
How to cite this paper:

Risse, Th. (2018). Towards a mathematical library for UNUMs, an alternative to IEEE 754 floating point

numbers. Journal of Information and Communication Technology (JICT), 17 (1), 1-16.

TOWARDS A MATHEMATICAL LIBRARY FOR UNUMs, AN ALTERNATIVE TO IEEE 754

FLOATING POINT NUMBERS

Thomas Risse

Institute of Informatics and Automation, Faculty EEE & CS

City University of Applied Sciences

Bremen, Germany

risse@hs-bremen.de

ABSTRACT

The 1985 IEEE 754 standard for the representation of and the arithmetic with floating point numbers has been

reconsidered. On the one hand today, its technological assumptions are by no means longer valid. On the other

hand, the irritating numerical phenomena which have been collected cast a doubt as to whether this much

uncertainty in numerical results is fate. Fortunately, around 2015, Gustafson proposed UNUMs, a modification

of the IEEE 754 standard with the potential to heal the said shortcomings. Till now, there are some attempts to

implement his ideas, both in software and in hardware. With these activities well under way, the other necessity

is development of a mathematical library for UNUMs when one wants UNUMs to become the new floating

point standard. This paper presented the ideas leading to UNUMs, gave some hints on floating point units for

UNUMs and illustrated the difficulties in developing the said mathematical library by the example of

approximating zeroes of analytic functions.

Keywords: Floating point numbers, IEEE 754, UNUMs, arithmetic, mathematical library.

Received: 25 June 2017 Accepted: 3 August 2017

1

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 1–16

Received: 25 June 2017 Accepted: 3 August 2017

TOWARDS A MATHEMATICAL LIBRARY FOR UNUMs,
AN ALTERNATIVE TO IEEE 754 FLOATING POINT NUMBERS

Thomas Risse
Institute of Informatics and Automation, Faculty EEE & CS

 City University of Applied Sciences
Bremen, Germany

risse@hs-bremen.de

ABSTRACT

The 1985 IEEE 754 standard for the representation of and the
arithmetic with floating point numbers has been reconsidered.
On the one hand today, its technological assumptions are by no
means longer valid. On the other hand, the irritating numerical
phenomena which have been collected cast a doubt as to whether
this much uncertainty in numerical results is fate. Fortunately,
around 2015, Gustafson proposed UNUMs, a modification
of the IEEE 754 standard with the potential to heal the said
shortcomings. Till now, there are some attempts to implement
his ideas, both in software and in hardware. With these
activities well under way, the other necessity is development of
a mathematical library for UNUMs when one wants UNUMs to
become the new floating point standard. This paper presented
the ideas leading to UNUMs, gave some hints on floating point
units for UNUMs and illustrated the difficulties in developing
the said mathematical library by the example of approximating
zeroes of analytic functions.

Keywords: Floating point numbers, IEEE 754, UNUMs, arithmetic,
mathematical library.

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 1–16

2

INTRODUCTION

The IEEE 754 standard is to be considered as a milestone in the attempt to
make floating number representations and arithmetic machine independent.
Before 1985, floating point operations on different machines produced
different answers. Against considerable special interests of the industry, IEEE
754 standardizes how floating point numbers are represented in memory and
how floating point operations are to be performed (IEEE, 1985 and 2008).
Alas, IEEE 754 is a child of its time. It mirrors the technological conditions
of the 1980s. And over time a lot of deficiencies have been identified which
nevertheless are widely considered as fate. Remedies often worked only at a
symptom level (Bailey, 2012).

In 2015 John Gustafson proposed Universal Numbers, (UNUMs), a
modification of IEEE 754. These novel formats for floating point numbers
have the potential to overcome the shortcomings of IEEE 754 floats and
doubles. 	

Here, we set out to sketch IEEE 754 representations, the arithmetic and its
abnormalities. Then we will show how UNUMs promise to remedy both the
technological as well as the numerical deficiencies (Gustafson, 2015).	

In order to spread the benefits of UNUMs for any kind of scientific computing,
a library with the classical numerical methods is indispensable. We present
zero finding algorithms and discuss their suitability for UNUMs.

IEEE 754 FLOATING POINT NUMBERS

In general, IEEE 754 floating point numbers are represented by a fixed number
of bytes which contain a sign bit, a mantissa or fraction and a power of two
given by the exponent (the order actually is sign, exponent and mantissa).
So IEEE 754 allows the representation of some rational numbers. In order to
avoid ambiguities like 1 = 1 . 20 = 2 . 2-1 the mantissa is normalized to lie in
the interval [1, 2). Hence, the mantissa has the form 1. m1m2m3... with Nfrac
mantissa bits m1, m2, m3 ... so that the first bit need not be stored, it is hidden.
Also, the exponent is stored in bits with an offset in order to avoid another sign
bit. IEEE 754 specifies most prominently single and double precision floats by

Nfrac Nexpt Range Ndecd

Floats 24 8 ≈7

Doubles 53 11 ≈16

IEEE 754 FLOATING POINT NUMBERS

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden.
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies
most prominently single and double precision floats by

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Floats 24 8 ±1.18 × 10−38 to ±3.4 × 1038 ≈7

Doubles 53 11 ±2.23 × 10−308 to ±1.80 × 10308 ≈16

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more
very unsettling phenomena in more detail.

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.

 Even innocent numbers like 0.1 = 1
10 cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2) has a

periodic binary representation.
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1) so that associativity cannot be

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑) by the compiler, different functional floating point units in the processor may not do the two
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only.

 Computing √22𝑛𝑛 by √√⋯√√2 , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to

the obviously wrong result √22𝑛𝑛 = 1.

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving
[2]
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = (0

1.3) instead of the

exact solution (𝑥𝑥𝑦𝑦) = (−1
2).

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.

IEEE 754 FLOATING POINT NUMBERS

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden.
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies
most prominently single and double precision floats by

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Floats 24 8 ±1.18 × 10−38 to ±3.4 × 1038 ≈7

Doubles 53 11 ±2.23 × 10−308 to ±1.80 × 10308 ≈16

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more
very unsettling phenomena in more detail.

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.

 Even innocent numbers like 0.1 = 1
10 cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2) has a

periodic binary representation.
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1) so that associativity cannot be

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑) by the compiler, different functional floating point units in the processor may not do the two
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only.

 Computing √22𝑛𝑛 by √√⋯√√2 , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to

the obviously wrong result √22𝑛𝑛 = 1.

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving
[2]
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = (0

1.3) instead of the

exact solution (𝑥𝑥𝑦𝑦) = (−1
2).

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.

3

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 1–16

where the number Ndecd of decimal digits approximates the accuracy achieved. Here,
we do not want to dwell on subnormals which for the minimal exponent allow not
normalized fractions, but we want to point out that there are two representations of
± 0 , representations of + ∞ as well as – ∞ and very many representations of NaN
(Not a Number,) which stand for any indefinite expressions like ∞ – ∞, or .
Details are found in the standard (IEEE, 1985 and amended 2008) and in Goldberg
(1991).

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy.
Numbers like cannot be represented exactly; the laws of associativity or
distributivity cannot be guaranteed. There is no indication whether an overflow or
an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero
numbers very close to 0 is represented by 0.0. The only indication may be some
flags in the processor status word. Let us list some more very unsettling phenomena
in more detail.
•	 in double precision which is

close to but not equal to zero.
•	 Even innocent numbers like cannot be represented exactly because

 has a periodic binary representation.
•	 For example so that

associativity cannot be guaranteed. This prevents automatic parallelization
of expressions like a + b + c + d = (a + b) + (c + d) by the compiler, different
functional floating point units in the processor may not do the two additions
a + b and c + d in parallel.

•	 For example a + b = = a not necessarily implies b = = 0 but only.
•	 Computing by , i.e. taking n times square roots of square

roots will eventually lead to the obviously wrong result
•	 Solving ill conditioned systems of linear equations naively, i.e. without

taking numerical peculiarities into consideration, i.e. here without (partial)
pivotization, leads to obviously wrong results. E.g. solving [2] 	

 by Cramer’s rule results in
instead of the exact solution .

•	 Evaluate with and and
 for . Then e.g. MATLAB (like any other computing
environment) returns instead of the correct result because
actually

IEEE 754 FLOATING POINT NUMBERS

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden.
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies
most prominently single and double precision floats by

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Floats 24 8 ±1.18 × 10−38 to ±3.4 × 1038 ≈7

Doubles 53 11 ±2.23 × 10−308 to ±1.80 × 10308 ≈16

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more
very unsettling phenomena in more detail.

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.

 Even innocent numbers like 0.1 = 1
10 cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2) has a

periodic binary representation.
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1) so that associativity cannot be

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑) by the compiler, different functional floating point units in the processor may not do the two
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only.

 Computing √22𝑛𝑛 by √√⋯√√2 , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to

the obviously wrong result √22𝑛𝑛 = 1.

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving
[2]
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = (0

1.3) instead of the

exact solution (𝑥𝑥𝑦𝑦) = (−1
2).

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.

IEEE 754 FLOATING POINT NUMBERS

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden.
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies
most prominently single and double precision floats by

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Floats 24 8 ±1.18 × 10−38 to ±3.4 × 1038 ≈7

Doubles 53 11 ±2.23 × 10−308 to ±1.80 × 10308 ≈16

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more
very unsettling phenomena in more detail.

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.

 Even innocent numbers like 0.1 = 1
10 cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2) has a

periodic binary representation.
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1) so that associativity cannot be

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑) by the compiler, different functional floating point units in the processor may not do the two
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only.

 Computing √22𝑛𝑛 by √√⋯√√2 , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to

the obviously wrong result √22𝑛𝑛 = 1.

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving
[2]
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = (0

1.3) instead of the

exact solution (𝑥𝑥𝑦𝑦) = (−1
2).

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.

IEEE 754 FLOATING POINT NUMBERS

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden.
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies
most prominently single and double precision floats by

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Floats 24 8 ±1.18 × 10−38 to ±3.4 × 1038 ≈7

Doubles 53 11 ±2.23 × 10−308 to ±1.80 × 10308 ≈16

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more
very unsettling phenomena in more detail.

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.

 Even innocent numbers like 0.1 = 1
10 cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2) has a

periodic binary representation.
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1) so that associativity cannot be

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑) by the compiler, different functional floating point units in the processor may not do the two
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only.

 Computing √22𝑛𝑛 by √√⋯√√2 , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to

the obviously wrong result √22𝑛𝑛 = 1.

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving
[2]
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = (0

1.3) instead of the

exact solution (𝑥𝑥𝑦𝑦) = (−1
2).

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.

IEEE 754 FLOATING POINT NUMBERS

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden.
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies
most prominently single and double precision floats by

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Floats 24 8 ±1.18 × 10−38 to ±3.4 × 1038 ≈7

Doubles 53 11 ±2.23 × 10−308 to ±1.80 × 10308 ≈16

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more
very unsettling phenomena in more detail.

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.

 Even innocent numbers like 0.1 = 1
10 cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2) has a

periodic binary representation.
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1) so that associativity cannot be

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑) by the compiler, different functional floating point units in the processor may not do the two
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only.

 Computing √22𝑛𝑛 by √√⋯√√2 , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to

the obviously wrong result √22𝑛𝑛 = 1.

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving
[2]
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = (0

1.3) instead of the

exact solution (𝑥𝑥𝑦𝑦) = (−1
2).

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.

IEEE 754 FLOATING POINT NUMBERS

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden.
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies
most prominently single and double precision floats by

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Floats 24 8 ±1.18 × 10−38 to ±3.4 × 1038 ≈7

Doubles 53 11 ±2.23 × 10−308 to ±1.80 × 10308 ≈16

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more
very unsettling phenomena in more detail.

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.

 Even innocent numbers like 0.1 = 1
10 cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2) has a

periodic binary representation.
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1) so that associativity cannot be

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑) by the compiler, different functional floating point units in the processor may not do the two
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only.

 Computing √22𝑛𝑛 by √√⋯√√2 , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to

the obviously wrong result √22𝑛𝑛 = 1.

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving
[2]
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = (0

1.3) instead of the

exact solution (𝑥𝑥𝑦𝑦) = (−1
2).

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.

IEEE 754 FLOATING POINT NUMBERS

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden.
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies
most prominently single and double precision floats by

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Floats 24 8 ±1.18 × 10−38 to ±3.4 × 1038 ≈7

Doubles 53 11 ±2.23 × 10−308 to ±1.80 × 10308 ≈16

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more
very unsettling phenomena in more detail.

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.

 Even innocent numbers like 0.1 = 1
10 cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2) has a

periodic binary representation.
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1) so that associativity cannot be

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑) by the compiler, different functional floating point units in the processor may not do the two
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only.

 Computing √22𝑛𝑛 by √√⋯√√2 , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to

the obviously wrong result √22𝑛𝑛 = 1.

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving
[2]
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = (0

1.3) instead of the

exact solution (𝑥𝑥𝑦𝑦) = (−1
2).

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.

IEEE 754 FLOATING POINT NUMBERS

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden.
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies
most prominently single and double precision floats by

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Floats 24 8 ±1.18 × 10−38 to ±3.4 × 1038 ≈7

Doubles 53 11 ±2.23 × 10−308 to ±1.80 × 10308 ≈16

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more
very unsettling phenomena in more detail.

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.

 Even innocent numbers like 0.1 = 1
10 cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2) has a

periodic binary representation.
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1) so that associativity cannot be

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑) by the compiler, different functional floating point units in the processor may not do the two
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only.

 Computing √22𝑛𝑛 by √√⋯√√2 , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to

the obviously wrong result √22𝑛𝑛 = 1.

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving
[2]
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = (0

1.3) instead of the

exact solution (𝑥𝑥𝑦𝑦) = (−1
2).

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.

IEEE 754 FLOATING POINT NUMBERS

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden.
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies
most prominently single and double precision floats by

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Floats 24 8 ±1.18 × 10−38 to ±3.4 × 1038 ≈7

Doubles 53 11 ±2.23 × 10−308 to ±1.80 × 10308 ≈16

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more
very unsettling phenomena in more detail.

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.

 Even innocent numbers like 0.1 = 1
10 cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2) has a

periodic binary representation.
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1) so that associativity cannot be

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑) by the compiler, different functional floating point units in the processor may not do the two
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only.

 Computing √22𝑛𝑛 by √√⋯√√2 , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to

the obviously wrong result √22𝑛𝑛 = 1.

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving
[2]
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = (0

1.3) instead of the

exact solution (𝑥𝑥𝑦𝑦) = (−1
2).

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.

IEEE 754 FLOATING POINT NUMBERS

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden.
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies
most prominently single and double precision floats by

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Floats 24 8 ±1.18 × 10−38 to ±3.4 × 1038 ≈7

Doubles 53 11 ±2.23 × 10−308 to ±1.80 × 10308 ≈16

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more
very unsettling phenomena in more detail.

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.

 Even innocent numbers like 0.1 = 1
10 cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2) has a

periodic binary representation.
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1) so that associativity cannot be

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑) by the compiler, different functional floating point units in the processor may not do the two
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only.

 Computing √22𝑛𝑛 by √√⋯√√2 , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to

the obviously wrong result √22𝑛𝑛 = 1.

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving
[2]
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = (0

1.3) instead of the

exact solution (𝑥𝑥𝑦𝑦) = (−1
2).

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.

IEEE 754 FLOATING POINT NUMBERS

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden.
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies
most prominently single and double precision floats by

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Floats 24 8 ±1.18 × 10−38 to ±3.4 × 1038 ≈7

Doubles 53 11 ±2.23 × 10−308 to ±1.80 × 10308 ≈16

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more
very unsettling phenomena in more detail.

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.

 Even innocent numbers like 0.1 = 1
10 cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2) has a

periodic binary representation.
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1) so that associativity cannot be

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑) by the compiler, different functional floating point units in the processor may not do the two
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only.

 Computing √22𝑛𝑛 by √√⋯√√2 , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to

the obviously wrong result √22𝑛𝑛 = 1.

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving
[2]
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = (0

1.3) instead of the

exact solution (𝑥𝑥𝑦𝑦) = (−1
2).

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.

IEEE 754 FLOATING POINT NUMBERS

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden.
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies
most prominently single and double precision floats by

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Floats 24 8 ±1.18 × 10−38 to ±3.4 × 1038 ≈7

Doubles 53 11 ±2.23 × 10−308 to ±1.80 × 10308 ≈16

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more
very unsettling phenomena in more detail.

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.

 Even innocent numbers like 0.1 = 1
10 cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2) has a

periodic binary representation.
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1) so that associativity cannot be

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑) by the compiler, different functional floating point units in the processor may not do the two
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only.

 Computing √22𝑛𝑛 by √√⋯√√2 , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to

the obviously wrong result √22𝑛𝑛 = 1.

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving
[2]
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = (0

1.3) instead of the

exact solution (𝑥𝑥𝑦𝑦) = (−1
2).

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.

IEEE 754 FLOATING POINT NUMBERS

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden.
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies
most prominently single and double precision floats by

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Floats 24 8 ±1.18 × 10−38 to ±3.4 × 1038 ≈7

Doubles 53 11 ±2.23 × 10−308 to ±1.80 × 10308 ≈16

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more
very unsettling phenomena in more detail.

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.

 Even innocent numbers like 0.1 = 1
10 cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2) has a

periodic binary representation.
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1) so that associativity cannot be

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑) by the compiler, different functional floating point units in the processor may not do the two
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only.

 Computing √22𝑛𝑛 by √√⋯√√2 , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to

the obviously wrong result √22𝑛𝑛 = 1.

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving
[2]
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = (0

1.3) instead of the

exact solution (𝑥𝑥𝑦𝑦) = (−1
2).

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.

IEEE 754 FLOATING POINT NUMBERS

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden.
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies
most prominently single and double precision floats by

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Floats 24 8 ±1.18 × 10−38 to ±3.4 × 1038 ≈7

Doubles 53 11 ±2.23 × 10−308 to ±1.80 × 10308 ≈16

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more
very unsettling phenomena in more detail.

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.

 Even innocent numbers like 0.1 = 1
10 cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2) has a

periodic binary representation.
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1) so that associativity cannot be

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑) by the compiler, different functional floating point units in the processor may not do the two
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only.

 Computing √22𝑛𝑛 by √√⋯√√2 , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to

the obviously wrong result √22𝑛𝑛 = 1.

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving
[2]
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = (0

1.3) instead of the

exact solution (𝑥𝑥𝑦𝑦) = (−1
2).

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.

IEEE 754 FLOATING POINT NUMBERS

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden.
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies
most prominently single and double precision floats by

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Floats 24 8 ±1.18 × 10−38 to ±3.4 × 1038 ≈7

Doubles 53 11 ±2.23 × 10−308 to ±1.80 × 10308 ≈16

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more
very unsettling phenomena in more detail.

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.

 Even innocent numbers like 0.1 = 1
10 cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2) has a

periodic binary representation.
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1) so that associativity cannot be

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑) by the compiler, different functional floating point units in the processor may not do the two
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only.

 Computing √22𝑛𝑛 by √√⋯√√2 , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to

the obviously wrong result √22𝑛𝑛 = 1.

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving
[2]
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = (0

1.3) instead of the

exact solution (𝑥𝑥𝑦𝑦) = (−1
2).

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.

IEEE 754 FLOATING POINT NUMBERS

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden.
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies
most prominently single and double precision floats by

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Floats 24 8 ±1.18 × 10−38 to ±3.4 × 1038 ≈7

Doubles 53 11 ±2.23 × 10−308 to ±1.80 × 10308 ≈16

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more
very unsettling phenomena in more detail.

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.

 Even innocent numbers like 0.1 = 1
10 cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2) has a

periodic binary representation.
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1) so that associativity cannot be

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑) by the compiler, different functional floating point units in the processor may not do the two
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only.

 Computing √22𝑛𝑛 by √√⋯√√2 , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to

the obviously wrong result √22𝑛𝑛 = 1.

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving
[2]
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = (0

1.3) instead of the

exact solution (𝑥𝑥𝑦𝑦) = (−1
2).

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.

IEEE 754 FLOATING POINT NUMBERS

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden.
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies
most prominently single and double precision floats by

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Floats 24 8 ±1.18 × 10−38 to ±3.4 × 1038 ≈7

Doubles 53 11 ±2.23 × 10−308 to ±1.80 × 10308 ≈16

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more
very unsettling phenomena in more detail.

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.

 Even innocent numbers like 0.1 = 1
10 cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2) has a

periodic binary representation.
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1) so that associativity cannot be

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑) by the compiler, different functional floating point units in the processor may not do the two
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only.

 Computing √22𝑛𝑛 by √√⋯√√2 , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to

the obviously wrong result √22𝑛𝑛 = 1.

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving
[2]
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = (0

1.3) instead of the

exact solution (𝑥𝑥𝑦𝑦) = (−1
2).

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.

IEEE 754 FLOATING POINT NUMBERS

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden.
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies
most prominently single and double precision floats by

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Floats 24 8 ±1.18 × 10−38 to ±3.4 × 1038 ≈7

Doubles 53 11 ±2.23 × 10−308 to ±1.80 × 10308 ≈16

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more
very unsettling phenomena in more detail.

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.

 Even innocent numbers like 0.1 = 1
10 cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2) has a

periodic binary representation.
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1) so that associativity cannot be

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑) by the compiler, different functional floating point units in the processor may not do the two
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only.

 Computing √22𝑛𝑛 by √√⋯√√2 , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to

the obviously wrong result √22𝑛𝑛 = 1.

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving
[2]
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = (0

1.3) instead of the

exact solution (𝑥𝑥𝑦𝑦) = (−1
2).

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.

IEEE 754 FLOATING POINT NUMBERS

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden.
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies
most prominently single and double precision floats by

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Floats 24 8 ±1.18 × 10−38 to ±3.4 × 1038 ≈7

Doubles 53 11 ±2.23 × 10−308 to ±1.80 × 10308 ≈16

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more
very unsettling phenomena in more detail.

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.

 Even innocent numbers like 0.1 = 1
10 cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2) has a

periodic binary representation.
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1) so that associativity cannot be

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑) by the compiler, different functional floating point units in the processor may not do the two
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only.

 Computing √22𝑛𝑛 by √√⋯√√2 , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to

the obviously wrong result √22𝑛𝑛 = 1.

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving
[2]
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = (0

1.3) instead of the

exact solution (𝑥𝑥𝑦𝑦) = (−1
2).

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.

IEEE 754 FLOATING POINT NUMBERS

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden.
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies
most prominently single and double precision floats by

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Floats 24 8 ±1.18 × 10−38 to ±3.4 × 1038 ≈7

Doubles 53 11 ±2.23 × 10−308 to ±1.80 × 10308 ≈16

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more
very unsettling phenomena in more detail.

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.

 Even innocent numbers like 0.1 = 1
10 cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2) has a

periodic binary representation.
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1) so that associativity cannot be

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑) by the compiler, different functional floating point units in the processor may not do the two
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only.

 Computing √22𝑛𝑛 by √√⋯√√2 , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to

the obviously wrong result √22𝑛𝑛 = 1.

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving
[2]
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = (0

1.3) instead of the

exact solution (𝑥𝑥𝑦𝑦) = (−1
2).

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.

IEEE 754 FLOATING POINT NUMBERS

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden.
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies
most prominently single and double precision floats by

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Floats 24 8 ±1.18 × 10−38 to ±3.4 × 1038 ≈7

Doubles 53 11 ±2.23 × 10−308 to ±1.80 × 10308 ≈16

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more
very unsettling phenomena in more detail.

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.

 Even innocent numbers like 0.1 = 1
10 cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2) has a

periodic binary representation.
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1) so that associativity cannot be

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑) by the compiler, different functional floating point units in the processor may not do the two
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only.

 Computing √22𝑛𝑛 by √√⋯√√2 , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to

the obviously wrong result √22𝑛𝑛 = 1.

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving
[2]
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = (0

1.3) instead of the

exact solution (𝑥𝑥𝑦𝑦) = (−1
2).

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.

IEEE 754 FLOATING POINT NUMBERS

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden.
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies
most prominently single and double precision floats by

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Floats 24 8 ±1.18 × 10−38 to ±3.4 × 1038 ≈7

Doubles 53 11 ±2.23 × 10−308 to ±1.80 × 10308 ≈16

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more
very unsettling phenomena in more detail.

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.

 Even innocent numbers like 0.1 = 1
10 cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2) has a

periodic binary representation.
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1) so that associativity cannot be

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑) by the compiler, different functional floating point units in the processor may not do the two
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only.

 Computing √22𝑛𝑛 by √√⋯√√2 , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to

the obviously wrong result √22𝑛𝑛 = 1.

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving
[2]
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = (0

1.3) instead of the

exact solution (𝑥𝑥𝑦𝑦) = (−1
2).

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.

IEEE 754 FLOATING POINT NUMBERS

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden.
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies
most prominently single and double precision floats by

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Floats 24 8 ±1.18 × 10−38 to ±3.4 × 1038 ≈7

Doubles 53 11 ±2.23 × 10−308 to ±1.80 × 10308 ≈16

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more
very unsettling phenomena in more detail.

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.

 Even innocent numbers like 0.1 = 1
10 cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2) has a

periodic binary representation.
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1) so that associativity cannot be

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑) by the compiler, different functional floating point units in the processor may not do the two
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only.

 Computing √22𝑛𝑛 by √√⋯√√2 , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to

the obviously wrong result √22𝑛𝑛 = 1.

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving
[2]
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = (0

1.3) instead of the

exact solution (𝑥𝑥𝑦𝑦) = (−1
2).

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.

IEEE 754 FLOATING POINT NUMBERS

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden.
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies
most prominently single and double precision floats by

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Floats 24 8 ±1.18 × 10−38 to ±3.4 × 1038 ≈7

Doubles 53 11 ±2.23 × 10−308 to ±1.80 × 10308 ≈16

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more
very unsettling phenomena in more detail.

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.

 Even innocent numbers like 0.1 = 1
10 cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2) has a

periodic binary representation.
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1) so that associativity cannot be

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑) by the compiler, different functional floating point units in the processor may not do the two
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only.

 Computing √22𝑛𝑛 by √√⋯√√2 , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to

the obviously wrong result √22𝑛𝑛 = 1.

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving
[2]
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = (0

1.3) instead of the

exact solution (𝑥𝑥𝑦𝑦) = (−1
2).

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 1–16

4

•	 Consider the Kahan sequence recursively specified by
and which should converge to the stable fix
point 6 but instead goes astray to the other fix point 100.

•	 More examples like those of Kahan can be found in Risse (2016).

There are lists of disasters which occurred in the real world due to these floating
point anomalies (Bailey, 2015).

In order to counter these numerical errors one tends to use as much accuracy
as available (Bailey, 2014). For example, MATLABs standard data type is
double, and thus is independent of the actual requirements.

We conclude this short introduction of IEEE 754 floating point numbers with
a comparison of the technological conditions of the 1980s with the conditions
forty years later. In the eighties of the last century the 80x86 architecture was
predominant with its eight floating point registers, organized as a stack, and
performing arithmetic using these registers which were internally 80 bit wide.
The difference becomes apparent if one, for example, does floating point
arithmetic using JAVA. Also the proportion of time and energy spent for floating
point arithmetic compared to moving data between processor and memory
has dramatically changed. In the 1980s, when the IEEE standard was finally
approved, the following Table 1 (https://en.wikipedia.org/wiki/Intel_8086)
allows one to estimate that a floating point operation took hundreds of clock
cycles at each where the memory access with about 10 cycles accounts
for less than 10%.

Table 1

Execution Times for Typical Instructions (in clock cycles) at a Clock Rate of
5MHz to 10MHz for 8086

Instruction Register-
register

Register
immediate

Register-
memory

Memory-
register

Memory-
immediate

mov 2 4 8+EA 9+EA 10+EA
ALU 3 4 9+EA, 16+EA, 17+EA
jump 11 for register; 15 for label; 16 for condition and label
integer multiply 70~160 (depending on operand data as well as size) including any EA
integer divide 80~190 (depending on operand data as well as size) including any EA

Note: EA = time to compute effective address, ranging from 5 to 12 cycles.	
Timings are best case, depending on prefet status, instruction alignment and other factors.

 Consider the Kahan sequence recursively specified by 𝑢𝑢𝑜𝑜 = 2,𝑢𝑢1 = −4 and 𝑢𝑢𝑖𝑖+2 = 111 − 113
𝑢𝑢𝑖𝑖+1

+ 3000
𝑢𝑢𝑖𝑖 𝑢𝑢𝑖𝑖+1

which should converge to the stable fix point 6 but instead goes astray to the other fix point 100.

 More examples like those of Kahan can be found in Risse (2016).

There are lists of disasters which occurred in the real world due to these floating point anomalies
(Bailey, 2015).
In order to counter these numerical errors one tends to use as much accuracy as available (Bailey,
2014). For example, MATLABs standard data type is double, and thus is independent of the actual
requirements.
We conclude this short introduction of IEEE 754 floating point numbers with a comparison of the
technological conditions of the 1980s with the conditions forty years later. In the eighties of the last
century the 80x86 architecture was predominant with its eight floating point registers, organized as a
stack, and performing arithmetic using these registers which were internally 80 bit wide. The difference
becomes apparent if one, for example, does floating point arithmetic using JAVA. Also the proportion
of time and energy spent for floating point arithmetic compared to moving data between processor and
memory has dramatically changed. In the 1980s, when the IEEE standard was finally approved, the
following Table 1 (https://en.wikipedia.org/wiki/Intel_8086) allows one to estimate that a floating point
operation took hundreds of clock cycles at 0.1𝜇𝜇sec each where the memory access with about 10
cycles accounts for less than 10%.

Table 1.

Execution Times for Typical Instructions (in clock cycles) at a Clock Rate of 5MHz to 10MHz for 8086

Instruction Register-
register

Register
immediate

Register-
memory

Memory-
register

Memory-
immediate

mov 2 4 8+EA 9+EA 10+EA

ALU 3 4 9+EA, 16+EA, 17+EA

jump 11 for register; 15 for label; 16 for condition and label

integer multiply 70~160 (depending on operand data as well as size) including any EA

integer divide 80~190 (depending on operand data as well as size) including any EA

Note: EA = time to compute effective address, ranging from 5 to 12 cycles.
Timings are best case, depending on prefet status, instruction alignment and other factors.

Today, the relation of the execution time of arithmetic operations compared to that of
memory access is inverted as the following Table 2 shows (Gustafson, 2016a) with less than
10%. An arithmetic operation takes a fractional amount of the time a memory access takes.
The relation in terms of energy consumption is even more stunning and of great importance
in today’s densely packed high performance multiprocessor systems.

Table 2.

