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ABSTRACT 

 

The increase in the usage of different mobile internet applications can cause deterioration in the mobile network 

performance. Such deterioration often declines the performance of the mobile network services that can 

influence the mobile Internet user’s experience, which can make the internet users switch between different 

mobile network operators to get good user experience. In this case, the success of mobile network operators 

primarily depends on the ability to ensure good quality of experience (QoE), which is a measure of users’ 

perceived quality of mobile Internet service. Traditionally, QoE is usually examined in laboratory experiments 

to enable a fixed contextual factor among the participants even though the results derived from these laboratory 

experiments presented an estimated mean opinion score representing perceived QoE. The use of user experience 

dataset involving time and location gathered from the mobile network traffic for modelling perceived QoE is 

still limited in the literature. The mobile Internet user experience dataset involving the time and location 

constituted in the mobile network can be used by the mobile network operators to make data-driven decisions to 

deal with disruptions observed in the network performance and provide an optimal solution based on the 

insights derived from the user experience data. Therefore, this paper proposed a framework for modelling 

mobile network QoE using the big data analytics approach. The proposed framework describes the process of 

estimating or predicting perceived QoE based on the datasets obtained or gathered from the mobile network to 

enable the mobile network operators effectively to manage the network performance and provide the users a 
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ABSTRACT

The increase in the usage of different mobile internet applications 
can cause deterioration in the mobile network performance. 
Such deterioration often declines the performance of the mobile 
network services that can influence the mobile Internet user’s 
experience, which can make the internet users switch between 
different mobile network operators to get good user experience. 
In this case, the success of mobile network operators primarily 
depends on the ability to ensure good quality of experience 
(QoE), which is a measure of users’ perceived quality of mobile 
Internet service. Traditionally, QoE is usually examined in 
laboratory experiments to enable a fixed contextual factor among 
the participants even though the results derived from these 
laboratory experiments presented an estimated mean opinion 
score representing perceived QoE. The use of user experience 
dataset involving time and location gathered from the mobile 
network traffic for modelling perceived QoE is still limited in the 
literature. The mobile Internet user experience dataset involving 
the time and location constituted in the mobile network can be used 
by the mobile network operators to make data-driven decisions 
to deal with disruptions observed in the network performance 
and provide an optimal solution based on the insights derived 
from the user experience data. Therefore, this paper proposed 
a framework for modelling mobile network QoE using the big 
data analytics approach. The proposed framework describes the 
process of estimating or predicting perceived QoE based on the 
datasets obtained or gathered from the mobile network to enable 
the mobile network operators effectively to manage the network 
performance and provide the users a satisfactory mobile Internet 
QoE.
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INTRODUCTION

In recent years, immense usage of Internet-based services has been drawn 
around the evolution of high-speed mobile network located on the Universal 
Mobile Telecommunication Systems (UMTS), Long Term Evolution (LTE) 
and other telecommunications (Telecoms) standards. In the same way, the 
availability of higher data transmission speed (throughput) allows mobile 
Internet users to go beyond web-surfing by enabling services like file transfer, 
file download, video streaming and voice-over Internet protocol (VOIP). 
However, the Network Service Providers (NSPs) or Mobile Network Operators 
(MNOs) aim to limit the existing data-rate feasible to the users because of the 
high cost involved in acquiring spectrum (Tsiaras et al., 2014). In most cases, 
the growth of the Internet subscribers has enhanced competitive advantage 
and provision of affordable services, at the same time imposing an additional 
challenge on the MNOs in providing a satisfactory level of network service 
performance to the mobile Internet users (Ibarrola, Xiao, Liberal, & Ferro, 
2011; Shaikh, Fiedler, & Collange, 2010; Tsiaras et al., 2014). Particularly, 
mobile networks are extremely sensitive to channel availability (such as 
decreased channel availability) that effectively changes over time because of 
the local congestion, which often results in compromising the users’ session 
(Goleva, Atamin, Mirtchev, Dimitrova, & Grigorova, 2012). The established 
instances, an increase in limited data rate and local congestion can severely 
have a huge influence on the mobile Internet users’ experience. 

For the MNOs to effectively manage the mobile Internet users’ experience, it 
is imperative to understand that the expectation of the mobile Internet users 
is based on fulfilled experiences from the network performance (NP), which 
are generally expected to be stable and less congested. Hence, to facilitate 
a satisfactory level of users’ experience, the MNOs are expected to have 
detailed knowledge about the traffic characteristics caused by the geographical 
and dynamic nature of the network traffic (Tsiaras et al., 2014). Having prior 
knowledge about the users’ expectations and network traffic characteristics 
would assist the MNOs to plan and optimize the NP to understand the 
geographical and temporal service-related Quality of Experience (QoE) from 
both the users’ and the network’s perspective. 

QoE is a subjective measure of the perceived quality of mobile Internet services 
that connect NP, user perception and expectation of the Internet applications 
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(Chen, Chatzimisios, Dagiuklas, & Atzori, 2016). Considerable effort has been 
devoted in assessing the QoE of Internet applications through objective and 
subjective methods over modern fixed and mobile devices (Chen et al., 2016). 
In most cases, a service-related QoE is often measured through the value of 
the mean opinion score (MOS) that represents the subjective experience of 
users for a specific service quality of the network. While several studies have 
used MOS to measure the QoE of different services such as video streaming 
(Amour, Souihi, Hoceini, & Mellouk, 2015), VOIP (Charonyktakis, Plakia, 
Tsamardinos, & Papadopouli, 2016), Skype Voice calls (Spetebroot, Afra, 
Aguilera, Saucez, & Barakat, 2015) and web-browsing (Balachandran et al., 
2014; Rugelj, Volk, Sedlar, Sterle, & Kos, 2014) in laboratory experiments. 
Limited studies have used large databases obtained from the mobile network 
traffic constituting the QoE influence factors that usually serve as input for the 
QoE model (Alreshoodi & Woods, 2013; Balachandran et al., 2014; Tsiaras & 
Stiller 2014), because mobile network traffic data are not readily available for 
examination (Tsiaras et al., 2014). In addition, while previous studies presented 
a specific estimated QoE, usage of diverse possible metrics involving time 
and location within the mobile network is limited in the literature, as most 
QoE studies make use of participants in laboratory experiments to aid in the 
estimation of the QoE measurements (Andrews, Cao, & McGowan, 2006; 
Tsiaras et al., 2014; Rugelj et al., 2014). 

Therefore, to evaluate the users’ perceived service-related QoE quantified by 
MOS, this paper proposed a framework for modelling the mobile network 
QoE through the big data analytics approach. The proposed framework 
presented the method involved in analyzing mobile Internet QoE through the 
data obtained from the mobile network traffic. Utilizing the big data approach 
would employ the objective measurement gathered from the mobile network 
traffic for the assessment of the user perceived QoE, by employing different 
services like file transfer protocol (FTP), Hyper-text transfer protocol (HTTP) 
and video streaming along with the time and location of the users. Similarly, the 
usage of big data approach to analyze perceived QoE could assist the MNOs in 
the allocation of network resources in different geographical areas that might 
need network optimization to enhance their network service provisioning. The 
remainder of this article is organized as follows: Section II discusses QoE, 
perceived QoE influence factors, perceived QoE measurements and perceived 
QoE modelling. This is followed by Section III which describes big data 
analytics and the types of big data analytics. Lastly, Section IV presents the 
proposed framework for modelling the mobile Internet perceived QoE with big 
data analytics and the methodological instances of the proposed framework.
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 QUALITY OF EXPERIENCE

