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ABSTRACT 

 

 In dendrite cell algorithm (DCA), the abnormality of a data point is determined by comparing the multi-context 

antigen value (MCAV) with anomaly threshold. The limitation of the existing threshold is that the value needs 

to be determined before mining based on previous information and the existing MCAV is inefficient when 

exposed to extreme values. This causes the DCA fails to detect new data points if the pattern has distinct 

behavior from previous information and affects detection accuracy. This paper proposed an improved anomaly 

threshold solution for DCA using the statistical cumulative sum (CUSUM) with the aim to improve its detection 

capability. In the proposed approach, the MCAV were normalized with upper CUSUM and the new anomaly 

threshold was calculated during run time by considering the acceptance value and min MCAV. From the 

experiments towards 12 benchmark and two outbreak datasets, the improved DCA is proven to have a better 

detection result than its previous version in terms of sensitivity, specificity, false detection rate and accuracy.  
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ABSTRACT

In dendrite cell algorithm (DCA), the abnormality of a data 
point is determined by comparing the multi-context antigen 
value (MCAV) with anomaly threshold. The limitation of the 
existing threshold is that the value needs to be determined before 
mining based on previous information and the existing MCAV 
is inefficient when exposed to extreme values. This causes the 
DCA fails to detect new data points if the pattern has distinct 
behavior from previous information and affects detection 
accuracy. This paper proposed an improved anomaly threshold 
solution for DCA using the statistical cumulative sum (CUSUM) 
with the aim to improve its detection capability. In the proposed 
approach, the MCAV were normalized with upper CUSUM and 
the new anomaly threshold was calculated during run time by 
considering the acceptance value and min MCAV. From the 
experiments towards 12 benchmark and two outbreak datasets, 
the improved DCA is proven to have a better detection result 
than its previous version in terms of sensitivity, specificity, false 
detection rate and accuracy.

Keywords: Anomaly threshold, dendrite cell algorithm, multi-context antigen 
value.
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INTRODUCTION

The dendritic cell algorithm (DCA) is a class of computation intelligence 
inspired by the principle of human immune systems. Classified as one of the 
artificial immune system (AIS) algorithms, DCA is modeled after the nature 
behavior of the human defense system against intruders such bacteria, virus, 
and parasite based on the concept of the danger theory for use in problem-
solving. DCA believes the human immune system is triggered only when 
a dendritic cell recognizes a danger signal released by an unexpected cell 
death due to pathogenic infection. The dendrite cell plays an important role 
as an inspector to recognize pathogens that penetrate the body. Analogized 
from that task, DCA is modeled to detect anomalies mainly in time series 
related applications. The preliminary DCA prototype was proposed in 2005 
by Greensmith, Aickelin, & Cayzer (2005) into a computer network security 
system in identifying suspicious network intruders, and then it has been 
fully implemented as a real-time network intrusion detection system in the 
following years (Greensmith, Twycross, & Aickelin, 2006). After that, DCA 
has been seen in various area, mainly to time series anomaly detection-based 
problems including fault detection (Lee, Lau, Wong, Tam, & Chan, 2016; Ran, 
Timmis, & Tyrrell, 2010), outbreak detection (Mohamad Mohsin, Hamdan, 
& Abu Bakar, 2013), and intrusion detection (Anandita, Rosmansyah, 
Dabarsyah, & Choi, 2015; Bukola & A.O., 2016; El-Alfy & AlHasan, 2016; 
Ou, 2012). Recently, DCA also has been used as a tool to classify  structured 
and unstructured information (Zainal & Jali, 2017).  Their published results 
exhibit DCA is capable of discovering hidden anomalies well in comparison 
to other detection systems.  

DCA employs the dangers of antigen as a criterion to determine the abnormality 
of a data point and this strategy makes it differ from other detection algorithms 
that rely on the pattern-matching approach. In DCA, each data point is viewed 
as an antigen that is vulnerable to pathogen attacks. During monitoring, DCA 
tracks antigen health conditions through its life span and accumulates the final 
score into a variable called multi-context antigen value (MCAV). Acting as a 
medical profile, MCAV represents the antigen experience in its lifetime based 
on the frequency of being a mature antigen over total antigen. At the end, 
the antigen is classified as an anomaly if the MCAV score is greater than the 
predefined anomaly threshold (Chelly & Elouedi, 2016). 