Energy and Execution Times for Typical 80x86 Operations

Operation Energy/pJ Time/nsec

64 bit multiply add 200 1

Read 64 bit from cache 800 3

 Consider the Kahan sequence recursively specified by 𝑢𝑢𝑜𝑜 = 2,𝑢𝑢1 = −4 and 𝑢𝑢𝑖𝑖+2 = 111 − 113
𝑢𝑢𝑖𝑖+1

+ 3000
𝑢𝑢𝑖𝑖 𝑢𝑢𝑖𝑖+1

which should converge to the stable fix point 6 but instead goes astray to the other fix point 100.

 More examples like those of Kahan can be found in Risse (2016).

There are lists of disasters which occurred in the real world due to these floating point anomalies
(Bailey, 2015).
In order to counter these numerical errors one tends to use as much accuracy as available (Bailey,
2014). For example, MATLABs standard data type is double, and thus is independent of the actual
requirements.
We conclude this short introduction of IEEE 754 floating point numbers with a comparison of the
technological conditions of the 1980s with the conditions forty years later. In the eighties of the last
century the 80x86 architecture was predominant with its eight floating point registers, organized as a
stack, and performing arithmetic using these registers which were internally 80 bit wide. The difference
becomes apparent if one, for example, does floating point arithmetic using JAVA. Also the proportion
of time and energy spent for floating point arithmetic compared to moving data between processor and
memory has dramatically changed. In the 1980s, when the IEEE standard was finally approved, the
following Table 1 (https://en.wikipedia.org/wiki/Intel_8086) allows one to estimate that a floating point
operation took hundreds of clock cycles at 0.1𝜇𝜇sec each where the memory access with about 10
cycles accounts for less than 10%.

Table 1.

Execution Times for Typical Instructions (in clock cycles) at a Clock Rate of 5MHz to 10MHz for 8086

Instruction Register-
register

Register
immediate

Register-
memory

Memory-
register

Memory-
immediate

mov 2 4 8+EA 9+EA 10+EA

ALU 3 4 9+EA, 16+EA, 17+EA

jump 11 for register; 15 for label; 16 for condition and label

integer multiply 70~160 (depending on operand data as well as size) including any EA

integer divide 80~190 (depending on operand data as well as size) including any EA

Note: EA = time to compute effective address, ranging from 5 to 12 cycles.
Timings are best case, depending on prefet status, instruction alignment and other factors.

Today, the relation of the execution time of arithmetic operations compared to that of
memory access is inverted as the following Table 2 shows (Gustafson, 2016a) with less than
10%. An arithmetic operation takes a fractional amount of the time a memory access takes.
The relation in terms of energy consumption is even more stunning and of great importance
in today’s densely packed high performance multiprocessor systems.

Table 2.

Energy and Execution Times for Typical 80x86 Operations

Operation Energy/pJ Time/nsec

64 bit multiply add 200 1

Read 64 bit from cache 800 3

 Consider the Kahan sequence recursively specified by 𝑢𝑢𝑜𝑜 = 2,𝑢𝑢1 = −4 and 𝑢𝑢𝑖𝑖+2 = 111 − 113
𝑢𝑢𝑖𝑖+1

+ 3000
𝑢𝑢𝑖𝑖 𝑢𝑢𝑖𝑖+1

which should converge to the stable fix point 6 but instead goes astray to the other fix point 100.

 More examples like those of Kahan can be found in Risse (2016).

There are lists of disasters which occurred in the real world due to these floating point anomalies
(Bailey, 2015).
In order to counter these numerical errors one tends to use as much accuracy as available (Bailey,
2014). For example, MATLABs standard data type is double, and thus is independent of the actual
requirements.
We conclude this short introduction of IEEE 754 floating point numbers with a comparison of the
technological conditions of the 1980s with the conditions forty years later. In the eighties of the last
century the 80x86 architecture was predominant with its eight floating point registers, organized as a
stack, and performing arithmetic using these registers which were internally 80 bit wide. The difference
becomes apparent if one, for example, does floating point arithmetic using JAVA. Also the proportion
of time and energy spent for floating point arithmetic compared to moving data between processor and
memory has dramatically changed. In the 1980s, when the IEEE standard was finally approved, the
following Table 1 (https://en.wikipedia.org/wiki/Intel_8086) allows one to estimate that a floating point
operation took hundreds of clock cycles at 0.1𝜇𝜇sec each where the memory access with about 10
cycles accounts for less than 10%.

Table 1.

Execution Times for Typical Instructions (in clock cycles) at a Clock Rate of 5MHz to 10MHz for 8086

Instruction Register-
register

Register
immediate

Register-
memory

Memory-
register

Memory-
immediate

mov 2 4 8+EA 9+EA 10+EA

ALU 3 4 9+EA, 16+EA, 17+EA

jump 11 for register; 15 for label; 16 for condition and label

integer multiply 70~160 (depending on operand data as well as size) including any EA

integer divide 80~190 (depending on operand data as well as size) including any EA

Note: EA = time to compute effective address, ranging from 5 to 12 cycles.
Timings are best case, depending on prefet status, instruction alignment and other factors.

Today, the relation of the execution time of arithmetic operations compared to that of
memory access is inverted as the following Table 2 shows (Gustafson, 2016a) with less than
10%. An arithmetic operation takes a fractional amount of the time a memory access takes.
The relation in terms of energy consumption is even more stunning and of great importance
in today’s densely packed high performance multiprocessor systems.

Table 2.

Energy and Execution Times for Typical 80x86 Operations

Operation Energy/pJ Time/nsec

64 bit multiply add 200 1

Read 64 bit from cache 800 3

5

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 1–16

Today, the relation of the execution time of arithmetic operations compared to
that of memory access is inverted as the following Table 2 shows (Gustafson,
2016a) with less than 10%. An arithmetic operation takes a fractional amount
of the time a memory access takes. The relation in terms of energy consumption
is even more stunning and of great importance in today’s densely packed high
performance multiprocessor systems.

Table 2

Energy and Execution Times for Typical 80x86 Operations

Operation Energy/pJ Time/nsec
64 bit multiply add 200 1

Read 64 bit from cache 800 3
move 64 bit across chip 2000 5
Execute an instruction 7500 1

Read 64 bit from DRAM 12000 70

So IEEE 754 has two shortcomings: floating point operations are not trustworthy
and the available bandwidth of the channels between processor (or caches) and
memory is not used efficiently. Both problems are addressed by UNUMs.

UNIVERSAL NUMBERS

Universal numbers, UNUMs for short, are an extension of IEEE 754 with the
potential to solve both the numerical problems of IEEE 754 floating point numbers
as well as their inefficiency in exploiting the bandwidth when exchanging floating
point numbers between processor and memory and when storing them in memory
(Gustafson, 2015). As IEEE 754 numbers UNUMs consist of three fields: the sign
bit, the exponent field and the fraction field. The first extension is the fourth field,
the so called ubit which addresses the numerical problems. If the ubit is not set the
number is the exact representation of some
rational number. If the ubit is set then the UNUM stands for the open real interval
 where denotes the next exactly representable UNUM. Thus
UNUMs cover the whole real line by monotonically alternating between
exactly represented rational numbers and open real intervals. Hence UNUMs
are either exactly represented rational numbers or open real intervals. As in
IEEE 754 also – ∞ and + ∞ can be expressed as UNUMs as well as quietly
and signaling NaN. 	

With UNUMs there is no rounding and thus no cheating. UNUMs are truly honest
about what they represent.

move 64 bit across chip 2000 5

Execute an instruction 7500 1

Read 64 bit from DRAM 12000 70

So IEEE 754 has two shortcomings: floating point operations are not trustworthy and the available
bandwidth of the channels between processor (or caches) and memory is not used efficiently. Both
problems are addressed by UNUMs.

UNIVERSAL NUMBERS

Universal numbers, UNUMs for short, are an extension of IEEE 754 with the potential to solve both the
numerical problems of IEEE 754 floating point numbers as well as their inefficiency in exploiting the
bandwidth when exchanging floating point numbers between processor and memory and when storing them in
memory (Gustafson, 2015). As IEEE 754 numbers UNUMs consist of three fields: the sign bit, the exponent
field and the fraction field. The first extension is the fourth field, the so called ubit which addresses the
numerical problems. If the ubit is not set the number 𝑥𝑥 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 2𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is the exact
representation of some rational number. If the ubit is set then the UNUM stands for the open real interval
(𝑥𝑥, 𝑥𝑥′) ⊂ ℝ where 𝑥𝑥′ denotes the next exactly representable UNUM. Thus UNUMs cover the whole real line
by monotonically alternating between exactly represented rational numbers and open real intervals. Hence
UNUMs are either exactly represented rational numbers or open real intervals. As in IEEE 754 also −∞ and
+∞ can be expressed as UNUMs as well as quietly and signaling NaN.
With UNUMs there is no rounding and thus no cheating. UNUMs are truly honest about what they represent.

The second extension consists of the two additional fields esizesize and fsizesize which specify the number of
bits of the exponent field and the number of bits of the fraction field, respectively. The two fields render the
UNUM format self-descriptive. These two parameters define a so called environment.
Now the range and the accuracy of UNUMs can be controlled (in the best case by the computer hardware
itself) and thus adapted to the actual needs. The investment in the two fields by far pays out in terms of net
memory savings and transmission savings. So UNUMs are the natural candidates for scientific computing on
today’s high performance computing systems.

Arithmetic with UNUMs

The ubit implies that the objects of UNUM arithmetic are intervals, the so called ubounds, namely either
closed intervals of the form [𝑥𝑥, 𝑥𝑥] or open and closed intervals [𝑥𝑥,𝑦𝑦], [𝑥𝑥,𝑦𝑦), (𝑥𝑥,𝑦𝑦], or (𝑥𝑥, 𝑦𝑦). Hence for the
implementation of each of the basic arithmetic operations two tables are needed which specify the lower bound
low and the upper bound upp of the interval representing the result as is shown by the two addition, ⊕, tables.

Arithmetic with UNUMs never generate an underflow or an overflow. For example, if 𝑥𝑥 + 𝑦𝑦 >maxreal or

𝑥𝑥 + 𝑦𝑦 < −maxreal then the result is the correct ubound (maxreal,∞) or (−∞, maxreal), respectively,
where maxreal denotes the greatest representable UNUM.

⊕𝑙𝑙𝑙𝑙𝑙𝑙 [−∞ (−∞ [𝑦𝑦 (y [∞

[−∞ [−∞ [−∞ [−∞ [−∞ (NaN

(−∞ [−∞ (−∞ (−∞ (−∞ [∞

[𝑥𝑥 [−∞ (−∞ [𝑥𝑥 + 𝑦𝑦 (𝑥𝑥 + 𝑦𝑦 [∞

(𝑥𝑥 [−∞ (−∞ (𝑥𝑥 + 𝑦𝑦 (𝑥𝑥 + 𝑦𝑦 [∞

[∞ (𝑁𝑁𝑁𝑁𝑁𝑁 [∞ [∞ [∞ [∞

⊕𝑢𝑢𝑢𝑢𝑢𝑢 −∞] 𝑦𝑦) 𝑦𝑦] ∞) ∞]

−∞] −∞] −∞] −∞] −∞] NaN)

𝑥𝑥) −∞] 𝑥𝑥 + 𝑦𝑦) 𝑥𝑥 + 𝑦𝑦) ∞) ∞]
𝑥𝑥] −∞] 𝑥𝑥 + 𝑦𝑦) 𝑥𝑥 + 𝑦𝑦] ∞) ∞]
∞) −∞] ∞) ∞) ∞) ∞]
∞] 𝑁𝑁𝑁𝑁𝑁𝑁) ∞] ∞] ∞] ∞]

move 64 bit across chip 2000 5

Execute an instruction 7500 1

Read 64 bit from DRAM 12000 70

So IEEE 754 has two shortcomings: floating point operations are not trustworthy and the available
bandwidth of the channels between processor (or caches) and memory is not used efficiently. Both
problems are addressed by UNUMs.

UNIVERSAL NUMBERS

Universal numbers, UNUMs for short, are an extension of IEEE 754 with the potential to solve both the
numerical problems of IEEE 754 floating point numbers as well as their inefficiency in exploiting the
bandwidth when exchanging floating point numbers between processor and memory and when storing them in
memory (Gustafson, 2015). As IEEE 754 numbers UNUMs consist of three fields: the sign bit, the exponent
field and the fraction field. The first extension is the fourth field, the so called ubit which addresses the
numerical problems. If the ubit is not set the number 𝑥𝑥 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 2𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is the exact
representation of some rational number. If the ubit is set then the UNUM stands for the open real interval
(𝑥𝑥, 𝑥𝑥′) ⊂ ℝ where 𝑥𝑥′ denotes the next exactly representable UNUM. Thus UNUMs cover the whole real line
by monotonically alternating between exactly represented rational numbers and open real intervals. Hence
UNUMs are either exactly represented rational numbers or open real intervals. As in IEEE 754 also −∞ and
+∞ can be expressed as UNUMs as well as quietly and signaling NaN.
With UNUMs there is no rounding and thus no cheating. UNUMs are truly honest about what they represent.

The second extension consists of the two additional fields esizesize and fsizesize which specify the number of
bits of the exponent field and the number of bits of the fraction field, respectively. The two fields render the
UNUM format self-descriptive. These two parameters define a so called environment.
Now the range and the accuracy of UNUMs can be controlled (in the best case by the computer hardware
itself) and thus adapted to the actual needs. The investment in the two fields by far pays out in terms of net
memory savings and transmission savings. So UNUMs are the natural candidates for scientific computing on
today’s high performance computing systems.

Arithmetic with UNUMs

The ubit implies that the objects of UNUM arithmetic are intervals, the so called ubounds, namely either
closed intervals of the form [𝑥𝑥, 𝑥𝑥] or open and closed intervals [𝑥𝑥,𝑦𝑦], [𝑥𝑥,𝑦𝑦), (𝑥𝑥,𝑦𝑦], or (𝑥𝑥, 𝑦𝑦). Hence for the
implementation of each of the basic arithmetic operations two tables are needed which specify the lower bound
low and the upper bound upp of the interval representing the result as is shown by the two addition, ⊕, tables.

Arithmetic with UNUMs never generate an underflow or an overflow. For example, if 𝑥𝑥 + 𝑦𝑦 >maxreal or

𝑥𝑥 + 𝑦𝑦 < −maxreal then the result is the correct ubound (maxreal,∞) or (−∞, maxreal), respectively,
where maxreal denotes the greatest representable UNUM.

⊕𝑙𝑙𝑙𝑙𝑙𝑙 [−∞ (−∞ [𝑦𝑦 (y [∞

[−∞ [−∞ [−∞ [−∞ [−∞ (NaN

(−∞ [−∞ (−∞ (−∞ (−∞ [∞

[𝑥𝑥 [−∞ (−∞ [𝑥𝑥 + 𝑦𝑦 (𝑥𝑥 + 𝑦𝑦 [∞

(𝑥𝑥 [−∞ (−∞ (𝑥𝑥 + 𝑦𝑦 (𝑥𝑥 + 𝑦𝑦 [∞

[∞ (𝑁𝑁𝑁𝑁𝑁𝑁 [∞ [∞ [∞ [∞

⊕𝑢𝑢𝑢𝑢𝑢𝑢 −∞] 𝑦𝑦) 𝑦𝑦] ∞) ∞]

−∞] −∞] −∞] −∞] −∞] NaN)

𝑥𝑥) −∞] 𝑥𝑥 + 𝑦𝑦) 𝑥𝑥 + 𝑦𝑦) ∞) ∞]
𝑥𝑥] −∞] 𝑥𝑥 + 𝑦𝑦) 𝑥𝑥 + 𝑦𝑦] ∞) ∞]
∞) −∞] ∞) ∞) ∞) ∞]
∞] 𝑁𝑁𝑁𝑁𝑁𝑁) ∞] ∞] ∞] ∞]

move 64 bit across chip 2000 5

Execute an instruction 7500 1

Read 64 bit from DRAM 12000 70

So IEEE 754 has two shortcomings: floating point operations are not trustworthy and the available
bandwidth of the channels between processor (or caches) and memory is not used efficiently. Both
problems are addressed by UNUMs.

UNIVERSAL NUMBERS

Universal numbers, UNUMs for short, are an extension of IEEE 754 with the potential to solve both the
numerical problems of IEEE 754 floating point numbers as well as their inefficiency in exploiting the
bandwidth when exchanging floating point numbers between processor and memory and when storing them in
memory (Gustafson, 2015). As IEEE 754 numbers UNUMs consist of three fields: the sign bit, the exponent
field and the fraction field. The first extension is the fourth field, the so called ubit which addresses the
numerical problems. If the ubit is not set the number 𝑥𝑥 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 2𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is the exact
representation of some rational number. If the ubit is set then the UNUM stands for the open real interval
(𝑥𝑥, 𝑥𝑥′) ⊂ ℝ where 𝑥𝑥′ denotes the next exactly representable UNUM. Thus UNUMs cover the whole real line
by monotonically alternating between exactly represented rational numbers and open real intervals. Hence
UNUMs are either exactly represented rational numbers or open real intervals. As in IEEE 754 also −∞ and
+∞ can be expressed as UNUMs as well as quietly and signaling NaN.
With UNUMs there is no rounding and thus no cheating. UNUMs are truly honest about what they represent.

The second extension consists of the two additional fields esizesize and fsizesize which specify the number of
bits of the exponent field and the number of bits of the fraction field, respectively. The two fields render the
UNUM format self-descriptive. These two parameters define a so called environment.
Now the range and the accuracy of UNUMs can be controlled (in the best case by the computer hardware
itself) and thus adapted to the actual needs. The investment in the two fields by far pays out in terms of net
memory savings and transmission savings. So UNUMs are the natural candidates for scientific computing on
today’s high performance computing systems.

Arithmetic with UNUMs

The ubit implies that the objects of UNUM arithmetic are intervals, the so called ubounds, namely either
closed intervals of the form [𝑥𝑥, 𝑥𝑥] or open and closed intervals [𝑥𝑥,𝑦𝑦], [𝑥𝑥,𝑦𝑦), (𝑥𝑥,𝑦𝑦], or (𝑥𝑥, 𝑦𝑦). Hence for the
implementation of each of the basic arithmetic operations two tables are needed which specify the lower bound
low and the upper bound upp of the interval representing the result as is shown by the two addition, ⊕, tables.

Arithmetic with UNUMs never generate an underflow or an overflow. For example, if 𝑥𝑥 + 𝑦𝑦 >maxreal or

𝑥𝑥 + 𝑦𝑦 < −maxreal then the result is the correct ubound (maxreal,∞) or (−∞, maxreal), respectively,
where maxreal denotes the greatest representable UNUM.

⊕𝑙𝑙𝑙𝑙𝑙𝑙 [−∞ (−∞ [𝑦𝑦 (y [∞

[−∞ [−∞ [−∞ [−∞ [−∞ (NaN

(−∞ [−∞ (−∞ (−∞ (−∞ [∞

[𝑥𝑥 [−∞ (−∞ [𝑥𝑥 + 𝑦𝑦 (𝑥𝑥 + 𝑦𝑦 [∞

(𝑥𝑥 [−∞ (−∞ (𝑥𝑥 + 𝑦𝑦 (𝑥𝑥 + 𝑦𝑦 [∞

[∞ (𝑁𝑁𝑁𝑁𝑁𝑁 [∞ [∞ [∞ [∞

⊕𝑢𝑢𝑢𝑢𝑢𝑢 −∞] 𝑦𝑦) 𝑦𝑦] ∞) ∞]

−∞] −∞] −∞] −∞] −∞] NaN)

𝑥𝑥) −∞] 𝑥𝑥 + 𝑦𝑦) 𝑥𝑥 + 𝑦𝑦) ∞) ∞]
𝑥𝑥] −∞] 𝑥𝑥 + 𝑦𝑦) 𝑥𝑥 + 𝑦𝑦] ∞) ∞]
∞) −∞] ∞) ∞) ∞) ∞]
∞] 𝑁𝑁𝑁𝑁𝑁𝑁) ∞] ∞] ∞] ∞]

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 1–16

6

The second extension consists of the two additional fields esizesize and fsizesize
which specify the number of bits of the exponent field and the number of bits of the
fraction field, respectively. The two fields render the UNUM format self-descriptive.
These two parameters define a so called environment. 	

Now the range and the accuracy of UNUMs can be controlled (in the best case by
the computer hardware itself) and thus adapted to the actual needs. The investment
in the two fields by far pays out in terms of net memory savings and transmission
savings. So UNUMs are the natural candidates for scientific computing on today’s
high performance computing systems.

Arithmetic with UNUMs

The ubit implies that the objects of UNUM arithmetic are intervals, the so called
ubounds, namely either closed intervals of the form [x, x] or open and closed intervals
[x, y], [x, y), (x, y], or (x, y). Hence for the implementation of each of the basic
arithmetic operations two tables are needed which specify the lower bound low and
the upper bound upp of the interval representing the result as is shown by the two
addition, ⊕, tables.

Arithmetic with UNUMs never generate an underflow or an overflow. For example,
if x + y > maxreal or x + y < – maxreal then the result is the correct ubound
(maxreal ∞,) or (– ∞, maxreal), respectively, where maxreal denotes the greatest
representable UNUM.
	

There are corresponding tables for subtraction, multiplication and division which
show that the set of ubounds is closed under the four basic arithmetic operations.

Fused Operations and the Mathematica Math Library

Gustafson (2015) provides a basic math library for UNUMs written in Mathematica.
It contains built-in functions to compute powers or a more general expression xy
which is an algebraic function for any exactly representable x and y. Also there is an
exact dot product which has to be used in case associativity of addition is needed.
Similarly, an exact product guarantees the associativity of multiplication. One has

move 64 bit across chip 2000 5

Execute an instruction 7500 1

Read 64 bit from DRAM 12000 70

So IEEE 754 has two shortcomings: floating point operations are not trustworthy and the available
bandwidth of the channels between processor (or caches) and memory is not used efficiently. Both
problems are addressed by UNUMs.

UNIVERSAL NUMBERS

Universal numbers, UNUMs for short, are an extension of IEEE 754 with the potential to solve both the
numerical problems of IEEE 754 floating point numbers as well as their inefficiency in exploiting the
bandwidth when exchanging floating point numbers between processor and memory and when storing them in
memory (Gustafson, 2015). As IEEE 754 numbers UNUMs consist of three fields: the sign bit, the exponent
field and the fraction field. The first extension is the fourth field, the so called ubit which addresses the
numerical problems. If the ubit is not set the number 𝑥𝑥 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 2𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is the exact
representation of some rational number. If the ubit is set then the UNUM stands for the open real interval
(𝑥𝑥, 𝑥𝑥′) ⊂ ℝ where 𝑥𝑥′ denotes the next exactly representable UNUM. Thus UNUMs cover the whole real line
by monotonically alternating between exactly represented rational numbers and open real intervals. Hence
UNUMs are either exactly represented rational numbers or open real intervals. As in IEEE 754 also −∞ and
+∞ can be expressed as UNUMs as well as quietly and signaling NaN.
With UNUMs there is no rounding and thus no cheating. UNUMs are truly honest about what they represent.

The second extension consists of the two additional fields esizesize and fsizesize which specify the number of
bits of the exponent field and the number of bits of the fraction field, respectively. The two fields render the
UNUM format self-descriptive. These two parameters define a so called environment.
Now the range and the accuracy of UNUMs can be controlled (in the best case by the computer hardware
itself) and thus adapted to the actual needs. The investment in the two fields by far pays out in terms of net
memory savings and transmission savings. So UNUMs are the natural candidates for scientific computing on
today’s high performance computing systems.

Arithmetic with UNUMs

The ubit implies that the objects of UNUM arithmetic are intervals, the so called ubounds, namely either
closed intervals of the form [𝑥𝑥, 𝑥𝑥] or open and closed intervals [𝑥𝑥,𝑦𝑦], [𝑥𝑥,𝑦𝑦), (𝑥𝑥,𝑦𝑦], or (𝑥𝑥, 𝑦𝑦). Hence for the
implementation of each of the basic arithmetic operations two tables are needed which specify the lower bound
low and the upper bound upp of the interval representing the result as is shown by the two addition, ⊕, tables.

Arithmetic with UNUMs never generate an underflow or an overflow. For example, if 𝑥𝑥 + 𝑦𝑦 >maxreal or

𝑥𝑥 + 𝑦𝑦 < −maxreal then the result is the correct ubound (maxreal,∞) or (−∞, maxreal), respectively,
where maxreal denotes the greatest representable UNUM.

⊕𝑙𝑙𝑙𝑙𝑙𝑙 [−∞ (−∞ [𝑦𝑦 (y [∞

[−∞ [−∞ [−∞ [−∞ [−∞ (NaN

(−∞ [−∞ (−∞ (−∞ (−∞ [∞

[𝑥𝑥 [−∞ (−∞ [𝑥𝑥 + 𝑦𝑦 (𝑥𝑥 + 𝑦𝑦 [∞

(𝑥𝑥 [−∞ (−∞ (𝑥𝑥 + 𝑦𝑦 (𝑥𝑥 + 𝑦𝑦 [∞

[∞ (𝑁𝑁𝑁𝑁𝑁𝑁 [∞ [∞ [∞ [∞

⊕𝑢𝑢𝑢𝑢𝑢𝑢 −∞] 𝑦𝑦) 𝑦𝑦] ∞) ∞]

−∞] −∞] −∞] −∞] −∞] NaN)

𝑥𝑥) −∞] 𝑥𝑥 + 𝑦𝑦) 𝑥𝑥 + 𝑦𝑦) ∞) ∞]
𝑥𝑥] −∞] 𝑥𝑥 + 𝑦𝑦) 𝑥𝑥 + 𝑦𝑦] ∞) ∞]
∞) −∞] ∞) ∞) ∞) ∞]
∞] 𝑁𝑁𝑁𝑁𝑁𝑁) ∞] ∞] ∞] ∞]

7

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 1–16

to be careful to avoid big ubounds. For example, do not compute x2 by the product
x ⊗ x where ⊗ denotes multiplication of UNUMs: if x is given by the ubound
 naïve x ⊗ x produces instead,
 of the much smaller ubound .
	
So-called fused operations like the exact dot product fight the explosion of the size
of intervals notorious for traditional interval arithmetic (Alefeld & Meyer, 2000;
Revol, 2015). 	

Gustafson’s math library contains all elementary mathematical functions like
powers, exponential, trigonometric, and hyperbolic and their inverses.

Efficient Operations on UNUMs in the Processor

UNUMs are loaded into the processors’ usual 64 bit floating point registers in
something like an unpacked format in order to speed up operations on UNUMs (see
Figure 1). Part of the IEEE 754 flags which were hidden in the processor status word
are now directly accessible in the floating point registers.

 Figure 1. Format and flags of UNUMs in 64 bit processor registers.

So UNUMs are stored efficiently in memory and transferred efficiently to the
processor where they are unpacked and operated upon efficiently. Any results that
have to be packed are then transferred and stored in the memory efficiently.

Differences between UNUM Arithmetic and IEEE 754 Arithmetic

Let us illustrate the differences between arithmetic on UNUMs and arithmetic on
IEEE 754 floating point numbers with the examples of IEEE 754 abnormalities
above. and stand for addition, subtraction, multiplication and division
on UNUMs, respectively.
•	 The term is computed by and

returns the correct interval
e.g. in the {2,4} environment.

•	 The two expressions (1016 –1016) + 1 and 1016 + (–1016 + 1) are evaluated
identically to 1 in the {3,6} environment. However, in the {3,5} environment,

There are corresponding tables for subtraction, multiplication and division which show that the set of ubounds
is closed under the four basic arithmetic operations.

Fused Operations and the Mathematica Math Library

Gustafson (2015) provides a basic math library for UNUMs written in Mathematica. It contains built-in
functions to compute powers or a more general expression 𝑥𝑥𝑦𝑦 which is an algebraic function for any exactly
representable 𝑥𝑥 and 𝑦𝑦. Also there is an exact dot product which has to be used in case associativity of addition
is needed. Similarly, an exact product guarantees the associativity of multiplication. One has to be careful to
avoid big ubounds. For example, do not compute 𝑥𝑥2 by the product 𝑥𝑥 ⊗ 𝑥𝑥 where ⊗ denotes multiplication of
UNUMs: if 𝑥𝑥 is given by the ubound 𝑥𝑥 = {𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚} naïve 𝑥𝑥 ⊗ 𝑥𝑥 produces
{min(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2 ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2) , max (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2 ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2)} instead of the much smaller ubound

{0, max (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2 ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2)}.
So-called fused operations like the exact dot product fight the explosion of the size of intervals notorious for
traditional interval arithmetic (Alefeld & Meyer, 2000; Revol, 2015).
Gustafson’s math library contains all elementary mathematical functions like powers, exponential,
trigonometric, and hyperbolic and their inverses.

Efficient Operations on UNUMs in the Processor

UNUMs are loaded into the processors’ usual 64 bit floating point registers in something like an unpacked
format in order to speed up operations on UNUMs (see Figure 1). Part of the IEEE 754 flags which were
hidden in the processor status word are now directly accessible in the floating point registers.

Figure 1. Format and flags of UNUMs in 64 bit processor registers.

So UNUMs are stored efficiently in memory and transferred efficiently to the processor where they are
unpacked and operated upon efficiently. Any results that have to be packed are then transferred and stored in
the memory efficiently.

Differences between UNUM Arithmetic and IEEE 754 Arithmetic

Let us illustrate the differences between arithmetic on UNUMs and arithmetic on IEEE 754 floating point
numbers with the examples of IEEE 754 abnormalities above. ⊕, ⊝, ⊗ and ⊘ stand for addition,
subtraction, multiplication and division on UNUMs, respectively.

 The term 997 −
97
7 −

2
7 is computed by (99 ⊘ 7) ⊝ (97⊘ 7) ⊝ (2 ⊘ 7) and returns the

correct interval (−0.000072479248046875,0.00017547607421875) e.g. in the {2,4}
environment.

 The two expressions (1016 − 1016) + 1 and 1016 + (−1016 + 1) are evaluated identically to
1 in the {3,6} environment. However, in the {3,5} environment, the intervals computed are too
big to be meaningful. But, the environment can automatically be adapted if the need is detected by
suitable library functions.

There are corresponding tables for subtraction, multiplication and division which show that the set of ubounds
is closed under the four basic arithmetic operations.

Fused Operations and the Mathematica Math Library

Gustafson (2015) provides a basic math library for UNUMs written in Mathematica. It contains built-in
functions to compute powers or a more general expression 𝑥𝑥𝑦𝑦 which is an algebraic function for any exactly
representable 𝑥𝑥 and 𝑦𝑦. Also there is an exact dot product which has to be used in case associativity of addition
is needed. Similarly, an exact product guarantees the associativity of multiplication. One has to be careful to
avoid big ubounds. For example, do not compute 𝑥𝑥2 by the product 𝑥𝑥 ⊗ 𝑥𝑥 where ⊗ denotes multiplication of
UNUMs: if 𝑥𝑥 is given by the ubound 𝑥𝑥 = {𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚} naïve 𝑥𝑥 ⊗ 𝑥𝑥 produces
{min(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2 ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2) , max (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2 ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2)} instead of the much smaller ubound

{0, max (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2 ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2)}.
So-called fused operations like the exact dot product fight the explosion of the size of intervals notorious for
traditional interval arithmetic (Alefeld & Meyer, 2000; Revol, 2015).
Gustafson’s math library contains all elementary mathematical functions like powers, exponential,
trigonometric, and hyperbolic and their inverses.