The advent of Internet-based services has made QoE gain prominent 
recognition in the telecoms industry and related research fields. Historically, 
QoE can be traced back to the operation of NP in mobile network, which is 
often referred to as Quality of Service (QoS) (Andrews et al., 2006; Chen et 
al., 2016; Ibarrola et al., 2011). The International Telecommunication Union 
(ITU), describes QoS as “totality of characteristics of a telecoms service that 
bear on its ability to satisfy stated and implied needs of the user of the service” 
(ITU-T Recommendation E.800, 2008).” Further explanation of QoS by the 
European Telecommunications Standards Institute (ETSI) supports the view 
that QoS is the “collective effect of service performance which determines the 
degree of satisfaction of a user of the service” (ESTI, 1994)”. On the contrary, 
the Internet Engineering Task Force (IETF) proposes a network-oriented 
focus by describing QoS as a “set of service requirements to be met by the 
network while transporting a flow” (Crawley, Nair, Rajagopalan, & Sandick, 
1998). Evidently, QoS placed more focus on the technical aspects of Internet-
based services to enable end-user satisfaction. The technical aspect of the 
Internet-based services is NP, which constitutes delay, throughput, jitter, loss, 
and bandwidth of the telecoms network (Chen et al., 2016) Consequently, the 
wide usage of Internet-based services such as video streaming, VOIP, Skype 
Voice calls, and web-browsing bring about the assessment of perceived QoS 
internet services, commonly referred to as QoE (Chen et al., 2016). 

Unlike QoS, QoE is a subjective metrics that is concerned with human 
dimension involving user perception, expectations, experiences of Internet-
based applications and NP (Chen et al., 2016). ITU-T Recommendation (2007) 
defines QoE as the “overall acceptability of an application or service, as 
perceived subjectively by the end-user.” While the definition of QoE provided 
by ITU focuses on the acceptability of the service, in the Dagstuhl seminar on 
QoE held in 2009, Fiedler, Kilkki and Reichl (2009) presented an alternative 
definition that defined QoE as the “degree of delight of the user of a service, 
influenced by content, network, device, application, user expectations and 
goals, and context of use.” In contrast to the ITU definition which focused on 
end-to-end system effects and overall acceptability of an application that may 
be influenced by the user expectations and context (ITU-T Recommendation, 
2007), Fiedler et al. (2009) placed emphasis on the quality experience by the 
user and tacitly considered the network as a QoE influencing factor.

However, recent definition of QoE by Qualinet (Le Callet, Möller, & Perkis, 
2012), describes QoE as the “degree of delight or annoyance of the user of an 
application or service. It results from the fulfilment of his or her expectations 
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with respect to the utility and / or enjoyment of the application or service in 
the light of the user’s personality and current state.”  In contrast to ITU and 
Fiedler et al’s. (2009) QoE definition, by the Qualinet white paper clearly 
focused on the user by considering the degree of user delight or annoyance 
with the fulfilment of his or her expectation with time and context. Equally, the 
description of QoE by the Qualinet white paper indicates that QoE is dependent 
on QoS and QoS is not enough to understand QoE (Chen et al., 2016; Le Callet 
et al., 2012). In addition, QoE extends the concept of QoS which is a network-
centric approach to a user-centric approach (Raake & Egger, 2014). The user-
centric approach of QoE aimed at developing methodological instances for 
subjective and instrumental quality metrics by considering current and new 
trends of Internet-based applications along with their application content and 
interactions (Chen et al., 2016; Möller & Raake, 2014; Raake & Egger, 2014). 
Generally, users often have predetermined and well-defined expectations that 
must be met to enable users’ satisfaction. In this case, QoE is viewed as a 
multi-dimensional construct comprising of all the elements influencing users’ 
perception of the network, its performance and how it meets users’ expectations 
(Vuckovic & Stefanovic, 2006). Therefore, QoE is a very vital measure for 
the MNOs to properly ensure a balance between low quality extremes and 
over- provisioning of the Internet services. Understanding users’ expectations 
and identifying drivers of users’ satisfaction, such as QoE influence factors, 
are necessary for determining effective perceived QoE measurement and 
modelling indicators. 

PERCEIVED QOE INFLUENCE FACTORS

In the context of telecoms service provision, user experience may be 
influenced by various factors that impact QoE. QoE influence factors are the 
characteristics of the services provided by the MNOs to the users. Previous 
studies have shown that some of the influence factors are clear enough to 
describe and quantify QoE, while others are situation-dependent, difficult 
to describe and effective only under certain circumstances (for example in 
combination with or without other influence factors (Reiter et al., 2014). The 
Qualinet white paper defines QoE influence factors as “any characteristic of 
a user, system, service, application, or context whose actual state or setting 
may have influence on the QoE for the user” (Le Callet et al., 2012). In this 
case, the influence factors are the independent variables while the resulting 
QoE as perceived by the user is the dependent variable (Reiter et al., 2014). 
Oftentimes, a certain set of influence factors may be noticeable by the users 
in terms of the impact on users’ perceived QoE. In other words, users may not 
necessarily be aware of the underlying influence factors, but to some extent 
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the users can describe what they like or dislike about their perceived QoE.  The 
QoE influence factors can be classified into different dimensions as depicted 
in Table 1 below. 

Table 1

Dimensions of QoE Influence Factors

Authors Dimensions Components

Barakovic, 
Barakovic and 
Bajric (2010)

Technology performance Application/service, server, network and 
device.

Usability Behavioural usability, ease of use, device 
features, emotions and feelings.

Expectations Application type, usage history, gender, 
brand and personality.

context Environment, personal, social context, 
technological context and cultural context.

Subjective evaluation Service, network and device.

QoS parameters Delay, jitter, loss, throughput and 
bandwidth.

DeMoor et al. 
(2010)

Context, Prior experiences, 
Expectations

Place of use and historical experience.

User Factors Personalisation and emotions.

Stankiewicz and 
Jajszczyk (2011)

QoS factors, Grade of Service 
(GoS), Quality of Resilience (QoR)

Terminals, type of content, application 
specific features.

                                                 (Continued)                                   

Authors Dimensions Components

Stankiewicz and 
Jajszczyk (2011)

Emotions,occupation, education 
level and age.
                            

Customer profiles,  environmental, 
psychological and sociological aspects. 

Pricing policies Prepaid or Postpaid.

Skorin-Kapov and  
Varela (2012)

Application Application configuration-related factors.

(continued)
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Authors Dimensions Components

Resource space Delay, jitter, loss, throughput and system-
related factors).
                                           

Context Customer location, time, and application-
related factors.

User space Demographics, customer preferences, 
requirements, expectations, prior 
knowledge, behaviour and motivations.

Barakovic and 
Skorin-Kapov 
(2013)  
Le Callet et al. 
(2012)

Human factors Age, education background, emotions, 
gender and user visual aid.

System factors Bandwidth, delay, loss, throughput, 
security, display size and resolution.

Context factor Location, movement, time of day, costs, 
subscription type and privacy.

However, evidence has shown that all the QoE factors discussed in prior studies 
cannot be addressed in a single study to analyze perceived QoE (Barakovic 
& Skorin-Kapov, 2015). Therefore, recent studies supported three dimensions 
(human, system, and context) and justified that the three dimensions are 
essential for modelling QoE as perceived by the customers (Barakovic & 
Skorin-Kapov, 2015; ITU-T Recommendation P.10/G.100, 2016; Reichl et 
al., 2015).  