In recent practice, there are three techniques to determine the anomaly threshold. 
First, is the try and test experiment based on expert recommendation. Second, 
is the class distribution between abnormal and normal group (Greensmith, 
2007), and the last is based on the min MCAV (Song & Qijuan, 2012). The 
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issue with those implementations is that the value needs to be determined 
before mining based on historical information that causes the new data 
point to be unrecognizable if the pattern is distinct from the original setting. 
Besides that, the try and test approach is a time consuming process and highly 
depending on expert guidance. One of the solutions is by calculating the 
value in real time during mining.  Although the mean MCAV approach is 
able to skip the pre-determine anomaly threshold, it has a drawback when 
facing extreme values among MCAV.  In this paper, we proposed an adaptive 
anomaly threshold based on Cumulative Sum (CUSUM) where it involves 
two folds; determine the new mean MCAV as a threshold and normalizing 
the MCAV with CUSUM. The improvements were aimed to allow DCA to 
determine the threshold value during mining and be robust against extreme 
value such that that it can produce better detection accuracy. The proposed 
algorithm was compared with the previous DCA with mean MCAV and four 
evaluation criteria were applied; the sensitivity, specificity, false detection rate 
and accuracy. In this study, 12 benchmark datasets from several data providers 
were chosen as experiment data and two outbreak datasets as a case study. The 
remainder of this paper is organized as follows. It starts by highlighting the 
dendrite cell algorithm background and discussion on previous works related 
to MCAV and the anomaly threshold. It is followed by the presentation of the 
proposed work and the experiment setup. After that, the results and discussion 
will be presented and finally the concluding remarks.

DENDRITE CELL ALGORITHM

DCA is derived based on the abstraction of the functionality of the danger 
theory that takes into account our immune system which is activated when 
a body cell releases a danger signal as response to infection (Matzinger, 
2012). Biologically, the main element of the theory, the DCs will recognize 
the released signals by collecting body cell protein paired with three signals, 
PAMP, DS and SS, and then monitors their life progress. The monitoring task 
continues until the cell dies either a ‘healthy death’ (normal) or ‘unhealthy 
death’ (abnormal). 

Analogized from the danger theory’s mechanism, DCA is formalized into 
three phases: initialization, updating and aggregation. In the initialization 
stage, the algorithm parameters are configured and initialized, and all DCs are 
set in the immature state. During this stage, each item in the dataset is marked 
as antigen that has chances to be attacked by pathogens.  In the updating 
phase, a continuous process of updating data structures from the input signals 
and the antigens is performed. The immature DCs collect the input signals 
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(PAMP, DS, and SS) together with the multiple antigens sampling, calculates 
the changes and determines which antigen is causing the changes using the 
accumulative function such that 

(1)

where W is the weight matrix, IS is the input signal, OS is the output signal, i 
represents the PAMP, SS, and DS while j is the output signal categoring CSM, 
Mature, and Semi-Mature.

All input signals are transformed into three cumulative output signals: CSMs, 
Mature, and Semi-Mature. Throughout several samplings, the output signals 
will change the immature DCs1 state either to semi-mature (normal) or mature 
(abnormal) depending on the CSM value such that it must be greater than 
the migration threshold. If the CSM value exceeds the threshold, the type 
of maturity is determined; ‘mature’ if the Mature > Semi-Mature or ‘semi-
mature’ if Mature < Semi-Mature. 

The aggregation phase occurs when the learning ends. At the final stage, 
antigens that are presented by the Mature and Semi-Mature context are 
accessed to determine their abnormalities. Termed as the mature context 
antigen value (MCAV), the abnormality of an antigen is calculated as 

MCAV = (Mature)/(Semi Mature + Mature) (2)

If the MCAV is above a predetermined value (anomaly threshold), the antigen 
is labeled as abnormal/anomalous otherwise as normal.

THE ANOMALY THRESHOLD (AT) AND MATURE ANTIGEN 
CONTEXT VALUE (MCAV)

Anomaly threshold (AT) is a default value that separates normal and abnormal 
antigens. It is used to compare the MCAV of an antigen. The antigen is 
abnormal/anomaly if the value exceeds the threshold value. Currently, there 
are three strategies to determine the AT for DCA; try and test experiment, 
class distribution between abnormal and normal group (Greensmith, 2007) 
and average MCAV (Song & Qijuan, 2012). The information in Table 1 
summarizes the AT implementation in the existing work.  
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      Oj(x) = (∑ 𝑊𝑊𝑖𝑖𝑖𝑖  ∗ 𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖(𝑥𝑥)) )𝑖𝑖=3
𝑖𝑖=0  / (∑ |Wij|)𝑖𝑖=3

1=0  (1)  

where W is the weight matrix, IS is the input signal, OS is the output signal, i represents the PAMP, SS, and DS 
while j is the output signal categoring CSM, Mature, and Semi-Mature. 

