification. The traditional classification approach can be categorized into 
two different categories, namely two-class and multi-class classification 
problems. The first approach is conducted when two numbers of the classes 
are involved in the problem domains and this approach is limited to binary 
classification problems. Likewise, for the multi-classification problems, the 
multi-class classification method takes place. 
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Technically, multi-class classification is considered as a traditional single-label 
classification learning from a set of examples that are associated with the single 
label l from a set of disjoint labels                . This method is widely employed 
in various problems since most of the classifications or pattern recognition 
problems consist of more than two categories of classes. Thus, there are 
several classification methods that are commonly used to solve numerous 
pattern recognitions or classification problems. Classification is the most 
crucial stage to be conducted to evaluate the performance of the proposed 
method. This process is needed to assess and evaluate the performance of the 
subsets by determining to which classes those instances belong. The classifier 
will learn the characteristics of each of the classes and the classifier method 
is measured in terms of how effectively the model learns the input pattern. 
In this study, several well-known classifier models such as Rotation Forest 
(RF), Support Vector Machine (SVM), decision tree (J48) and Multilayer 
Perceptron (MLP) were utilized to evaluate the performance of the proposed 
method. The result was compared with the multi-label classification method 
in terms of their effectiveness and efficiency.   

Figure 2. Overview of multi-label classification method with LC approach.
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life. For example, 3 labels d, e and f are combined to form def. Thus, the 
set of single class labels represents all distinct label subsets in the original 
multi-label representation. It is also called the distinct labelset, the number of 
combinations observed in the dataset. Given a new instance, the single-label 
classifier of LC outputs the most probable class, which is actually a set of 
labels. If this classifier outputs a probability distribution over all classes, then 
LC ranks the labels. To obtain a label ranking, it calculates for each label the 
sum of the probabilities of the classes that contain it. This way LC can solve 
the complete label correlations task. When the new data arrives, the single 
label is  predicted and then transformed into multi-label vectors for multi-
label evaluation and performance assessment. This study experimented with 
the different base classifiers as mentioned in the previous section in order to 
evaluate the performance of the proposed method.

Validation and Performance Metrics

Traditional Multi-class Evaluation Metrics: Validation is required to evaluate 
the successfulness of classifiers that are able to generalize the solution for new 
data. This process is necessary to determine how successfully the classifier 
model learns the characteristics and recognizes the incoming unseen data. 
K-fold cross-validation performance evaluation techniques are employed in 
both these experiments. In order to evaluate the performance of the result, 
several performance indicator metrics were measured. Average accuracy 
and F-measure were used to evaluate the effectiveness of the work of both 
classification methods. 

Multi-label Classification Evaluation Metrics: To evaluate the performance 
of a single label predicted in testing, the results need to be transformed into 
multi-label vectors in order to record the performance (details in Figure 2). 
Hence, a differet evaluation assessment with a special approach should be 
taken for multi-label classification methods. To treat them as a traditional 
single label might be too strict for this method. The predictions for an instance 

 is a set of labels, hence the prediction can be fully correct, partially 
correct or fully incorrect. This makes the assessment of the multi-label 
classification more challenging than the traditional multi-class classification. 
For this purpose, we chose to measure the proposed study using the quality 
of the classification based on the example-based category such as accuracy 
per label, Hamming score, exact match, and accuracy (Madjarov et al., 2012; 
Zhang & Zhou, 2014). Meanwhile for label-based measures, the evaluation 
of each label was computed separately and then averaged over all the labels 
and any known measure used for the evaluation of a binary classifier (e.g. 
accuracy, precision, recall, F1, ROC, etc.) can be used here (Sorower, 2010). 
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Denotion: Let D be a multi-label dataset consisting n multi-label examples
             with a labelset         
Let h be a multi-label classifier and     be a set of label 
memberships predicted by h for the example of  xi. The denotions are applicable 
for the equations below. 

Accuracy per label and Hamming Score: Accuracy per label calculates how 
many times for each label, the relevance of an example to a class label has 
been correctly predicted. 

Meanwhile, Hamming score reports the average of the relevance of an example 
to a class label is correctly predicted. Where I is the indicator function.

Hamming Score:         (1)

Exact Match: In multi-label prediction it is partially correct to ignore it 
(consider it as incorrect) and extend the accuracy used in a single label case 
for a multi-label prediction.