The human influence factor is a dimension of the QoE influence factor that 
describes any characteristics of human users such as the demographic, socio-
economic background, physical and mental constitution, or emotional state 
(Le  Callet et al., 2012; Reiter et al., 2014). Previous theoretical and conceptual 
studies have highlighted the importance of human influence factors and the 
possible effects on QoE (Geerts  et al.,  2010; Laghari, Crespi, & Connelly, 
2012; Reiter et al., 2014). Additionally, to a certain extent, some studies have 
investigated the impact of  certain human factors on perceived QoE (Quintero 
& Raake, 2011; Wechsung, Schulz, Engelbrecht, Niemann, & Moller, 2011). 
Equally, human influence factors have been taken to a limited extent in most 
empirical studies, due to the difficulties involved in assessing some of the 
human influence factors (Reiter et al., 2014; Sackl, Masuch, Egger, & Schatz, 
2012). Some examples of human influence factors are gender, age, background, 
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emotion and education (Le Callet et al., 2012; Reiter et al., 2014). However, 
inherent complexity and lack of empirical evidence has left an impact of the 
human influence on perceived QoE to be poorly understood (Reiter et al., 
2014).

Another dimension of the QoE influence factor is the system influence factor 
constituting the properties and characteristics that determine the technically 
produced quality of an application or service (Le Callet et al., 2012). The 
system influence factor comprises of content, network, and device-related 
factors. Content-related factors includes graphical design elements, sematic 
content, video spatial and temporal resolution, depending on the kind of 
application or services being used (Chen et al., 2016). The network-related 
influence factor is made up of the QoS parameters (such as throughput, delay, 
jitter and loss) and security (Le Callet et al., 2012), while the device-related 
influence factor specifies the characteristics and capabilities of the devices 
located at the end points of the communication path (Chen et al., 2016).

The last dimension of the QoE influence factor is the context influence factor 
that deals with any situational property to describe the users’ environment (Le 
Callet et al., 2012). Previous studies usually combined context factors with 
human and system factors without any specific structure or categorization 
(Reiter et al., 2014). However, in the mobile network scenario, context 
factors were broken down into physical, temporal, social, economic, task and 
technical components (Jumisko-Pyykko, Satu, & Vainio, 2010) The physical 
components of the context influence factor describe the characteristics of 
location and space along with the movements within and transitions between 
locations (Reiter et al., 2014). Generally, user preferences can vary in different 
contexts such as location, time movement and mobility (Jumisko-Pyykko, 
Satu, & Vainio, 2010; Reiter et al., 2014). Therefore, the physical components 
of the context influence factor are essential for analyzing the perceived QoE 
of mobile Internet users. Another component of context influence factor is 
temporal component, which describes the past and future situations involving 
the time of the day, month, and year (Jumisko-Pyykko, Satu, & Vainio). The 
social component is another type of the context influence factor that defines the 
inter-personal relation existing during the experiences observed through the 
mobile network (Reiter et al., 2014). Some examples of the social component 
are cultural, educational and professional levels (Reiter et al., 2014). The 
economic component is also an important component of the context influence 
factor that comprises of costs, subscription type or brand of the application or 
system used by the users (Reiter et al., 2014). Task is another type of context 
influence factor that determines the nature of the experience depending on the 
user situation (Reiter et al., 2014). Some authors concluded that an additional 
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task does not have influence on the perceived quality, independently of the 
difficulty of the task (Sackl, Seufert, & Hoßfeld, 2013). But the authors’ 
conclusion does not limit the importance of the task component on the context 
influence factors because the application used by the user may have a huge 
impact on the perceived QoE of the user. The last component of the context 
influence factor is the technical component that describes the relationship 
between the system and the devices (Reiter et al., 2014). Some examples of 
the technical components are applications and network components. 

Generally, the most studied QoE influence factor is the system influence factor 
constituting the QoS parameters (throughput, loss, bandwidth, delay, and jitter) 
and the technical component that is a subset of the context influence factors 
(Alreshoodi & Woods, 2013). While there exist many studies that examined 
throughput measurement for wireless applications for web traffic (Barakovic & 
Skorin-Kapov, 2013; Rugelj et al., 2014; Singh et al., 2013), few studies used 
the user experience measurements obtained from the mobile network traffic 
to model perceived QoE, as most studies gathered basic network performance 
measurement data in laboratory experiments through the desktop applications 
(Rugelj et al., 2014; Singh et al., 2013). Gathering measurement data from 
the desktop application in laboratory experiments limits the use of physical 
(location, time movement and mobility), temporal components (the past and 
future situations involving the time of the day, month, and year) and economic 
components constituted in the context influence factors (Barakovic & Skorin-
Kapov, 2013; Tsiaras et al., 2014). Therefore, it crucial to examine specific 
service-related throughput in mobile network traffic in relation to expectation, 
mobility, (location and time) and different services like FTP, HTTP, and video 
streaming. On this basis, it is important to gather user experience measurement 
from the mobile network traffic to analyze the perceived QoE from both the 
network and users’ perspectives. 

PERCEIVED QOE MEASUREMENTS
                                                                      
Based on the classification of the QoE influence factors discussed above, 
it should be noted that measuring and analyzing perceived QoE could be 
challenging due to the complexities involved in capturing the user’s experience 
metrics (K. Laghari, Issa, Speranza, & Falk, 2012). Perceived QoE is an 
assessment of users’ expectations, perception, cognition and satisfaction with 
respect to a specific application or service (K. Laghari et al., 2012). In most 
cases, perceived QoE assessment is presented through MOS, which is a five-
point Likert scale (5=Excellent, 4=Good, 3=Fair, 2=Poor, and 1=Bad) metrics 
used to quantify perceived QoE (Raja & Flanagan, 2008; Streijl, Winkler, & 
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Hands, 2016) of Internet-based applications. MOS is an average score across 
subjects that has been widely used in numerous applications for both subjective 
and objective measurements in laboratory testing and in-service monitoring. 

Subjective and objective measurements are two types of perceived QoE 
measurements. Subjective measurement is commonly based on controlled 
real-life experiments that involve users’ participants who directly evaluate 
their experience of an application or service (Tsolkas, Liotou, Passas, & 
Merakos, 2016). The users involved in subjective measurement can both be in 
active or passive form and judge their perceived experience.  Equally, the users 
in the experiment can score their perceived quality using an absolute rating 
scale as well as compare sequential service-related experience. The results 
of the subjective measurement are often based on user opinions, previous 
experience, expectation, user perception, judgement, description capabilities, 
effectiveness, efficacy and overall capabilities of using a service (Tsolkas 
et al., 2016).  Previous studies termed subjective measurement as a reliable 
measurement because they incorporate the conscious and unconscious aspects 
of the users’ quality of evaluation aspects that may otherwise not be captured 
(Barakovic & Skorin-Kapov, 2013; Rugelj et al., 2014; Shaikh et al., 2010; 
Singh et al., 2013; Tsolkas et al., 2016). In addition, subjective measurements 
are considered reliable if the process is designed carefully and unbiased 
(Tsolkas et al., 2016). However, one major drawback is that the subjective 
measurements are valuable only for the laboratory testing of some services 
and not visible in real-time QoE evaluation and support (Alreshoodi & Woods, 
2013; Andrews et al., 2006; Barakovic & Skorin-Kapov, 2013; DeMoor et 
al., 2010; Shaikh et al., 2010; Singh et al., 2013; Tsolkas et al., 2016). Other 
drawbacks of the subjective measurements are time-consuming, costly, and 
are not reproducible on demand (Tsolkas et al., 2016). Thus, subjective 
measurement may not be efficient for in-service quality monitoring (Tsolkas 
et al., 2016). One way to overcome these drawbacks is to conduct real-service 
QoE evaluation, where users’ experience can be captured and evaluated in 
real-time (Tsolkas et al., 2016).  As a result, the drawback gave raise to an 
objective measurement that can measure or predict the quality perceived by 
the users without the users’ intervention. 