All input signals are transformed into three cumulative output signals: CSMs, Mature, and Semi-Mature. 
Throughout several samplings, the output signals will change the immature DCs1 state either to semi-mature 
(normal) or mature (abnormal) depending on the CSM value such that it must be greater than the migration 
threshold. If the CSM value exceeds the threshold, the type of maturity is determined; ‘mature’ if the Mature > 
Semi-Mature or ‘semi-mature’ if Mature < Semi-Mature.  
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Table 

Anomaly Detection Approach

Domain Description Dataset Anomaly 
value

Approach

1 2 3

Network 
intrusion

Two steps. Firstly, the threshold is 
based on case of attack and total 
cases. Secondly, a new generated 
data (combining the attack mean 
and normal mean cases) will  
be added to old data and a new  
threshold will be generated to 
reduce error (Bukola & A.O., 
2016)

NSHKDD 0.50% 

The threshold value was based on 
the ratio between previous attack 
over overall data in order to 
determine denial of service attack 
(Gu, Greensmith, & Aickelin, 
2008) 

KDD99 0.80%



The MCAV represented the 
number of failure massages 
received in wireless network 
while the AT was determined 
through several experiments with 
expert guidance. The threshold 
value was within the value range 
1-10 failure massage (Salmon et 
al., 2012)

Wireless 
network data 
generated 
by MICAz 
detector

1-10 
failure 
massage 



Three ATs were used based on 
the type of attack; Normality, 
Harmless Abnormality and Harm 
Abnormality. The values were 
determined based on several 
experiments. The value was 
determined after running several 
experiments (Chung-Ming & R., 
2011)

Organization  
network data 

0.50%



Fault 
detection in 
robotic

The threshold value was the 
failure massage generated by a 
detector.  The number of failure 
message is given by experts 
and then tested with several 
experiments within certain 
ranges.(Ran, et al., 2010)

Robot 
detector 

800,600, 
-400, 200, 
0,200,400
,600,800,
1000,150
0,2000



E-mail 
classification

The threshold value was 
determined based on try and test 
which represented the number of 
spam e-mail (Secker, Freitas, & 
Timmis, 2003)

Spam e-mail 
record

0.50% 

(continued)
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Domain Description Dataset Anomaly 
value

Approach

1 2 3

Fraud 
detection

The threshold was based on the 
ratio of online fraud video rental 
over all transactions (Huang, 
Tawfik, & Nagar, 2010)

Online Rental 
video 

0.28%



Image 
classification

Modeling the type of leave and 
AT for the system was decided 
based on ratio of mature leave 
images over overall leave samples 
(Bendiab & Kholladi, 2011)

Leave images - 

General 
classification

Introduce the mean MCAV as AT 
(Song & Qi-juan, 2012) 

Breast cancer 
data

- 

1- ‘try and test’, 2- class distribution, 3- min MCAV  

The class distribution approach refers to the proportion between normal and 
abnormal classes where both classes need to be balanced in terms of number 
in order to produce a relational threshold value as depicted in Equation (3). 
This requirement is not easy to fulfill. Sometimes, since anomalies are isolated 
cases they tend to create a large gap between both classes. 

AT class distribution = (∑ number of anomalies)/(∑ total data points) (3)

In the outbreak detection problem, for example, outbreak is a rare case that 
seldom occurs. It will cause the threshold value to be too small due to the 
big gap between the number of outbreak and non-outbreak cases. This can 
affect the detection accuracy as simulated in Table 2. Table 2 shows the result 
of DCA when AT is determined based on different class distribution ratios 
for breast cancer data (WBC). In the first row, the dataset was set to have a 
balance class between normal and abnormal patients while in the following 
row the number of abnormal patients was removed 90%. The result showed 
that the performance declined mainly at the ability to detect normal cases or 
lost its sensitiveness (SNS).     

Table 2

Anomaly Detection Problem Based on Class Distribution

WBC

Total data Threshold 
value 

Result

Normal Anomaly SNS SPS ACC

Original (100% anomaly) 241 458 0.65 0.976 1 0.984

Reduced (10% anomaly) 241 40 0.14 0.261 1 0.936

SNS- sensitivity, SPS- specificity, ACC-accuracy 
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The other issues with the existing implementations are that the value needs to 
be determined before mining based on historical information. The problem of 
this solution is the new data points tend to be unrecognizable if the pattern is 
distinct from the original setting. Besides that, the try and test approach is a 
time consuming process and highly depends on expert guidance. One of the 
solutions is calculating the value in real time during mining such min MCAV 
as shown in Equation (4) (Song & Qijuan, 2012).  Although the mean MCAV 
approach able to skip the pre-determined AT, it has a drawback when facing 
extreme values among MCAV.  Figure 1 shows the process of calculating the 
AT and comparing the value with MCAV using class distribution and min 
MCAV.

AT min MCAV = (∑ MCAV)/(∑ total data points)  (4)

(a) Class distribution (Greensmith, 2007) (b) Min MCAV (Song & Qijuan, 2012)

 Figure 1. The steps of calculating AT and comparing it with MCAV based 
on class distribution and min MCAV.  