Efficient Operations on UNUMs in the Processor

UNUMs are loaded into the processors’ usual 64 bit floating point registers in something like an unpacked
format in order to speed up operations on UNUMs (see Figure 1). Part of the IEEE 754 flags which were
hidden in the processor status word are now directly accessible in the floating point registers.

Figure 1. Format and flags of UNUMs in 64 bit processor registers.

So UNUMs are stored efficiently in memory and transferred efficiently to the processor where they are
unpacked and operated upon efficiently. Any results that have to be packed are then transferred and stored in
the memory efficiently.

Differences between UNUM Arithmetic and IEEE 754 Arithmetic

Let us illustrate the differences between arithmetic on UNUMs and arithmetic on IEEE 754 floating point
numbers with the examples of IEEE 754 abnormalities above. ⊕, ⊝, ⊗ and ⊘ stand for addition,
subtraction, multiplication and division on UNUMs, respectively.

 The term 997 −
97
7 −

2
7 is computed by (99 ⊘ 7) ⊝ (97⊘ 7) ⊝ (2 ⊘ 7) and returns the

correct interval (−0.000072479248046875,0.00017547607421875) e.g. in the {2,4}
environment.

 The two expressions (1016 − 1016) + 1 and 1016 + (−1016 + 1) are evaluated identically to
1 in the {3,6} environment. However, in the {3,5} environment, the intervals computed are too
big to be meaningful. But, the environment can automatically be adapted if the need is detected by
suitable library functions.

There are corresponding tables for subtraction, multiplication and division which show that the set of ubounds
is closed under the four basic arithmetic operations.

Fused Operations and the Mathematica Math Library

Gustafson (2015) provides a basic math library for UNUMs written in Mathematica. It contains built-in
functions to compute powers or a more general expression 𝑥𝑥𝑦𝑦 which is an algebraic function for any exactly
representable 𝑥𝑥 and 𝑦𝑦. Also there is an exact dot product which has to be used in case associativity of addition
is needed. Similarly, an exact product guarantees the associativity of multiplication. One has to be careful to
avoid big ubounds. For example, do not compute 𝑥𝑥2 by the product 𝑥𝑥 ⊗ 𝑥𝑥 where ⊗ denotes multiplication of
UNUMs: if 𝑥𝑥 is given by the ubound 𝑥𝑥 = {𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚} naïve 𝑥𝑥 ⊗ 𝑥𝑥 produces
{min(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2 ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2) , max (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2 ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2)} instead of the much smaller ubound

{0, max (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2 ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2)}.
So-called fused operations like the exact dot product fight the explosion of the size of intervals notorious for
traditional interval arithmetic (Alefeld & Meyer, 2000; Revol, 2015).
Gustafson’s math library contains all elementary mathematical functions like powers, exponential,
trigonometric, and hyperbolic and their inverses.

Efficient Operations on UNUMs in the Processor

UNUMs are loaded into the processors’ usual 64 bit floating point registers in something like an unpacked
format in order to speed up operations on UNUMs (see Figure 1). Part of the IEEE 754 flags which were
hidden in the processor status word are now directly accessible in the floating point registers.

Figure 1. Format and flags of UNUMs in 64 bit processor registers.

So UNUMs are stored efficiently in memory and transferred efficiently to the processor where they are
unpacked and operated upon efficiently. Any results that have to be packed are then transferred and stored in
the memory efficiently.

Differences between UNUM Arithmetic and IEEE 754 Arithmetic

Let us illustrate the differences between arithmetic on UNUMs and arithmetic on IEEE 754 floating point
numbers with the examples of IEEE 754 abnormalities above. ⊕, ⊝, ⊗ and ⊘ stand for addition,
subtraction, multiplication and division on UNUMs, respectively.

 The term 997 −
97
7 −

2
7 is computed by (99 ⊘ 7) ⊝ (97⊘ 7) ⊝ (2 ⊘ 7) and returns the

correct interval (−0.000072479248046875,0.00017547607421875) e.g. in the {2,4}
environment.

 The two expressions (1016 − 1016) + 1 and 1016 + (−1016 + 1) are evaluated identically to
1 in the {3,6} environment. However, in the {3,5} environment, the intervals computed are too
big to be meaningful. But, the environment can automatically be adapted if the need is detected by
suitable library functions.

There are corresponding tables for subtraction, multiplication and division which show that the set of ubounds
is closed under the four basic arithmetic operations.

Fused Operations and the Mathematica Math Library

Gustafson (2015) provides a basic math library for UNUMs written in Mathematica. It contains built-in
functions to compute powers or a more general expression 𝑥𝑥𝑦𝑦 which is an algebraic function for any exactly
representable 𝑥𝑥 and 𝑦𝑦. Also there is an exact dot product which has to be used in case associativity of addition
is needed. Similarly, an exact product guarantees the associativity of multiplication. One has to be careful to
avoid big ubounds. For example, do not compute 𝑥𝑥2 by the product 𝑥𝑥 ⊗ 𝑥𝑥 where ⊗ denotes multiplication of
UNUMs: if 𝑥𝑥 is given by the ubound 𝑥𝑥 = {𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚} naïve 𝑥𝑥 ⊗ 𝑥𝑥 produces
{min(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2 ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2) , max (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2 ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2)} instead of the much smaller ubound

{0, max (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2 ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2)}.
So-called fused operations like the exact dot product fight the explosion of the size of intervals notorious for
traditional interval arithmetic (Alefeld & Meyer, 2000; Revol, 2015).
Gustafson’s math library contains all elementary mathematical functions like powers, exponential,
trigonometric, and hyperbolic and their inverses.

Efficient Operations on UNUMs in the Processor

UNUMs are loaded into the processors’ usual 64 bit floating point registers in something like an unpacked
format in order to speed up operations on UNUMs (see Figure 1). Part of the IEEE 754 flags which were
hidden in the processor status word are now directly accessible in the floating point registers.

Figure 1. Format and flags of UNUMs in 64 bit processor registers.

So UNUMs are stored efficiently in memory and transferred efficiently to the processor where they are
unpacked and operated upon efficiently. Any results that have to be packed are then transferred and stored in
the memory efficiently.

Differences between UNUM Arithmetic and IEEE 754 Arithmetic

Let us illustrate the differences between arithmetic on UNUMs and arithmetic on IEEE 754 floating point
numbers with the examples of IEEE 754 abnormalities above. ⊕, ⊝, ⊗ and ⊘ stand for addition,
subtraction, multiplication and division on UNUMs, respectively.

 The term 997 −
97
7 −

2
7 is computed by (99 ⊘ 7) ⊝ (97⊘ 7) ⊝ (2 ⊘ 7) and returns the

correct interval (−0.000072479248046875,0.00017547607421875) e.g. in the {2,4}
environment.

 The two expressions (1016 − 1016) + 1 and 1016 + (−1016 + 1) are evaluated identically to
1 in the {3,6} environment. However, in the {3,5} environment, the intervals computed are too
big to be meaningful. But, the environment can automatically be adapted if the need is detected by
suitable library functions.

There are corresponding tables for subtraction, multiplication and division which show that the set of ubounds
is closed under the four basic arithmetic operations.

Fused Operations and the Mathematica Math Library

Gustafson (2015) provides a basic math library for UNUMs written in Mathematica. It contains built-in
functions to compute powers or a more general expression 𝑥𝑥𝑦𝑦 which is an algebraic function for any exactly
representable 𝑥𝑥 and 𝑦𝑦. Also there is an exact dot product which has to be used in case associativity of addition
is needed. Similarly, an exact product guarantees the associativity of multiplication. One has to be careful to
avoid big ubounds. For example, do not compute 𝑥𝑥2 by the product 𝑥𝑥 ⊗ 𝑥𝑥 where ⊗ denotes multiplication of
UNUMs: if 𝑥𝑥 is given by the ubound 𝑥𝑥 = {𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚} naïve 𝑥𝑥 ⊗ 𝑥𝑥 produces
{min(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2 ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2) , max (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2 ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2)} instead of the much smaller ubound

{0, max (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2 ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2)}.
So-called fused operations like the exact dot product fight the explosion of the size of intervals notorious for
traditional interval arithmetic (Alefeld & Meyer, 2000; Revol, 2015).
Gustafson’s math library contains all elementary mathematical functions like powers, exponential,
trigonometric, and hyperbolic and their inverses.

Efficient Operations on UNUMs in the Processor

UNUMs are loaded into the processors’ usual 64 bit floating point registers in something like an unpacked
format in order to speed up operations on UNUMs (see Figure 1). Part of the IEEE 754 flags which were
hidden in the processor status word are now directly accessible in the floating point registers.

Figure 1. Format and flags of UNUMs in 64 bit processor registers.

So UNUMs are stored efficiently in memory and transferred efficiently to the processor where they are
unpacked and operated upon efficiently. Any results that have to be packed are then transferred and stored in
the memory efficiently.

Differences between UNUM Arithmetic and IEEE 754 Arithmetic

Let us illustrate the differences between arithmetic on UNUMs and arithmetic on IEEE 754 floating point
numbers with the examples of IEEE 754 abnormalities above. ⊕, ⊝, ⊗ and ⊘ stand for addition,
subtraction, multiplication and division on UNUMs, respectively.

 The term 997 −
97
7 −

2
7 is computed by (99 ⊘ 7) ⊝ (97⊘ 7) ⊝ (2 ⊘ 7) and returns the

correct interval (−0.000072479248046875,0.00017547607421875) e.g. in the {2,4}
environment.

 The two expressions (1016 − 1016) + 1 and 1016 + (−1016 + 1) are evaluated identically to
1 in the {3,6} environment. However, in the {3,5} environment, the intervals computed are too
big to be meaningful. But, the environment can automatically be adapted if the need is detected by
suitable library functions.

There are corresponding tables for subtraction, multiplication and division which show that the set of ubounds
is closed under the four basic arithmetic operations.

Fused Operations and the Mathematica Math Library

Gustafson (2015) provides a basic math library for UNUMs written in Mathematica. It contains built-in
functions to compute powers or a more general expression 𝑥𝑥𝑦𝑦 which is an algebraic function for any exactly
representable 𝑥𝑥 and 𝑦𝑦. Also there is an exact dot product which has to be used in case associativity of addition
is needed. Similarly, an exact product guarantees the associativity of multiplication. One has to be careful to
avoid big ubounds. For example, do not compute 𝑥𝑥2 by the product 𝑥𝑥 ⊗ 𝑥𝑥 where ⊗ denotes multiplication of
UNUMs: if 𝑥𝑥 is given by the ubound 𝑥𝑥 = {𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚} naïve 𝑥𝑥 ⊗ 𝑥𝑥 produces
{min(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2 ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2) , max (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2 ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2)} instead of the much smaller ubound

{0, max (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2 ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2)}.
So-called fused operations like the exact dot product fight the explosion of the size of intervals notorious for
traditional interval arithmetic (Alefeld & Meyer, 2000; Revol, 2015).
Gustafson’s math library contains all elementary mathematical functions like powers, exponential,
trigonometric, and hyperbolic and their inverses.

Efficient Operations on UNUMs in the Processor

UNUMs are loaded into the processors’ usual 64 bit floating point registers in something like an unpacked
format in order to speed up operations on UNUMs (see Figure 1). Part of the IEEE 754 flags which were
hidden in the processor status word are now directly accessible in the floating point registers.

Figure 1. Format and flags of UNUMs in 64 bit processor registers.

So UNUMs are stored efficiently in memory and transferred efficiently to the processor where they are
unpacked and operated upon efficiently. Any results that have to be packed are then transferred and stored in
the memory efficiently.

Differences between UNUM Arithmetic and IEEE 754 Arithmetic

Let us illustrate the differences between arithmetic on UNUMs and arithmetic on IEEE 754 floating point
numbers with the examples of IEEE 754 abnormalities above. ⊕, ⊝, ⊗ and ⊘ stand for addition,
subtraction, multiplication and division on UNUMs, respectively.

 The term 997 −
97
7 −

2
7 is computed by (99 ⊘ 7) ⊝ (97⊘ 7) ⊝ (2 ⊘ 7) and returns the

correct interval (−0.000072479248046875,0.00017547607421875) e.g. in the {2,4}
environment.

 The two expressions (1016 − 1016) + 1 and 1016 + (−1016 + 1) are evaluated identically to
1 in the {3,6} environment. However, in the {3,5} environment, the intervals computed are too
big to be meaningful. But, the environment can automatically be adapted if the need is detected by
suitable library functions.

There are corresponding tables for subtraction, multiplication and division which show that the set of ubounds
is closed under the four basic arithmetic operations.

Fused Operations and the Mathematica Math Library

Gustafson (2015) provides a basic math library for UNUMs written in Mathematica. It contains built-in
functions to compute powers or a more general expression 𝑥𝑥𝑦𝑦 which is an algebraic function for any exactly
representable 𝑥𝑥 and 𝑦𝑦. Also there is an exact dot product which has to be used in case associativity of addition
is needed. Similarly, an exact product guarantees the associativity of multiplication. One has to be careful to
avoid big ubounds. For example, do not compute 𝑥𝑥2 by the product 𝑥𝑥 ⊗ 𝑥𝑥 where ⊗ denotes multiplication of
UNUMs: if 𝑥𝑥 is given by the ubound 𝑥𝑥 = {𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚} naïve 𝑥𝑥 ⊗ 𝑥𝑥 produces
{min(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2 ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2) , max (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2 ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2)} instead of the much smaller ubound

{0, max (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2 ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2)}.
So-called fused operations like the exact dot product fight the explosion of the size of intervals notorious for
traditional interval arithmetic (Alefeld & Meyer, 2000; Revol, 2015).
Gustafson’s math library contains all elementary mathematical functions like powers, exponential,
trigonometric, and hyperbolic and their inverses.

Efficient Operations on UNUMs in the Processor

UNUMs are loaded into the processors’ usual 64 bit floating point registers in something like an unpacked
format in order to speed up operations on UNUMs (see Figure 1). Part of the IEEE 754 flags which were
hidden in the processor status word are now directly accessible in the floating point registers.

Figure 1. Format and flags of UNUMs in 64 bit processor registers.

So UNUMs are stored efficiently in memory and transferred efficiently to the processor where they are
unpacked and operated upon efficiently. Any results that have to be packed are then transferred and stored in
the memory efficiently.

Differences between UNUM Arithmetic and IEEE 754 Arithmetic

Let us illustrate the differences between arithmetic on UNUMs and arithmetic on IEEE 754 floating point
numbers with the examples of IEEE 754 abnormalities above. ⊕, ⊝, ⊗ and ⊘ stand for addition,
subtraction, multiplication and division on UNUMs, respectively.

 The term 997 −
97
7 −

2
7 is computed by (99 ⊘ 7) ⊝ (97⊘ 7) ⊝ (2 ⊘ 7) and returns the

correct interval (−0.000072479248046875,0.00017547607421875) e.g. in the {2,4}
environment.

 The two expressions (1016 − 1016) + 1 and 1016 + (−1016 + 1) are evaluated identically to
1 in the {3,6} environment. However, in the {3,5} environment, the intervals computed are too
big to be meaningful. But, the environment can automatically be adapted if the need is detected by
suitable library functions.

There are corresponding tables for subtraction, multiplication and division which show that the set of ubounds
is closed under the four basic arithmetic operations.

Fused Operations and the Mathematica Math Library

Gustafson (2015) provides a basic math library for UNUMs written in Mathematica. It contains built-in
functions to compute powers or a more general expression 𝑥𝑥𝑦𝑦 which is an algebraic function for any exactly
representable 𝑥𝑥 and 𝑦𝑦. Also there is an exact dot product which has to be used in case associativity of addition
is needed. Similarly, an exact product guarantees the associativity of multiplication. One has to be careful to
avoid big ubounds. For example, do not compute 𝑥𝑥2 by the product 𝑥𝑥 ⊗ 𝑥𝑥 where ⊗ denotes multiplication of
UNUMs: if 𝑥𝑥 is given by the ubound 𝑥𝑥 = {𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚} naïve 𝑥𝑥 ⊗ 𝑥𝑥 produces
{min(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2 ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2) , max (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2 ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2)} instead of the much smaller ubound

{0, max (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2 ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2)}.
So-called fused operations like the exact dot product fight the explosion of the size of intervals notorious for
traditional interval arithmetic (Alefeld & Meyer, 2000; Revol, 2015).
Gustafson’s math library contains all elementary mathematical functions like powers, exponential,
trigonometric, and hyperbolic and their inverses.

Efficient Operations on UNUMs in the Processor

UNUMs are loaded into the processors’ usual 64 bit floating point registers in something like an unpacked
format in order to speed up operations on UNUMs (see Figure 1). Part of the IEEE 754 flags which were
hidden in the processor status word are now directly accessible in the floating point registers.

Figure 1. Format and flags of UNUMs in 64 bit processor registers.

So UNUMs are stored efficiently in memory and transferred efficiently to the processor where they are
unpacked and operated upon efficiently. Any results that have to be packed are then transferred and stored in
the memory efficiently.

Differences between UNUM Arithmetic and IEEE 754 Arithmetic

Let us illustrate the differences between arithmetic on UNUMs and arithmetic on IEEE 754 floating point
numbers with the examples of IEEE 754 abnormalities above. ⊕, ⊝, ⊗ and ⊘ stand for addition,
subtraction, multiplication and division on UNUMs, respectively.

 The term 997 −
97
7 −

2
7 is computed by (99 ⊘ 7) ⊝ (97⊘ 7) ⊝ (2 ⊘ 7) and returns the

correct interval (−0.000072479248046875,0.00017547607421875) e.g. in the {2,4}
environment.

 The two expressions (1016 − 1016) + 1 and 1016 + (−1016 + 1) are evaluated identically to
1 in the {3,6} environment. However, in the {3,5} environment, the intervals computed are too
big to be meaningful. But, the environment can automatically be adapted if the need is detected by
suitable library functions.

There are corresponding tables for subtraction, multiplication and division which show that the set of ubounds
is closed under the four basic arithmetic operations.

Fused Operations and the Mathematica Math Library

Gustafson (2015) provides a basic math library for UNUMs written in Mathematica. It contains built-in
functions to compute powers or a more general expression 𝑥𝑥𝑦𝑦 which is an algebraic function for any exactly
representable 𝑥𝑥 and 𝑦𝑦. Also there is an exact dot product which has to be used in case associativity of addition
is needed. Similarly, an exact product guarantees the associativity of multiplication. One has to be careful to
avoid big ubounds. For example, do not compute 𝑥𝑥2 by the product 𝑥𝑥 ⊗ 𝑥𝑥 where ⊗ denotes multiplication of
UNUMs: if 𝑥𝑥 is given by the ubound 𝑥𝑥 = {𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚} naïve 𝑥𝑥 ⊗ 𝑥𝑥 produces
{min(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2 ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2) , max (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2 ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2)} instead of the much smaller ubound

{0, max (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2 ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2)}.
So-called fused operations like the exact dot product fight the explosion of the size of intervals notorious for
traditional interval arithmetic (Alefeld & Meyer, 2000; Revol, 2015).
Gustafson’s math library contains all elementary mathematical functions like powers, exponential,
trigonometric, and hyperbolic and their inverses.

Efficient Operations on UNUMs in the Processor

UNUMs are loaded into the processors’ usual 64 bit floating point registers in something like an unpacked
format in order to speed up operations on UNUMs (see Figure 1). Part of the IEEE 754 flags which were
hidden in the processor status word are now directly accessible in the floating point registers.

Figure 1. Format and flags of UNUMs in 64 bit processor registers.

So UNUMs are stored efficiently in memory and transferred efficiently to the processor where they are
unpacked and operated upon efficiently. Any results that have to be packed are then transferred and stored in
the memory efficiently.

Differences between UNUM Arithmetic and IEEE 754 Arithmetic

Let us illustrate the differences between arithmetic on UNUMs and arithmetic on IEEE 754 floating point
numbers with the examples of IEEE 754 abnormalities above. ⊕, ⊝, ⊗ and ⊘ stand for addition,
subtraction, multiplication and division on UNUMs, respectively.

 The term 997 −
97
7 −

2
7 is computed by (99 ⊘ 7) ⊝ (97⊘ 7) ⊝ (2 ⊘ 7) and returns the

correct interval (−0.000072479248046875,0.00017547607421875) e.g. in the {2,4}
environment.

 The two expressions (1016 − 1016) + 1 and 1016 + (−1016 + 1) are evaluated identically to
1 in the {3,6} environment. However, in the {3,5} environment, the intervals computed are too
big to be meaningful. But, the environment can automatically be adapted if the need is detected by
suitable library functions.

There are corresponding tables for subtraction, multiplication and division which show that the set of ubounds
is closed under the four basic arithmetic operations.

Fused Operations and the Mathematica Math Library

Gustafson (2015) provides a basic math library for UNUMs written in Mathematica. It contains built-in
functions to compute powers or a more general expression 𝑥𝑥𝑦𝑦 which is an algebraic function for any exactly
representable 𝑥𝑥 and 𝑦𝑦. Also there is an exact dot product which has to be used in case associativity of addition
is needed. Similarly, an exact product guarantees the associativity of multiplication. One has to be careful to
avoid big ubounds. For example, do not compute 𝑥𝑥2 by the product 𝑥𝑥 ⊗ 𝑥𝑥 where ⊗ denotes multiplication of
UNUMs: if 𝑥𝑥 is given by the ubound 𝑥𝑥 = {𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚} naïve 𝑥𝑥 ⊗ 𝑥𝑥 produces
{min(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2 ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2) , max (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2 ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2)} instead of the much smaller ubound

{0, max (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2 ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2)}.
So-called fused operations like the exact dot product fight the explosion of the size of intervals notorious for
traditional interval arithmetic (Alefeld & Meyer, 2000; Revol, 2015).
Gustafson’s math library contains all elementary mathematical functions like powers, exponential,
trigonometric, and hyperbolic and their inverses.

Efficient Operations on UNUMs in the Processor

UNUMs are loaded into the processors’ usual 64 bit floating point registers in something like an unpacked
format in order to speed up operations on UNUMs (see Figure 1). Part of the IEEE 754 flags which were
hidden in the processor status word are now directly accessible in the floating point registers.

Figure 1. Format and flags of UNUMs in 64 bit processor registers.

So UNUMs are stored efficiently in memory and transferred efficiently to the processor where they are
unpacked and operated upon efficiently. Any results that have to be packed are then transferred and stored in
the memory efficiently.

Differences between UNUM Arithmetic and IEEE 754 Arithmetic

Let us illustrate the differences between arithmetic on UNUMs and arithmetic on IEEE 754 floating point
numbers with the examples of IEEE 754 abnormalities above. ⊕, ⊝, ⊗ and ⊘ stand for addition,
subtraction, multiplication and division on UNUMs, respectively.

 The term 997 −
97
7 −

2
7 is computed by (99 ⊘ 7) ⊝ (97⊘ 7) ⊝ (2 ⊘ 7) and returns the

correct interval (−0.000072479248046875,0.00017547607421875) e.g. in the {2,4}
environment.

 The two expressions (1016 − 1016) + 1 and 1016 + (−1016 + 1) are evaluated identically to
1 in the {3,6} environment. However, in the {3,5} environment, the intervals computed are too
big to be meaningful. But, the environment can automatically be adapted if the need is detected by
suitable library functions.

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 1–16

8

the intervals computed are too big to be meaningful. But, the environment can
automatically be adapted if the need is detected by suitable library functions.

•	 Computing iteratively with Unums is done in Mathematica by 	
 	

E.g. in the {3,3} environment the result is stable after seven iterations
returning intervals with monotonically decreasing upper bound . So
the results are always greater than 1.

•	 Solving using Cramer’s

rule with Unums in the {3,6} environment gives the correct solution (x, y)=
(–1,2). The same is true in the {3,5} environment if one uses the fused dot
product fdotu [{a, – c}, {d, b}] to compute the determinant instead of
the naïve expression

•	 Evaluating with and and
 for x = (15,16,17,9999) with

•	 UNUMs in even the poorest {0,0}environment (one exponent bit and
one fraction bit) returns the correct solution (1,1,1,1).

•	 The Kahan sequence does not go astray but in the example the {3,6}
environment nicely converges to the fix point 6.

These few examples should corroborate the claim that UNUMs avoid numerical
anomalies. They, at the same time show that careful examination by hand or by
hardware is needed to choose the environment in which the required accuracy is
achieved.

SCIENTIFIC COMPUTING WITH UNUMS

There are already quite a lot of examples which demonstrate the suitability of
UNUMs in scientific computing. They also show that algorithms with UNUMs
are different from those with IEEE 754 floating numbers. Algorithms with
UNUMs often are declarative and use methods similar to inclusion/exclusion,
region growing, lumping, grid refinement, etc. (Gustafson, 2014, 2015a), to solve
problems like.
•	 finite integrals (quadrature determines an area),
•	 linear equations with exact and inexact coefficients,
•	 evaluation of polynomials; computation of zeroes, extreme points and fix

points,
•	 computation of the location ϑ of a physical pendulum where speed

υ = υ(ϑ), acceleration a = a(ϑ) , and time t = t(ϑ) are modelled depending
on ϑ,

 Computing √22𝑛𝑛 iteratively with Unums is done in Mathematica by
 𝑟𝑟 = 𝑥𝑥2𝑢𝑢[2]; .
 𝐷𝐷𝐷𝐷[𝑟𝑟 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑟𝑟];𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[“𝑟𝑟 = ” , 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣[𝑟𝑟]], {𝑖𝑖, 1,8}]
E.g. in the {3,3} environment the result is stable after seven iterations returning intervals (1,𝑢𝑢)
with monotonically decreasing upper bound 𝑢𝑢. So the results are always greater than 1.

 Solving 0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 using Cramer’s rule with Unums in

the {3,6} environment gives the correct solution (𝑥𝑥,𝑦𝑦) = (−1,2). The same is true in the {3,5}
environment if one uses the fused dot product fdotu[{𝑎𝑎,−𝑐𝑐}, {𝑑𝑑, 𝑏𝑏}] to compute the determinant
|𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑| instead of the naïve expression (𝑎𝑎 ⊗ 𝑑𝑑) ⊝ (𝑏𝑏 ⊗ 𝑐𝑐).

 Evaluating 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 −

√𝑥𝑥2 + 1| − 1
|𝑥𝑥+√𝑥𝑥2+1| for 𝑥𝑥 = (15,16,17,9999) with UNUMs in even the poorest {0,0}

environment (one exponent bit and one fraction bit) returns the correct solution (1,1,1,1).

 The Kahan sequence does not go astray but in the example the {3,6} environment nicely
converges to the fix point 6.

These few examples should corroborate the claim that UNUMs avoid numerical anomalies. They, at the same
time show that careful examination by hand or by hardware is needed to choose the environment in which the
required accuracy is achieved.

SCIENTIFIC COMPUTING WITH UNUMS

There are already quite a lot of examples which demonstrate the suitability of UNUMs in scientific
computing. They also show that algorithms with UNUMs are different from those with IEEE 754
floating numbers. Algorithms with UNUMs often are declarative and use methods similar to
inclusion/exclusion, region growing, lumping, grid refinement, etc. (Gustafson, 2014, 2015a), to solve
problems like.

 finite integrals (quadrature determines an area),
 linear equations with exact and inexact coefficients,
 evaluation of polynomials; computation of zeroes, extreme points and fix points,
 computation of the location 𝜗𝜗 of a physical pendulum where speed 𝑣𝑣 = 𝑣𝑣(𝜗𝜗), acceleration

𝑎𝑎 = 𝑎𝑎(𝜗𝜗), and time 𝑡𝑡 = 𝑡𝑡(𝜗𝜗) are modelled depending on 𝜗𝜗,
 two- and many-body problems (Gustafson, 2015),
 inverse kinematics (Gustafson, 2016 radical),
 mass-spring-systems, trusses, FFT, CFD, etc.

This list of classical problems in scientific computing alone is in our opinion proof of concept.

THE UNUM MATH LIBRARY

Gustafson provides a library of all elementary mathematical functions for UNUMs written in
Mathematica (Gustafson, 2015). It relies on the Mathematica implementations of these elementary

 Computing √22𝑛𝑛 iteratively with Unums is done in Mathematica by
 𝑟𝑟 = 𝑥𝑥2𝑢𝑢[2]; .
 𝐷𝐷𝐷𝐷[𝑟𝑟 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑟𝑟];𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[“𝑟𝑟 = ” , 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣[𝑟𝑟]], {𝑖𝑖, 1,8}]
E.g. in the {3,3} environment the result is stable after seven iterations returning intervals (1,𝑢𝑢)
with monotonically decreasing upper bound 𝑢𝑢. So the results are always greater than 1.

 Solving 0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 using Cramer’s rule with Unums in

the {3,6} environment gives the correct solution (𝑥𝑥,𝑦𝑦) = (−1,2). The same is true in the {3,5}
environment if one uses the fused dot product fdotu[{𝑎𝑎,−𝑐𝑐}, {𝑑𝑑, 𝑏𝑏}] to compute the determinant
|𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑| instead of the naïve expression (𝑎𝑎 ⊗ 𝑑𝑑) ⊝ (𝑏𝑏 ⊗ 𝑐𝑐).

 Evaluating 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 −

√𝑥𝑥2 + 1| − 1
|𝑥𝑥+√𝑥𝑥2+1| for 𝑥𝑥 = (15,16,17,9999) with UNUMs in even the poorest {0,0}

environment (one exponent bit and one fraction bit) returns the correct solution (1,1,1,1).

 The Kahan sequence does not go astray but in the example the {3,6} environment nicely
converges to the fix point 6.

These few examples should corroborate the claim that UNUMs avoid numerical anomalies. They, at the same
time show that careful examination by hand or by hardware is needed to choose the environment in which the
required accuracy is achieved.

SCIENTIFIC COMPUTING WITH UNUMS

There are already quite a lot of examples which demonstrate the suitability of UNUMs in scientific
computing. They also show that algorithms with UNUMs are different from those with IEEE 754
floating numbers. Algorithms with UNUMs often are declarative and use methods similar to
inclusion/exclusion, region growing, lumping, grid refinement, etc. (Gustafson, 2014, 2015a), to solve
problems like.

 finite integrals (quadrature determines an area),
 linear equations with exact and inexact coefficients,
 evaluation of polynomials; computation of zeroes, extreme points and fix points,
 computation of the location 𝜗𝜗 of a physical pendulum where speed 𝑣𝑣 = 𝑣𝑣(𝜗𝜗), acceleration

𝑎𝑎 = 𝑎𝑎(𝜗𝜗), and time 𝑡𝑡 = 𝑡𝑡(𝜗𝜗) are modelled depending on 𝜗𝜗,
 two- and many-body problems (Gustafson, 2015),
 inverse kinematics (Gustafson, 2016 radical),
 mass-spring-systems, trusses, FFT, CFD, etc.