In contrast to the subjective measurement is the objective measurement, which 
aims to predict human behavior using a mathematical formula/model rather 
than getting direct feedback from the end users (Shaikh et al., 2010; Singh et 
al., 2013). Objective measurement is preferred by most authors because of its 
ability to be implemented and be embedded into the network using software 
applications (Falk & Chan, 2006) and the capability to allow researchers 
to model the relationships that exist within the user’s experience metrics to 
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determine the MOS or users’ perceived QoE (Sharma, Meredith, Lainez, & 
Barreda, 2014). An example of the objective model is the parametric model 
that uses network planning parameters and measures the values of specific 
network metrics. The parametric model based its estimations on parameter 
metrics collected at runtime from network process and control protocols 
(Tsolkas et al., 2016). Another example of the objective measurement is the 
use of hybrid methods, based on employing machine-learning algorithm on 
the user’s experience metrics gathered from the network. The user experience 
metrics do represent the QoE influence factors and are used as input to train 
the perceived QoE model. In other words, the model obtained from the hybrid 
methods maps the QoE influence factors to MOS values and further use the 
model for real-time quality prediction. Presently, most objective models 
account for the user factors in terms of their inherent characteristics but the 
context and content of the services are only considered at a limited extent 
(Rugelj et al., 2014; Shaikh et al., 2010; Tsolkas et al., 2016). To enable the 
consideration of context and content of Internet service-related applications 
in the mobile network, there is a need to design more accurate objective 
estimation models that adopt the use of both hybrid and parametric methods to 
enable an indirect and user-transparent perceived QoE model (Liotou, Tsolkas, 
Passas, & Merakos, 2015; Tsolkas et al., 2016) to assist the MNOs overcome 
the challenges associated with QoE management in mobile networks.

PERCEIVED QOE MODELLING

Perceived QoE modelling is used to quantify the QoE influence factors by 
defining a correlation or prediction model that estimates the MOS. MOS is 
used as the linkage between the subjective test and the objective modelling 
along with other quantitative information. The usage of MOS enables the 
overall measurement of the network from the users’ perspective. Though the 
factors influencing QoE are specific to certain applications, the factors that 
influence video applications may be different from web-browsing applications. 
In most cases, the QoE influence factors are considered as the predictors while 
the predicted outcome is the perceived QoE/MOS, so it is imperative to find 
the correlation between the influence factors and the perceived QoE. Hence, 
accurate service-related applications measurement and monitoring at different 
system nodes will enable the MNOs to achieve maximum user perceived QoE.

Several studies have investigated the correlation between the QoE influence 
factors to determine the estimated MOS of the users. The study of Fiedler, 
Hossfeld and Tran-Gia (2010) indicates the QoS parameters (such as loss 
delay, jitter and throughput) in the system QoE influence factors can translate 
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into user experience instances like excessive waiting time (longer time taken 
by users to access the internet applications). Equally, another study points out 
that the response time is very essential when relating these QoS paremeter to 
the perceived experience (Shaikh et al., 2010). The challenges often observed 
in most studies are how to link or map the quantitative metrics of the QoS 
parameters with the perceptual quality of the customers (Reichl, Egger, 
Schatz, & D’Alconzo, 2010). Therefore, a mathematical interdepedency was 
developed using logarithmic relationship and exponential interdependecy 
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relation of the IQX hypothesis. Because Fiedler et al’s (2010) study on IQX 
hypothesis lacks peceivable stimulus translation, the IQX hypothesis was 
enhanced by translating it into a perceptual change for a given fixed change 
of the stimuli proportional to the current level of perception (Reichl, Egger, 
Schatz, & D’Alconzo, 2010). This relates to changes in QoE with respect 
to QoS to the current level of QoE expressed as:  			    
    						        (Alreshoodi & Woods, 
2013). However, the drawback of the IQX hypothesis is that it only considers 
the use of one QoS parameter at a time and only focuses on the quality o 
deterioration parameters (P. Reichl et al., 2011).

A large and growing body of literature has adopted the approach of the IQX 
hypothesis for modelling perceived through the machine-learning algorithms 
(Amour et al., 2015; S. Aroussi & Mellouk, 2014; Spetebroot et al., 2015). 
Machine-learning algorithms is a technique that designs and develops 
algorithms capable of building a reality model from the data, either by 
improving the existing model or building a new model (S. Aroussi & Mellouk, 
2014). Machine-learning algorithms aimed at correlating QoE influence 
factors through prediction, which focus on some known properties or acquired 
from an observation that reflects both the network and customer’s perception 
(S. Aroussi & Mellouk, 2014).  Decision Tree, Random forest, Support vector 
machine, K-nearest and artificial neural network are the most commonly used 
machine learning algorithms for the modelling of perceived QoE (Amour et 
al., 2015; S. Aroussi & Mellouk, 2014; Aroussi & Mellouk, 2016; Spetebroot 
et al., 2015). Table 2 depicts previous studies that have used machine-learning 
for modelling perceived QoE.

Table 2

Modelling Perceived QoE with Machine-learning Algorithms

Authors Dataset/Scenerio Application/ Service 
type

Machine-learning 
algorithms

Anchuen, 
Uthansakul, 
and 
Uthansakul, 
(2016)

Network tool/
Experiment

Smartphone Neural network

Li et al. (2016) Participant data/
Experiment

Over-the-top video Decision Tree
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Authors Dataset/Scenerio Application/ Service 
type

Machine-learning 
algorithms

Charonyktakis 
et al. (2016)

Test bed 
experiment

VOIP Decision Tree, Gaussian 
naïve bayes, Artficial 
neural network and 
support vector machine

Aroussi and 
Mellouk ( 
2016)

Testbed 
Experiment

Video on Demand 
(VoD)

Artficial neural network, 
K-nearest, Support vector 
machine, Decision Tree, 
Naïve bayes and Random 
forest

Amour et al. 
(2015)

Participant data/ 
Laboratory 
experiment

Video Naïve bayes, Decision 
Tree, Random forest, 
Support vector machine 
and Neural network

Spetebroot et 
al. (2015)

Testbed 
experiment

Skype voice calls Decision Tree, Rule 
induction, Logistic 
regression, Support 
vector machine, Neural 
network, Lazy learners 
and Ensemble method. 

Balachandran 
et al. (2014)

Mobile websites 
data / Cellular 
network

Mobile web browsing Text classification 
(Decision Tree and Linear 
regression)

Rugelj et al. 
(2014)

Participant data/ 
Laboratory 
experiment

Web-browsing Exponential Regression 
and Hidden Markov 
Model.

Mushtaq, 
Augustin 
and Mellouk 
(2012)

Participant data/ 
experiment

Testbed video Naïve bayes, Decision 
Tree, Random forest, 
Support vector machine, 
K-nearest and Neural 
network

Calyam et al. 
(2012)

Testbed 
experiment

IPTV Neural network

Hoßfeld et al. 
(2011)

Participant data/ 
Laboratory 
experiment

Web-browsing Exponential regression, 
Support vector machine 
and Hidden memory 
markov models

(continued)
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Authors Dataset/Scenerio Application/ Service 
type

Machine-learning 
algorithms

Machado et al. 
(2011)

Testbed 
experiment

Multimedia streaming Artficial neural network

Du, Guo, 
Liu and  Liu 
(2009)

Simulation Test 
Experiment

Video Neural network

Menkovski, 
Cuadez-
Sanchez, 
Oredope and 
Liotta (2009)

Testbed 
experiment

Video Support vector machine 
and Decision Tree

As indicated in Table 2, the prevailing method of modelling perceived QoE is 
through the testbed experiment often conducted in a laboratory. The testbed 
experiment can be in different forms depending on the method adopted by the 
researcher. A testbed experiment was conducted in K. Laghari et al’s (2012) 
study by setting up a private local area network (LAN) using two laptops 
connected to a gateway through a switch. The testbed was used to emulate 
the wireless environment in order to analyze the effects of varying network 
conditions on video streaming QoE. Specifically the study considered packet 
loss (PLR) as a QoS parameter involving  packet re-order (PRR) and video bit 
rate (VBR). A user experiment was conducted with 33 subjects (25 males and 
8 females). They were provided with questionnaires and asked to provide their 
profile information and feedback about the perceived video quality (PVQ) 
using a 5-point scale, where  label ‘1’ corresponded to “Worse/Strongly 
dissatisfied” and label ‘5’ to “Excellent/Strongly satisfied”.