THE PROPOSED METHOD

Two improvements were made in the proposed method, (a) normalizing the 
existing MCAV with upper CUSUM and (b) calculating new AT during real 
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time by considering the acceptance value. Figure 2 shows the AT calculation 
step in DCA which was hybrid with CUSUM. The processes include 
calculating the average MCAV value, determining the acceptance value K, 
normalizing the MCAV with the upper CUSUM, and then comparing the 
normalized MCAV with the AT. This process started after DCA had calculated 
MCAV of its antigen. This improved algorithm is named NMZ_MCAV. 

Figure 2. The proposed NMZ_MCAV method.

Based on Figure 2, the input of this process is the MCAV which is generated 
from DCA learning. After calculating the mean MCAV, the acceptance value K 
is determined. K represents the allowable magnitude of change. It is expressed 
by Equation (5) where δ is the shift size from standard deviation σ. In this 
study, δ was set between 0-2 from the standard deviation σ.

K=δ/2 σ = (|μ_1-μ_0|)/2 (5)
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Based on Figure 2, the input of this process is the MCAV which is generated from DCA learning. After calculating 
the mean MCAV, the acceptance value K is determined. K represents the allowable magnitude of change. It is 
expressed by Equation (5) where δ is the shift size from standard deviation σ. In this study, δ was set between 0-2 
from the standard deviation σ. 
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Then, the upper side CUSUM is used to normalize MCAV. CUSUM is 
a statistical approach primarily used to monitor the planned process in 
manufacturing operations. It monitors the mean of the process and assumes 
a process remains under control when the cumulative mean is within the 
acceptance value K (Demsar, 2006). The process is considered out of control 
when a huge shift in movement occurs away from the target value. In this 
study, the cumulative mean shift was taken into consideration to normalize 
the MCAV. The upper side CUSUM, C+ was applied to normalize MCAV of 
each antigen such that 

(4)

where the       is the upper cumulative value at xth_observation, x_i is the process 
at ith observation, μ0 is the initial mean and K is the allowance value which 
is chosen between the target and the out of control value μ_1. The    value 
accumulates deviation from μ0 that is greater than K which is reset to zero on 
becoming negative. The starting value      =0.

After that is to obtain a new AT. In this step, the acceptance value is considered 
in the process by adding it with the existing mean MCAV such that

AT = mean MCAV + K (5)

The function of K is to eliminate the existence of the extreme value in MCAV. 
Then, the final step is to compare the new MCAV and AT.  Figure 3 depicts the 
proposed DCA enhancement algorithm.

   Figure 3. The proposed DCA Enhancement Algorithm
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 8      Test the antigen abnormality status, if 
 9               C+> AT = anomaly/abnormal 
10              C+< AT = normal 
11  END 

Figure 3. The proposed DCA Enhancement Algorithm 

 

THE EXPERIMENT SETUP 

This section discusses the experiment setup in order to evaluate the enhanced DCA algorithm. This proposed 
algorithm called NMZ_MCAV was compared with the existing DCA (M_MCAV) that is based on mean MCAV as 
AT strategy. Four evaluation metrics were applied, sensitivity (SNS), specificity (SPS), false detection rate (FDR), 
and accuracy (ACC). SNS measured the accurateness of the model to detect an abnormal class as an abnormal class; 
SPS measured the ability of the model to detect a normal class as a normal class; FDR measured the amount of false 
detections of an abnormal class as a normal class; and ACC measured the accurateness of the model in classifying 
both classes correctly. For SNS, SPS and ACC, the highest value indicated the best result while the lowest value was 
the best result for FDR.  

In this study, 14 experiment datasets were used as described in Table 3. The first 12 datasets were benchmark or 
universal data from various domains that were downloaded from online data repositories. Meanwhile the last two 
datasets were outbreak datasets- dengue and respiratory-which were originally taken from the hospital and previous 
researchers.  Both datasets were considered as case study in this study. 
 

Table 3 

Description of the Datasets 
Dataset Source Data type #Feature  #Record #Target 

Class 
Indian pima diabetic  (DBC) 

UCI (Murphy) 

 
 
 
 
 

Transactional  

9 768 2 
Wisconsin breast cancer 
(WBC) 

10 699 2 

Iris (IRIS)       4 150 3 
BUPA liver disorder (LDR)                              7 345 2 
Parkinson (PKN) 24 195 2 
German credit (GCD) 25 1,000 2 
Wine (WINE) 14 178 3 
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THE EXPERIMENT SETUP

This section discusses the experiment setup in order to evaluate the enhanced 
DCA algorithm. This proposed algorithm called NMZ_MCAV was compared 
with the existing DCA (M_MCAV) that is based on mean MCAV as AT 
strategy. Four evaluation metrics were applied, sensitivity (SNS), specificity 
(SPS), false detection rate (FDR), and accuracy (ACC). SNS measured the 
accurateness of the model to detect an abnormal class as an abnormal class; 
SPS measured the ability of the model to detect a normal class as a normal 
class; FDR measured the amount of false detections of an abnormal class as a 
normal class; and ACC measured the accurateness of the model in classifying 
both classes correctly. For SNS, SPS and ACC, the highest value indicated the 
best result while the lowest value was the best result for FDR. 