This list of classical problems in scientific computing alone is in our opinion proof of concept.

THE UNUM MATH LIBRARY

Gustafson provides a library of all elementary mathematical functions for UNUMs written in
Mathematica (Gustafson, 2015). It relies on the Mathematica implementations of these elementary

 Computing √22𝑛𝑛 iteratively with Unums is done in Mathematica by
 𝑟𝑟 = 𝑥𝑥2𝑢𝑢[2]; .
 𝐷𝐷𝐷𝐷[𝑟𝑟 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑟𝑟];𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[“𝑟𝑟 = ” , 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣[𝑟𝑟]], {𝑖𝑖, 1,8}]
E.g. in the {3,3} environment the result is stable after seven iterations returning intervals (1,𝑢𝑢)
with monotonically decreasing upper bound 𝑢𝑢. So the results are always greater than 1.

 Solving 0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 using Cramer’s rule with Unums in

the {3,6} environment gives the correct solution (𝑥𝑥,𝑦𝑦) = (−1,2). The same is true in the {3,5}
environment if one uses the fused dot product fdotu[{𝑎𝑎,−𝑐𝑐}, {𝑑𝑑, 𝑏𝑏}] to compute the determinant
|𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑| instead of the naïve expression (𝑎𝑎 ⊗ 𝑑𝑑) ⊝ (𝑏𝑏 ⊗ 𝑐𝑐).

 Evaluating 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 −

√𝑥𝑥2 + 1| − 1
|𝑥𝑥+√𝑥𝑥2+1| for 𝑥𝑥 = (15,16,17,9999) with UNUMs in even the poorest {0,0}

environment (one exponent bit and one fraction bit) returns the correct solution (1,1,1,1).

 The Kahan sequence does not go astray but in the example the {3,6} environment nicely
converges to the fix point 6.

These few examples should corroborate the claim that UNUMs avoid numerical anomalies. They, at the same
time show that careful examination by hand or by hardware is needed to choose the environment in which the
required accuracy is achieved.

SCIENTIFIC COMPUTING WITH UNUMS

There are already quite a lot of examples which demonstrate the suitability of UNUMs in scientific
computing. They also show that algorithms with UNUMs are different from those with IEEE 754
floating numbers. Algorithms with UNUMs often are declarative and use methods similar to
inclusion/exclusion, region growing, lumping, grid refinement, etc. (Gustafson, 2014, 2015a), to solve
problems like.

 finite integrals (quadrature determines an area),
 linear equations with exact and inexact coefficients,
 evaluation of polynomials; computation of zeroes, extreme points and fix points,
 computation of the location 𝜗𝜗 of a physical pendulum where speed 𝑣𝑣 = 𝑣𝑣(𝜗𝜗), acceleration

𝑎𝑎 = 𝑎𝑎(𝜗𝜗), and time 𝑡𝑡 = 𝑡𝑡(𝜗𝜗) are modelled depending on 𝜗𝜗,
 two- and many-body problems (Gustafson, 2015),
 inverse kinematics (Gustafson, 2016 radical),
 mass-spring-systems, trusses, FFT, CFD, etc.

This list of classical problems in scientific computing alone is in our opinion proof of concept.

THE UNUM MATH LIBRARY

Gustafson provides a library of all elementary mathematical functions for UNUMs written in
Mathematica (Gustafson, 2015). It relies on the Mathematica implementations of these elementary

 Computing √22𝑛𝑛 iteratively with Unums is done in Mathematica by
 𝑟𝑟 = 𝑥𝑥2𝑢𝑢[2]; .
 𝐷𝐷𝐷𝐷[𝑟𝑟 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑟𝑟];𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[“𝑟𝑟 = ” , 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣[𝑟𝑟]], {𝑖𝑖, 1,8}]
E.g. in the {3,3} environment the result is stable after seven iterations returning intervals (1,𝑢𝑢)
with monotonically decreasing upper bound 𝑢𝑢. So the results are always greater than 1.

 Solving 0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 using Cramer’s rule with Unums in

the {3,6} environment gives the correct solution (𝑥𝑥,𝑦𝑦) = (−1,2). The same is true in the {3,5}
environment if one uses the fused dot product fdotu[{𝑎𝑎,−𝑐𝑐}, {𝑑𝑑, 𝑏𝑏}] to compute the determinant
|𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑| instead of the naïve expression (𝑎𝑎 ⊗ 𝑑𝑑) ⊝ (𝑏𝑏 ⊗ 𝑐𝑐).

 Evaluating 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 −

√𝑥𝑥2 + 1| − 1
|𝑥𝑥+√𝑥𝑥2+1| for 𝑥𝑥 = (15,16,17,9999) with UNUMs in even the poorest {0,0}

environment (one exponent bit and one fraction bit) returns the correct solution (1,1,1,1).

 The Kahan sequence does not go astray but in the example the {3,6} environment nicely
converges to the fix point 6.

These few examples should corroborate the claim that UNUMs avoid numerical anomalies. They, at the same
time show that careful examination by hand or by hardware is needed to choose the environment in which the
required accuracy is achieved.

SCIENTIFIC COMPUTING WITH UNUMS

There are already quite a lot of examples which demonstrate the suitability of UNUMs in scientific
computing. They also show that algorithms with UNUMs are different from those with IEEE 754
floating numbers. Algorithms with UNUMs often are declarative and use methods similar to
inclusion/exclusion, region growing, lumping, grid refinement, etc. (Gustafson, 2014, 2015a), to solve
problems like.

 finite integrals (quadrature determines an area),
 linear equations with exact and inexact coefficients,
 evaluation of polynomials; computation of zeroes, extreme points and fix points,
 computation of the location 𝜗𝜗 of a physical pendulum where speed 𝑣𝑣 = 𝑣𝑣(𝜗𝜗), acceleration

𝑎𝑎 = 𝑎𝑎(𝜗𝜗), and time 𝑡𝑡 = 𝑡𝑡(𝜗𝜗) are modelled depending on 𝜗𝜗,
 two- and many-body problems (Gustafson, 2015),
 inverse kinematics (Gustafson, 2016 radical),
 mass-spring-systems, trusses, FFT, CFD, etc.

This list of classical problems in scientific computing alone is in our opinion proof of concept.

THE UNUM MATH LIBRARY

Gustafson provides a library of all elementary mathematical functions for UNUMs written in
Mathematica (Gustafson, 2015). It relies on the Mathematica implementations of these elementary

 Computing √22𝑛𝑛 iteratively with Unums is done in Mathematica by
 𝑟𝑟 = 𝑥𝑥2𝑢𝑢[2]; .
 𝐷𝐷𝐷𝐷[𝑟𝑟 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑟𝑟];𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[“𝑟𝑟 = ” , 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣[𝑟𝑟]], {𝑖𝑖, 1,8}]
E.g. in the {3,3} environment the result is stable after seven iterations returning intervals (1,𝑢𝑢)
with monotonically decreasing upper bound 𝑢𝑢. So the results are always greater than 1.

 Solving 0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 using Cramer’s rule with Unums in

the {3,6} environment gives the correct solution (𝑥𝑥,𝑦𝑦) = (−1,2). The same is true in the {3,5}
environment if one uses the fused dot product fdotu[{𝑎𝑎,−𝑐𝑐}, {𝑑𝑑, 𝑏𝑏}] to compute the determinant
|𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑| instead of the naïve expression (𝑎𝑎 ⊗ 𝑑𝑑) ⊝ (𝑏𝑏 ⊗ 𝑐𝑐).

 Evaluating 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 −

√𝑥𝑥2 + 1| − 1
|𝑥𝑥+√𝑥𝑥2+1| for 𝑥𝑥 = (15,16,17,9999) with UNUMs in even the poorest {0,0}

environment (one exponent bit and one fraction bit) returns the correct solution (1,1,1,1).

 The Kahan sequence does not go astray but in the example the {3,6} environment nicely
converges to the fix point 6.

These few examples should corroborate the claim that UNUMs avoid numerical anomalies. They, at the same
time show that careful examination by hand or by hardware is needed to choose the environment in which the
required accuracy is achieved.

SCIENTIFIC COMPUTING WITH UNUMS

There are already quite a lot of examples which demonstrate the suitability of UNUMs in scientific
computing. They also show that algorithms with UNUMs are different from those with IEEE 754
floating numbers. Algorithms with UNUMs often are declarative and use methods similar to
inclusion/exclusion, region growing, lumping, grid refinement, etc. (Gustafson, 2014, 2015a), to solve
problems like.

 finite integrals (quadrature determines an area),
 linear equations with exact and inexact coefficients,
 evaluation of polynomials; computation of zeroes, extreme points and fix points,
 computation of the location 𝜗𝜗 of a physical pendulum where speed 𝑣𝑣 = 𝑣𝑣(𝜗𝜗), acceleration

𝑎𝑎 = 𝑎𝑎(𝜗𝜗), and time 𝑡𝑡 = 𝑡𝑡(𝜗𝜗) are modelled depending on 𝜗𝜗,
 two- and many-body problems (Gustafson, 2015),
 inverse kinematics (Gustafson, 2016 radical),
 mass-spring-systems, trusses, FFT, CFD, etc.

This list of classical problems in scientific computing alone is in our opinion proof of concept.

THE UNUM MATH LIBRARY

Gustafson provides a library of all elementary mathematical functions for UNUMs written in
Mathematica (Gustafson, 2015). It relies on the Mathematica implementations of these elementary

 Computing √22𝑛𝑛 iteratively with Unums is done in Mathematica by
 𝑟𝑟 = 𝑥𝑥2𝑢𝑢[2]; .
 𝐷𝐷𝐷𝐷[𝑟𝑟 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑟𝑟];𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[“𝑟𝑟 = ” , 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣[𝑟𝑟]], {𝑖𝑖, 1,8}]
E.g. in the {3,3} environment the result is stable after seven iterations returning intervals (1,𝑢𝑢)
with monotonically decreasing upper bound 𝑢𝑢. So the results are always greater than 1.

 Solving 0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 using Cramer’s rule with Unums in

the {3,6} environment gives the correct solution (𝑥𝑥,𝑦𝑦) = (−1,2). The same is true in the {3,5}
environment if one uses the fused dot product fdotu[{𝑎𝑎,−𝑐𝑐}, {𝑑𝑑, 𝑏𝑏}] to compute the determinant
|𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑| instead of the naïve expression (𝑎𝑎 ⊗ 𝑑𝑑) ⊝ (𝑏𝑏 ⊗ 𝑐𝑐).

 Evaluating 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 −

√𝑥𝑥2 + 1| − 1
|𝑥𝑥+√𝑥𝑥2+1| for 𝑥𝑥 = (15,16,17,9999) with UNUMs in even the poorest {0,0}

environment (one exponent bit and one fraction bit) returns the correct solution (1,1,1,1).

 The Kahan sequence does not go astray but in the example the {3,6} environment nicely
converges to the fix point 6.

These few examples should corroborate the claim that UNUMs avoid numerical anomalies. They, at the same
time show that careful examination by hand or by hardware is needed to choose the environment in which the
required accuracy is achieved.

SCIENTIFIC COMPUTING WITH UNUMS

There are already quite a lot of examples which demonstrate the suitability of UNUMs in scientific
computing. They also show that algorithms with UNUMs are different from those with IEEE 754
floating numbers. Algorithms with UNUMs often are declarative and use methods similar to
inclusion/exclusion, region growing, lumping, grid refinement, etc. (Gustafson, 2014, 2015a), to solve
problems like.

 finite integrals (quadrature determines an area),
 linear equations with exact and inexact coefficients,
 evaluation of polynomials; computation of zeroes, extreme points and fix points,
 computation of the location 𝜗𝜗 of a physical pendulum where speed 𝑣𝑣 = 𝑣𝑣(𝜗𝜗), acceleration

𝑎𝑎 = 𝑎𝑎(𝜗𝜗), and time 𝑡𝑡 = 𝑡𝑡(𝜗𝜗) are modelled depending on 𝜗𝜗,
 two- and many-body problems (Gustafson, 2015),
 inverse kinematics (Gustafson, 2016 radical),
 mass-spring-systems, trusses, FFT, CFD, etc.

This list of classical problems in scientific computing alone is in our opinion proof of concept.

THE UNUM MATH LIBRARY

Gustafson provides a library of all elementary mathematical functions for UNUMs written in
Mathematica (Gustafson, 2015). It relies on the Mathematica implementations of these elementary

 Computing √22𝑛𝑛 iteratively with Unums is done in Mathematica by
 𝑟𝑟 = 𝑥𝑥2𝑢𝑢[2]; .
 𝐷𝐷𝐷𝐷[𝑟𝑟 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑟𝑟];𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[“𝑟𝑟 = ” , 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣[𝑟𝑟]], {𝑖𝑖, 1,8}]
E.g. in the {3,3} environment the result is stable after seven iterations returning intervals (1,𝑢𝑢)
with monotonically decreasing upper bound 𝑢𝑢. So the results are always greater than 1.

 Solving 0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 using Cramer’s rule with Unums in

the {3,6} environment gives the correct solution (𝑥𝑥,𝑦𝑦) = (−1,2). The same is true in the {3,5}
environment if one uses the fused dot product fdotu[{𝑎𝑎,−𝑐𝑐}, {𝑑𝑑, 𝑏𝑏}] to compute the determinant
|𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑| instead of the naïve expression (𝑎𝑎 ⊗ 𝑑𝑑) ⊝ (𝑏𝑏 ⊗ 𝑐𝑐).

 Evaluating 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 −

√𝑥𝑥2 + 1| − 1
|𝑥𝑥+√𝑥𝑥2+1| for 𝑥𝑥 = (15,16,17,9999) with UNUMs in even the poorest {0,0}

environment (one exponent bit and one fraction bit) returns the correct solution (1,1,1,1).

 The Kahan sequence does not go astray but in the example the {3,6} environment nicely
converges to the fix point 6.

These few examples should corroborate the claim that UNUMs avoid numerical anomalies. They, at the same
time show that careful examination by hand or by hardware is needed to choose the environment in which the
required accuracy is achieved.

SCIENTIFIC COMPUTING WITH UNUMS

There are already quite a lot of examples which demonstrate the suitability of UNUMs in scientific
computing. They also show that algorithms with UNUMs are different from those with IEEE 754
floating numbers. Algorithms with UNUMs often are declarative and use methods similar to
inclusion/exclusion, region growing, lumping, grid refinement, etc. (Gustafson, 2014, 2015a), to solve
problems like.

 finite integrals (quadrature determines an area),
 linear equations with exact and inexact coefficients,
 evaluation of polynomials; computation of zeroes, extreme points and fix points,
 computation of the location 𝜗𝜗 of a physical pendulum where speed 𝑣𝑣 = 𝑣𝑣(𝜗𝜗), acceleration

𝑎𝑎 = 𝑎𝑎(𝜗𝜗), and time 𝑡𝑡 = 𝑡𝑡(𝜗𝜗) are modelled depending on 𝜗𝜗,
 two- and many-body problems (Gustafson, 2015),
 inverse kinematics (Gustafson, 2016 radical),
 mass-spring-systems, trusses, FFT, CFD, etc.

This list of classical problems in scientific computing alone is in our opinion proof of concept.

THE UNUM MATH LIBRARY

Gustafson provides a library of all elementary mathematical functions for UNUMs written in
Mathematica (Gustafson, 2015). It relies on the Mathematica implementations of these elementary

 Computing √22𝑛𝑛 iteratively with Unums is done in Mathematica by
 𝑟𝑟 = 𝑥𝑥2𝑢𝑢[2]; .
 𝐷𝐷𝐷𝐷[𝑟𝑟 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑟𝑟];𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[“𝑟𝑟 = ” , 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣[𝑟𝑟]], {𝑖𝑖, 1,8}]
E.g. in the {3,3} environment the result is stable after seven iterations returning intervals (1,𝑢𝑢)
with monotonically decreasing upper bound 𝑢𝑢. So the results are always greater than 1.

 Solving 0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 using Cramer’s rule with Unums in

the {3,6} environment gives the correct solution (𝑥𝑥,𝑦𝑦) = (−1,2). The same is true in the {3,5}
environment if one uses the fused dot product fdotu[{𝑎𝑎,−𝑐𝑐}, {𝑑𝑑, 𝑏𝑏}] to compute the determinant
|𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑| instead of the naïve expression (𝑎𝑎 ⊗ 𝑑𝑑) ⊝ (𝑏𝑏 ⊗ 𝑐𝑐).

 Evaluating 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 −

√𝑥𝑥2 + 1| − 1
|𝑥𝑥+√𝑥𝑥2+1| for 𝑥𝑥 = (15,16,17,9999) with UNUMs in even the poorest {0,0}

environment (one exponent bit and one fraction bit) returns the correct solution (1,1,1,1).

 The Kahan sequence does not go astray but in the example the {3,6} environment nicely
converges to the fix point 6.

These few examples should corroborate the claim that UNUMs avoid numerical anomalies. They, at the same
time show that careful examination by hand or by hardware is needed to choose the environment in which the
required accuracy is achieved.

SCIENTIFIC COMPUTING WITH UNUMS

There are already quite a lot of examples which demonstrate the suitability of UNUMs in scientific
computing. They also show that algorithms with UNUMs are different from those with IEEE 754
floating numbers. Algorithms with UNUMs often are declarative and use methods similar to
inclusion/exclusion, region growing, lumping, grid refinement, etc. (Gustafson, 2014, 2015a), to solve
problems like.

 finite integrals (quadrature determines an area),
 linear equations with exact and inexact coefficients,
 evaluation of polynomials; computation of zeroes, extreme points and fix points,
 computation of the location 𝜗𝜗 of a physical pendulum where speed 𝑣𝑣 = 𝑣𝑣(𝜗𝜗), acceleration

𝑎𝑎 = 𝑎𝑎(𝜗𝜗), and time 𝑡𝑡 = 𝑡𝑡(𝜗𝜗) are modelled depending on 𝜗𝜗,
 two- and many-body problems (Gustafson, 2015),
 inverse kinematics (Gustafson, 2016 radical),
 mass-spring-systems, trusses, FFT, CFD, etc.

This list of classical problems in scientific computing alone is in our opinion proof of concept.

THE UNUM MATH LIBRARY

Gustafson provides a library of all elementary mathematical functions for UNUMs written in
Mathematica (Gustafson, 2015). It relies on the Mathematica implementations of these elementary

 Computing √22𝑛𝑛 iteratively with Unums is done in Mathematica by
 𝑟𝑟 = 𝑥𝑥2𝑢𝑢[2]; .
 𝐷𝐷𝐷𝐷[𝑟𝑟 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑟𝑟];𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[“𝑟𝑟 = ” , 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣[𝑟𝑟]], {𝑖𝑖, 1,8}]
E.g. in the {3,3} environment the result is stable after seven iterations returning intervals (1,𝑢𝑢)
with monotonically decreasing upper bound 𝑢𝑢. So the results are always greater than 1.

 Solving 0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 using Cramer’s rule with Unums in

the {3,6} environment gives the correct solution (𝑥𝑥,𝑦𝑦) = (−1,2). The same is true in the {3,5}
environment if one uses the fused dot product fdotu[{𝑎𝑎,−𝑐𝑐}, {𝑑𝑑, 𝑏𝑏}] to compute the determinant
|𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑| instead of the naïve expression (𝑎𝑎 ⊗ 𝑑𝑑) ⊝ (𝑏𝑏 ⊗ 𝑐𝑐).

 Evaluating 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 −

√𝑥𝑥2 + 1| − 1
|𝑥𝑥+√𝑥𝑥2+1| for 𝑥𝑥 = (15,16,17,9999) with UNUMs in even the poorest {0,0}

environment (one exponent bit and one fraction bit) returns the correct solution (1,1,1,1).

 The Kahan sequence does not go astray but in the example the {3,6} environment nicely
converges to the fix point 6.

These few examples should corroborate the claim that UNUMs avoid numerical anomalies. They, at the same
time show that careful examination by hand or by hardware is needed to choose the environment in which the
required accuracy is achieved.

SCIENTIFIC COMPUTING WITH UNUMS

There are already quite a lot of examples which demonstrate the suitability of UNUMs in scientific
computing. They also show that algorithms with UNUMs are different from those with IEEE 754
floating numbers. Algorithms with UNUMs often are declarative and use methods similar to
inclusion/exclusion, region growing, lumping, grid refinement, etc. (Gustafson, 2014, 2015a), to solve
problems like.

 finite integrals (quadrature determines an area),
 linear equations with exact and inexact coefficients,
 evaluation of polynomials; computation of zeroes, extreme points and fix points,
 computation of the location 𝜗𝜗 of a physical pendulum where speed 𝑣𝑣 = 𝑣𝑣(𝜗𝜗), acceleration

𝑎𝑎 = 𝑎𝑎(𝜗𝜗), and time 𝑡𝑡 = 𝑡𝑡(𝜗𝜗) are modelled depending on 𝜗𝜗,
 two- and many-body problems (Gustafson, 2015),
 inverse kinematics (Gustafson, 2016 radical),
 mass-spring-systems, trusses, FFT, CFD, etc.

This list of classical problems in scientific computing alone is in our opinion proof of concept.

THE UNUM MATH LIBRARY

Gustafson provides a library of all elementary mathematical functions for UNUMs written in
Mathematica (Gustafson, 2015). It relies on the Mathematica implementations of these elementary

 Computing √22𝑛𝑛 iteratively with Unums is done in Mathematica by
 𝑟𝑟 = 𝑥𝑥2𝑢𝑢[2]; .
 𝐷𝐷𝐷𝐷[𝑟𝑟 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑟𝑟];𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[“𝑟𝑟 = ” , 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣[𝑟𝑟]], {𝑖𝑖, 1,8}]
E.g. in the {3,3} environment the result is stable after seven iterations returning intervals (1,𝑢𝑢)
with monotonically decreasing upper bound 𝑢𝑢. So the results are always greater than 1.

 Solving 0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 using Cramer’s rule with Unums in

the {3,6} environment gives the correct solution (𝑥𝑥,𝑦𝑦) = (−1,2). The same is true in the {3,5}
environment if one uses the fused dot product fdotu[{𝑎𝑎,−𝑐𝑐}, {𝑑𝑑, 𝑏𝑏}] to compute the determinant
|𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑| instead of the naïve expression (𝑎𝑎 ⊗ 𝑑𝑑) ⊝ (𝑏𝑏 ⊗ 𝑐𝑐).

 Evaluating 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 −

√𝑥𝑥2 + 1| − 1
|𝑥𝑥+√𝑥𝑥2+1| for 𝑥𝑥 = (15,16,17,9999) with UNUMs in even the poorest {0,0}

environment (one exponent bit and one fraction bit) returns the correct solution (1,1,1,1).

 The Kahan sequence does not go astray but in the example the {3,6} environment nicely
converges to the fix point 6.

These few examples should corroborate the claim that UNUMs avoid numerical anomalies. They, at the same
time show that careful examination by hand or by hardware is needed to choose the environment in which the
required accuracy is achieved.

SCIENTIFIC COMPUTING WITH UNUMS

There are already quite a lot of examples which demonstrate the suitability of UNUMs in scientific
computing. They also show that algorithms with UNUMs are different from those with IEEE 754
floating numbers. Algorithms with UNUMs often are declarative and use methods similar to
inclusion/exclusion, region growing, lumping, grid refinement, etc. (Gustafson, 2014, 2015a), to solve
problems like.

 finite integrals (quadrature determines an area),
 linear equations with exact and inexact coefficients,
 evaluation of polynomials; computation of zeroes, extreme points and fix points,
 computation of the location 𝜗𝜗 of a physical pendulum where speed 𝑣𝑣 = 𝑣𝑣(𝜗𝜗), acceleration

𝑎𝑎 = 𝑎𝑎(𝜗𝜗), and time 𝑡𝑡 = 𝑡𝑡(𝜗𝜗) are modelled depending on 𝜗𝜗,
 two- and many-body problems (Gustafson, 2015),
 inverse kinematics (Gustafson, 2016 radical),
 mass-spring-systems, trusses, FFT, CFD, etc.

This list of classical problems in scientific computing alone is in our opinion proof of concept.

THE UNUM MATH LIBRARY

Gustafson provides a library of all elementary mathematical functions for UNUMs written in
Mathematica (Gustafson, 2015). It relies on the Mathematica implementations of these elementary

 Computing √22𝑛𝑛 iteratively with Unums is done in Mathematica by
 𝑟𝑟 = 𝑥𝑥2𝑢𝑢[2]; .
 𝐷𝐷𝐷𝐷[𝑟𝑟 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑟𝑟];𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[“𝑟𝑟 = ” , 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣[𝑟𝑟]], {𝑖𝑖, 1,8}]
E.g. in the {3,3} environment the result is stable after seven iterations returning intervals (1,𝑢𝑢)
with monotonically decreasing upper bound 𝑢𝑢. So the results are always greater than 1.

 Solving 0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 using Cramer’s rule with Unums in

the {3,6} environment gives the correct solution (𝑥𝑥,𝑦𝑦) = (−1,2). The same is true in the {3,5}
environment if one uses the fused dot product fdotu[{𝑎𝑎,−𝑐𝑐}, {𝑑𝑑, 𝑏𝑏}] to compute the determinant
|𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑| instead of the naïve expression (𝑎𝑎 ⊗ 𝑑𝑑) ⊝ (𝑏𝑏 ⊗ 𝑐𝑐).

 Evaluating 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 −

√𝑥𝑥2 + 1| − 1
|𝑥𝑥+√𝑥𝑥2+1| for 𝑥𝑥 = (15,16,17,9999) with UNUMs in even the poorest {0,0}

environment (one exponent bit and one fraction bit) returns the correct solution (1,1,1,1).

 The Kahan sequence does not go astray but in the example the {3,6} environment nicely
converges to the fix point 6.

These few examples should corroborate the claim that UNUMs avoid numerical anomalies. They, at the same
time show that careful examination by hand or by hardware is needed to choose the environment in which the
required accuracy is achieved.

SCIENTIFIC COMPUTING WITH UNUMS

There are already quite a lot of examples which demonstrate the suitability of UNUMs in scientific
computing. They also show that algorithms with UNUMs are different from those with IEEE 754
floating numbers. Algorithms with UNUMs often are declarative and use methods similar to
inclusion/exclusion, region growing, lumping, grid refinement, etc. (Gustafson, 2014, 2015a), to solve
problems like.

 finite integrals (quadrature determines an area),
 linear equations with exact and inexact coefficients,
 evaluation of polynomials; computation of zeroes, extreme points and fix points,
 computation of the location 𝜗𝜗 of a physical pendulum where speed 𝑣𝑣 = 𝑣𝑣(𝜗𝜗), acceleration

𝑎𝑎 = 𝑎𝑎(𝜗𝜗), and time 𝑡𝑡 = 𝑡𝑡(𝜗𝜗) are modelled depending on 𝜗𝜗,
 two- and many-body problems (Gustafson, 2015),
 inverse kinematics (Gustafson, 2016 radical),
 mass-spring-systems, trusses, FFT, CFD, etc.

This list of classical problems in scientific computing alone is in our opinion proof of concept.

THE UNUM MATH LIBRARY

Gustafson provides a library of all elementary mathematical functions for UNUMs written in
Mathematica (Gustafson, 2015). It relies on the Mathematica implementations of these elementary

 Computing √22𝑛𝑛 iteratively with Unums is done in Mathematica by
 𝑟𝑟 = 𝑥𝑥2𝑢𝑢[2]; .
 𝐷𝐷𝐷𝐷[𝑟𝑟 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑟𝑟];𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[“𝑟𝑟 = ” , 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣[𝑟𝑟]], {𝑖𝑖, 1,8}]
E.g. in the {3,3} environment the result is stable after seven iterations returning intervals (1,𝑢𝑢)
with monotonically decreasing upper bound 𝑢𝑢. So the results are always greater than 1.

 Solving 0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 using Cramer’s rule with Unums in

the {3,6} environment gives the correct solution (𝑥𝑥,𝑦𝑦) = (−1,2). The same is true in the {3,5}
environment if one uses the fused dot product fdotu[{𝑎𝑎,−𝑐𝑐}, {𝑑𝑑, 𝑏𝑏}] to compute the determinant
|𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑| instead of the naïve expression (𝑎𝑎 ⊗ 𝑑𝑑) ⊝ (𝑏𝑏 ⊗ 𝑐𝑐).

 Evaluating 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): = 𝑒𝑒
𝑥𝑥−1
𝑥𝑥 and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 −

√𝑥𝑥2 + 1| − 1
|𝑥𝑥+√𝑥𝑥2+1| for 𝑥𝑥 = (15,16,17,9999) with UNUMs in even the poorest {0,0}

environment (one exponent bit and one fraction bit) returns the correct solution (1,1,1,1).

 The Kahan sequence does not go astray but in the example the {3,6} environment nicely
converges to the fix point 6.

These few examples should corroborate the claim that UNUMs avoid numerical anomalies. They, at the same
time show that careful examination by hand or by hardware is needed to choose the environment in which the
required accuracy is achieved.

SCIENTIFIC COMPUTING WITH UNUMS

There are already quite a lot of examples which demonstrate the suitability of UNUMs in scientific
computing. They also show that algorithms with UNUMs are different from those with IEEE 754
floating numbers. Algorithms with UNUMs often are declarative and use methods similar to
inclusion/exclusion, region growing, lumping, grid refinement, etc. (Gustafson, 2014, 2015a), to solve
problems like.

 finite integrals (quadrature determines an area),
 linear equations with exact and inexact coefficients,
 evaluation of polynomials; computation of zeroes, extreme points and fix points,
 computation of the location 𝜗𝜗 of a physical pendulum where speed 𝑣𝑣 = 𝑣𝑣(𝜗𝜗), acceleration

𝑎𝑎 = 𝑎𝑎(𝜗𝜗), and time 𝑡𝑡 = 𝑡𝑡(𝜗𝜗) are modelled depending on 𝜗𝜗,
 two- and many-body problems (Gustafson, 2015),
 inverse kinematics (Gustafson, 2016 radical),
 mass-spring-systems, trusses, FFT, CFD, etc.

This list of classical problems in scientific computing alone is in our opinion proof of concept.

THE UNUM MATH LIBRARY

Gustafson provides a library of all elementary mathematical functions for UNUMs written in
Mathematica (Gustafson, 2015). It relies on the Mathematica implementations of these elementary

9

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 1–16

•	 two- and many-body problems (Gustafson, 2015),
•	 inverse kinematics (Gustafson, 2016 radical),
•	 mass-spring-systems, trusses, FFT, CFD, etc.

This list of classical problems in scientific computing alone is in our opinion
proof of concept.