Another testbed experiment was conducted in a controlled evironment with 
suffiecient light and air to produce consistent and reproducible results. The 
interactive Graphical User Interface (GUI) was used in the study and subjective 
scores were collected from the GUI and stored in the database (Battisti, Carli, 
& Paudyal, 2014 ). A similar testbed experiment was conducted through the 
Distributed Passive Measurement Infrastructure (DPMI) constituting a server, 
a client, the Linux Traffic Controller (TC) shaper, two measurement points 
(M2 and M3), a measurement area controller and the consumer station for 
data (Shaikh et al.,  2010).  Other testbed experiment studies often involved 
volunteered participants of different age groups to collect data in a controlled 
environment with a high level of control to enable the estimation/prediction 
of the perceived QoE for different internet applications (the likes of web 
browsing, video and VOIP applications (Alreshoodi & Woods, 2013; Aroussi 
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& Mellouk, 2016; Calyam et al., 2012; Charonyktakis et al., 2016; Calyam et 
al., 2012; DeMoor et al., 2010; Fiedler et al. 2010; Geerts  et al., 2010; Li et 
al., 2016; Menkovski et al., 2009; Rugelj et al., 2014; Spetebroot et al., 2015)

Similarly, as seen in Table 2, most of the studies focused on a specific 
application or service, because the authors tended to make the contextual 
factors as fixed as possible for a certain QoS parameter which is a variable of 
the system QoE influence factor. To overcome this drawback, a deterministic 
mathematical model (DQX) was proposed by Tsiaras et al. (2014) to measure 
the impact of QoS parameters and other influence factors on QoE.  The study 
defined service-specific QoS values through the DQX model for quantifying 
the QoS parameters to QoE. The DQX model overcame the drawback of the 
IQX hypothesis by considering multiple QoS parameters as input. In addition, 
the DQX model examined the positive and negative impacts of QoS on QoE 
rather than just a deteriorating effect as in the case of the IQX hypothesis. The 
DQX model allows flexibilty of the QoS parameters by using the concepts 
of the expected variable value and expected MOS. This simply means that 
a certain level of QoE can be maintained even if one variable changes. The 
formalization of the QoE is given by QoE     f(User,Service,Variable) (Tsiaras 
et al., 2014). The overall analysis of the DQX model enables the use of 
multiple and diverse parameters and explains how the parameters can affect 
the perceived QoE positively or negatively in a specific situation (Tsiaras et al., 
2014). A broader perspective of the DQX model was applied on the Voice-over 
Internet protocol-based (VOIP) using an experimental set up to capture all the 
end-users of QoE data in a VOIP services (C. Tsiaras, Rösch, & Stiller, 2015). 
The data was used to define all the necessary parameters such as lantency, 
jitter, packet loss and bandwidth in VOIP scenerios. The results showed that 
the DQX model produced promising results, especially on the measurements 
with the mixed QoS parameters. The study revealed that the DQX model was 
precise, highly adaptable, and concluded that the DQX model was a powerful 
and useful tool for MNOs to predict and improve their services in relation 
to perceived QoE. Evidently, the idea of the DQX model supports that QoE 
perceived can be optimized to determine the actual perceived QoE, because it 
supports the use of multiple QoS parameters along with other QoE influence 
factors with regards to the minimum, maximum, expected variable values 
and variable weights to enable the modelling of the perceived QoE (Aroussi 
& Mellouk, 2016; Tsiaras et al., 2014). Despite the importance of the DQX 
model to determine the expected MOS which represents the perceived QoE, it 
has not been applied in the mobile environment that comprises of  a large scale 
scenerio (C.Tsiaras et al., 2015; Tsiaras & Stiller 2014).

However, evidence has shown experimentally that there is a need to quantify 
QoE of different mobile internet applications in relation to time and location 
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within a mobile network (Barakovic & Skorin-Kapov, 2015; Reichl et al., 2015; 
Tsiaras et al., 2014). To quantify perceived QoE of mobile applications, Tsiaras 
et al. (2014) used an android application to gather the QoE representation in 
MOS values because the android application was already designed to evaluate 
multiple performance measures. The study only focused on gathering data 
from an android application by instructing the clients/users to create traffic that 
contains a GET request for a web page from Wikipedia (Tsiaras et al., 2014). 
In this case, the data gathered could be restricted to a certain set of clients in 
a certain location, because the clients must be given instructions on a specific 
website that the measurement test data needs to be collected. Considering the 
increase in the volume of broadband data traffic of the mobile network caused 
by the diverse and large amount of mobile internet users, recent literature 
suggests the need for an advanced QoE management scheme and optimization 
algorithms for both the wireless and mobile systems (Aroussi & Mellouk, 2016; 
Rugelj et al., 2014). The advanced QoE management scheme may involve the 
process of gathering large user experience in relation to user behavior from 
the mobile network traffic (Reichl et al., 2015). Such large user experience 
data is fundamentally a big data problem, and requires some big data analytics 
for such data to be effective and analyzed (Spiess, T’Joens, Dragnea, Spencer, 
& Philippart, 2014). Therefore, this study suggests the use of the minimum, 
maximum, expected variable values and variable weights stated in the DQX 
model for an analytical and large-scale scenario to determine the correlation 
and mappings of the QoE influence factors to enable the estimation of the 
perceived QoE of the mobile internet users and to enable maximization of 
QoE, to determine the actual customer satisfaction in relation to the customers, 
expectation as stated in the service level agreement (SLA). 

BIG DATA ANALYTICS

Big data is a collection of large amount of data that has the ability of changing 
rapidly over a particular period (Spiess et al., 2014). In recent times, most 
organizations especially the telecoms organizations are much more interested 
in data-driven decisions due to the large and diverse dataset generated within 
the mobile network traffic. The data-driven decisions are of great importance 
to the MNOs to enable them to deal with disruptions as observed in the NP and 
provide an optimal solution based on the insights (information and knowledge) 
derived from the data (Spiess et al., 2014).  Big data constitutes five major 
characteristics such as volume, velocity, variety, value, and veracity. Volume 
constitutes the mass and quantity of the data. Velocity involves the speed of 
data creation that is, how quick the data is generated and processed to meet the 
present network demand and prepare for future challenges. Variety constitutes 
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different kinds of data, most especially the classes of  data generated in the 
same network traffic. Veracity depicts the accuracy, correctness, quality of 
data sources and the uncertainties observed in the dataset. Value characterizes 
the type of insight that can be extracted from the supposed big data. ITU 
(2014) affirms that the data generated in the mobile network traffic constitutes 
all these five characteristics, thus the large dataset collected from the network 
traffic can be used for perceived QoE modelling, estimations, and monitoring 
in a diverse heterogeneous environment that is very essential for network 
optimization (Zheng et al., 2016). In addition, employing the usage of big 
data can assist the MNOs to prevent future occurrences of network problems, 
proper allocation of infrastructural resources in different geographical area, 
and allow the selections of accurate key indicators to measure and improve 
user experience (Zheng et al., 2016).