Exact Match:         (2)

Accuracy: Accuracy for each instance is defined as the proportion of the 
predicted correct labels to the total number (predicted and actual) of labels for 
that instance. Overall accuracy is the average across all instances.

Accuracy (A):         (3)

EXPERIMENTAL RESULTS AND DISCUSSIONS

As mentioned previously, the purpose of this work was to evaluate the 
performance of the proposed classifier model to recognize various kinds of 
human activities with the efficient placement of the sensor. In this experiment, 
two different sets of experiments were done to compare the performance 
between the traditional multi-class and the multi-label classification methods. 
Both experiments were conducted using the 10-fold cross validation technique. 
Four different types of classifiers, namely rotation forest, SVM, J48 and MLP 
were utilized. In the traditional multi-class classification approach, the rotation 
forest, decision tree J48 classifier model was used as a base classifier and PCA 
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was used to generate the feature subsets. Default parameter values were used 
for the rest of the classifier models: SVM, J48 and MLP. The initial steps 
were performed using the same parameter setting, including pre-processing 
and feature extraction.

Experiment 1: Traditional Multi-class Classification Approach

This subsection explains the experiment using the traditional multi-class 
classification approach. The initial steps were performed using the same 
parameter setting, including the pre-processing and feature extraction stages. 
However, the representatives of the class labeling were different for both 
experiments. Only one label was required for the traditional multi-class 
classification approach representing the class of activity performed. Each 
dataset from each sensor position represented one class label. Hence, the 
experiment was conducted in four separate datasets. Table 2 (a) - (d) indicate 
the classification result using several classification methods for each sensor 
placement; arm, belt, pocket and wrist respectively.   

Table 2(a) 

Classification Result of Arm Sensor Placement

Activity

Rotation forest SVM J48 MLP

Accuracy F-measure Accuracy F-measure Accuracy F-measure Accuracy F-measure

Downstairs 0.961 0.963 0.126 0.208 0.924 0.933 0.470 0.543

Upstairs 0.929 0.945 0.386 0.513 0.923 0.913 0.666 0.703

Walking 0.995 0.984 0.326 0.415 0.962 0.960 0.733 0.686

Running 0.999 0.998 0.990 0.804 0.992 0.992 0.982 0.983

Sitting 1.000 0.999 0.607 0.613 0.981 0.981 0.872 0.799

Standing 0.998 0.999 0.484 0.527 0.974 0.977 0.657 0.685

Average 0.989 0.989 0.653 0.613 0.972 0.972 0.819 0.816

Time 6.25 11.94 0.27 49.74

Table 2(b)

Classification Result of Belt Sensor Placement

Activity

Rotation forest SVM J48 MLP

Accuracy F-measure Accuracy F-measure Accuracy F-measure Accuracy F-measure

Downstairs 0.935 0.941 0.438 0.548 0.925 0.916 0.703 0.748

(continued)
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Activity

Rotation forest SVM J48 MLP

Accuracy F-measure Accuracy F-measure Accuracy F-measure Accuracy F-measure

Upstairs 0.953 0.951 0.410 0.547 0.913 0.914 0.765 0.784

Walking 0.992 0.992 0.421 0.489 0.961 0.963 0.721 0.698

Running 0.988 0.986 0.673 0.610 0.965 0.969 0.880 0.880

Sitting 0.996 0.997 0.753 0.516 0.984 0.984 0.824 0.800

Standing 1.000 1.000 0.716 0.798 0.981 0.981 0.943 0.953

Average 0.982 0.982 0.583 0.588 0.959 0.959 0.814 0.815

Time 4.05 5.53 0.3 34.83

Table 2(c)

Classification Result of Pocket Sensor Placement

Activity
Rotation forest SVM J48 MLP

Accuracy F-measure Accuracy F-measure Accuracy F-measure Accuracy F-measure

Downstairs 0.954 0.959 0.093 0.158 0.901 0.886 0.515 0.549

Upstairs 0.969 0.974 0.457 0.502 0.909 0.913 0.660 0.654

Walking 0.988 0.981 0.743 0.464 0.926 0.929 0.680 0.705

Running 0.988 0.989 0.597 0.592 0.959 0.959 0.843 0.819

Sitting 1.000 1.000 0.509 0.600 0.992 0.994 0.852 0.806

Standing 1.000 1.000 0.593 0.701 0.994 0.995 0.880 0.894

Average 0.986 0.986 0.530 0.526 0.951 0.951 0.756 0.754

Time 4.15 5.64 0.33 34.38

Table 2(d)