THE UNUM MATH LIBRARY

Gustafson provides a library of all elementary mathematical functions for
UNUMs written in Mathematica (Gustafson, 2015). It relies on the Mathematica
implementations of these elementary mathematical functions. As an unusual
departure, the trigonometric functions in this library take their arguments in
degrees in order to provide more exact values (Jahnel, 2006, 2013), even in
more or less all scientific computing applications these functions take their
arguments in radians.

Easy and comfortable deployment of UNUMs in scientific computing relies on
the availability of a UNUM math library as is available for IEEE 754 floating
point numbers. For example, a library like Basic Linear Algebra Subprograms,
BLAS, (http://www.netlib.org/blas/) provides highly optimized versions of all
sorts of algorithms of linear algebra. The library Linear Algebra Package,
LAPACK, (http://www.netlib.org/lapack/) can be seen as an extension to BLAS
providing, e.g. routines for solving systems of linear equations and linear least
squares, eigenvalue problems and singular value decomposition. 	

Libraries allow easy and comfortable adoption of scientific computing
algorithms. Also, many hardware manufacturers offer libraries tailored for
their special architectures, for example Intel’s Math Kernel Library, MKL
(https://software.intel.com/en-us/mkl.)

So, in order to support spreading the use of UNUMs a UNUM math library
is needed as the examples in the previous section show some algorithms
are already available. In order to add more algorithms we focus here quite
arbitrarily on root finding algorithms. The problem is to identify zeroes of
a given function y = (x) or w = f(z) in a given interval of the real line or
in a given rectangular region of the complex plane. Classical algorithms
comprise, for example, bisection, secant method (regula falsi), Newton’s
method, inverse interpolation, Brent’s method which combines bisection, the
secant method and the inverse quadratic interpolation. All these methods have
deficiencies, they do not find complex zeroes or multiple roots. An alternative

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 1–16

10

is based on the idea to use Cauchy’s residue calculus (Delves, Lyness, 1966).
For any analytic function and any connected region we have

where z1, z2, ..., zN are the zeros of in , according to multiplicity, C = ∂R is
the boundary of R and Now, this formula can be used to approximate
every (complex) zero of any analytic function in some regions R including
their multiplicity. The idea is to use a quad tree approach. A rectangular region
R is quartered and each quarter is examined for the number so of zeroes in the
quarter. Quarters with no zeroes are discarded; those with zeroes are further
quartered. Once there is only one zero in some quarter it is approximated by
s1 and if several zeroes are located in a sufficiently small quarter one uses s2, s3,…
in order to distinguish multiple zeroes from several simpler ones. In case a
zero lies on C, lumping the current sub-region with neighboring sub-regions
can circumvent this case and allows the approximation of zeros to continue. If
one is interested in real zeros only, one just chooses some small banded region
around the abscissa.

Let us consider some examples to see how zero finding is done by computing
line or contour integrals.

1.	 The polynomial has the two real zeros and
 . Then so that Cauchy’s
theorem implies 1 for 		 and C = ∂R for any
open region R with 1∈ R and A priori knowing helps in the
quadrature. We then approximate z1 by s1 which by Cauchy’s theorem
evaluates to
Here, quadrature depends on the requirements of the accuracy of the
zeros.

2.	 The polynomial f(z) = (z–2)2 with the double zero in 2
and shows how to verify or falsify the hypothesis of
a multiple zero; if zo is thought to be the only zero of in some region
2 ∈ R its multiplicity is
					 holds approximately. Hence, the
more of the sn for n ≥ 1 approximate the more the hypothesis of f
having a zero of multiplicity m in zo is corroborated.

3.	 The rational function 		 has the single, simple real zero zo = 1
and so = 						

mathematical functions. As an unusual departure, the trigonometric functions in this library take their
arguments in degrees in order to provide more exact values (Jahnel, 2006, 2013), even in more or less
all scientific computing applications these functions take their arguments in radians.

Easy and comfortable deployment of UNUMs in scientific computing relies on the availability of a
UNUM math library as is available for IEEE 754 floating point numbers. For example, a library like
Basic Linear Algebra Subprograms, BLAS, (http://www.netlib.org/blas/) provides highly optimized
versions of all sorts of algorithms of linear algebra. The library Linear Algebra Package, LAPACK,
(http://www.netlib.org/lapack/) can be seen as an extension to BLAS providing, e.g. routines for
solving systems of linear equations and linear least squares, eigenvalue problems and singular value
decomposition.
Libraries allow easy and comfortable adoption of scientific computing algorithms. Also, many
hardware manufacturers offer libraries tailored for their special architectures, for example Intel’s
Math Kernel Library, MKL (https://software.intel.com/en-us/mkl.)

So, in order to support spreading the use of UNUMs a UNUM math library is needed as the examples
in the previous section show some algorithms are already available. In order to add more algorithms
we focus here quite arbitrarily on root finding algorithms. The problem is to identify zeroes of a given
function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) or 𝑤𝑤 = 𝑓𝑓(𝑧𝑧) in a given interval of the real line or in a given rectangular region of
the complex plane. Classical algorithms comprise, for example, bisection, secant method (regula
falsi), Newton’s method, inverse interpolation, Brent’s method which combines bisection, the secant
method and the inverse quadratic interpolation. All these methods have deficiencies, they do not find
complex zeroes or multiple roots. An alternative is based on the idea to use Cauchy’s residue calculus
(Delves, Lyness, 1966). For any analytic function 𝑓𝑓:ℂ → ℂ and any connected region 𝑅𝑅 ⊂ ℂ we have

𝑠𝑠𝑛𝑛 = 1
2𝜋𝜋𝜋𝜋 ∫ 𝑧𝑧𝑛𝑛 𝑓𝑓

′(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶

 𝑑𝑑𝑑𝑑 = ∑𝑧𝑧𝑖𝑖𝑛𝑛
𝑁𝑁

𝑖𝑖=1

where 𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑁𝑁 are the zeros of 𝑓𝑓 in 𝑅𝑅, according to multiplicity, 𝐶𝐶 = 𝜕𝜕𝜕𝜕 is the boundary of 𝑅𝑅 and
𝑛𝑛 ∈ ℕ𝑜𝑜. Now, this formula can be used to approximate every (complex) zero of any analytic function
in some regions 𝑅𝑅 including their multiplicity. The idea is to use a quad tree approach. A rectangular
region 𝑅𝑅 is quartered and each quarter is examined for the number 𝑠𝑠𝑜𝑜 of zeroes in the quarter.
Quarters with no zeroes are discarded; those with zeroes are further quartered. Once there is only one
zero in some quarter it is approximated by 𝑠𝑠1 and if several zeroes are located in a sufficiently small
quarter one uses 𝑠𝑠2, 𝑠𝑠3, … in order to distinguish multiple zeroes from several simpler ones. In case a
zero lies on C, lumping the current sub-region with neighboring sub-regions can circumvent this case
and allows the approximation of zeros to continue. If one is interested in real zeros only, one just
chooses some small banded region around the abscissa.

Let us consider some examples to see how zero finding is done by computing line or contour
integrals.

mathematical functions. As an unusual departure, the trigonometric functions in this library take their
arguments in degrees in order to provide more exact values (Jahnel, 2006, 2013), even in more or less
all scientific computing applications these functions take their arguments in radians.

Easy and comfortable deployment of UNUMs in scientific computing relies on the availability of a
UNUM math library as is available for IEEE 754 floating point numbers. For example, a library like
Basic Linear Algebra Subprograms, BLAS, (http://www.netlib.org/blas/) provides highly optimized
versions of all sorts of algorithms of linear algebra. The library Linear Algebra Package, LAPACK,
(http://www.netlib.org/lapack/) can be seen as an extension to BLAS providing, e.g. routines for
solving systems of linear equations and linear least squares, eigenvalue problems and singular value
decomposition.
Libraries allow easy and comfortable adoption of scientific computing algorithms. Also, many
hardware manufacturers offer libraries tailored for their special architectures, for example Intel’s
Math Kernel Library, MKL (https://software.intel.com/en-us/mkl.)

So, in order to support spreading the use of UNUMs a UNUM math library is needed as the examples
in the previous section show some algorithms are already available. In order to add more algorithms
we focus here quite arbitrarily on root finding algorithms. The problem is to identify zeroes of a given
function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) or 𝑤𝑤 = 𝑓𝑓(𝑧𝑧) in a given interval of the real line or in a given rectangular region of
the complex plane. Classical algorithms comprise, for example, bisection, secant method (regula
falsi), Newton’s method, inverse interpolation, Brent’s method which combines bisection, the secant
method and the inverse quadratic interpolation. All these methods have deficiencies, they do not find
complex zeroes or multiple roots. An alternative is based on the idea to use Cauchy’s residue calculus
(Delves, Lyness, 1966). For any analytic function 𝑓𝑓:ℂ → ℂ and any connected region 𝑅𝑅 ⊂ ℂ we have

𝑠𝑠𝑛𝑛 = 1
2𝜋𝜋𝜋𝜋 ∫ 𝑧𝑧𝑛𝑛 𝑓𝑓

′(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶

 𝑑𝑑𝑑𝑑 = ∑𝑧𝑧𝑖𝑖𝑛𝑛
𝑁𝑁

𝑖𝑖=1

where 𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑁𝑁 are the zeros of 𝑓𝑓 in 𝑅𝑅, according to multiplicity, 𝐶𝐶 = 𝜕𝜕𝜕𝜕 is the boundary of 𝑅𝑅 and
𝑛𝑛 ∈ ℕ𝑜𝑜. Now, this formula can be used to approximate every (complex) zero of any analytic function
in some regions 𝑅𝑅 including their multiplicity. The idea is to use a quad tree approach. A rectangular
region 𝑅𝑅 is quartered and each quarter is examined for the number 𝑠𝑠𝑜𝑜 of zeroes in the quarter.
Quarters with no zeroes are discarded; those with zeroes are further quartered. Once there is only one
zero in some quarter it is approximated by 𝑠𝑠1 and if several zeroes are located in a sufficiently small
quarter one uses 𝑠𝑠2, 𝑠𝑠3, … in order to distinguish multiple zeroes from several simpler ones. In case a
zero lies on C, lumping the current sub-region with neighboring sub-regions can circumvent this case
and allows the approximation of zeros to continue. If one is interested in real zeros only, one just
chooses some small banded region around the abscissa.

Let us consider some examples to see how zero finding is done by computing line or contour
integrals.

mathematical functions. As an unusual departure, the trigonometric functions in this library take their
arguments in degrees in order to provide more exact values (Jahnel, 2006, 2013), even in more or less
all scientific computing applications these functions take their arguments in radians.

Easy and comfortable deployment of UNUMs in scientific computing relies on the availability of a
UNUM math library as is available for IEEE 754 floating point numbers. For example, a library like
Basic Linear Algebra Subprograms, BLAS, (http://www.netlib.org/blas/) provides highly optimized
versions of all sorts of algorithms of linear algebra. The library Linear Algebra Package, LAPACK,
(http://www.netlib.org/lapack/) can be seen as an extension to BLAS providing, e.g. routines for
solving systems of linear equations and linear least squares, eigenvalue problems and singular value
decomposition.
Libraries allow easy and comfortable adoption of scientific computing algorithms. Also, many
hardware manufacturers offer libraries tailored for their special architectures, for example Intel’s
Math Kernel Library, MKL (https://software.intel.com/en-us/mkl.)

So, in order to support spreading the use of UNUMs a UNUM math library is needed as the examples
in the previous section show some algorithms are already available. In order to add more algorithms
we focus here quite arbitrarily on root finding algorithms. The problem is to identify zeroes of a given
function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) or 𝑤𝑤 = 𝑓𝑓(𝑧𝑧) in a given interval of the real line or in a given rectangular region of
the complex plane. Classical algorithms comprise, for example, bisection, secant method (regula
falsi), Newton’s method, inverse interpolation, Brent’s method which combines bisection, the secant
method and the inverse quadratic interpolation. All these methods have deficiencies, they do not find
complex zeroes or multiple roots. An alternative is based on the idea to use Cauchy’s residue calculus
(Delves, Lyness, 1966). For any analytic function 𝑓𝑓:ℂ → ℂ and any connected region 𝑅𝑅 ⊂ ℂ we have

𝑠𝑠𝑛𝑛 = 1
2𝜋𝜋𝜋𝜋 ∫ 𝑧𝑧𝑛𝑛 𝑓𝑓

′(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶

 𝑑𝑑𝑑𝑑 = ∑𝑧𝑧𝑖𝑖𝑛𝑛
𝑁𝑁

𝑖𝑖=1

where 𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑁𝑁 are the zeros of 𝑓𝑓 in 𝑅𝑅, according to multiplicity, 𝐶𝐶 = 𝜕𝜕𝜕𝜕 is the boundary of 𝑅𝑅 and
𝑛𝑛 ∈ ℕ𝑜𝑜. Now, this formula can be used to approximate every (complex) zero of any analytic function
in some regions 𝑅𝑅 including their multiplicity. The idea is to use a quad tree approach. A rectangular
region 𝑅𝑅 is quartered and each quarter is examined for the number 𝑠𝑠𝑜𝑜 of zeroes in the quarter.
Quarters with no zeroes are discarded; those with zeroes are further quartered. Once there is only one
zero in some quarter it is approximated by 𝑠𝑠1 and if several zeroes are located in a sufficiently small
quarter one uses 𝑠𝑠2, 𝑠𝑠3, … in order to distinguish multiple zeroes from several simpler ones. In case a
zero lies on C, lumping the current sub-region with neighboring sub-regions can circumvent this case
and allows the approximation of zeros to continue. If one is interested in real zeros only, one just
chooses some small banded region around the abscissa.

Let us consider some examples to see how zero finding is done by computing line or contour
integrals.

mathematical functions. As an unusual departure, the trigonometric functions in this library take their
arguments in degrees in order to provide more exact values (Jahnel, 2006, 2013), even in more or less
all scientific computing applications these functions take their arguments in radians.

Easy and comfortable deployment of UNUMs in scientific computing relies on the availability of a
UNUM math library as is available for IEEE 754 floating point numbers. For example, a library like
Basic Linear Algebra Subprograms, BLAS, (http://www.netlib.org/blas/) provides highly optimized
versions of all sorts of algorithms of linear algebra. The library Linear Algebra Package, LAPACK,
(http://www.netlib.org/lapack/) can be seen as an extension to BLAS providing, e.g. routines for
solving systems of linear equations and linear least squares, eigenvalue problems and singular value
decomposition.
Libraries allow easy and comfortable adoption of scientific computing algorithms. Also, many
hardware manufacturers offer libraries tailored for their special architectures, for example Intel’s
Math Kernel Library, MKL (https://software.intel.com/en-us/mkl.)

So, in order to support spreading the use of UNUMs a UNUM math library is needed as the examples
in the previous section show some algorithms are already available. In order to add more algorithms
we focus here quite arbitrarily on root finding algorithms. The problem is to identify zeroes of a given
function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) or 𝑤𝑤 = 𝑓𝑓(𝑧𝑧) in a given interval of the real line or in a given rectangular region of
the complex plane. Classical algorithms comprise, for example, bisection, secant method (regula
falsi), Newton’s method, inverse interpolation, Brent’s method which combines bisection, the secant
method and the inverse quadratic interpolation. All these methods have deficiencies, they do not find
complex zeroes or multiple roots. An alternative is based on the idea to use Cauchy’s residue calculus
(Delves, Lyness, 1966). For any analytic function 𝑓𝑓:ℂ → ℂ and any connected region 𝑅𝑅 ⊂ ℂ we have

𝑠𝑠𝑛𝑛 = 1
2𝜋𝜋𝜋𝜋 ∫ 𝑧𝑧𝑛𝑛 𝑓𝑓

′(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶

 𝑑𝑑𝑑𝑑 = ∑𝑧𝑧𝑖𝑖𝑛𝑛
𝑁𝑁

𝑖𝑖=1

where 𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑁𝑁 are the zeros of 𝑓𝑓 in 𝑅𝑅, according to multiplicity, 𝐶𝐶 = 𝜕𝜕𝜕𝜕 is the boundary of 𝑅𝑅 and
𝑛𝑛 ∈ ℕ𝑜𝑜. Now, this formula can be used to approximate every (complex) zero of any analytic function
in some regions 𝑅𝑅 including their multiplicity. The idea is to use a quad tree approach. A rectangular
region 𝑅𝑅 is quartered and each quarter is examined for the number 𝑠𝑠𝑜𝑜 of zeroes in the quarter.
Quarters with no zeroes are discarded; those with zeroes are further quartered. Once there is only one
zero in some quarter it is approximated by 𝑠𝑠1 and if several zeroes are located in a sufficiently small
quarter one uses 𝑠𝑠2, 𝑠𝑠3, … in order to distinguish multiple zeroes from several simpler ones. In case a
zero lies on C, lumping the current sub-region with neighboring sub-regions can circumvent this case
and allows the approximation of zeros to continue. If one is interested in real zeros only, one just
chooses some small banded region around the abscissa.

Let us consider some examples to see how zero finding is done by computing line or contour
integrals.

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2 has the two real zeros 𝑧𝑧1 = 1 and 𝑧𝑧2 = 2 . Then
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2 and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1 for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 . Here,

quadrature depends on the requirements of the accuracy of the zeros.
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶 𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁 for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁 holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛 for
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is
corroborated.

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧 has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1 and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1 for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕 and any connected

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧 with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.

Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2 has the two real zeros 𝑧𝑧1 = 1 and 𝑧𝑧2 = 2 . Then
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2 and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1 for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 . Here,

quadrature depends on the requirements of the accuracy of the zeros.
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶 𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁 for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁 holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛 for
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is
corroborated.

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧 has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1 and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1 for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕 and any connected

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧 with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.

Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2 has the two real zeros 𝑧𝑧1 = 1 and 𝑧𝑧2 = 2 . Then
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2 and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1 for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 . Here,

quadrature depends on the requirements of the accuracy of the zeros.
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶 𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁 for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁 holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛 for
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is
corroborated.

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧 has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1 and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1 for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕 and any connected

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧 with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.

Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2 has the two real zeros 𝑧𝑧1 = 1 and 𝑧𝑧2 = 2 . Then
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2 and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1 for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 . Here,

quadrature depends on the requirements of the accuracy of the zeros.
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶 𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁 for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁 holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛 for
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is
corroborated.

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧 has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1 and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1 for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕 and any connected

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧 with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.

Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2 has the two real zeros 𝑧𝑧1 = 1 and 𝑧𝑧2 = 2 . Then
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2 and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1 for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 . Here,

quadrature depends on the requirements of the accuracy of the zeros.
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶 𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁 for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁 holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛 for
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is
corroborated.

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧 has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1 and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1 for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕 and any connected

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧 with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.

Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2 has the two real zeros 𝑧𝑧1 = 1 and 𝑧𝑧2 = 2 . Then
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2 and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1 for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 . Here,

quadrature depends on the requirements of the accuracy of the zeros.
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶 𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁 for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁 holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛 for
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is
corroborated.

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧 has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1 and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1 for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕 and any connected

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧 with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.

Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2 has the two real zeros 𝑧𝑧1 = 1 and 𝑧𝑧2 = 2 . Then
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2 and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1 for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 . Here,

quadrature depends on the requirements of the accuracy of the zeros.
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶 𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁 for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁 holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛 for
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is
corroborated.

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧 has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1 and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1 for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕 and any connected

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧 with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.

Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2 has the two real zeros 𝑧𝑧1 = 1 and 𝑧𝑧2 = 2 . Then
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2 and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1 for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 . Here,

quadrature depends on the requirements of the accuracy of the zeros.
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶 𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁 for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁 holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛 for
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is
corroborated.

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧 has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1 and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1 for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕 and any connected

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧 with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.

Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2 has the two real zeros 𝑧𝑧1 = 1 and 𝑧𝑧2 = 2 . Then
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2 and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1 for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 . Here,

quadrature depends on the requirements of the accuracy of the zeros.
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶 𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁 for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁 holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛 for
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is
corroborated.

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧 has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1 and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1 for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕 and any connected

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧 with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.

Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2 has the two real zeros 𝑧𝑧1 = 1 and 𝑧𝑧2 = 2 . Then
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2 and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1 for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 . Here,

quadrature depends on the requirements of the accuracy of the zeros.
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶 𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁 for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁 holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛 for
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is
corroborated.

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧 has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1 and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1 for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕 and any connected

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧 with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.

Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2 has the two real zeros 𝑧𝑧1 = 1 and 𝑧𝑧2 = 2 . Then
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2 and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1 for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 . Here,

quadrature depends on the requirements of the accuracy of the zeros.
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶 𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁 for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁 holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛 for
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is
corroborated.

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧 has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1 and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1 for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕 and any connected

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧 with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.

Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2 has the two real zeros 𝑧𝑧1 = 1 and 𝑧𝑧2 = 2 . Then
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2 and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1 for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 . Here,

quadrature depends on the requirements of the accuracy of the zeros.
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶 𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁 for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁 holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛 for
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is
corroborated.

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧 has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1 and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1 for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕 and any connected

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧 with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.

Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2 has the two real zeros 𝑧𝑧1 = 1 and 𝑧𝑧2 = 2 . Then
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2 and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1 for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 . Here,

quadrature depends on the requirements of the accuracy of the zeros.
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶 𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁 for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁 holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛 for
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is
corroborated.

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧 has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1 and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1 for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕 and any connected

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧 with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.

Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex

11

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 1–16

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2 has the two real zeros 𝑧𝑧1 = 1 and 𝑧𝑧2 = 2 . Then
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2 and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1 for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 . Here,

quadrature depends on the requirements of the accuracy of the zeros.
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶 𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁 for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁 holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛 for
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is
corroborated.

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧 has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1 and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1 for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕 and any connected

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧 with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.

Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex

and any connected open region R with and as well
as 				 for .

4.	 We want to approximate the greatest real zero of
			 which because of
			 0 lies in 	 Figure 2 visualizes the graph of
and its real zeroes.

Figure 2. Graph of the real valued function y =f(x) = sin (2x) –x .

Then so = 1for integration along the edge C = ∂R of the rectangle R with
lower left vertex and upper right vertex 	 for any small
constant . The zero sought-after of is then approximated by

5.	 Lambert’s W-function presents a more serious example. W(z) is defined
to be the inverse of 	 (shown by the dotted curve).
Geometrically obvious is that W(x) has two real branches W–1 (shown
by the continuous curve) and Wo (shown by the dashed curve). Figure
3 visualizes the graphs of both f(x) as well as of W(x)with its two
branches Wo and W–1.

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2 has the two real zeros 𝑧𝑧1 = 1 and 𝑧𝑧2 = 2 . Then
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2 and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1 for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 . Here,

quadrature depends on the requirements of the accuracy of the zeros.
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶 𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁 for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁 holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛 for
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is
corroborated.

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧 has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1 and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1 for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕 and any connected

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧 with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.

Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2 has the two real zeros 𝑧𝑧1 = 1 and 𝑧𝑧2 = 2 . Then
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2 and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1 for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 . Here,

quadrature depends on the requirements of the accuracy of the zeros.
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶 𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁 for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁 holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛 for
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is
corroborated.

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧 has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1 and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1 for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕 and any connected

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧 with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.

Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2 has the two real zeros 𝑧𝑧1 = 1 and 𝑧𝑧2 = 2 . Then
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2 and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1 for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 . Here,

quadrature depends on the requirements of the accuracy of the zeros.
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶 𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁 for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁 holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛 for
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is
corroborated.

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧 has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1 and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1 for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕 and any connected

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧 with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.

Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2 has the two real zeros 𝑧𝑧1 = 1 and 𝑧𝑧2 = 2 . Then
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2 and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1 for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 . Here,

quadrature depends on the requirements of the accuracy of the zeros.
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶 𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁 for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁 holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛 for
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is
corroborated.

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧 has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1 and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1 for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕 and any connected

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧 with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.

Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2 has the two real zeros 𝑧𝑧1 = 1 and 𝑧𝑧2 = 2 . Then
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2 and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1 for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 . Here,

quadrature depends on the requirements of the accuracy of the zeros.
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶 𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁 for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁 holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛 for
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is
corroborated.

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧 has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1 and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1 for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕 and any connected

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧 with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.

Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2 has the two real zeros 𝑧𝑧1 = 1 and 𝑧𝑧2 = 2 . Then
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2 and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1 for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 . Here,

quadrature depends on the requirements of the accuracy of the zeros.
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶 𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁 for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁 holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛 for
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is
corroborated.

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧 has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1 and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1 for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕 and any connected

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧 with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.

Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2 has the two real zeros 𝑧𝑧1 = 1 and 𝑧𝑧2 = 2 . Then
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2 and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1 for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 . Here,

quadrature depends on the requirements of the accuracy of the zeros.
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶 𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁 for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁 holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛 for
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is
corroborated.

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧 has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1 and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1 for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕 and any connected

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧 with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.

Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2 has the two real zeros 𝑧𝑧1 = 1 and 𝑧𝑧2 = 2 . Then
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2 and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1 for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 . Here,

quadrature depends on the requirements of the accuracy of the zeros.
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶 𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁 for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁 holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛 for
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is
corroborated.

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧 has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1 and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1 for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕 and any connected

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧 with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.

Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2 has the two real zeros 𝑧𝑧1 = 1 and 𝑧𝑧2 = 2 . Then
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2 and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1 for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 . Here,

quadrature depends on the requirements of the accuracy of the zeros.
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶 𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁 for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁 holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛 for
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is
corroborated.

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧 has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1 and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1 for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕 and any connected

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶 𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶 𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧 with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.

Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex

𝜋𝜋
4 − 𝑖𝑖𝑖𝑖 and upper right vertex 𝜋𝜋2 + 𝑖𝑖𝑖𝑖 for any small constant 0 < 𝑐𝑐 ≪ 1. The zero sought-after

of 𝑓𝑓 is then approximated by 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫ 𝑧𝑧 𝑓𝑓´(𝑧𝑧)

𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 ≈ 0.94775.
5. Lambert’s W-function presents a more serious example. 𝑊𝑊(𝑧𝑧) is defined to be the inverse of

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑒𝑒𝑥𝑥 (shown by the dotted curve). Geometrically obvious is that 𝑊𝑊(𝑥𝑥) has two
real branches 𝑊𝑊−1 (shown by the continuous curve) and 𝑊𝑊𝑜𝑜 (shown by the dashed curve).
Figure 3 visualizes the graphs of both 𝑓𝑓(𝑥𝑥) as well as of 𝑊𝑊(𝑥𝑥) with its two branches 𝑊𝑊𝑜𝑜 and
𝑊𝑊−1.

Figure 3. The two branches of the Lambert W-function, inverse of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 𝑒𝑒𝑥𝑥.

First, let us approximate 𝛺𝛺 = 𝑊𝑊(1). Ω is the zero of the function ℎ(𝑧𝑧) = 𝑧𝑧𝑒𝑒𝑧𝑧 − 1. Then our
algorithm produces 𝑠𝑠𝑜𝑜 = 1 and 𝛺𝛺 = 𝑠𝑠1 ≈ 0.5671 when integrating along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of
the rectangle 𝑅𝑅 with the lower left vertex 0.5 − 𝑖𝑖𝑖𝑖 and the upper right vertex 0.6 + 𝑖𝑖𝑖𝑖 for any
constant 0 < 𝑐𝑐 ≪ 1 . 𝑊𝑊(𝑥𝑥) is double-valued for 𝑥𝑥 ∈ (−1

𝑒𝑒 , 0) ⊂ ℝ , a fact that is e.g. for

𝑥𝑥𝑜𝑜 = − 𝑙𝑙𝑙𝑙(2)
2 revealed by 𝑠𝑠𝑜𝑜 = 2 when integrating the function ℎ(𝑧𝑧) = 𝑧𝑧𝑒𝑒𝑧𝑧 − 𝑥𝑥𝑜𝑜 along the

edge of a sufficiently large rectangle with, e.g. the lower left vertex −4.8− 𝑖𝑖 and the upper
right vertex −0.6 + 𝑖𝑖 and by 𝑠𝑠𝑜𝑜 = 1 when integrating along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of, for example,
the sub-rectangle 𝑅𝑅 with lower left vertex −0.8− 𝑖𝑖 and the upper right vertex −0.6 + 𝑖𝑖 to
return 𝑠𝑠1 ≈ −0.6931 approximating the exact value 𝑊𝑊(𝑥𝑥𝑜𝑜) = −ln (2).

These examples demonstrate the feasibility of our algorithm to find zeroes of analytical functions.
However, it is still to be decided by which algorithm to approximate the value of the line integrals

𝜋𝜋
4 − 𝑖𝑖𝑖𝑖 and upper right vertex 𝜋𝜋2 + 𝑖𝑖𝑖𝑖 for any small constant 0 < 𝑐𝑐 ≪ 1. The zero sought-after

of 𝑓𝑓 is then approximated by 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫ 𝑧𝑧 𝑓𝑓´(𝑧𝑧)

𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 ≈ 0.94775.
5. Lambert’s W-function presents a more serious example. 𝑊𝑊(𝑧𝑧) is defined to be the inverse of

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑒𝑒𝑥𝑥 (shown by the dotted curve). Geometrically obvious is that 𝑊𝑊(𝑥𝑥) has two
real branches 𝑊𝑊−1 (shown by the continuous curve) and 𝑊𝑊𝑜𝑜 (shown by the dashed curve).
Figure 3 visualizes the graphs of both 𝑓𝑓(𝑥𝑥) as well as of 𝑊𝑊(𝑥𝑥) with its two branches 𝑊𝑊𝑜𝑜 and
𝑊𝑊−1.

Figure 3. The two branches of the Lambert W-function, inverse of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 𝑒𝑒𝑥𝑥.

First, let us approximate 𝛺𝛺 = 𝑊𝑊(1). Ω is the zero of the function ℎ(𝑧𝑧) = 𝑧𝑧𝑒𝑒𝑧𝑧 − 1. Then our
algorithm produces 𝑠𝑠𝑜𝑜 = 1 and 𝛺𝛺 = 𝑠𝑠1 ≈ 0.5671 when integrating along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of
the rectangle 𝑅𝑅 with the lower left vertex 0.5 − 𝑖𝑖𝑖𝑖 and the upper right vertex 0.6 + 𝑖𝑖𝑖𝑖 for any
constant 0 < 𝑐𝑐 ≪ 1 . 𝑊𝑊(𝑥𝑥) is double-valued for 𝑥𝑥 ∈ (−1

𝑒𝑒 , 0) ⊂ ℝ , a fact that is e.g. for

𝑥𝑥𝑜𝑜 = − 𝑙𝑙𝑙𝑙(2)
2 revealed by 𝑠𝑠𝑜𝑜 = 2 when integrating the function ℎ(𝑧𝑧) = 𝑧𝑧𝑒𝑒𝑧𝑧 − 𝑥𝑥𝑜𝑜 along the

edge of a sufficiently large rectangle with, e.g. the lower left vertex −4.8− 𝑖𝑖 and the upper
right vertex −0.6 + 𝑖𝑖 and by 𝑠𝑠𝑜𝑜 = 1 when integrating along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of, for example,
the sub-rectangle 𝑅𝑅 with lower left vertex −0.8− 𝑖𝑖 and the upper right vertex −0.6 + 𝑖𝑖 to
return 𝑠𝑠1 ≈ −0.6931 approximating the exact value 𝑊𝑊(𝑥𝑥𝑜𝑜) = −ln (2).