TYPES OF BIG DATA ANALYTICS

Analytics is a technique used in analyzing the large dataset (big data) generated 
from the mobile network traffic. There are three different types of big data 
analytics; descriptive, predictive, and prescriptive analytics. Descriptive 
analytics is a process of using exploratory analysis comprising of statistical 
techniques such as central tendency (mean, median, and mode), measures 
of dispersion (standard deviation), charts, graphs and frequency distribution 
to aid the understanding and visualization of the big datasets. Descriptive 
analytics using exploratory analysis allows the grouping of data through the 
distribution of values and interrelationships within the dataset to determine 
the presence of extreme values present in the dataset and the discovery of 
high-level patterns in data that facilitates the understanding of the dataset 
easily (Kotu & Deshpande, 2015). 

Predictive analytics takes a step further than descriptive analytics when data 
is used to seek the future state of business performance. Predictive analytics 
originated from artificial intelligence, statistics, machine-learning, and data-
mining techniques. Predictive analytics aims at predicting the probability of the 
future occurrence of patterns or trends in data. Moreover, predictive analytics 
is sometimes referred to as one-click data mining, because it simplifies and 
automates the data- mining process to discover the factors leading to specific 
outcomes, as well as predict the likely outcomes with a degree of confidence 
in the predictions (Deka, 2014). One of the advantages of predictive analytics 
is its ability to predict network outages through the analysis of customer 
complaints and network data. Another advantage is the prediction of valuable 
customer segment that can be used for customer retention campaigns. These 
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advantages of predictive analytics can assist the MNOs to identify the root 
causes of network failures and direct retention campaigns to a focused group 
to generate average revenue per user (ARPU) and increase the spending of 
loyal customers (Spiess et al., 2014). 
 
Prescriptive analytics is the last stage of big data analytics technique. It is 
sometimes referred to as optimization analytics, since organizations can 
use it to optimize their scheduling, production inventory and supply chain 
design. Prescriptive analytics suggest decision options with their implications. 
An example in mobile telecoms industry is the allocation of infrastructural 
resources to locations which would enable the MNOs to operate their networks 
more efficiently (Zheng et al., 2016). Prescriptive analytics adopts the use 
of mathematical programming, heuristic search and simulation modelling 
to identify the optimum actions to be taken by MNOs to improve their NP. 
Collectively, the use of big data analytics to manage user experience in the 
mobile network can assist the MNOs to have an adequate insight on the most 
important user experience measurements (such as total throughput, download 
transfer time and connection duration) that can impact the perceived users’ 
experience.

In most cases, the use of big data analytics often aids the processing and 
understanding of the large diverse dataset. Equally, employing machine-
learning and data mining algorithms usually aid the discovery of knowledge 
insights about the large datasets. In addition, processing and analyzing big 
data provides an automatic and speedy solution in dealing with real-life 
problems, thereby facilitating human understanding of the medium of data 
analysis outcome through the process of visual representation. Therefore, 
employing big data analysis for the QoE management scheme will permit an 
early insight about mobile internet customer behavior such that timely actions 
can be taken early to improve user experience. At the same time, the prediction 
of perceived QoE through previous users’ behavior would assist the MNOs to 
provide an optimal NP and rectify the occurrence of any outage in the service 
utilities before the customers would experience it.

PROPOSED FRAMEWORK FOR MODELLING MOBILE 
NETWORK PERCEIVED QOE USING BIG DATA 

ANALYTICS APPROACH

Modelling of perceived QoE is concerned with the process of predicting 
the perceived QoE of users through an abstract representation of data and 
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its relationship from the information collected from the users, network, or 
both users’ networks, considering the drawbacks of context and content of the 
service observed in the objective measurement of perceived QoE, limited use 
of large and diverse dataset generated in mobile networks stated in previous 
sections (Alreshoodi & Woods, 2013; Machado et al., 2011; Reichl et al., 
2015). In addition, based on the challenges faced by the MNOs in analyzing 
the vast amount of data constituted in the mobile network (Diaz-Aviles et al., 
2015; Spiess et al., 2014), this section proposed a framework that enables 
modelling of perceived QoE in the mobile network through the big data 
analytics approach, because the MNOs could use big data analytics to have 
a clear and current understanding of the users’ experience to enable them 
measure and model perceived QoE of the mobile Internet users (Diaz-Aviles 
et al., 2015). The proposed framework describes the process of gathering data 
from the mobile network traffic and the three processes of big data analytics 
in the real time measurement platform as depicted in Figure 1.

Figure 1. Framework for modelling perceived QoE through big data 
analytics approach.
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This study argued based on the approach of using large datasets obtained from 
the mobile network for the modelling of Internet service-related applications 
perceived QoE. To this end, this study supported the view that the mobile 
network is made up of large diverse key quality indicators (KQI) and key 
performance indicators (KPI) datasets consisting of many files from a 
vast number of cells (Yang, Liu, Sun, Yang, & Chen, 2016). The KQI is a 
quantitative measures of key system elements performance that is relevant 
to customer’s needs and expectations such as the translation of a rate to 
frequency in a tangible perception from the customer’s view (ETSI, 2014). 
The KPI emanates from the definition of the key parameters measurement of 
input and output NP (ESTI, 2010). In short, KQI and KPI are often used to 
indicate the service resource performance of the network. These KPI and KQI 
constitute the perceived QoE influence factors that can be used for measuring 
and analyzing the Internet service-related application perceived QoE. Each 
of the files contain in the cell-level of KQI and KPI, values of all users over 
a period of time for instance, a week, months or even years.  Values attached 
to this aggregated or averaged KQI and KPI are generated over a predefined 
time interval of two, five or ten minutes (Yang et al., 2016). Some examples of 
these KPI and KQI are the download bit rates, upload bit rates, latency, time, 
date, longitude, and latitude (Anchuen et al., 2016). 
	
The KPI and KQI are often extracted through the pre-processing of the raw 
dataset gathered from various network elements and probes (Deka, 2014). KPI 
and KQI are extracted from the pre-processing process because the dataset 
contained in mobile network traffic is assumed to be inconsistent and dirty 
due to the voluminous nature of the dataset (Mohanty, Jagadeesh, & Srivatsa, 
2013; Tsai, Lai, Chao, & Vasilakos, 2015). In addition, big data constituting 
the KPI and KQI are often available in an unstructured form that may not be 
suitable for the modelling of perceived QoE. The data pre-processing phase of 
the big data analytics will ensure reliability, completeness, randomness, and 
consistency of the dataset to make it suitable for the perceived QoE modelling 
phase (Mohanty et al., 2013). In most cases, reliability of the dataset will 
ensure the represented dataset is accurate enough to suit the perceived QoE 
modelling phase. The randomness of the datasets describes the statistical 
characteristics of the complete datasets, which is very essential for exploratory 
data analysis and visualization of the dataset.  Then the consistency of the data 
will ensure the dataset produce the same result within an acceptable error 
margin when a different random sample analysis is conducted (Mohanty et 
al., 2013; Tsai et al., 2015). In this case, usage of exploratory data analysis 
and traditional data pre-processing methods such as data cleaning, data 
integration, data reduction and data transformation are commonly used in the 
data-mining technique; feature selection and extraction will effectively assist 
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the big analytics methodology to aid the process of modelling perceived QoE 
of the mobile Internet users (Atzmueller, Schmidt, & Hollender, 2016; Tsai 
et al., 2015).  As a result, the proposed framework adopts the use of big data 
obtained from the mobile network traffic consisting of various KPI and KQI, 
which represent the perceived QoE influence factors as the core foundation 
for modelling perceived QoE of mobile Internet service-related applications. 