Classification Result of Wrist Sensor Placement

Activity
Rotation forest SVM J48 MLP

Accuracy F-measure Accuracy F-measure Accuracy F-measure Accuracy F-measure

Downstairs 0.973 0.976 0.118 0.195 0.918 0.910 0.450 0.559

Upstairs 0.956 0.967 0.577 0.722 0.897 0.907 0.727 0.760

Walking 0.990 0.980 0.744 0.560 0.956 0.950 0.864 0.758

Running 1.000 1.000 0.603 0.702 0.986 0.986 0.930 0.900

Sitting 1.000 0.999 0.616 0.741 0.984 0.985 0.879 0.876

Standing 0.995 0.996 0.849 0.631 0.975 0.977 0.843 0.871

Average 0.988 0.988 0.621 0.613 0.958 0.958 0.809 0.804

Time 4.04 5.39 0.2 33.7
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The classification result obtained for each sensor position was led by the 
rotation forest classifier model where the average accuracy and F-measure 
recorded was above 98%. Stationary activities such as sitting recorded 100% 
accuracy for each placement; arm, pocket and wrist. Two-stairs activities 
(downstairs and upstairs) reported a slightly lower accuracy than the other 
since both of these activities always confuse each other because the signal 
produced from both the activities are very similar. J48 recorded the second 
highest methods that brought out a beneficial resolution to recognize the types 
of activity performed. The optimized result obtained from this method was 
recorded from an arm placement where the accuracy and F-measure obtained 
97%. The best sensor placement recorded by MLP was from the arm, then 
the belt followed by the wrist since above 80% accuracy was recorded for 
accuracy and F-measure. However, pocket placement recorded the lowest 
result, below 76% accuracy using MLP. Two placements which recorded 
the best from SVM (arm and wrist) were above 62% accuracy as reported in 
Table 2 followed by the belt and the wrist placements. To tackle the best time 
taken to build the classifier model chosen, the total time taken to develop the 
classifier model is as tabulated in Table 3.  

Table 3

Overall Time (in Seconds) Consumed for Each Classifier Model

Classifier model / Position Rotation  
forest

SVM J48 MLP 

Arm 6.25 11.94 0.27 49.74

Belt 4.05 5.53 0.3 34.83

Pocket 4.15 5.64 0.33 34.38

Wrist 4.04 5.39 0.2 33.7

Total (in seconds) 18.49 28.5 1.1 152.65

 
It is clear that MLP recorded the longest time required to build the training 
model. A total of 152.65 seconds was consumed for each of the sensor 
placements; arm, belt, pocket and wrist. Even though the average accuracy 
recorded from the MLP was better than SVM, the time required to build the 
training model was five times longer than SVM. J48 recorded the shortest time 
taken for all sensor placements which was less than 0.4 seconds required for 
the classifier model. Meanwhile, the average accuracy recorded by rotation 
forest outperformed other classifier models, but the time required for the 
training model was somewhat longer than J48. This was caused because this 
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ensemble classifier model required more sets of trees to create the classifier 
model compared to the traditional decision-tree classifier model.

Experiment 2: Multi-label Classification Methods

This experiment was implemented using a single dataset combination from 
four different files of the arm, belt, pocket and wrist activity types. Its labelset 

consisted of 10 labels with details of the types of activity and sensor 
placements represented respectively (6 types of activity and 4 different sensor 
placements). Table 4 shows the result of per label accuracy of the LC approach 
under different base classifiers. LC with rotation forest was the most accurate 
for every label compared to other base classifiers. It recorded  99% accuracy 
for downstairs, sitting and standing activities and sensor placement belt. 
Other than that, activities like running and walking were 99.7% and 99.2% 
accurate respectively. Sensor placements at arm, pocket and wrist were 99.8% 
and 97.7% accurate respectively. However, upstairs recorded 98.8% the least. 
This shows that the sensor placement at the belt is the most suitable place for 
downstairs, sitting and standing (99.9%) activities followed by running and 
walking (99.7% and 99.2%) and lastly upstairs (98.8%).