These examples demonstrate the feasibility of our algorithm to find zeroes of analytical functions.
However, it is still to be decided by which algorithm to approximate the value of the line integrals

𝜋𝜋
4 − 𝑖𝑖𝑖𝑖 and upper right vertex 𝜋𝜋2 + 𝑖𝑖𝑖𝑖 for any small constant 0 < 𝑐𝑐 ≪ 1. The zero sought-after

of 𝑓𝑓 is then approximated by 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫ 𝑧𝑧 𝑓𝑓´(𝑧𝑧)

𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 ≈ 0.94775.
5. Lambert’s W-function presents a more serious example. 𝑊𝑊(𝑧𝑧) is defined to be the inverse of

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑒𝑒𝑥𝑥 (shown by the dotted curve). Geometrically obvious is that 𝑊𝑊(𝑥𝑥) has two
real branches 𝑊𝑊−1 (shown by the continuous curve) and 𝑊𝑊𝑜𝑜 (shown by the dashed curve).
Figure 3 visualizes the graphs of both 𝑓𝑓(𝑥𝑥) as well as of 𝑊𝑊(𝑥𝑥) with its two branches 𝑊𝑊𝑜𝑜 and
𝑊𝑊−1.

Figure 3. The two branches of the Lambert W-function, inverse of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 𝑒𝑒𝑥𝑥.

First, let us approximate 𝛺𝛺 = 𝑊𝑊(1). Ω is the zero of the function ℎ(𝑧𝑧) = 𝑧𝑧𝑒𝑒𝑧𝑧 − 1. Then our
algorithm produces 𝑠𝑠𝑜𝑜 = 1 and 𝛺𝛺 = 𝑠𝑠1 ≈ 0.5671 when integrating along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of
the rectangle 𝑅𝑅 with the lower left vertex 0.5 − 𝑖𝑖𝑖𝑖 and the upper right vertex 0.6 + 𝑖𝑖𝑖𝑖 for any
constant 0 < 𝑐𝑐 ≪ 1 . 𝑊𝑊(𝑥𝑥) is double-valued for 𝑥𝑥 ∈ (−1

𝑒𝑒 , 0) ⊂ ℝ , a fact that is e.g. for

𝑥𝑥𝑜𝑜 = − 𝑙𝑙𝑙𝑙(2)
2 revealed by 𝑠𝑠𝑜𝑜 = 2 when integrating the function ℎ(𝑧𝑧) = 𝑧𝑧𝑒𝑒𝑧𝑧 − 𝑥𝑥𝑜𝑜 along the

edge of a sufficiently large rectangle with, e.g. the lower left vertex −4.8− 𝑖𝑖 and the upper
right vertex −0.6 + 𝑖𝑖 and by 𝑠𝑠𝑜𝑜 = 1 when integrating along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of, for example,
the sub-rectangle 𝑅𝑅 with lower left vertex −0.8− 𝑖𝑖 and the upper right vertex −0.6 + 𝑖𝑖 to
return 𝑠𝑠1 ≈ −0.6931 approximating the exact value 𝑊𝑊(𝑥𝑥𝑜𝑜) = −ln (2).

These examples demonstrate the feasibility of our algorithm to find zeroes of analytical functions.
However, it is still to be decided by which algorithm to approximate the value of the line integrals

𝜋𝜋
4 − 𝑖𝑖𝑖𝑖 and upper right vertex 𝜋𝜋2 + 𝑖𝑖𝑖𝑖 for any small constant 0 < 𝑐𝑐 ≪ 1. The zero sought-after

of 𝑓𝑓 is then approximated by 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫ 𝑧𝑧 𝑓𝑓´(𝑧𝑧)

𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 ≈ 0.94775.
5. Lambert’s W-function presents a more serious example. 𝑊𝑊(𝑧𝑧) is defined to be the inverse of

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑒𝑒𝑥𝑥 (shown by the dotted curve). Geometrically obvious is that 𝑊𝑊(𝑥𝑥) has two
real branches 𝑊𝑊−1 (shown by the continuous curve) and 𝑊𝑊𝑜𝑜 (shown by the dashed curve).
Figure 3 visualizes the graphs of both 𝑓𝑓(𝑥𝑥) as well as of 𝑊𝑊(𝑥𝑥) with its two branches 𝑊𝑊𝑜𝑜 and
𝑊𝑊−1.

Figure 3. The two branches of the Lambert W-function, inverse of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 𝑒𝑒𝑥𝑥.

First, let us approximate 𝛺𝛺 = 𝑊𝑊(1). Ω is the zero of the function ℎ(𝑧𝑧) = 𝑧𝑧𝑒𝑒𝑧𝑧 − 1. Then our
algorithm produces 𝑠𝑠𝑜𝑜 = 1 and 𝛺𝛺 = 𝑠𝑠1 ≈ 0.5671 when integrating along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of
the rectangle 𝑅𝑅 with the lower left vertex 0.5 − 𝑖𝑖𝑖𝑖 and the upper right vertex 0.6 + 𝑖𝑖𝑖𝑖 for any
constant 0 < 𝑐𝑐 ≪ 1 . 𝑊𝑊(𝑥𝑥) is double-valued for 𝑥𝑥 ∈ (−1

𝑒𝑒 , 0) ⊂ ℝ , a fact that is e.g. for

𝑥𝑥𝑜𝑜 = − 𝑙𝑙𝑙𝑙(2)
2 revealed by 𝑠𝑠𝑜𝑜 = 2 when integrating the function ℎ(𝑧𝑧) = 𝑧𝑧𝑒𝑒𝑧𝑧 − 𝑥𝑥𝑜𝑜 along the

edge of a sufficiently large rectangle with, e.g. the lower left vertex −4.8− 𝑖𝑖 and the upper
right vertex −0.6 + 𝑖𝑖 and by 𝑠𝑠𝑜𝑜 = 1 when integrating along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of, for example,
the sub-rectangle 𝑅𝑅 with lower left vertex −0.8− 𝑖𝑖 and the upper right vertex −0.6 + 𝑖𝑖 to
return 𝑠𝑠1 ≈ −0.6931 approximating the exact value 𝑊𝑊(𝑥𝑥𝑜𝑜) = −ln (2).

These examples demonstrate the feasibility of our algorithm to find zeroes of analytical functions.
However, it is still to be decided by which algorithm to approximate the value of the line integrals

𝜋𝜋
4 − 𝑖𝑖𝑖𝑖 and upper right vertex 𝜋𝜋2 + 𝑖𝑖𝑖𝑖 for any small constant 0 < 𝑐𝑐 ≪ 1. The zero sought-after

of 𝑓𝑓 is then approximated by 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫ 𝑧𝑧 𝑓𝑓´(𝑧𝑧)

𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 ≈ 0.94775.
5. Lambert’s W-function presents a more serious example. 𝑊𝑊(𝑧𝑧) is defined to be the inverse of

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑒𝑒𝑥𝑥 (shown by the dotted curve). Geometrically obvious is that 𝑊𝑊(𝑥𝑥) has two
real branches 𝑊𝑊−1 (shown by the continuous curve) and 𝑊𝑊𝑜𝑜 (shown by the dashed curve).
Figure 3 visualizes the graphs of both 𝑓𝑓(𝑥𝑥) as well as of 𝑊𝑊(𝑥𝑥) with its two branches 𝑊𝑊𝑜𝑜 and
𝑊𝑊−1.

Figure 3. The two branches of the Lambert W-function, inverse of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 𝑒𝑒𝑥𝑥.

First, let us approximate 𝛺𝛺 = 𝑊𝑊(1). Ω is the zero of the function ℎ(𝑧𝑧) = 𝑧𝑧𝑒𝑒𝑧𝑧 − 1. Then our
algorithm produces 𝑠𝑠𝑜𝑜 = 1 and 𝛺𝛺 = 𝑠𝑠1 ≈ 0.5671 when integrating along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of
the rectangle 𝑅𝑅 with the lower left vertex 0.5 − 𝑖𝑖𝑖𝑖 and the upper right vertex 0.6 + 𝑖𝑖𝑖𝑖 for any
constant 0 < 𝑐𝑐 ≪ 1 . 𝑊𝑊(𝑥𝑥) is double-valued for 𝑥𝑥 ∈ (−1

𝑒𝑒 , 0) ⊂ ℝ , a fact that is e.g. for

𝑥𝑥𝑜𝑜 = − 𝑙𝑙𝑙𝑙(2)
2 revealed by 𝑠𝑠𝑜𝑜 = 2 when integrating the function ℎ(𝑧𝑧) = 𝑧𝑧𝑒𝑒𝑧𝑧 − 𝑥𝑥𝑜𝑜 along the

edge of a sufficiently large rectangle with, e.g. the lower left vertex −4.8− 𝑖𝑖 and the upper
right vertex −0.6 + 𝑖𝑖 and by 𝑠𝑠𝑜𝑜 = 1 when integrating along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of, for example,
the sub-rectangle 𝑅𝑅 with lower left vertex −0.8− 𝑖𝑖 and the upper right vertex −0.6 + 𝑖𝑖 to
return 𝑠𝑠1 ≈ −0.6931 approximating the exact value 𝑊𝑊(𝑥𝑥𝑜𝑜) = −ln (2).

These examples demonstrate the feasibility of our algorithm to find zeroes of analytical functions.
However, it is still to be decided by which algorithm to approximate the value of the line integrals

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 1–16

12

Figure 3. The two branches of the Lambert W-function, inverse of f(x)
= xex.

First, let us approximate Ω is the zero of the function .
Then our algorithm produces 			 when integrating
along the edge C = ∂R of the rectangle R with the lower left vertex 0.5 – ic and the upper
right vertex 0.5 + ic for any constant 		 is double-valued for
		 a fact that is e.g. for revealed by so = 2 when integrating
the function h(z) = zez –xo along the edge of a sufficiently large rectangle with,
e.g. the lower left vertex – 4.8 – i and the upper right vertex –0.6 + i and by so = 1
when integrating along the edge C = ∂R of, for example, the sub-rectangle R
with lower left vertex – 0.8 – i and the upper right vertex – 0.6 + i to return s1
≈ – 0.6931 approximating the exact value W(xo) = – ln(2) .

These examples demonstrate the feasibility of our algorithm to find
zeroes of analytical functions. However, it is still to be decided
by which algorithm to approximate the value of the line integrals
 	
 	
where 		 and path 	 		 	 consists of
the four straight line segments bordering the rectangle R and each of the

𝜋𝜋
4 − 𝑖𝑖𝑖𝑖 and upper right vertex 𝜋𝜋2 + 𝑖𝑖𝑖𝑖 for any small constant 0 < 𝑐𝑐 ≪ 1. The zero sought-after

of 𝑓𝑓 is then approximated by 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫ 𝑧𝑧 𝑓𝑓´(𝑧𝑧)

𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 ≈ 0.94775.
5. Lambert’s W-function presents a more serious example. 𝑊𝑊(𝑧𝑧) is defined to be the inverse of

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑒𝑒𝑥𝑥 (shown by the dotted curve). Geometrically obvious is that 𝑊𝑊(𝑥𝑥) has two
real branches 𝑊𝑊−1 (shown by the continuous curve) and 𝑊𝑊𝑜𝑜 (shown by the dashed curve).
Figure 3 visualizes the graphs of both 𝑓𝑓(𝑥𝑥) as well as of 𝑊𝑊(𝑥𝑥) with its two branches 𝑊𝑊𝑜𝑜 and
𝑊𝑊−1.

Figure 3. The two branches of the Lambert W-function, inverse of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 𝑒𝑒𝑥𝑥.

First, let us approximate 𝛺𝛺 = 𝑊𝑊(1). Ω is the zero of the function ℎ(𝑧𝑧) = 𝑧𝑧𝑒𝑒𝑧𝑧 − 1. Then our
algorithm produces 𝑠𝑠𝑜𝑜 = 1 and 𝛺𝛺 = 𝑠𝑠1 ≈ 0.5671 when integrating along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of
the rectangle 𝑅𝑅 with the lower left vertex 0.5 − 𝑖𝑖𝑖𝑖 and the upper right vertex 0.6 + 𝑖𝑖𝑖𝑖 for any
constant 0 < 𝑐𝑐 ≪ 1 . 𝑊𝑊(𝑥𝑥) is double-valued for 𝑥𝑥 ∈ (−1

𝑒𝑒 , 0) ⊂ ℝ , a fact that is e.g. for

𝑥𝑥𝑜𝑜 = − 𝑙𝑙𝑙𝑙(2)
2 revealed by 𝑠𝑠𝑜𝑜 = 2 when integrating the function ℎ(𝑧𝑧) = 𝑧𝑧𝑒𝑒𝑧𝑧 − 𝑥𝑥𝑜𝑜 along the

edge of a sufficiently large rectangle with, e.g. the lower left vertex −4.8− 𝑖𝑖 and the upper
right vertex −0.6 + 𝑖𝑖 and by 𝑠𝑠𝑜𝑜 = 1 when integrating along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of, for example,
the sub-rectangle 𝑅𝑅 with lower left vertex −0.8− 𝑖𝑖 and the upper right vertex −0.6 + 𝑖𝑖 to
return 𝑠𝑠1 ≈ −0.6931 approximating the exact value 𝑊𝑊(𝑥𝑥𝑜𝑜) = −ln (2).

These examples demonstrate the feasibility of our algorithm to find zeroes of analytical functions.
However, it is still to be decided by which algorithm to approximate the value of the line integrals

𝜋𝜋
4 − 𝑖𝑖𝑖𝑖 and upper right vertex 𝜋𝜋2 + 𝑖𝑖𝑖𝑖 for any small constant 0 < 𝑐𝑐 ≪ 1. The zero sought-after

of 𝑓𝑓 is then approximated by 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫ 𝑧𝑧 𝑓𝑓´(𝑧𝑧)

𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 ≈ 0.94775.
5. Lambert’s W-function presents a more serious example. 𝑊𝑊(𝑧𝑧) is defined to be the inverse of

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑒𝑒𝑥𝑥 (shown by the dotted curve). Geometrically obvious is that 𝑊𝑊(𝑥𝑥) has two
real branches 𝑊𝑊−1 (shown by the continuous curve) and 𝑊𝑊𝑜𝑜 (shown by the dashed curve).
Figure 3 visualizes the graphs of both 𝑓𝑓(𝑥𝑥) as well as of 𝑊𝑊(𝑥𝑥) with its two branches 𝑊𝑊𝑜𝑜 and
𝑊𝑊−1.

Figure 3. The two branches of the Lambert W-function, inverse of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 𝑒𝑒𝑥𝑥.

First, let us approximate 𝛺𝛺 = 𝑊𝑊(1). Ω is the zero of the function ℎ(𝑧𝑧) = 𝑧𝑧𝑒𝑒𝑧𝑧 − 1. Then our
algorithm produces 𝑠𝑠𝑜𝑜 = 1 and 𝛺𝛺 = 𝑠𝑠1 ≈ 0.5671 when integrating along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of
the rectangle 𝑅𝑅 with the lower left vertex 0.5 − 𝑖𝑖𝑖𝑖 and the upper right vertex 0.6 + 𝑖𝑖𝑖𝑖 for any
constant 0 < 𝑐𝑐 ≪ 1 . 𝑊𝑊(𝑥𝑥) is double-valued for 𝑥𝑥 ∈ (−1

𝑒𝑒 , 0) ⊂ ℝ , a fact that is e.g. for

𝑥𝑥𝑜𝑜 = − 𝑙𝑙𝑙𝑙(2)
2 revealed by 𝑠𝑠𝑜𝑜 = 2 when integrating the function ℎ(𝑧𝑧) = 𝑧𝑧𝑒𝑒𝑧𝑧 − 𝑥𝑥𝑜𝑜 along the

edge of a sufficiently large rectangle with, e.g. the lower left vertex −4.8− 𝑖𝑖 and the upper
right vertex −0.6 + 𝑖𝑖 and by 𝑠𝑠𝑜𝑜 = 1 when integrating along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of, for example,
the sub-rectangle 𝑅𝑅 with lower left vertex −0.8− 𝑖𝑖 and the upper right vertex −0.6 + 𝑖𝑖 to
return 𝑠𝑠1 ≈ −0.6931 approximating the exact value 𝑊𝑊(𝑥𝑥𝑜𝑜) = −ln (2).

These examples demonstrate the feasibility of our algorithm to find zeroes of analytical functions.
However, it is still to be decided by which algorithm to approximate the value of the line integrals

𝜋𝜋
4 − 𝑖𝑖𝑖𝑖 and upper right vertex 𝜋𝜋2 + 𝑖𝑖𝑖𝑖 for any small constant 0 < 𝑐𝑐 ≪ 1. The zero sought-after

of 𝑓𝑓 is then approximated by 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫ 𝑧𝑧 𝑓𝑓´(𝑧𝑧)

𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 ≈ 0.94775.
5. Lambert’s W-function presents a more serious example. 𝑊𝑊(𝑧𝑧) is defined to be the inverse of

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑒𝑒𝑥𝑥 (shown by the dotted curve). Geometrically obvious is that 𝑊𝑊(𝑥𝑥) has two
real branches 𝑊𝑊−1 (shown by the continuous curve) and 𝑊𝑊𝑜𝑜 (shown by the dashed curve).
Figure 3 visualizes the graphs of both 𝑓𝑓(𝑥𝑥) as well as of 𝑊𝑊(𝑥𝑥) with its two branches 𝑊𝑊𝑜𝑜 and
𝑊𝑊−1.

Figure 3. The two branches of the Lambert W-function, inverse of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 𝑒𝑒𝑥𝑥.

First, let us approximate 𝛺𝛺 = 𝑊𝑊(1). Ω is the zero of the function ℎ(𝑧𝑧) = 𝑧𝑧𝑒𝑒𝑧𝑧 − 1. Then our
algorithm produces 𝑠𝑠𝑜𝑜 = 1 and 𝛺𝛺 = 𝑠𝑠1 ≈ 0.5671 when integrating along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of
the rectangle 𝑅𝑅 with the lower left vertex 0.5 − 𝑖𝑖𝑖𝑖 and the upper right vertex 0.6 + 𝑖𝑖𝑖𝑖 for any
constant 0 < 𝑐𝑐 ≪ 1 . 𝑊𝑊(𝑥𝑥) is double-valued for 𝑥𝑥 ∈ (−1

𝑒𝑒 , 0) ⊂ ℝ , a fact that is e.g. for

𝑥𝑥𝑜𝑜 = − 𝑙𝑙𝑙𝑙(2)
2 revealed by 𝑠𝑠𝑜𝑜 = 2 when integrating the function ℎ(𝑧𝑧) = 𝑧𝑧𝑒𝑒𝑧𝑧 − 𝑥𝑥𝑜𝑜 along the

edge of a sufficiently large rectangle with, e.g. the lower left vertex −4.8− 𝑖𝑖 and the upper
right vertex −0.6 + 𝑖𝑖 and by 𝑠𝑠𝑜𝑜 = 1 when integrating along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of, for example,
the sub-rectangle 𝑅𝑅 with lower left vertex −0.8− 𝑖𝑖 and the upper right vertex −0.6 + 𝑖𝑖 to
return 𝑠𝑠1 ≈ −0.6931 approximating the exact value 𝑊𝑊(𝑥𝑥𝑜𝑜) = −ln (2).

These examples demonstrate the feasibility of our algorithm to find zeroes of analytical functions.
However, it is still to be decided by which algorithm to approximate the value of the line integrals

𝜋𝜋
4 − 𝑖𝑖𝑖𝑖 and upper right vertex 𝜋𝜋2 + 𝑖𝑖𝑖𝑖 for any small constant 0 < 𝑐𝑐 ≪ 1. The zero sought-after

of 𝑓𝑓 is then approximated by 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫ 𝑧𝑧 𝑓𝑓´(𝑧𝑧)

𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 ≈ 0.94775.
5. Lambert’s W-function presents a more serious example. 𝑊𝑊(𝑧𝑧) is defined to be the inverse of

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑒𝑒𝑥𝑥 (shown by the dotted curve). Geometrically obvious is that 𝑊𝑊(𝑥𝑥) has two
real branches 𝑊𝑊−1 (shown by the continuous curve) and 𝑊𝑊𝑜𝑜 (shown by the dashed curve).
Figure 3 visualizes the graphs of both 𝑓𝑓(𝑥𝑥) as well as of 𝑊𝑊(𝑥𝑥) with its two branches 𝑊𝑊𝑜𝑜 and
𝑊𝑊−1.

Figure 3. The two branches of the Lambert W-function, inverse of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 𝑒𝑒𝑥𝑥.

First, let us approximate 𝛺𝛺 = 𝑊𝑊(1). Ω is the zero of the function ℎ(𝑧𝑧) = 𝑧𝑧𝑒𝑒𝑧𝑧 − 1. Then our
algorithm produces 𝑠𝑠𝑜𝑜 = 1 and 𝛺𝛺 = 𝑠𝑠1 ≈ 0.5671 when integrating along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of
the rectangle 𝑅𝑅 with the lower left vertex 0.5 − 𝑖𝑖𝑖𝑖 and the upper right vertex 0.6 + 𝑖𝑖𝑖𝑖 for any
constant 0 < 𝑐𝑐 ≪ 1 . 𝑊𝑊(𝑥𝑥) is double-valued for 𝑥𝑥 ∈ (−1

𝑒𝑒 , 0) ⊂ ℝ , a fact that is e.g. for

𝑥𝑥𝑜𝑜 = − 𝑙𝑙𝑙𝑙(2)
2 revealed by 𝑠𝑠𝑜𝑜 = 2 when integrating the function ℎ(𝑧𝑧) = 𝑧𝑧𝑒𝑒𝑧𝑧 − 𝑥𝑥𝑜𝑜 along the

edge of a sufficiently large rectangle with, e.g. the lower left vertex −4.8− 𝑖𝑖 and the upper
right vertex −0.6 + 𝑖𝑖 and by 𝑠𝑠𝑜𝑜 = 1 when integrating along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of, for example,
the sub-rectangle 𝑅𝑅 with lower left vertex −0.8− 𝑖𝑖 and the upper right vertex −0.6 + 𝑖𝑖 to
return 𝑠𝑠1 ≈ −0.6931 approximating the exact value 𝑊𝑊(𝑥𝑥𝑜𝑜) = −ln (2).

These examples demonstrate the feasibility of our algorithm to find zeroes of analytical functions.
However, it is still to be decided by which algorithm to approximate the value of the line integrals

𝜋𝜋
4 − 𝑖𝑖𝑖𝑖 and upper right vertex 𝜋𝜋2 + 𝑖𝑖𝑖𝑖 for any small constant 0 < 𝑐𝑐 ≪ 1. The zero sought-after

of 𝑓𝑓 is then approximated by 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫ 𝑧𝑧 𝑓𝑓´(𝑧𝑧)

𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 ≈ 0.94775.
5. Lambert’s W-function presents a more serious example. 𝑊𝑊(𝑧𝑧) is defined to be the inverse of

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑒𝑒𝑥𝑥 (shown by the dotted curve). Geometrically obvious is that 𝑊𝑊(𝑥𝑥) has two
real branches 𝑊𝑊−1 (shown by the continuous curve) and 𝑊𝑊𝑜𝑜 (shown by the dashed curve).
Figure 3 visualizes the graphs of both 𝑓𝑓(𝑥𝑥) as well as of 𝑊𝑊(𝑥𝑥) with its two branches 𝑊𝑊𝑜𝑜 and
𝑊𝑊−1.

Figure 3. The two branches of the Lambert W-function, inverse of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 𝑒𝑒𝑥𝑥.

First, let us approximate 𝛺𝛺 = 𝑊𝑊(1). Ω is the zero of the function ℎ(𝑧𝑧) = 𝑧𝑧𝑒𝑒𝑧𝑧 − 1. Then our
algorithm produces 𝑠𝑠𝑜𝑜 = 1 and 𝛺𝛺 = 𝑠𝑠1 ≈ 0.5671 when integrating along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of
the rectangle 𝑅𝑅 with the lower left vertex 0.5 − 𝑖𝑖𝑖𝑖 and the upper right vertex 0.6 + 𝑖𝑖𝑖𝑖 for any
constant 0 < 𝑐𝑐 ≪ 1 . 𝑊𝑊(𝑥𝑥) is double-valued for 𝑥𝑥 ∈ (−1

𝑒𝑒 , 0) ⊂ ℝ , a fact that is e.g. for

𝑥𝑥𝑜𝑜 = − 𝑙𝑙𝑙𝑙(2)
2 revealed by 𝑠𝑠𝑜𝑜 = 2 when integrating the function ℎ(𝑧𝑧) = 𝑧𝑧𝑒𝑒𝑧𝑧 − 𝑥𝑥𝑜𝑜 along the

edge of a sufficiently large rectangle with, e.g. the lower left vertex −4.8− 𝑖𝑖 and the upper
right vertex −0.6 + 𝑖𝑖 and by 𝑠𝑠𝑜𝑜 = 1 when integrating along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of, for example,
the sub-rectangle 𝑅𝑅 with lower left vertex −0.8− 𝑖𝑖 and the upper right vertex −0.6 + 𝑖𝑖 to
return 𝑠𝑠1 ≈ −0.6931 approximating the exact value 𝑊𝑊(𝑥𝑥𝑜𝑜) = −ln (2).

These examples demonstrate the feasibility of our algorithm to find zeroes of analytical functions.
However, it is still to be decided by which algorithm to approximate the value of the line integrals

𝜋𝜋
4 − 𝑖𝑖𝑖𝑖 and upper right vertex 𝜋𝜋2 + 𝑖𝑖𝑖𝑖 for any small constant 0 < 𝑐𝑐 ≪ 1. The zero sought-after

of 𝑓𝑓 is then approximated by 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫ 𝑧𝑧 𝑓𝑓´(𝑧𝑧)

𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 ≈ 0.94775.
5. Lambert’s W-function presents a more serious example. 𝑊𝑊(𝑧𝑧) is defined to be the inverse of

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑒𝑒𝑥𝑥 (shown by the dotted curve). Geometrically obvious is that 𝑊𝑊(𝑥𝑥) has two
real branches 𝑊𝑊−1 (shown by the continuous curve) and 𝑊𝑊𝑜𝑜 (shown by the dashed curve).
Figure 3 visualizes the graphs of both 𝑓𝑓(𝑥𝑥) as well as of 𝑊𝑊(𝑥𝑥) with its two branches 𝑊𝑊𝑜𝑜 and
𝑊𝑊−1.

Figure 3. The two branches of the Lambert W-function, inverse of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 𝑒𝑒𝑥𝑥.

First, let us approximate 𝛺𝛺 = 𝑊𝑊(1). Ω is the zero of the function ℎ(𝑧𝑧) = 𝑧𝑧𝑒𝑒𝑧𝑧 − 1. Then our
algorithm produces 𝑠𝑠𝑜𝑜 = 1 and 𝛺𝛺 = 𝑠𝑠1 ≈ 0.5671 when integrating along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of
the rectangle 𝑅𝑅 with the lower left vertex 0.5 − 𝑖𝑖𝑖𝑖 and the upper right vertex 0.6 + 𝑖𝑖𝑖𝑖 for any
constant 0 < 𝑐𝑐 ≪ 1 . 𝑊𝑊(𝑥𝑥) is double-valued for 𝑥𝑥 ∈ (−1

𝑒𝑒 , 0) ⊂ ℝ , a fact that is e.g. for

𝑥𝑥𝑜𝑜 = − 𝑙𝑙𝑙𝑙(2)
2 revealed by 𝑠𝑠𝑜𝑜 = 2 when integrating the function ℎ(𝑧𝑧) = 𝑧𝑧𝑒𝑒𝑧𝑧 − 𝑥𝑥𝑜𝑜 along the

edge of a sufficiently large rectangle with, e.g. the lower left vertex −4.8− 𝑖𝑖 and the upper
right vertex −0.6 + 𝑖𝑖 and by 𝑠𝑠𝑜𝑜 = 1 when integrating along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of, for example,
the sub-rectangle 𝑅𝑅 with lower left vertex −0.8− 𝑖𝑖 and the upper right vertex −0.6 + 𝑖𝑖 to
return 𝑠𝑠1 ≈ −0.6931 approximating the exact value 𝑊𝑊(𝑥𝑥𝑜𝑜) = −ln (2).

These examples demonstrate the feasibility of our algorithm to find zeroes of analytical functions.
However, it is still to be decided by which algorithm to approximate the value of the line integrals
 𝑠𝑠𝑛𝑛 = 1

2𝜋𝜋𝜋𝜋 ∫ 𝑧𝑧𝑛𝑛 𝑓𝑓′(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = ∫ ℎ𝑛𝑛(𝑧𝑧) 𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + ∫ ℎ𝑛𝑛(𝑧𝑧)𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑑𝑑𝑑𝑑 + ∫ ℎ𝑛𝑛(𝑧𝑧) 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 + ∫ ℎ𝑛𝑛(𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑

where ℎ𝑛𝑛(𝑧𝑧) = 𝑧𝑧𝑛𝑛 𝑓𝑓′(𝑧𝑧)
𝑓𝑓(𝑧𝑧) and path 𝐶𝐶 = 𝜕𝜕𝜕𝜕 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∪ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ∪ 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 ∪ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 consists of the four

straight line segments bordering the rectangle 𝑅𝑅 and each of the four line integrals is computed as
∫ ℎ𝑛𝑛(𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑 = ∫ ℎ𝑛𝑛(𝛾𝛾(𝑡𝑡))𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝛾̇𝛾(𝑡𝑡) 𝑑𝑑𝑑𝑑 =:∫ (ℜ𝑔𝑔𝑛𝑛(𝑡𝑡) + 𝑖𝑖ℑ𝑔𝑔𝑛𝑛(𝑡𝑡))𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑𝑑𝑑 for some complex valued

analytic function 𝑔𝑔𝑛𝑛(𝑡𝑡): = ℎ𝑛𝑛(𝛾𝛾(𝑡𝑡)) 𝛾̇𝛾(𝑡𝑡) with some analytic parametrization 𝛾𝛾(𝑡𝑡) for 𝑡𝑡 ∈
[𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚] of the line segment line. There are quadrature rules based on different interpolating
functions (e.g. rectangle or midpoint, trapezoidal, Simpson, Boole), and adaptive rules (e.g. Gauss-
Legendre, Gauss-Kronrod, Gauss-Lobatto). Depending on the chosen quadrature algorithm, the four
complex line integrals can be directly approximated or have to be split into an integral for the real part
and one of the imaginary part (which in case of 𝑠𝑠𝑜𝑜 we a priori know to vanish and can therefore
disregard).
For a start, in the examples we used the simplest algorithms rectangle rule, the trapezoidal rule the
integrated real and the imaginary parts separately. Then, the error of, for example, the midpoint
rectangle rule in the interval Δ is bounded by the area 𝑃𝑃𝑃𝑃̅̅ ̅̅ ⋅ Δ of the quadrangle □(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) where 𝑃𝑃 so
to say is inherited by the midpoint rule and 𝑄𝑄 is inherited by the trapezoidal rule (Needham,
1997).Figure 4 shows the section of the graph of ℜ𝑔𝑔𝑛𝑛 or ℑ𝑔𝑔𝑛𝑛, respectively restricted to the interval
[𝑡𝑡𝑜𝑜, 𝑡𝑡𝑜𝑜 + Δ] together with the areas measured by the midpoint and the trapezoidal rule.