In this study, 14 experiment datasets were used as described in Table 3. The first 
12 datasets were benchmark or universal data from various domains that were 
downloaded from online data repositories. Meanwhile the last two datasets 
were outbreak datasets- dengue and respiratory-which were originally taken 
from the hospital and previous researchers.  Both datasets were considered as 
case study in this study.

Table 3

Description of the Datasets

Dataset Source Data type #Feature #Record #Target 
Class

Indian pima diabetic  (DBC) UCI 
(Murphy)

Transactional 

9 768 2

Wisconsin breast cancer (WBC) 10 699 2

Iris (IRIS)       4 150 3

BUPA liver disorder (LDR)                             7 345 2

Parkinson (PKN) 24 195 2

German credit (GCD) 25 1,000 2

Wine (WINE) 14 178 3

Biomedical (BIO) StatLib 
archive 
(2005)

6 209 2

(continued)
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Dataset Source Data type #Feature #Record #Target 
Class

ECG
UCR Library 

(Award, 
2008)

Time Series

100 101 2

Lightening (LTNG) 62 638 2

Coffee (CFE) 28 287 2

YOGA 301 427 2

Dengue Vector 
Control Unit, 

Seremban, 
Malaysia

18 3,417 2

Respiratory Wong et al. 
(2005)

12 23,645 2

Dengue dataset was provided by two departments; the emergency visit dataset 
from the Vector Control Unit, Seremban District Hospital, Negeri Sembilan, 
Malaysia and the climate dataset provided by the Meteorological Centre, 
Malaysia. The dataset was from 2003 to 2009. The emergency visit dataset had 
15 features representing the demographic and clinical data of dengue patients. 
The climate dataset consisted of eight continuous attributes representing the 
information related to temperature, humidity and rain. Both datasets were then 
merged as one dengue profile dataset. 

Respiratory was a synthetic dataset for influenza outbreak. Known as WSARE, 
this dataset was created by Wong (2004) for the outbreak detection model 
using the association rule and statistic. The dataset contained 100 sets of data 
with different outbreak patterns and the virus released date and WSARE7 was 
chosen for this study. The age of this dataset was from 2002 and 2003 with 12 
categorical features and 23,647 daily data points.

RESULT AND FINDING

The performance of the proposed algorithm (NMZ_MCAV) is presented in 
this section. The enhanced algorithm NMZ_MCAV was compared with the 
existing DCA (M_MCAV) that used mean MCAV as AT. To present the result, 
this section is divided into two parts based on the benchmark dataset and the 
outbreak data.

Benchmark dataset

The benchmark dataset is a universal data of various domains that were 
downloaded from shared online data repositories. The evaluation results are 
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shown in Table 4. In Table 4, each row represents the result of each dataset. The 
last the two rows summarize the average values of each performance metric 
and the results for all datasets in terms of wins, ties, and losses (indicated 
by W/T/L) towards 12 datasets. The W/T/L is considered in addition to the 
average measurement because the average criteria would be susceptible to 
outliers. The p value (pval) represents the significant test (Wilcoxon test or 
T-test), where the value of the NMZ_MCAV must be less than 0.05 to make it 
statistically significant compared to the M_MCAV (Demsar, 2006). 

The results published in Table 4 indicate a positive improvement where 
NMZ_MCAV generates a superior result than M_MCAV in most datasets. 
The AVG score of each performance metrics show that the proposed approach 
has improved compared to competitor. The W/T/L statistics summarizes the 
capability of NMZ_MCAV to detect anomaly better that M_MCAV in most 
datasets. Although in certain datasets M_MCAV overcame NMZ_MCAV, 
their result was comparable and not significantly different.