It is worth mentioning that the use of expectation in the form of service level 
agreement (SLA) is an important parameter for modelling perceived QoE, 
but the use of SLA is still limited in the literature (Tsiaras & Stiller 2014). 
The common method for using expectation in modelling perceived QoE is by 
asking the users what is expected from the MNOs through the process of a 
survey (that is, subjective method (Rugelj et al., 2014), because most studies 
assumed that user expectation grows as network and applications continually 
developed (Rugelj et al., 2014). But considering the time consuming and 
expensive nature of the subjective method used in gathering individual user 
expectations (Falk & Chan, 2006; Shaikh et al., 2010; Singh et al., 2013), 
subjective measurement may not be suitable in large-scale settings. Moreover, 
the subjective method lacks repeatability and is not effective in real-time 
scenarios (Alreshoodi & Woods, 2013; Barakovic & Skorin-Kapov, 2013). 
However, in the case of the objective method where the users’ experience 
would be captured and evaluated in real-time without direct feedback from 
the users’ it is vital to use SLA along with other QoE influence factors to 
estimate the users perceived QoE. SLA is the agreement between the customer 
and the MNOs on service characteristics, such as service level objectives, 
service monitoring components and financial compensation components 
(Gozdecki, Jajszczyk, & Stankiewicz, 2003). The telecoms regulators often 
use SLA to assess the whether the services provided by the MNOs comply 
with the criteria stated in the agreement. Therefore, SLA is incorporated in 
the proposed framework as suggested in the recent studies (Tsiaras et al., 
2014; Tsiaras & Stiller 2014). Employing SLA in the proposed framework 
for modelling perceived QoE would aid the MNOs to determine when one 
or more variables do not meet the expected level stated in the SLA and how 
exactly the variables involved impact user experience (Tsiaras & Stiller 2014). 
Overall, using SLA as user expectation in modelling perceived QoE would 
aid the process of determining the expected MOS, based on the maximum and 
minimum values stated in the SLA.   

In addition, the proposed framework incorporated the three types of big 
data analytics (descriptive, predictive, and prescriptive) methods discussed 
in previous studies (Spiess et al., 2014; Zheng et al., 2016). Following the 
advantages of the big data analytics discussed in prior studies (ITU, 2014; 
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Spiess et al., 2014; Zheng et al., 2016), this study supported the view that 
descriptive analytics can identify the root causes of problems by investigating 
the status and the history of the mobile network traffic. Equally, predictive 
analytics can be used to seek future occurrences in the mobile network traffic 
by using the network event data (Atzmueller et al., 2016; Deka, 2014; Spiess 
et al., 2014). Likewise, prescriptive analytics can be used for optimization 
purposes to enhance network planning and allocation of network resources 
(Zheng et al., 2016).

Furthermore, the validity of the proposed framework can be tested by 
comparing the results obtained in the predictive analytics phase with previous 
studies (Diaz-Aviles et al., 2015).  For instance, the study by Diaz-Aviles et 
al. (2015) used data feeds and logs of customer care calls gathered from a 
major African telecommunication company to predict user experience in real-
time through a supervised learning approach and training of the restricted 
random forest model. The study supported the view that the dataset can be 
gathered by installing a probe in the MNO’s network traffic (Diaz-Aviles 
et al., 2015). The datasets used by Diaz-Aviles et al. (2015) was  low-level 
summary information using user-centric internet measurement for different 
aggregation time periods. Thus, it is possible to observe the most congested 
and less congested areas, which can lead to a larger number of Internet users’ 
calls from areas that suffer high percentages of retransmissions (Diaz-Aviles et 
al., 2015). The data exploration observed by Diaz-Aviles et al. (2015) showed 
a promising correlation between the data feeds gathered from the network 
traffic and the registered calls to the care center, which enabled the prediction 
of user experience in real-time. Evidently, the restricted random forest showed 
59% precision by Diaz-Aviles et al. (2015), representing a fair MOS score 
(Demirbilek & Gregoire, 2016). The low precision observed by Diaz-Aviles 
et al. (2015), indicated the unbalances observed in the data, because only a 
limited number of users would call customer care to report issues observed in 
the usage of the mobile Internet. 

Overall, the proposed framework was envisaged to overcome the drawbacks 
observed in the study of Diaz-Aviles et al. (2015) by using expected variable 
values defined in the SLA. Equally, to avoid the unbalanced dataset observed 
in the study of Diaz-Aviles et al. (2015), historical customer care reports can 
be used to model user experience. This will enable the usage of historical 
customer care reports and historical user behavior to build personalized models 
for different segments of users and predict the perceived QoE more accurately. 
In view of all that has been mentioned so far, the MNOs can use the proposed 
framework for proactive purposes in the network traffic, to anticipate network 
problems and improve the overall mobile Internet customer experience in the 
telecoms industry. 
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METHODOLOGICAL INSTANCES OF THE 
PROPOSED FRAMEWORK

The proposed framework consists of three different phases: Data collection, 
Data preparation and Data modelling. In the data collection phase, this study 
assumed the mobile network traffic comprised of different types of datasets 
consisting of the three types of QoE influence factors. These datasets gathered 
from the mobile network traffic through active or passive probes injected into 
the network traffic. The gathered datasets can be referred to as big data if 
they constitute the big data characteristics (Volume, Velocity, Veracity, Value 
and, Varieties). For instance, in the case of the system data, the types of data 
expected to be collected are the values of download bit rates, upload bit 
rates, total bytes downloaded in the last 24 hours, hourly average number 
of retransmitted packets, maximum time needed by the user to receive the 
first byte from an application in the last 24 hours, minimum download time 
experienced by the user in the last 24 hours,  minimum upload time experienced 
by the user in the last 24 hours,  minimum hourly averaged round trip time 
in the last 24 hours, minimum hourly-averaged upload throughput, minimum 
hourly-averaged download throughput and many more based on the Internet 
application used by the users (Diaz-Aviles et al., 2015). Table 3 and Table 4 
depict the example of the data attributes for HTTP and FTP respectively. An 
example of the context data can be in the form of the time of the day, date, 
longitude and latitude that can be used to indicate the context of the mobile 
internet users. While the examples of the user data come in the form of age, 
educational background and gender depending on the platform in which the 
data is collected. Moreover, some studies also argued that datasets comprising 
the subscription type and cost can also be collected from the network traffic 
to achieve the fairness criterion among the users (Xu, Xing, Perkis, & Jiang, 
2011). Evidence have shown that some customers may have the same data 
rates, but a customer who has experienced a data rate increase may perceive 
greater experience (Rugelj et al., 2014). The fairness criterion will assist the 
MNOs to achieve an equilibrium level of an estimated perceived QoE as 
the sensitivity of customers tends towards infinity (Kim, Ko, & Kim, 2015). 
Therefore, the data collection is a very important phase when considering 
the modelling of the perceived QoE through the big data analytics approach. 
The types and quality of data collected from the mobile network have a huge 
influence on the result estimated or predicted by the perceived QoE. Once the 
data has been successfully gathered from the mobile network traffic, the next 
phase of the proposed framework was the data preparation phase. 
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Table 3                                                     Table 4  

Http Datasets Attribute                           Ftp Datasets Attributes

Features gathered from Mobile Network
Time

Date

Latitude and longitude

Throughput total 

Carrier 1 channel quality indicator (CQI) 
– Mean

Categorized received signal code power 
(RSCP): A1

The second phase which is the data preparation phase involves data pre-
processing, data exploratory analysis, feature selection and extraction from the 
big dataset collected from the mobile network traffic. The data pre-processing 
involves the cleaning, integration, and transformation of the data to suit the 
predictive analytics stage of the perceived QoE. Exploratory data analysis 
employs statistical techniques to aid and understand the dataset to be used 
for the predictive analytic stage. Feature selection aimed at selecting the most 
relevant attributes, while extraction combines the attributes into a reduced set 
of features. Hence, the feature selection and extraction enable the selection 
of subsets of features that are useful to build a good predictor, especially 
when some of the attributes are redundant. In most cases data preparation and 
descriptive analytics works together to enable a better understanding of the 
big dataset and prepare it for the modelling stage.  