Figure 4. Error bounds for ∫ ℜ𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡𝑜𝑜+Δ
𝑡𝑡𝑜𝑜 𝑑𝑑𝑑𝑑 and ∫ ℑ𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡𝑜𝑜+Δ

𝑡𝑡𝑜𝑜 𝑑𝑑𝑑𝑑, respectively.

To guarantee that the graph of the integrand runs in some quadrangle we increase the height of

□(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) by ℎ(𝑡𝑡𝑜𝑜, 𝑡𝑡𝑜𝑜 + Δ) =
(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚−√𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

2 −ℓ
2
4)

cos𝛼𝛼 = ℓ
Δ (𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 − √𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

2 − ℓ2
4) where 𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚 = 1

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
 is the

𝑠𝑠𝑛𝑛 = 1
2𝜋𝜋𝜋𝜋 ∫ 𝑧𝑧𝑛𝑛 𝑓𝑓′(𝑧𝑧)

𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = ∫ ℎ𝑛𝑛(𝑧𝑧) 𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + ∫ ℎ𝑛𝑛(𝑧𝑧)𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑑𝑑𝑑𝑑 + ∫ ℎ𝑛𝑛(𝑧𝑧) 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 + ∫ ℎ𝑛𝑛(𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑

where ℎ𝑛𝑛(𝑧𝑧) = 𝑧𝑧𝑛𝑛 𝑓𝑓′(𝑧𝑧)
𝑓𝑓(𝑧𝑧) and path 𝐶𝐶 = 𝜕𝜕𝜕𝜕 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∪ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ∪ 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 ∪ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 consists of the four

straight line segments bordering the rectangle 𝑅𝑅 and each of the four line integrals is computed as
∫ ℎ𝑛𝑛(𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑 = ∫ ℎ𝑛𝑛(𝛾𝛾(𝑡𝑡))𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝛾̇𝛾(𝑡𝑡) 𝑑𝑑𝑑𝑑 =:∫ (ℜ𝑔𝑔𝑛𝑛(𝑡𝑡) + 𝑖𝑖ℑ𝑔𝑔𝑛𝑛(𝑡𝑡))𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑𝑑𝑑 for some complex valued

analytic function 𝑔𝑔𝑛𝑛(𝑡𝑡): = ℎ𝑛𝑛(𝛾𝛾(𝑡𝑡)) 𝛾̇𝛾(𝑡𝑡) with some analytic parametrization 𝛾𝛾(𝑡𝑡) for 𝑡𝑡 ∈
[𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚] of the line segment line. There are quadrature rules based on different interpolating
functions (e.g. rectangle or midpoint, trapezoidal, Simpson, Boole), and adaptive rules (e.g. Gauss-
Legendre, Gauss-Kronrod, Gauss-Lobatto). Depending on the chosen quadrature algorithm, the four
complex line integrals can be directly approximated or have to be split into an integral for the real part
and one of the imaginary part (which in case of 𝑠𝑠𝑜𝑜 we a priori know to vanish and can therefore
disregard).
For a start, in the examples we used the simplest algorithms rectangle rule, the trapezoidal rule the
integrated real and the imaginary parts separately. Then, the error of, for example, the midpoint
rectangle rule in the interval Δ is bounded by the area 𝑃𝑃𝑃𝑃̅̅ ̅̅ ⋅ Δ of the quadrangle □(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) where 𝑃𝑃 so
to say is inherited by the midpoint rule and 𝑄𝑄 is inherited by the trapezoidal rule (Needham,
1997).Figure 4 shows the section of the graph of ℜ𝑔𝑔𝑛𝑛 or ℑ𝑔𝑔𝑛𝑛, respectively restricted to the interval
[𝑡𝑡𝑜𝑜, 𝑡𝑡𝑜𝑜 + Δ] together with the areas measured by the midpoint and the trapezoidal rule.

Figure 4. Error bounds for ∫ ℜ𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡𝑜𝑜+Δ
𝑡𝑡𝑜𝑜 𝑑𝑑𝑑𝑑 and ∫ ℑ𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡𝑜𝑜+Δ

𝑡𝑡𝑜𝑜 𝑑𝑑𝑑𝑑, respectively.

To guarantee that the graph of the integrand runs in some quadrangle we increase the height of

□(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) by ℎ(𝑡𝑡𝑜𝑜, 𝑡𝑡𝑜𝑜 + Δ) =
(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚−√𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

2 −ℓ
2
4)

cos𝛼𝛼 = ℓ
Δ (𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 − √𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

2 − ℓ2
4) where 𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚 = 1

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
 is the

𝑠𝑠𝑛𝑛 = 1
2𝜋𝜋𝜋𝜋 ∫ 𝑧𝑧𝑛𝑛 𝑓𝑓′(𝑧𝑧)

𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = ∫ ℎ𝑛𝑛(𝑧𝑧) 𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + ∫ ℎ𝑛𝑛(𝑧𝑧)𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑑𝑑𝑑𝑑 + ∫ ℎ𝑛𝑛(𝑧𝑧) 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 + ∫ ℎ𝑛𝑛(𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑

where ℎ𝑛𝑛(𝑧𝑧) = 𝑧𝑧𝑛𝑛 𝑓𝑓′(𝑧𝑧)
𝑓𝑓(𝑧𝑧) and path 𝐶𝐶 = 𝜕𝜕𝜕𝜕 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∪ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ∪ 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 ∪ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 consists of the four

straight line segments bordering the rectangle 𝑅𝑅 and each of the four line integrals is computed as
∫ ℎ𝑛𝑛(𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑 = ∫ ℎ𝑛𝑛(𝛾𝛾(𝑡𝑡))𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝛾̇𝛾(𝑡𝑡) 𝑑𝑑𝑑𝑑 =:∫ (ℜ𝑔𝑔𝑛𝑛(𝑡𝑡) + 𝑖𝑖ℑ𝑔𝑔𝑛𝑛(𝑡𝑡))𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑𝑑𝑑 for some complex valued

analytic function 𝑔𝑔𝑛𝑛(𝑡𝑡): = ℎ𝑛𝑛(𝛾𝛾(𝑡𝑡)) 𝛾̇𝛾(𝑡𝑡) with some analytic parametrization 𝛾𝛾(𝑡𝑡) for 𝑡𝑡 ∈
[𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚] of the line segment line. There are quadrature rules based on different interpolating
functions (e.g. rectangle or midpoint, trapezoidal, Simpson, Boole), and adaptive rules (e.g. Gauss-
Legendre, Gauss-Kronrod, Gauss-Lobatto). Depending on the chosen quadrature algorithm, the four
complex line integrals can be directly approximated or have to be split into an integral for the real part
and one of the imaginary part (which in case of 𝑠𝑠𝑜𝑜 we a priori know to vanish and can therefore
disregard).
For a start, in the examples we used the simplest algorithms rectangle rule, the trapezoidal rule the
integrated real and the imaginary parts separately. Then, the error of, for example, the midpoint
rectangle rule in the interval Δ is bounded by the area 𝑃𝑃𝑃𝑃̅̅ ̅̅ ⋅ Δ of the quadrangle □(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) where 𝑃𝑃 so
to say is inherited by the midpoint rule and 𝑄𝑄 is inherited by the trapezoidal rule (Needham,
1997).Figure 4 shows the section of the graph of ℜ𝑔𝑔𝑛𝑛 or ℑ𝑔𝑔𝑛𝑛, respectively restricted to the interval
[𝑡𝑡𝑜𝑜, 𝑡𝑡𝑜𝑜 + Δ] together with the areas measured by the midpoint and the trapezoidal rule.

Figure 4. Error bounds for ∫ ℜ𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡𝑜𝑜+Δ
𝑡𝑡𝑜𝑜 𝑑𝑑𝑑𝑑 and ∫ ℑ𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡𝑜𝑜+Δ

𝑡𝑡𝑜𝑜 𝑑𝑑𝑑𝑑, respectively.

To guarantee that the graph of the integrand runs in some quadrangle we increase the height of

□(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) by ℎ(𝑡𝑡𝑜𝑜, 𝑡𝑡𝑜𝑜 + Δ) =
(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚−√𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

2 −ℓ
2
4)

cos𝛼𝛼 = ℓ
Δ (𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 − √𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

2 − ℓ2
4) where 𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚 = 1

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
 is the

13

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 1–16

four line integrals is computed as 					
for some complex valued analytic function with some analytic parametrization
for of the line segment line. There are quadrature rules based on different
interpolating functions 		 with some analytic parametrization γ(t)
for t∈ of the line segment line. There are quadrature rules based
on different interpolating functions (e.g. rectangle or midpoint, trapezoidal,
Simpson, Boole), and adaptive rules (e.g. Gauss-Legendre, Gauss-Kronrod,
Gauss-Lobatto). Depending on the chosen quadrature algorithm, the four
complex line integrals can be directly approximated or have to be split into an
integral for the real part and one of the imaginary part (which in case of we a
priori know to vanish and can therefore disregard).
	
For a start, in the examples we used the simplest algorithms rectangle rule,
the trapezoidal rule the integrated real and the imaginary parts separately.
Then, the error of, for example, the midpoint rectangle rule in the interval is
bounded by the area of the quadrangle where so to say is inherited
by the midpoint rule and Q is inherited by the trapezoidal rule (Needham,
1997).Figure 4 shows the section of the graph of respectively
restricted to the interval 	 together with the areas measured by the
midpoint and the trapezoidal rule.

	

𝑠𝑠𝑛𝑛 = 1
2𝜋𝜋𝜋𝜋 ∫ 𝑧𝑧𝑛𝑛 𝑓𝑓′(𝑧𝑧)

𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = ∫ ℎ𝑛𝑛(𝑧𝑧) 𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + ∫ ℎ𝑛𝑛(𝑧𝑧)𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑑𝑑𝑑𝑑 + ∫ ℎ𝑛𝑛(𝑧𝑧) 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 + ∫ ℎ𝑛𝑛(𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑

where ℎ𝑛𝑛(𝑧𝑧) = 𝑧𝑧𝑛𝑛 𝑓𝑓′(𝑧𝑧)
𝑓𝑓(𝑧𝑧) and path 𝐶𝐶 = 𝜕𝜕𝜕𝜕 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∪ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ∪ 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 ∪ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 consists of the four

straight line segments bordering the rectangle 𝑅𝑅 and each of the four line integrals is computed as
∫ ℎ𝑛𝑛(𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑 = ∫ ℎ𝑛𝑛(𝛾𝛾(𝑡𝑡))𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝛾̇𝛾(𝑡𝑡) 𝑑𝑑𝑑𝑑 =:∫ (ℜ𝑔𝑔𝑛𝑛(𝑡𝑡) + 𝑖𝑖ℑ𝑔𝑔𝑛𝑛(𝑡𝑡))𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑𝑑𝑑 for some complex valued

analytic function 𝑔𝑔𝑛𝑛(𝑡𝑡): = ℎ𝑛𝑛(𝛾𝛾(𝑡𝑡)) 𝛾̇𝛾(𝑡𝑡) with some analytic parametrization 𝛾𝛾(𝑡𝑡) for 𝑡𝑡 ∈
[𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚] of the line segment line. There are quadrature rules based on different interpolating
functions (e.g. rectangle or midpoint, trapezoidal, Simpson, Boole), and adaptive rules (e.g. Gauss-
Legendre, Gauss-Kronrod, Gauss-Lobatto). Depending on the chosen quadrature algorithm, the four
complex line integrals can be directly approximated or have to be split into an integral for the real part
and one of the imaginary part (which in case of 𝑠𝑠𝑜𝑜 we a priori know to vanish and can therefore
disregard).
For a start, in the examples we used the simplest algorithms rectangle rule, the trapezoidal rule the
integrated real and the imaginary parts separately. Then, the error of, for example, the midpoint
rectangle rule in the interval Δ is bounded by the area 𝑃𝑃𝑃𝑃̅̅ ̅̅ ⋅ Δ of the quadrangle □(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) where 𝑃𝑃 so
to say is inherited by the midpoint rule and 𝑄𝑄 is inherited by the trapezoidal rule (Needham,
1997).Figure 4 shows the section of the graph of ℜ𝑔𝑔𝑛𝑛 or ℑ𝑔𝑔𝑛𝑛, respectively restricted to the interval
[𝑡𝑡𝑜𝑜, 𝑡𝑡𝑜𝑜 + Δ] together with the areas measured by the midpoint and the trapezoidal rule.

Figure 4. Error bounds for ∫ ℜ𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡𝑜𝑜+Δ
𝑡𝑡𝑜𝑜 𝑑𝑑𝑑𝑑 and ∫ ℑ𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡𝑜𝑜+Δ

𝑡𝑡𝑜𝑜 𝑑𝑑𝑑𝑑, respectively.

To guarantee that the graph of the integrand runs in some quadrangle we increase the height of

□(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) by ℎ(𝑡𝑡𝑜𝑜, 𝑡𝑡𝑜𝑜 + Δ) =
(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚−√𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

2 −ℓ
2
4)

cos𝛼𝛼 = ℓ
Δ (𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 − √𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

2 − ℓ2
4) where 𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚 = 1

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
 is the

𝑠𝑠𝑛𝑛 = 1
2𝜋𝜋𝜋𝜋 ∫ 𝑧𝑧𝑛𝑛 𝑓𝑓′(𝑧𝑧)

𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = ∫ ℎ𝑛𝑛(𝑧𝑧) 𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + ∫ ℎ𝑛𝑛(𝑧𝑧)𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑑𝑑𝑑𝑑 + ∫ ℎ𝑛𝑛(𝑧𝑧) 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 + ∫ ℎ𝑛𝑛(𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑

where ℎ𝑛𝑛(𝑧𝑧) = 𝑧𝑧𝑛𝑛 𝑓𝑓′(𝑧𝑧)
𝑓𝑓(𝑧𝑧) and path 𝐶𝐶 = 𝜕𝜕𝜕𝜕 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∪ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ∪ 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 ∪ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 consists of the four

straight line segments bordering the rectangle 𝑅𝑅 and each of the four line integrals is computed as
∫ ℎ𝑛𝑛(𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑 = ∫ ℎ𝑛𝑛(𝛾𝛾(𝑡𝑡))𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝛾̇𝛾(𝑡𝑡) 𝑑𝑑𝑑𝑑 =:∫ (ℜ𝑔𝑔𝑛𝑛(𝑡𝑡) + 𝑖𝑖ℑ𝑔𝑔𝑛𝑛(𝑡𝑡))𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑𝑑𝑑 for some complex valued

analytic function 𝑔𝑔𝑛𝑛(𝑡𝑡): = ℎ𝑛𝑛(𝛾𝛾(𝑡𝑡)) 𝛾̇𝛾(𝑡𝑡) with some analytic parametrization 𝛾𝛾(𝑡𝑡) for 𝑡𝑡 ∈
[𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚] of the line segment line. There are quadrature rules based on different interpolating
functions (e.g. rectangle or midpoint, trapezoidal, Simpson, Boole), and adaptive rules (e.g. Gauss-
Legendre, Gauss-Kronrod, Gauss-Lobatto). Depending on the chosen quadrature algorithm, the four
complex line integrals can be directly approximated or have to be split into an integral for the real part
and one of the imaginary part (which in case of 𝑠𝑠𝑜𝑜 we a priori know to vanish and can therefore
disregard).
For a start, in the examples we used the simplest algorithms rectangle rule, the trapezoidal rule the
integrated real and the imaginary parts separately. Then, the error of, for example, the midpoint
rectangle rule in the interval Δ is bounded by the area 𝑃𝑃𝑃𝑃̅̅ ̅̅ ⋅ Δ of the quadrangle □(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) where 𝑃𝑃 so
to say is inherited by the midpoint rule and 𝑄𝑄 is inherited by the trapezoidal rule (Needham,
1997).Figure 4 shows the section of the graph of ℜ𝑔𝑔𝑛𝑛 or ℑ𝑔𝑔𝑛𝑛, respectively restricted to the interval
[𝑡𝑡𝑜𝑜, 𝑡𝑡𝑜𝑜 + Δ] together with the areas measured by the midpoint and the trapezoidal rule.

Figure 4. Error bounds for ∫ ℜ𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡𝑜𝑜+Δ
𝑡𝑡𝑜𝑜 𝑑𝑑𝑑𝑑 and ∫ ℑ𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡𝑜𝑜+Δ

𝑡𝑡𝑜𝑜 𝑑𝑑𝑑𝑑, respectively.

To guarantee that the graph of the integrand runs in some quadrangle we increase the height of

□(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) by ℎ(𝑡𝑡𝑜𝑜, 𝑡𝑡𝑜𝑜 + Δ) =
(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚−√𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

2 −ℓ
2
4)

cos𝛼𝛼 = ℓ
Δ (𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 − √𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

2 − ℓ2
4) where 𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚 = 1

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
 is the

𝑠𝑠𝑛𝑛 = 1
2𝜋𝜋𝜋𝜋 ∫ 𝑧𝑧𝑛𝑛 𝑓𝑓′(𝑧𝑧)

𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = ∫ ℎ𝑛𝑛(𝑧𝑧) 𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + ∫ ℎ𝑛𝑛(𝑧𝑧)𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑑𝑑𝑑𝑑 + ∫ ℎ𝑛𝑛(𝑧𝑧) 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 + ∫ ℎ𝑛𝑛(𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑

where ℎ𝑛𝑛(𝑧𝑧) = 𝑧𝑧𝑛𝑛 𝑓𝑓′(𝑧𝑧)
𝑓𝑓(𝑧𝑧) and path 𝐶𝐶 = 𝜕𝜕𝜕𝜕 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∪ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ∪ 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 ∪ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 consists of the four

straight line segments bordering the rectangle 𝑅𝑅 and each of the four line integrals is computed as
∫ ℎ𝑛𝑛(𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑 = ∫ ℎ𝑛𝑛(𝛾𝛾(𝑡𝑡))𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝛾̇𝛾(𝑡𝑡) 𝑑𝑑𝑑𝑑 =:∫ (ℜ𝑔𝑔𝑛𝑛(𝑡𝑡) + 𝑖𝑖ℑ𝑔𝑔𝑛𝑛(𝑡𝑡))𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑𝑑𝑑 for some complex valued

analytic function 𝑔𝑔𝑛𝑛(𝑡𝑡): = ℎ𝑛𝑛(𝛾𝛾(𝑡𝑡)) 𝛾̇𝛾(𝑡𝑡) with some analytic parametrization 𝛾𝛾(𝑡𝑡) for 𝑡𝑡 ∈
[𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚] of the line segment line. There are quadrature rules based on different interpolating
functions (e.g. rectangle or midpoint, trapezoidal, Simpson, Boole), and adaptive rules (e.g. Gauss-
Legendre, Gauss-Kronrod, Gauss-Lobatto). Depending on the chosen quadrature algorithm, the four
complex line integrals can be directly approximated or have to be split into an integral for the real part
and one of the imaginary part (which in case of 𝑠𝑠𝑜𝑜 we a priori know to vanish and can therefore
disregard).
For a start, in the examples we used the simplest algorithms rectangle rule, the trapezoidal rule the
integrated real and the imaginary parts separately. Then, the error of, for example, the midpoint
rectangle rule in the interval Δ is bounded by the area 𝑃𝑃𝑃𝑃̅̅ ̅̅ ⋅ Δ of the quadrangle □(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) where 𝑃𝑃 so
to say is inherited by the midpoint rule and 𝑄𝑄 is inherited by the trapezoidal rule (Needham,
1997).Figure 4 shows the section of the graph of ℜ𝑔𝑔𝑛𝑛 or ℑ𝑔𝑔𝑛𝑛, respectively restricted to the interval
[𝑡𝑡𝑜𝑜, 𝑡𝑡𝑜𝑜 + Δ] together with the areas measured by the midpoint and the trapezoidal rule.

Figure 4. Error bounds for ∫ ℜ𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡𝑜𝑜+Δ
𝑡𝑡𝑜𝑜 𝑑𝑑𝑑𝑑 and ∫ ℑ𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡𝑜𝑜+Δ

𝑡𝑡𝑜𝑜 𝑑𝑑𝑑𝑑, respectively.

To guarantee that the graph of the integrand runs in some quadrangle we increase the height of

□(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) by ℎ(𝑡𝑡𝑜𝑜, 𝑡𝑡𝑜𝑜 + Δ) =
(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚−√𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

2 −ℓ
2
4)

cos𝛼𝛼 = ℓ
Δ (𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 − √𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

2 − ℓ2
4) where 𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚 = 1

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
 is the

𝑠𝑠𝑛𝑛 = 1
2𝜋𝜋𝜋𝜋 ∫ 𝑧𝑧𝑛𝑛 𝑓𝑓′(𝑧𝑧)

𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = ∫ ℎ𝑛𝑛(𝑧𝑧) 𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + ∫ ℎ𝑛𝑛(𝑧𝑧)𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑑𝑑𝑑𝑑 + ∫ ℎ𝑛𝑛(𝑧𝑧) 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 + ∫ ℎ𝑛𝑛(𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑

where ℎ𝑛𝑛(𝑧𝑧) = 𝑧𝑧𝑛𝑛 𝑓𝑓′(𝑧𝑧)
𝑓𝑓(𝑧𝑧) and path 𝐶𝐶 = 𝜕𝜕𝜕𝜕 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∪ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ∪ 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 ∪ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 consists of the four

straight line segments bordering the rectangle 𝑅𝑅 and each of the four line integrals is computed as
∫ ℎ𝑛𝑛(𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑 = ∫ ℎ𝑛𝑛(𝛾𝛾(𝑡𝑡))𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝛾̇𝛾(𝑡𝑡) 𝑑𝑑𝑑𝑑 =:∫ (ℜ𝑔𝑔𝑛𝑛(𝑡𝑡) + 𝑖𝑖ℑ𝑔𝑔𝑛𝑛(𝑡𝑡))𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑𝑑𝑑 for some complex valued

analytic function 𝑔𝑔𝑛𝑛(𝑡𝑡): = ℎ𝑛𝑛(𝛾𝛾(𝑡𝑡)) 𝛾̇𝛾(𝑡𝑡) with some analytic parametrization 𝛾𝛾(𝑡𝑡) for 𝑡𝑡 ∈
[𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚] of the line segment line. There are quadrature rules based on different interpolating
functions (e.g. rectangle or midpoint, trapezoidal, Simpson, Boole), and adaptive rules (e.g. Gauss-
Legendre, Gauss-Kronrod, Gauss-Lobatto). Depending on the chosen quadrature algorithm, the four
complex line integrals can be directly approximated or have to be split into an integral for the real part
and one of the imaginary part (which in case of 𝑠𝑠𝑜𝑜 we a priori know to vanish and can therefore
disregard).
For a start, in the examples we used the simplest algorithms rectangle rule, the trapezoidal rule the
integrated real and the imaginary parts separately. Then, the error of, for example, the midpoint
rectangle rule in the interval Δ is bounded by the area 𝑃𝑃𝑃𝑃̅̅ ̅̅ ⋅ Δ of the quadrangle □(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) where 𝑃𝑃 so
to say is inherited by the midpoint rule and 𝑄𝑄 is inherited by the trapezoidal rule (Needham,
1997).Figure 4 shows the section of the graph of ℜ𝑔𝑔𝑛𝑛 or ℑ𝑔𝑔𝑛𝑛, respectively restricted to the interval
[𝑡𝑡𝑜𝑜, 𝑡𝑡𝑜𝑜 + Δ] together with the areas measured by the midpoint and the trapezoidal rule.

Figure 4. Error bounds for ∫ ℜ𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡𝑜𝑜+Δ
𝑡𝑡𝑜𝑜 𝑑𝑑𝑑𝑑 and ∫ ℑ𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡𝑜𝑜+Δ

𝑡𝑡𝑜𝑜 𝑑𝑑𝑑𝑑, respectively.

To guarantee that the graph of the integrand runs in some quadrangle we increase the height of

□(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) by ℎ(𝑡𝑡𝑜𝑜, 𝑡𝑡𝑜𝑜 + Δ) =
(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚−√𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

2 −ℓ
2
4)

cos𝛼𝛼 = ℓ
Δ (𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 − √𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

2 − ℓ2
4) where 𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚 = 1

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
 is the

𝑠𝑠𝑛𝑛 = 1
2𝜋𝜋𝜋𝜋 ∫ 𝑧𝑧𝑛𝑛 𝑓𝑓′(𝑧𝑧)

𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = ∫ ℎ𝑛𝑛(𝑧𝑧) 𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + ∫ ℎ𝑛𝑛(𝑧𝑧)𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑑𝑑𝑑𝑑 + ∫ ℎ𝑛𝑛(𝑧𝑧) 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 + ∫ ℎ𝑛𝑛(𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑

where ℎ𝑛𝑛(𝑧𝑧) = 𝑧𝑧𝑛𝑛 𝑓𝑓′(𝑧𝑧)
𝑓𝑓(𝑧𝑧) and path 𝐶𝐶 = 𝜕𝜕𝜕𝜕 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∪ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ∪ 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 ∪ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 consists of the four

straight line segments bordering the rectangle 𝑅𝑅 and each of the four line integrals is computed as
∫ ℎ𝑛𝑛(𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑 = ∫ ℎ𝑛𝑛(𝛾𝛾(𝑡𝑡))𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝛾̇𝛾(𝑡𝑡) 𝑑𝑑𝑑𝑑 =:∫ (ℜ𝑔𝑔𝑛𝑛(𝑡𝑡) + 𝑖𝑖ℑ𝑔𝑔𝑛𝑛(𝑡𝑡))𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑𝑑𝑑 for some complex valued

analytic function 𝑔𝑔𝑛𝑛(𝑡𝑡): = ℎ𝑛𝑛(𝛾𝛾(𝑡𝑡)) 𝛾̇𝛾(𝑡𝑡) with some analytic parametrization 𝛾𝛾(𝑡𝑡) for 𝑡𝑡 ∈
[𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚] of the line segment line. There are quadrature rules based on different interpolating
functions (e.g. rectangle or midpoint, trapezoidal, Simpson, Boole), and adaptive rules (e.g. Gauss-
Legendre, Gauss-Kronrod, Gauss-Lobatto). Depending on the chosen quadrature algorithm, the four
complex line integrals can be directly approximated or have to be split into an integral for the real part
and one of the imaginary part (which in case of 𝑠𝑠𝑜𝑜 we a priori know to vanish and can therefore
disregard).
For a start, in the examples we used the simplest algorithms rectangle rule, the trapezoidal rule the
integrated real and the imaginary parts separately. Then, the error of, for example, the midpoint
rectangle rule in the interval Δ is bounded by the area 𝑃𝑃𝑃𝑃̅̅ ̅̅ ⋅ Δ of the quadrangle □(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) where 𝑃𝑃 so
to say is inherited by the midpoint rule and 𝑄𝑄 is inherited by the trapezoidal rule (Needham,
1997).Figure 4 shows the section of the graph of ℜ𝑔𝑔𝑛𝑛 or ℑ𝑔𝑔𝑛𝑛, respectively restricted to the interval
[𝑡𝑡𝑜𝑜, 𝑡𝑡𝑜𝑜 + Δ] together with the areas measured by the midpoint and the trapezoidal rule.

Figure 4. Error bounds for ∫ ℜ𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡𝑜𝑜+Δ
𝑡𝑡𝑜𝑜 𝑑𝑑𝑑𝑑 and ∫ ℑ𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡𝑜𝑜+Δ

𝑡𝑡𝑜𝑜 𝑑𝑑𝑑𝑑, respectively.

To guarantee that the graph of the integrand runs in some quadrangle we increase the height of

□(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) by ℎ(𝑡𝑡𝑜𝑜, 𝑡𝑡𝑜𝑜 + Δ) =
(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚−√𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

2 −ℓ
2
4)

cos𝛼𝛼 = ℓ
Δ (𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 − √𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

2 − ℓ2
4) where 𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚 = 1

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
 is the

𝑠𝑠𝑛𝑛 = 1
2𝜋𝜋𝜋𝜋 ∫ 𝑧𝑧𝑛𝑛 𝑓𝑓′(𝑧𝑧)

𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = ∫ ℎ𝑛𝑛(𝑧𝑧) 𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + ∫ ℎ𝑛𝑛(𝑧𝑧)𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑑𝑑𝑑𝑑 + ∫ ℎ𝑛𝑛(𝑧𝑧) 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 + ∫ ℎ𝑛𝑛(𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑

where ℎ𝑛𝑛(𝑧𝑧) = 𝑧𝑧𝑛𝑛 𝑓𝑓′(𝑧𝑧)
𝑓𝑓(𝑧𝑧) and path 𝐶𝐶 = 𝜕𝜕𝜕𝜕 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∪ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ∪ 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 ∪ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 consists of the four

straight line segments bordering the rectangle 𝑅𝑅 and each of the four line integrals is computed as
∫ ℎ𝑛𝑛(𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑 = ∫ ℎ𝑛𝑛(𝛾𝛾(𝑡𝑡))𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝛾̇𝛾(𝑡𝑡) 𝑑𝑑𝑑𝑑 =:∫ (ℜ𝑔𝑔𝑛𝑛(𝑡𝑡) + 𝑖𝑖ℑ𝑔𝑔𝑛𝑛(𝑡𝑡))𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑𝑑𝑑 for some complex valued

analytic function 𝑔𝑔𝑛𝑛(𝑡𝑡): = ℎ𝑛𝑛(𝛾𝛾(𝑡𝑡)) 𝛾̇𝛾(𝑡𝑡) with some analytic parametrization 𝛾𝛾(𝑡𝑡) for 𝑡𝑡 ∈
[𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚] of the line segment line. There are quadrature rules based on different interpolating
functions (e.g. rectangle or midpoint, trapezoidal, Simpson, Boole), and adaptive rules (e.g. Gauss-
Legendre, Gauss-Kronrod, Gauss-Lobatto). Depending on the chosen quadrature algorithm, the four
complex line integrals can be directly approximated or have to be split into an integral for the real part
and one of the imaginary part (which in case of 𝑠𝑠𝑜𝑜 we a priori know to vanish and can therefore
disregard).
For a start, in the examples we used the simplest algorithms rectangle rule, the trapezoidal rule the
integrated real and the imaginary parts separately. Then, the error of, for example, the midpoint
rectangle rule in the interval Δ is bounded by the area 𝑃𝑃𝑃𝑃̅̅ ̅̅ ⋅ Δ of the quadrangle □(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) where 𝑃𝑃 so
to say is inherited by the midpoint rule and 𝑄𝑄 is inherited by the trapezoidal rule (Needham,
1997).Figure 4 shows the section of the graph of ℜ𝑔𝑔𝑛𝑛 or ℑ𝑔𝑔𝑛𝑛, respectively restricted to the interval
[𝑡𝑡𝑜𝑜, 𝑡𝑡𝑜𝑜 + Δ] together with the areas measured by the midpoint and the trapezoidal rule.