Table 4 

Comparative Results between NMZ_MCAV and M_MCAV for 12 Benchmark 
Datasets

  SNS SPS  

 
M_ 

MCAV
NMZ_ 
MCAV pval

M_ 
MCAV

NMZ_ 
MCAV pval

BIO 0.748 0.758 0.010 W 0.386 W- 0.964 0.999 0.035 W 0.000 W +

DBC 0.960 0.966 0.006 W 0.537 T- 0.900 1.000 0.099 W 0.000 W+

GCD 0.921 0.992 0.071 W 0.000 W+ 0.991 0.999 0.008 W 0.000 T+

LDR 0.720 0.818 0.098 W 0.000 W+ 0.986 0.998 0.012 W 0.000 T+

PKN 0.960 0.902 -0.058L 0.000 T+ 0.900 1.000 0.100 W 0.000 W+

WBC 0.964 1.000 0.036W 0.000 T+ 1.000 0.740 0.260L 0.000 T+

IRIS 0.919 0.811 -0.109L 0.000 T+ 0.992 1.000 0.008 W 0.000 T+

WINE 1.000 1.000 0.000T - 0.815 0.838 0.023 W 0.000 W+

CFFE 0.749 0.916 0.167W 0.000 T+ 0.901 0.982 0.081 W 0.000 T+

ECG 0.867 1.000 0.133W 0.000 T+ 0.995 0.935 -0.061L 0.000 T+

LTNG 0.688 0.726 0.038W 0.037 W+ 0.843 0.939 0.097 W 0.000 T+

YOGA 1.000 1.000 0.000T -- 0.960 0.972 0.013 W 0.000 T+

AVG. 0.891 0.918 0.920 0.950

W/T/L 8/2/2 10/0/2
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  FDR ACC  

 
M_ 
MCAV

NMZ_ 
MCAV pval

M_ 
MCAV

NMZ_ 
MCAV pval

BIO 0.036 0.001 0.035 W 0.000 W+ 0.886 0.913 0.026 W 0.000 W+

DBC 0.100 0.000 0.099 W 0.000 W+ 0.921 0.988 0.067 W 0.000 W+

GCD 0.009 0.001 0.008 W 0.000 T+ 0.970 0.997 0.027 W 0.000 W+

LDR 0.014 0.002 0.012 W 0.000 T+ 0.832 0.894 0.062 W 0.000 W+

PKN 0.100 0.000 0.100 W 0.000 W+ 0.921 0.926 0.005 W 0.013 W+

WBC 0.000 0.260 -0.260L 0.000 T+ 0.976 0.910 -0.066 L 0.000 T+

IRIS 0.008 0.000 0.008 W 0.000 T+ 0.968 0.937 -0.031 L 0.000 T+

WINE 0.185 0.1615 0.023 W 0.000 W+ 0.865 0.8821 0.017 W 0.000 W+

CFFE 0.099 0.018 0.081 W 0.000 T+ 0.825 0.949 0.124 W 0.000 T+

ECG 0.005 0.065 -0.061L 0.000 T+ 0.949 0.958 0.009 W 0.000 T+

LTNG 0.158 0.061 0.097 W 0.000 T+ 0.769 0.838 0.069 W 0.000 W+

YOGA 0.040 0.028 0.013 W 0.000 T+ 0.964 0.975 0.011 W 0.000 T+

AVG. 0.080 0.050 0.897 0.935

W/T/L 10/0/2 10/0/2

 
Besides that, the NMZ_MCAV with the new AT has better ability to 

accurately detect anomaly as anomaly and at the same time can reduce error 
in misclassifying normal records as anomaly as this is an indicator of a good 
detection algorithm.  Figure 4 summarizes the results in terms of SNS and 
FDR. The higher gap/range between both elements indicates the model is able 
to discriminate normal and abnormal groups effectively.

 

M_MCAV NMZ_MCAV

Figure 4. The range between SNS and FDR for NMZ_MCAV and M_
MCAV in benchmark datasets.
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WINE 1.000 1.000 0.000T - 0.815 0.838 0.023 W 0.000 W+ 