Table 4

Accuracy Per Label of LC Approach Using a Different Base Classifier

Base Classifier / 
Activity & Sensor Placement

Rotation 
Forest J48 SVM MLP

Accuracy per label

Downstairs 0.99 0.976 0.904 0.901

Running 0.997 0.986 0.819 0.918

Sitting 0.999 0.993 0.838 0.885

Standing 0.999 0.99 0.772 0.898

Upstairs 0.988 0.972 0.883 0.869

Walking 0.992 0.978 0.811 0.833

Arm 0.998 0.983 0.725 0.858

Belt 0.999 0.991 0.788 0.874

Pocket 0.997 0.984 0.858 0.882

Wrist 0.997 0.982 0.777 0.858

The overall performance of LC is reported in Table 5 with the time taken 
to build the activity model. Hamming scores of rotation forest show 99.6%, 
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the best compared to other classifiers; 98.3% for J48, 0.878 for MLP and 
81.7% for SVM, the smallest value. Hence, accuracy and exact match of 
rotation forest also recorded the most significant results compared to other 
base classifiers with 98.9% and 98.1% respectively followed by J48, MLP and 
SVM. However the average precision of SVM with 46.2% was the highest. 
Similarly, with the traditional multi-class method, MLP also recorded the 
longest time with 306.208 seconds required to build the training model for the 
activities and sensor placements. Rotation forest required 34.441 seconds to 
build its model. Even though the hamming score recorded by rotation forest 
was the higher than J48 and SVM, the time required to build the training 
model for J48 was the shortest with only 2.334 seconds and SVM with 26.125 
seconds. To summarize, similar to the traditional multi-class model, the overall 
performance of the LC approach with rotation forest excelled compared to   the 
other base classifiers. Nevertheless, the time required for the training model 
was 32.107 seconds longer than J48. 

Table 5

Overall Performance Of LC Method Time Taken to Build  The Classifier Model

Base classifier Rotation 
forest J48 SVM MLP

Hamming score 0.996 0.983 0.817 0.878

Accuracy 0.989 0.961 0.615 0.734

Exact match 0.981 0.937 0.418 0.591

F1 (micro averaged) 0.993 0.974 0.709 0.805

F1 (macro averaged by label) 0.99 0.962 0.58 0.718

Total build time (in sec) 34.441 2.334 26.125 306.208

CONCLUSION

This study reported the effectiveness of the traditional multi-class and the multi-
label classification methods to undertake the problem of finding an optimal 
sensor placement with the activity performed. In this study, a public domain 
activity dataset consisting of six different types of stationary and locomotion 
activities was experimented upon. The acceleration signal underwent a filtering 
process to remove unwanted information. A Butterworth low pass filter was 
applied to separate the acceleration signal between two signal notations; body 
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acceleration and gravitational acceleration. In order to segment the signal into 
a series of smaller window segments, a sliding window with 50% overlapping 
between two adjacent window segments was used. Additional features from 
statistical descriptors and spectral analysis were employed to provide more 
information for the classifier model to learn the characteristics of each class. 
Two classification approaches were proposed; the traditional approach and the 
multi-label approach. Rotation forest, SVM, J48 and MLP were utilized and 
compared with the former ones.  Next, the same classifiers were also used as 
base classifiers in the second approach. 

Rotation forest achieved the best accuracy in recognizing the various types 
of activities for each sensor placement. In terms of time consuming, tree-
based classifier J48 outperformed other classifier models. However, it became 
problematic to conduct the same experiment setting of each sensor placement 
using traditional approaches. Hence, in order to increase the efficiency of the 
recognition process, the multi-label classification approach was introduced 
to recognize the activities with several numbers of labels. Thus, this 
approach took place to classify several types of classes such as the activity 
class and sensor placements in one whole subset. Consequently, the multi-
label classification approach showed 99.6% accuracy. The Hamming score 
using the rotation forest indicated the most excellent result compared with 
the traditional multi-class classification approach. Thus, in the multi-label 
classification approach, the belt position showed the most suitable position to 
perform the six activities at the same time. Meanwhile, using the traditional 
multi-class classification approach, the arm showed the most excellent result 
to perform the six activities at the same time. Still, the multi-label classification 
approach produced the most excellent result between both approaches. Hence, 
this approach eliminated the manual work for generating the model as well as 
to improving the accuracy for recognizing the activities being performed.  For 
future work, we plan to investigate the proposed method in another domain 
area such as text mining and the user profiling in a smart home.
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