The third phase is the modelling phase and it consists of predictive analytics 
and prescriptive analytics. Predictive analytics involves the process of 
modelling perceived QoE or MOS. This phase comprises the observation 
of data instances. Observation of the data instances in this case represents 
the independent variable (that is, the extracted features from the big datasets 
and expectations) while the categories predicted are the possible values of 
dependent variables (perceived QoE) which are the classes or outcomes. The 
categorical outcome is usually represented as Excellent =5, Good =4, Fair 
=3, Poor =2, and Bad =1 (Demirbilek & Gregoire, 2016). The modelling 
of perceived QoE using the machine-learning algorithms would map the 
combination of input parameters to a class value to build an efficient model that 

Features gathered from Mobile Network
Time of the day
Date 
Latitude and longitude
Throughput total (kbps)
Attachment set-up time (secs)
Application layer throughput downlink 
(kbps)
FTP download transfer time (seconds)
Connection duration (seconds)
FTP download throughput mean (kbps)
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classifies extracted features with maximum precision through the perceived 
QoE function described as QoE 

estimation/prediction of the perceived QoE for different internet applications (the likes of web 

browsing, video and VOIP applications (Alreshoodi & Woods, 2013; Aroussi & Mellouk, 2016; 

Calyam et al., 2012; Charonyktakis et al., 2016; Calyam et al., 2012; DeMoor et al., 2010; 

Fiedler et al. 2010; Geerts  et al., 2010; Li et al., 2016; Menkovski et al., 2009; Rugelj et al., 

2014; Spetebroot et al., 2015) 

 

Similarly, as seen in Table 2, most of the studies focused on a specific application or service, 

because the authors tended to make the contextual factors as fixed as possible for a certain QoS 

parameter which is a variable of the system QoE influence factor. To overcome this drawback, a 

deterministic mathematical model (DQX) was proposed by Tsiaras et al. (2014) to measure the 

impact of QoS parameters and other influence factors on QoE.  The study defined service-

specific QoS values through the DQX model for quantifying the QoS parameters to QoE. The 

DQX model overcame the drawback of the IQX hypothesis by considering multiple QoS 

parameters as input. In addition, the DQX model examined the positive and negative impacts of 

QoS on QoE rather than just a deteriorating effect as in the case of the IQX hypothesis. The 

DQX model allows flexibilty of the QoS parameters by using the concepts of the expected 

variable value and expected MOS. This simply means that a certain level of QoE can be 

maintained even if one variable changes. The formalization of the QoE is given by 𝑄𝑄𝑄𝑄𝑄𝑄 ≔
𝑓𝑓(𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉)  (Tsiaras et al., 2014). The overall analysis of the DQX model 

enables the use of multiple and diverse parameters and explains how the parameters can affect 

the perceived QoE positively or negatively in a specific situation (Tsiaras et al., 2014). A 

broader perspective of the DQX model was applied on the Voice-over Internet protocol-based 

(VOIP) using an experimental set up to capture all the end-users of QoE data in a VOIP services 

(C. Tsiaras, Rösch, & Stiller, 2015). The data was used to define all the necessary parameters 

such as lantency, jitter, packet loss and bandwidth in VOIP scenerios. The results showed that 

the DQX model produced promising results, especially on the measurements with the mixed 

QoS parameters. The study revealed that the DQX model was precise, highly adaptable, and 

concluded that the DQX model was a powerful and useful tool for MNOs to predict and improve 

their services in relation to perceived QoE. Evidently, the idea of the DQX model supports that 

QoE perceived can be optimized to determine the actual perceived QoE, because it supports the 

use of multiple QoS parameters along with other QoE influence factors with regards to the 

minimum, maximum, expected variable values and variable weights to enable the modelling of 

the perceived QoE (Aroussi & Mellouk, 2016; Tsiaras et al., 2014). Despite the importance of 

the DQX model to determine the expected MOS which represents the perceived QoE, it has not 

been applied in the mobile environment that comprises of  a large scale scenerio (C.Tsiaras et 

al., 2015; Tsiaras & Stiller 2014). 

 

f (User, Service, Variable) as used in the 
DQX model (Tsiaras & Stiller, 2014). 

The DQX model was implemented experimentally by C.Tsiaras et al. (2015) 
using 34 volunteers (subjects), but a small number of subjects may not fully 
be ideal to generate a representative data. The DQX model assumed that every 
service (such as VOIP, Web-browsing, video streaming and skype voice calls) 
consists of both technical and non-technical QoE influence factors (system, 
context and human) that affect the perceived QoE. In this case, it is possible to 
distinguish two different types of variables which are, an increasing variable 
which increases as the users’ experiences increases and a decreasing variable 
that decreases as the user’ experience declines (Tsiaras & Stiller, 2014). This 
implies that, for every variable, there existed a certain value at which the user 
would experience a satisfactory perceived QoE with the service (Tsiaras & 
Stiller, 2014; C.Tsiaras et al., 2015). The stated values represent the expected 
variable values and are defined in the SLA (Tsiaras & Stiller, 2014; C.Tsiaras 
et al., 2015). 

Overall, the idea of the DQX model can be extended to the predictive analytics 
phase in the proposed framework to determine the minimum and maximum 
perceived QoE based on the expected variable values defined in the users’ 
expectation as stated in SLA. Expectation in relation to SLA is very important 
for modelling the perceived QoE. It allows the maximum, minimum and 
expected values to be defined for the QoE influence factors selected and 
extracted from the big datasets (Tsiaras et al., 2014). Equally, extending the 
view of the DQX model in the mobile environment scenario will enable the 
use of the expected values and influence factors of the individual variable to 
predict perceived QoE by considering multiple variables gathered from the 
mobile network traffic. 

The prescriptive analytics takes advantage of the results obtained from both the 
descriptive and predictive analytics to decide the best decision or action that 
can be taken to improve the NP of the mobile network. As indicated in Figure 
1, this article suggested the predicted MOS can be used for proper allocation 
network resources in locations where the MOS is below expectations. 
Conclusively, the use of big data analytics to manage the perceived QoE 
can enable the MNOs to provide proactive measures before the users would 
perceive any network distortion while using the Internet services provided 
by the MNOs. In addition, it can aid the MNOs to take optimal decisions for 
effective management of their NP to enable a better provision of the Internet 
services.
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CONCLUSION AND FUTUREWORKS

This paper presented a proposed framework for modelling mobile Internet 
network perceived QoE through big data analytics approach. The proposed 
framework tended to overcome the specific context and service-related 
drawbacks associated with laboratory experiments. Likewise, the presented 
framework highlighted the importance of using datasets gathered from the 
mobile network traffic, as the datasets supported multiple context and service-
related metrics for accurate modelling of the mobile Internet perceived 
QoE. In addition, methodological instances of the proposed framework 
were discussed, which can be used by the MNOs to effectively manage the 
network performance to aid a satisfactory QoE provision for mobile Internet 
users. Therefore, future work should implement the proposed framework by 
using the user experience datasets collected from the mobile network traffic. 
Equally, future work would validate the proposed framework to determine its 
applicability in real-life environments.
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