CFFE 0.749 0.916 0.167W 0.000 T+ 0.901 0.982 0.081 W 0.000 T+ 

ECG 0.867 1.000 0.133W 0.000 T+ 0.995 0.935 -0.061L 0.000 T+ 

LTNG 0.688 0.726 0.038W 0.037 W+ 0.843 0.939 0.097 W 0.000 T+ 

YOGA 1.000 1.000 0.000T -- 0.960 0.972 0.013 W 0.000 T+ 

AVG. 0.891 0.918 
  

0.920 0.950 
  W/T/L 

  
8/2/2 

   
10/0/2 

   FDR 
 

ACC   

  
M_ 
MCAV 

NMZ_ 
MCAV  pval 

M_ 
MCAV 

NMZ_ 
MCAV  pval 

13 
 

BIO 0.036 0.001 0.035 W 0.000 W+ 0.886 0.913 0.026 W 0.000 W+ 

DBC 0.100 0.000 0.099 W 0.000 W+ 0.921 0.988 0.067 W 0.000 W+ 

GCD 0.009 0.001 0.008 W 0.000 T+ 0.970 0.997 0.027 W 0.000 W+ 

LDR 0.014 0.002 0.012 W 0.000 T+ 0.832 0.894 0.062 W 0.000 W+ 

PKN 0.100 0.000 0.100 W 0.000 W+ 0.921 0.926 0.005 W 0.013 W+ 

WBC 0.000 0.260 -0.260L 0.000 T+ 0.976 0.910 -0.066 L 0.000 T+ 

IRIS 0.008 0.000 0.008 W 0.000 T+ 0.968 0.937 -0.031 L 0.000 T+ 

WINE 0.185 0.1615 0.023 W 0.000 W+ 0.865 0.8821 0.017 W 0.000 W+ 

CFFE 0.099 0.018 0.081 W 0.000 T+ 0.825 0.949 0.124 W 0.000 T+ 

ECG 0.005 0.065 -0.061L 0.000 T+ 0.949 0.958 0.009 W 0.000 T+ 

LTNG 0.158 0.061 0.097 W 0.000 T+ 0.769 0.838 0.069 W 0.000 W+ 

YOGA 0.040 0.028 0.013 W 0.000 T+ 0.964 0.975 0.011 W 0.000 T+ 

AVG. 0.080 0.050 
  

0.897 0.935 
  W/T/L 

  
10/0/2 

   
10/0/2 

   

Besides that, the NMZ_MCAV with the new AT has better ability to accurately detect anomaly as 
anomaly and at the same time can reduce error in misclassifying normal records as anomaly as this is an 
indicator of a good detection algorithm.  Figure 4 summarizes the results in terms of SNS and FDR. The 
higher gap/range between both elements indicates the model is able to discriminate normal and abnormal 
groups effectively. 

 

 
M_MCAV NMZ_MCAV 

Figure 4. The range between SNS and FDR for NMZ_MCAV and M_MCAV in benchmark datasets. 
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Through the proposed approach, each antigen will have a new normalized 
MCAV and the value will be in a similar range with its neighbor if their 
characteristics are identical. Besides normalizing the MCAV with CUSUM, the 
acceptable value K in AT also can eliminate the existence of extreme MCAV 
values and this will improve detection accuracy.  Figure 5 demonstrates the 
MCAV value before and after normalization using the proposed approach for 
IRIS dataset. It also shows that the MCAV of antigen before normalization 
does not consistently behave and the pattern changes into a uniform form after 
normalization.     

(a) Before normalization

(b) After normalization

Figure 5. The MCAV of antigen before and after normalization with 
CUSUM in IRIS dataset.
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Outbreak dataset

The performance of the proposed approach was then experimented with 
outbreak datasets- dengue outbreak and respiratory outbreak.  Firstly, the 
enhanced algorithm NMZ_MCAV produced a better result than the previous 
model; M_MCAV in terms of SNS on both datasets as displayed in Figure 
6.  The accuracy of NMZ_MCAV increased by 0.07 and 0.18 for dengue 
and respiratory respectively when accurately classifying normal data as 
non-outbreak data that contributes to SPS score 0.814 (dengue) and 0.996 
(respiratory).

Figure 6.  The SPS between NMZ_MCAV and M_MCAV on dengue and 
respiratory dataset.

Figure 7.  The SNS between NMZ_MCAV and M_MCAV on dengue and 
respiratory dataset.

15 
 

 

Outbreak dataset 
 

The performance of the proposed approach was then experimented with outbreak datasets- dengue 
outbreak and respiratory outbreak.  Firstly, the enhanced algorithm NMZ_MCAV produced a better result 
than the previous model; M_MCAV in terms of SNS on both datasets as displayed in Figure 6.  The 
accuracy of NMZ_MCAV increased by 0.07 and 0.18 for dengue and respiratory respectively when 
accurately classifying normal data as non-outbreak data that contributes to SPS score 0.814 (dengue) and 
0.996 (respiratory). 

 
 
Figure 6.  The SPS between NMZ_MCAV and M_MCAV on dengue and respiratory dataset. 
 

In terms of the ability to detect the epidemic week or SNS, the NMZ_MCAV showed improvement 
(1.00) in comparison with M_MCAV (0.995). For respiratory data, the ability of NMZ_MCAV declined by 
0.02 as compared to M_MCAV. However, their differences were small and not significant. Although the 
specificity result was slightly lower than its previous version, the proposed method had improved the 
ability of DCA in terms of sensitivity to detect the true outbreak week. Figure 7 shows a comparison 
between NMZ_MCAV and M_MCAV in terms of SNS on dengue and respiratory data. 

0.07

0.18

0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

0.7

0.8

0.9

1

Dengue Respiratory

Di
ffe

re
nc

e

SP
S 

(%
)

M_ MCAV NMZ_ MCAV Difference

16 
 

 
Figure 7.  The SNS between NMZ_MCAV and M_MCAV on dengue and respiratory dataset. 
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In terms of the ability to detect the epidemic week or SNS, the NMZ_MCAV 
showed improvement (1.00) in comparison with M_MCAV (0.995). For 
respiratory data, the ability of NMZ_MCAV declined by 0.02 as compared 
to M_MCAV. However, their differences were small and not significant. 
Although the specificity result was slightly lower than its previous version, the 
proposed method had improved the ability of DCA in terms of sensitivity to 
detect the true outbreak week. Figure 7 shows a comparison between NMZ_
MCAV and M_MCAV in terms of SNS on dengue and respiratory data.

The analysis was continued on the relationship between SNS and FPR over 
DCA after the MCAV was normalized with CUSUM. The comparison is shown 
in Table 5. Based on the table, NMZ_MCAV showed a better result in balancing 
the SNS (the ability to detect outbreak week as outbreak) and reducing the 
FPR (the error rates while detecting normal week as outbreak). The difference 
between both measurements shows the NMZ_MCAV performance was more 
consistent with higher SNS and lower FPR than M_MCAV. In addition, there 
were improvements in terms of average SNS and FPR for both sets.

Table 5

The Difference between SNS and FPR of NMZ_MCAV and M_MCAV for 
Dengue and Respiratory Dataset

M_ MCAV NMZ_ MCAV
SNS FPR r SNS FPR r

Dengue 0.995 0.179 0.816 1 0.106 0.894W

Respiratory 0.975 0.186 0.789 0.957 0.004 0.953W

Average 0.985 0.1825   0.9785 0.055  

Table 6

The ACC of NMZ_MCAV and M_MCAV for Dengue and Respiratory Dataset

  ACC

  M_ 
MCAV

NMZ_ 
MCAV r

Dengue 0.885 0.933 0.048 W

Respiratory 0.82 0.995 0.175 W

Average 0.897 0.935
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In addition, the ACC produced by NMZ_MCAV shows the proposed approach 
has helped DCA to increase the ACC for dengue data (0933) and respiratory 
(0995). On average, the ACC NMZ_MCAV was higher than the value 
produced by M_MCAV as shown in Table 6.

(a) MCAV before normalization

(b) MCAV after normalization

Figure 7. MCAV of respiratory dataset before and after normalization with 
CUSUM.
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Figure 7. MCAV of respiratory dataset before and after normalization with CUSUM. 
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Figure 7. MCAV of respiratory dataset before and after normalization with CUSUM. 
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As in the benchmark data section, the proposed normalization using CUSUM 
will transform the MCAV from an inconstant pattern into a smaller and 
uniform value based on the similarity of the antigen characteristics. Figure 7 
shows the MCAV before and after normalization for respiratory dataset and 
Figure 8 shows the dengue dataset. Based on both figures, the MCAV after 
normalization tends to have a uniform value than the previous model. For 
example, in respiratory dataset, the outbreak started on day 350 and remained 
for 14 days. The MCAV value before the outbreak remained low and suddenly 
spiked up on day 350. In comparison the MCAV value before normalization 
indicated an inconsistent pattern. For the dengue dataset as in Figure 8, the 
displayed MCAV value was for week 140 until week 203. In comparison with 
the respiratory dataset, it was noticed that the MCAV after normalization of 
the dengue dataset was not much different from before the normalization since 
its input signals were formalized according to the dengue definition given by 
the health ministry.  
  

(a) MCAV before normalization

 

(b) MCAV after normalization

Figure  8. MCAV of dengue dataset before and after normalization with 
CUSUM.
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Figure  8. MCAV of dengue dataset before and after normalization with CUSUM. 
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From the experiments, it can be concluded that the performance of the DCA 
has increased in terms of SNS, SPS and ACC as well as the lower error 
rate when the MCAV has been normalized with CUSUM and consider the 
acceptance value K in the threshold value. Experiments on benchmark and 
outbreak datasets showed an improvement after its implementation. Table 7 
below summarizes the differences between the DCA with normalized MCAV 
version (NMZ_MCAV) and without normalization (M_MCAV). 

Table 7 

A Comparison between NMZ_MCAV and M_MCAV

Feature M_MCAV NMZ_MCAV
MCAV characteristics No relationship between 

neighboring antigens
There is a relationship 
between antigens. The 
neighboring antigen with 
similar characteristics will 
be normalized with similar 
MCAV value

MCAV value Between 0 and 1 Depends on the accumulative 
min MCAV

Handling extreme value No Yes

Relevancy for unordered 
data

No No

Classifier performance Good Better

CONCLUSION

An adaptive anomaly threshold for DCA called NMZ_MCAV was proposed 
in this paper. In the new approach, the upper CUSUM formula was used to 
normalize MCAV and then the new anomaly threshold was calculated during 
mining by considering the acceptance value K and min MCAV. By using the 
proposed solution, the performance of DCA was significantly improved in 
term of sensitivity, specificity, false detection rate, and accuracy after it was 
tested over 12 benchmark datasets and two outbreak datasets. In future, the 
NMZ_MCAV will be experimented on the real time network intrusion data 
and the business fraud data in order to further evaluate its effectiveness and 
robustness. 
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