Figure 4. Error bounds for ∫ ℜ𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡𝑜𝑜+Δ
𝑡𝑡𝑜𝑜 𝑑𝑑𝑑𝑑 and ∫ ℑ𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡𝑜𝑜+Δ

𝑡𝑡𝑜𝑜 𝑑𝑑𝑑𝑑, respectively.

To guarantee that the graph of the integrand runs in some quadrangle we increase the height of

□(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) by ℎ(𝑡𝑡𝑜𝑜, 𝑡𝑡𝑜𝑜 + Δ) =
(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚−√𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

2 −ℓ
2
4)

cos𝛼𝛼 = ℓ
Δ (𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 − √𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

2 − ℓ2
4) where 𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚 = 1

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
 is the

𝑠𝑠𝑛𝑛 = 1
2𝜋𝜋𝜋𝜋 ∫ 𝑧𝑧𝑛𝑛 𝑓𝑓′(𝑧𝑧)

𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = ∫ ℎ𝑛𝑛(𝑧𝑧) 𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + ∫ ℎ𝑛𝑛(𝑧𝑧)𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑑𝑑𝑑𝑑 + ∫ ℎ𝑛𝑛(𝑧𝑧) 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 + ∫ ℎ𝑛𝑛(𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑

where ℎ𝑛𝑛(𝑧𝑧) = 𝑧𝑧𝑛𝑛 𝑓𝑓′(𝑧𝑧)
𝑓𝑓(𝑧𝑧) and path 𝐶𝐶 = 𝜕𝜕𝜕𝜕 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∪ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ∪ 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 ∪ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 consists of the four

straight line segments bordering the rectangle 𝑅𝑅 and each of the four line integrals is computed as
∫ ℎ𝑛𝑛(𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑 = ∫ ℎ𝑛𝑛(𝛾𝛾(𝑡𝑡))𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝛾̇𝛾(𝑡𝑡) 𝑑𝑑𝑑𝑑 =:∫ (ℜ𝑔𝑔𝑛𝑛(𝑡𝑡) + 𝑖𝑖ℑ𝑔𝑔𝑛𝑛(𝑡𝑡))𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑𝑑𝑑 for some complex valued

analytic function 𝑔𝑔𝑛𝑛(𝑡𝑡): = ℎ𝑛𝑛(𝛾𝛾(𝑡𝑡)) 𝛾̇𝛾(𝑡𝑡) with some analytic parametrization 𝛾𝛾(𝑡𝑡) for 𝑡𝑡 ∈
[𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚] of the line segment line. There are quadrature rules based on different interpolating
functions (e.g. rectangle or midpoint, trapezoidal, Simpson, Boole), and adaptive rules (e.g. Gauss-
Legendre, Gauss-Kronrod, Gauss-Lobatto). Depending on the chosen quadrature algorithm, the four
complex line integrals can be directly approximated or have to be split into an integral for the real part
and one of the imaginary part (which in case of 𝑠𝑠𝑜𝑜 we a priori know to vanish and can therefore
disregard).
For a start, in the examples we used the simplest algorithms rectangle rule, the trapezoidal rule the
integrated real and the imaginary parts separately. Then, the error of, for example, the midpoint
rectangle rule in the interval Δ is bounded by the area 𝑃𝑃𝑃𝑃̅̅ ̅̅ ⋅ Δ of the quadrangle □(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) where 𝑃𝑃 so
to say is inherited by the midpoint rule and 𝑄𝑄 is inherited by the trapezoidal rule (Needham,
1997).Figure 4 shows the section of the graph of ℜ𝑔𝑔𝑛𝑛 or ℑ𝑔𝑔𝑛𝑛, respectively restricted to the interval
[𝑡𝑡𝑜𝑜, 𝑡𝑡𝑜𝑜 + Δ] together with the areas measured by the midpoint and the trapezoidal rule.

Figure 4. Error bounds for ∫ ℜ𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡𝑜𝑜+Δ
𝑡𝑡𝑜𝑜 𝑑𝑑𝑑𝑑 and ∫ ℑ𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡𝑜𝑜+Δ

𝑡𝑡𝑜𝑜 𝑑𝑑𝑑𝑑, respectively.

To guarantee that the graph of the integrand runs in some quadrangle we increase the height of

□(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) by ℎ(𝑡𝑡𝑜𝑜, 𝑡𝑡𝑜𝑜 + Δ) =
(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚−√𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

2 −ℓ
2
4)

cos𝛼𝛼 = ℓ
Δ (𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 − √𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

2 − ℓ2
4) where 𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚 = 1

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
 is the

𝑠𝑠𝑛𝑛 = 1
2𝜋𝜋𝜋𝜋 ∫ 𝑧𝑧𝑛𝑛 𝑓𝑓′(𝑧𝑧)

𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = ∫ ℎ𝑛𝑛(𝑧𝑧) 𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + ∫ ℎ𝑛𝑛(𝑧𝑧)𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑑𝑑𝑑𝑑 + ∫ ℎ𝑛𝑛(𝑧𝑧) 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 + ∫ ℎ𝑛𝑛(𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑

where ℎ𝑛𝑛(𝑧𝑧) = 𝑧𝑧𝑛𝑛 𝑓𝑓′(𝑧𝑧)
𝑓𝑓(𝑧𝑧) and path 𝐶𝐶 = 𝜕𝜕𝜕𝜕 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∪ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ∪ 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 ∪ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 consists of the four

straight line segments bordering the rectangle 𝑅𝑅 and each of the four line integrals is computed as
∫ ℎ𝑛𝑛(𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑 = ∫ ℎ𝑛𝑛(𝛾𝛾(𝑡𝑡))𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝛾̇𝛾(𝑡𝑡) 𝑑𝑑𝑑𝑑 =:∫ (ℜ𝑔𝑔𝑛𝑛(𝑡𝑡) + 𝑖𝑖ℑ𝑔𝑔𝑛𝑛(𝑡𝑡))𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑𝑑𝑑 for some complex valued

analytic function 𝑔𝑔𝑛𝑛(𝑡𝑡): = ℎ𝑛𝑛(𝛾𝛾(𝑡𝑡)) 𝛾̇𝛾(𝑡𝑡) with some analytic parametrization 𝛾𝛾(𝑡𝑡) for 𝑡𝑡 ∈
[𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚] of the line segment line. There are quadrature rules based on different interpolating
functions (e.g. rectangle or midpoint, trapezoidal, Simpson, Boole), and adaptive rules (e.g. Gauss-
Legendre, Gauss-Kronrod, Gauss-Lobatto). Depending on the chosen quadrature algorithm, the four
complex line integrals can be directly approximated or have to be split into an integral for the real part
and one of the imaginary part (which in case of 𝑠𝑠𝑜𝑜 we a priori know to vanish and can therefore
disregard).
For a start, in the examples we used the simplest algorithms rectangle rule, the trapezoidal rule the
integrated real and the imaginary parts separately. Then, the error of, for example, the midpoint
rectangle rule in the interval Δ is bounded by the area 𝑃𝑃𝑃𝑃̅̅ ̅̅ ⋅ Δ of the quadrangle □(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) where 𝑃𝑃 so
to say is inherited by the midpoint rule and 𝑄𝑄 is inherited by the trapezoidal rule (Needham,
1997).Figure 4 shows the section of the graph of ℜ𝑔𝑔𝑛𝑛 or ℑ𝑔𝑔𝑛𝑛, respectively restricted to the interval
[𝑡𝑡𝑜𝑜, 𝑡𝑡𝑜𝑜 + Δ] together with the areas measured by the midpoint and the trapezoidal rule.

Figure 4. Error bounds for ∫ ℜ𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡𝑜𝑜+Δ
𝑡𝑡𝑜𝑜 𝑑𝑑𝑑𝑑 and ∫ ℑ𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡𝑜𝑜+Δ

𝑡𝑡𝑜𝑜 𝑑𝑑𝑑𝑑, respectively.

To guarantee that the graph of the integrand runs in some quadrangle we increase the height of

□(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) by ℎ(𝑡𝑡𝑜𝑜, 𝑡𝑡𝑜𝑜 + Δ) =
(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚−√𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

2 −ℓ
2
4)

cos𝛼𝛼 = ℓ
Δ (𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 − √𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

2 − ℓ2
4) where 𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚 = 1

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
 is the

𝑠𝑠𝑛𝑛 = 1
2𝜋𝜋𝜋𝜋 ∫ 𝑧𝑧𝑛𝑛 𝑓𝑓′(𝑧𝑧)

𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = ∫ ℎ𝑛𝑛(𝑧𝑧) 𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + ∫ ℎ𝑛𝑛(𝑧𝑧)𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑑𝑑𝑑𝑑 + ∫ ℎ𝑛𝑛(𝑧𝑧) 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 + ∫ ℎ𝑛𝑛(𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑

where ℎ𝑛𝑛(𝑧𝑧) = 𝑧𝑧𝑛𝑛 𝑓𝑓′(𝑧𝑧)
𝑓𝑓(𝑧𝑧) and path 𝐶𝐶 = 𝜕𝜕𝜕𝜕 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∪ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ∪ 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 ∪ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 consists of the four

straight line segments bordering the rectangle 𝑅𝑅 and each of the four line integrals is computed as
∫ ℎ𝑛𝑛(𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑 = ∫ ℎ𝑛𝑛(𝛾𝛾(𝑡𝑡))𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝛾̇𝛾(𝑡𝑡) 𝑑𝑑𝑑𝑑 =:∫ (ℜ𝑔𝑔𝑛𝑛(𝑡𝑡) + 𝑖𝑖ℑ𝑔𝑔𝑛𝑛(𝑡𝑡))𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑𝑑𝑑 for some complex valued

analytic function 𝑔𝑔𝑛𝑛(𝑡𝑡): = ℎ𝑛𝑛(𝛾𝛾(𝑡𝑡)) 𝛾̇𝛾(𝑡𝑡) with some analytic parametrization 𝛾𝛾(𝑡𝑡) for 𝑡𝑡 ∈
[𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚] of the line segment line. There are quadrature rules based on different interpolating
functions (e.g. rectangle or midpoint, trapezoidal, Simpson, Boole), and adaptive rules (e.g. Gauss-
Legendre, Gauss-Kronrod, Gauss-Lobatto). Depending on the chosen quadrature algorithm, the four
complex line integrals can be directly approximated or have to be split into an integral for the real part
and one of the imaginary part (which in case of 𝑠𝑠𝑜𝑜 we a priori know to vanish and can therefore
disregard).
For a start, in the examples we used the simplest algorithms rectangle rule, the trapezoidal rule the
integrated real and the imaginary parts separately. Then, the error of, for example, the midpoint
rectangle rule in the interval Δ is bounded by the area 𝑃𝑃𝑃𝑃̅̅ ̅̅ ⋅ Δ of the quadrangle □(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) where 𝑃𝑃 so
to say is inherited by the midpoint rule and 𝑄𝑄 is inherited by the trapezoidal rule (Needham,
1997).Figure 4 shows the section of the graph of ℜ𝑔𝑔𝑛𝑛 or ℑ𝑔𝑔𝑛𝑛, respectively restricted to the interval
[𝑡𝑡𝑜𝑜, 𝑡𝑡𝑜𝑜 + Δ] together with the areas measured by the midpoint and the trapezoidal rule.

Figure 4. Error bounds for ∫ ℜ𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡𝑜𝑜+Δ
𝑡𝑡𝑜𝑜 𝑑𝑑𝑑𝑑 and ∫ ℑ𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡𝑜𝑜+Δ

𝑡𝑡𝑜𝑜 𝑑𝑑𝑑𝑑, respectively.

To guarantee that the graph of the integrand runs in some quadrangle we increase the height of

□(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) by ℎ(𝑡𝑡𝑜𝑜, 𝑡𝑡𝑜𝑜 + Δ) =
(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚−√𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

2 −ℓ
2
4)

cos𝛼𝛼 = ℓ
Δ (𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 − √𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

2 − ℓ2
4) where 𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚 = 1

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
 is the

𝑠𝑠𝑛𝑛 = 1
2𝜋𝜋𝜋𝜋 ∫ 𝑧𝑧𝑛𝑛 𝑓𝑓′(𝑧𝑧)

𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = ∫ ℎ𝑛𝑛(𝑧𝑧) 𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + ∫ ℎ𝑛𝑛(𝑧𝑧)𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑑𝑑𝑑𝑑 + ∫ ℎ𝑛𝑛(𝑧𝑧) 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 + ∫ ℎ𝑛𝑛(𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑

where ℎ𝑛𝑛(𝑧𝑧) = 𝑧𝑧𝑛𝑛 𝑓𝑓′(𝑧𝑧)
𝑓𝑓(𝑧𝑧) and path 𝐶𝐶 = 𝜕𝜕𝜕𝜕 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∪ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ∪ 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 ∪ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 consists of the four

straight line segments bordering the rectangle 𝑅𝑅 and each of the four line integrals is computed as
∫ ℎ𝑛𝑛(𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑 = ∫ ℎ𝑛𝑛(𝛾𝛾(𝑡𝑡))𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝛾̇𝛾(𝑡𝑡) 𝑑𝑑𝑑𝑑 =:∫ (ℜ𝑔𝑔𝑛𝑛(𝑡𝑡) + 𝑖𝑖ℑ𝑔𝑔𝑛𝑛(𝑡𝑡))𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑𝑑𝑑 for some complex valued

analytic function 𝑔𝑔𝑛𝑛(𝑡𝑡): = ℎ𝑛𝑛(𝛾𝛾(𝑡𝑡)) 𝛾̇𝛾(𝑡𝑡) with some analytic parametrization 𝛾𝛾(𝑡𝑡) for 𝑡𝑡 ∈
[𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚] of the line segment line. There are quadrature rules based on different interpolating
functions (e.g. rectangle or midpoint, trapezoidal, Simpson, Boole), and adaptive rules (e.g. Gauss-
Legendre, Gauss-Kronrod, Gauss-Lobatto). Depending on the chosen quadrature algorithm, the four
complex line integrals can be directly approximated or have to be split into an integral for the real part
and one of the imaginary part (which in case of 𝑠𝑠𝑜𝑜 we a priori know to vanish and can therefore
disregard).
For a start, in the examples we used the simplest algorithms rectangle rule, the trapezoidal rule the
integrated real and the imaginary parts separately. Then, the error of, for example, the midpoint
rectangle rule in the interval Δ is bounded by the area 𝑃𝑃𝑃𝑃̅̅ ̅̅ ⋅ Δ of the quadrangle □(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) where 𝑃𝑃 so
to say is inherited by the midpoint rule and 𝑄𝑄 is inherited by the trapezoidal rule (Needham,
1997).Figure 4 shows the section of the graph of ℜ𝑔𝑔𝑛𝑛 or ℑ𝑔𝑔𝑛𝑛, respectively restricted to the interval
[𝑡𝑡𝑜𝑜, 𝑡𝑡𝑜𝑜 + Δ] together with the areas measured by the midpoint and the trapezoidal rule.

Figure 4. Error bounds for ∫ ℜ𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡𝑜𝑜+Δ
𝑡𝑡𝑜𝑜 𝑑𝑑𝑑𝑑 and ∫ ℑ𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡𝑜𝑜+Δ

𝑡𝑡𝑜𝑜 𝑑𝑑𝑑𝑑, respectively.

To guarantee that the graph of the integrand runs in some quadrangle we increase the height of

□(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) by ℎ(𝑡𝑡𝑜𝑜, 𝑡𝑡𝑜𝑜 + Δ) =
(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚−√𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

2 −ℓ
2
4)

cos𝛼𝛼 = ℓ
Δ (𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 − √𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

2 − ℓ2
4) where 𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚 = 1

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
 is the

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 1–16

14

To guarantee that the graph of the integrand runs in some quadrangle we

increase the height of

where 		 is the maximum curvature of the integrand,

			 is the length and where is the slope angle of the
secant.

Similar to (Needham, 1997) we can bound the absolute error for and
respectively and for some partition of the integration interval with
	 by

where				 with 		 The absolute
value of both sums can be made as small as desired by controlling .

So we do not need and cannot use tricks similar to the one Gustafson used
when dealing with a physical pendulum (Gustafson, 2015).

CONCLUSION AND OUTLOOK

We have demonstrated the shortcomings of the IEEE 754 floating point
numbers, arithmetic on such numbers is not trustworthy and the usage of
memory and bus bandwidth are not efficient. UNUMs however do not show
these deficiencies. However, they make new types of numerical algorithms
necessary. We illustrated the problem to design a zero finding algorithm and
tailored a suitable one to the use of UNUMs.
	
At the moment there seems to be only Gustafson’s UNUM library
written in Mathematica. Of course, libraries which can be used in
more common languages are badly needed. But all the same, there
are several attempts just to provide such libraries, e.g. in Julia
(Gustafson, 2016). Also, there are promising projects under way to
implement UNUMs on hardware, e.g. on FPGAs (Gustafson, 2016).	

Finally, we do not want to conceal that there are rather heated debates about
the virtues of UNUMs between Gustafson (2016a) and Kahan (2016) who
by the way was the primary architect of the IEEE 754 standard. At the same
time, Gustafson emancipated himself even more from the IEEE 754 heritage

𝑠𝑠𝑛𝑛 = 1
2𝜋𝜋𝜋𝜋 ∫ 𝑧𝑧𝑛𝑛 𝑓𝑓′(𝑧𝑧)

𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = ∫ ℎ𝑛𝑛(𝑧𝑧) 𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + ∫ ℎ𝑛𝑛(𝑧𝑧)𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑑𝑑𝑑𝑑 + ∫ ℎ𝑛𝑛(𝑧𝑧) 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 + ∫ ℎ𝑛𝑛(𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑

where ℎ𝑛𝑛(𝑧𝑧) = 𝑧𝑧𝑛𝑛 𝑓𝑓′(𝑧𝑧)
𝑓𝑓(𝑧𝑧) and path 𝐶𝐶 = 𝜕𝜕𝜕𝜕 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∪ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ∪ 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 ∪ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 consists of the four

straight line segments bordering the rectangle 𝑅𝑅 and each of the four line integrals is computed as
∫ ℎ𝑛𝑛(𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑 = ∫ ℎ𝑛𝑛(𝛾𝛾(𝑡𝑡))𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝛾̇𝛾(𝑡𝑡) 𝑑𝑑𝑑𝑑 =:∫ (ℜ𝑔𝑔𝑛𝑛(𝑡𝑡) + 𝑖𝑖ℑ𝑔𝑔𝑛𝑛(𝑡𝑡))𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑𝑑𝑑 for some complex valued

analytic function 𝑔𝑔𝑛𝑛(𝑡𝑡): = ℎ𝑛𝑛(𝛾𝛾(𝑡𝑡)) 𝛾̇𝛾(𝑡𝑡) with some analytic parametrization 𝛾𝛾(𝑡𝑡) for 𝑡𝑡 ∈
[𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚] of the line segment line. There are quadrature rules based on different interpolating
functions (e.g. rectangle or midpoint, trapezoidal, Simpson, Boole), and adaptive rules (e.g. Gauss-
Legendre, Gauss-Kronrod, Gauss-Lobatto). Depending on the chosen quadrature algorithm, the four
complex line integrals can be directly approximated or have to be split into an integral for the real part
and one of the imaginary part (which in case of 𝑠𝑠𝑜𝑜 we a priori know to vanish and can therefore
disregard).
For a start, in the examples we used the simplest algorithms rectangle rule, the trapezoidal rule the
integrated real and the imaginary parts separately. Then, the error of, for example, the midpoint
rectangle rule in the interval Δ is bounded by the area 𝑃𝑃𝑃𝑃̅̅ ̅̅ ⋅ Δ of the quadrangle □(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) where 𝑃𝑃 so
to say is inherited by the midpoint rule and 𝑄𝑄 is inherited by the trapezoidal rule (Needham,
1997).Figure 4 shows the section of the graph of ℜ𝑔𝑔𝑛𝑛 or ℑ𝑔𝑔𝑛𝑛, respectively restricted to the interval
[𝑡𝑡𝑜𝑜, 𝑡𝑡𝑜𝑜 + Δ] together with the areas measured by the midpoint and the trapezoidal rule.

Figure 4. Error bounds for ∫ ℜ𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡𝑜𝑜+Δ
𝑡𝑡𝑜𝑜 𝑑𝑑𝑑𝑑 and ∫ ℑ𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡𝑜𝑜+Δ

𝑡𝑡𝑜𝑜 𝑑𝑑𝑑𝑑, respectively.

To guarantee that the graph of the integrand runs in some quadrangle we increase the height of

□(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) by ℎ(𝑡𝑡𝑜𝑜, 𝑡𝑡𝑜𝑜 + Δ) =
(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚−√𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

2 −ℓ
2
4)

cos𝛼𝛼 = ℓ
Δ (𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 − √𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

2 − ℓ2
4) where 𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚 = 1

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
 is the

𝑠𝑠𝑛𝑛 = 1
2𝜋𝜋𝜋𝜋 ∫ 𝑧𝑧𝑛𝑛 𝑓𝑓′(𝑧𝑧)

𝑓𝑓(𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = ∫ ℎ𝑛𝑛(𝑧𝑧) 𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + ∫ ℎ𝑛𝑛(𝑧𝑧)𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑑𝑑𝑑𝑑 + ∫ ℎ𝑛𝑛(𝑧𝑧) 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 + ∫ ℎ𝑛𝑛(𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑

where ℎ𝑛𝑛(𝑧𝑧) = 𝑧𝑧𝑛𝑛 𝑓𝑓′(𝑧𝑧)
𝑓𝑓(𝑧𝑧) and path 𝐶𝐶 = 𝜕𝜕𝜕𝜕 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∪ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ∪ 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 ∪ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 consists of the four

straight line segments bordering the rectangle 𝑅𝑅 and each of the four line integrals is computed as
∫ ℎ𝑛𝑛(𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑 = ∫ ℎ𝑛𝑛(𝛾𝛾(𝑡𝑡))𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝛾̇𝛾(𝑡𝑡) 𝑑𝑑𝑑𝑑 =:∫ (ℜ𝑔𝑔𝑛𝑛(𝑡𝑡) + 𝑖𝑖ℑ𝑔𝑔𝑛𝑛(𝑡𝑡))𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑𝑑𝑑 for some complex valued

analytic function 𝑔𝑔𝑛𝑛(𝑡𝑡): = ℎ𝑛𝑛(𝛾𝛾(𝑡𝑡)) 𝛾̇𝛾(𝑡𝑡) with some analytic parametrization 𝛾𝛾(𝑡𝑡) for 𝑡𝑡 ∈
[𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚] of the line segment line. There are quadrature rules based on different interpolating
functions (e.g. rectangle or midpoint, trapezoidal, Simpson, Boole), and adaptive rules (e.g. Gauss-
Legendre, Gauss-Kronrod, Gauss-Lobatto). Depending on the chosen quadrature algorithm, the four
complex line integrals can be directly approximated or have to be split into an integral for the real part
and one of the imaginary part (which in case of 𝑠𝑠𝑜𝑜 we a priori know to vanish and can therefore
disregard).
For a start, in the examples we used the simplest algorithms rectangle rule, the trapezoidal rule the
integrated real and the imaginary parts separately. Then, the error of, for example, the midpoint
rectangle rule in the interval Δ is bounded by the area 𝑃𝑃𝑃𝑃̅̅ ̅̅ ⋅ Δ of the quadrangle □(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) where 𝑃𝑃 so
to say is inherited by the midpoint rule and 𝑄𝑄 is inherited by the trapezoidal rule (Needham,
1997).Figure 4 shows the section of the graph of ℜ𝑔𝑔𝑛𝑛 or ℑ𝑔𝑔𝑛𝑛, respectively restricted to the interval
[𝑡𝑡𝑜𝑜, 𝑡𝑡𝑜𝑜 + Δ] together with the areas measured by the midpoint and the trapezoidal rule.

Figure 4. Error bounds for ∫ ℜ𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡𝑜𝑜+Δ
𝑡𝑡𝑜𝑜 𝑑𝑑𝑑𝑑 and ∫ ℑ𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡𝑜𝑜+Δ

𝑡𝑡𝑜𝑜 𝑑𝑑𝑑𝑑, respectively.

To guarantee that the graph of the integrand runs in some quadrangle we increase the height of

□(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) by ℎ(𝑡𝑡𝑜𝑜, 𝑡𝑡𝑜𝑜 + Δ) =
(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚−√𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

2 −ℓ
2
4)

cos𝛼𝛼 = ℓ
Δ (𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 − √𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

2 − ℓ2
4) where 𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚 = 1

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
 is the

maximum curvature of the integrand, ℓ = √Δ2 + (𝑓𝑓(𝑡𝑡𝑜𝑜 + Δ) − 𝑓𝑓(𝑡𝑡𝑜𝑜))2 is the length and where 𝛼𝛼 is
the slope angle of the secant.

Similar to (Needham, 1997) we can bound the absolute error for 𝑔𝑔 = ℜ𝑔𝑔𝑛𝑛 and 𝑔𝑔 = ℑ𝑔𝑔𝑛𝑛 respectively
and for some partition 𝑡𝑡𝑜𝑜, 𝑡𝑡1, … , 𝑡𝑡𝑁𝑁 of the integration interval with Δ𝑗𝑗 = 𝑡𝑡𝑗𝑗+1 − 𝑡𝑡𝑗𝑗 by

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ≤∑(|𝑃𝑃𝑗̇𝑗𝑄𝑄𝑗̇𝑗̅̅ ̅̅ ̅̅ | + ℎ𝑗𝑗) Δ𝑗𝑗 =
𝑁𝑁

𝑗𝑗=1
∑|

𝑔𝑔(𝑡𝑡𝑗𝑗) + 𝑔𝑔(𝑡𝑡𝑗𝑗+1)
2 − 𝑔𝑔 (

𝑡𝑡𝑗𝑗 + 𝑡𝑡𝑗𝑗+1
2)| Δ𝑗𝑗

𝑁𝑁

𝑗𝑗=1
+ ∑ℎ𝑗𝑗Δ𝑗𝑗

𝑁𝑁

𝑗𝑗=1

where ℎ𝑗𝑗Δ𝑗𝑗 = ℓ𝑗𝑗 (𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 − √𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
2 − ℓ𝑗𝑗2

4) with ℓ𝑗𝑗 = √Δj2 + (𝑔𝑔(𝑡𝑡𝑗𝑗+1) − 𝑔𝑔(𝑡𝑡𝑗𝑗))2 . The absolute value of

both sums can be made as small as desired by controlling max𝑗𝑗 Δ𝑗𝑗 .

So we do not need and cannot use tricks similar to the one Gustafson used when dealing with a
physical pendulum (Gustafson, 2015).

CONCLUSION and OUTLOOK

We have demonstrated the shortcomings of the IEEE 754 floating point numbers, arithmetic on such numbers
is not trustworthy and the usage of memory and bus bandwidth are not efficient. UNUMs however do not
show these deficiencies. However, they make new types of numerical algorithms necessary. We illustrated the
problem to design a zero finding algorithm and tailored a suitable one to the use of UNUMs.
At the moment there seems to be only Gustafson’s UNUM library written in Mathematica. Of course, libraries
which can be used in more common languages are badly needed. But all the same, there are several attempts
just to provide such libraries, e.g. in Julia (Gustafson, 2016). Also, there are promising projects under way to
implement UNUMs on hardware, e.g. on FPGAs (Gustafson, 2016).

Finally, we do not want to conceal that there are rather heated debates about the virtues of UNUMs between
Gustafson (2016a) and Kahan (2016) who by the way was the primary architect of the IEEE 754 standard. At
the same time, Gustafson emancipated himself even more from the IEEE 754 heritage (Gustafson, 2016).
Whether his UNUMs 2.0 will be even more profitable than UNUMs 1.0, only applications in scientific
computing on high performance computer systems will show.

REFERENCES

Alefeld, G. & Mayer, G., (2000). Interval analysis: Theory and applications. Journal of

Computational and Applied Mathematics, 121 421–464. Retrieved from

http://www-sbras.nsc.ru/interval/Introduction/AleMaSurvey.pdf

Bailey, D. (2012). Resolving numerical anomalies in scientific computation. Retrieved from

www.davidhbailey.com/dhbpapers/numerical-bugs.pdf

maximum curvature of the integrand, ℓ = √Δ2 + (𝑓𝑓(𝑡𝑡𝑜𝑜 + Δ) − 𝑓𝑓(𝑡𝑡𝑜𝑜))2 is the length and where 𝛼𝛼 is
the slope angle of the secant.

Similar to (Needham, 1997) we can bound the absolute error for 𝑔𝑔 = ℜ𝑔𝑔𝑛𝑛 and 𝑔𝑔 = ℑ𝑔𝑔𝑛𝑛 respectively
and for some partition 𝑡𝑡𝑜𝑜, 𝑡𝑡1, … , 𝑡𝑡𝑁𝑁 of the integration interval with Δ𝑗𝑗 = 𝑡𝑡𝑗𝑗+1 − 𝑡𝑡𝑗𝑗 by

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ≤∑(|𝑃𝑃𝑗̇𝑗𝑄𝑄𝑗̇𝑗̅̅ ̅̅ ̅̅ | + ℎ𝑗𝑗) Δ𝑗𝑗 =
𝑁𝑁

𝑗𝑗=1
∑|

𝑔𝑔(𝑡𝑡𝑗𝑗) + 𝑔𝑔(𝑡𝑡𝑗𝑗+1)
2 − 𝑔𝑔 (

𝑡𝑡𝑗𝑗 + 𝑡𝑡𝑗𝑗+1
2)| Δ𝑗𝑗

𝑁𝑁

𝑗𝑗=1
+ ∑ℎ𝑗𝑗Δ𝑗𝑗

𝑁𝑁

𝑗𝑗=1

where ℎ𝑗𝑗Δ𝑗𝑗 = ℓ𝑗𝑗 (𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 − √𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
2 − ℓ𝑗𝑗2

4) with ℓ𝑗𝑗 = √Δj2 + (𝑔𝑔(𝑡𝑡𝑗𝑗+1) − 𝑔𝑔(𝑡𝑡𝑗𝑗))2 . The absolute value of

both sums can be made as small as desired by controlling max𝑗𝑗 Δ𝑗𝑗 .

So we do not need and cannot use tricks similar to the one Gustafson used when dealing with a
physical pendulum (Gustafson, 2015).

CONCLUSION and OUTLOOK

We have demonstrated the shortcomings of the IEEE 754 floating point numbers, arithmetic on such numbers
is not trustworthy and the usage of memory and bus bandwidth are not efficient. UNUMs however do not
show these deficiencies. However, they make new types of numerical algorithms necessary. We illustrated the
problem to design a zero finding algorithm and tailored a suitable one to the use of UNUMs.
At the moment there seems to be only Gustafson’s UNUM library written in Mathematica. Of course, libraries
which can be used in more common languages are badly needed. But all the same, there are several attempts
just to provide such libraries, e.g. in Julia (Gustafson, 2016). Also, there are promising projects under way to
implement UNUMs on hardware, e.g. on FPGAs (Gustafson, 2016).

Finally, we do not want to conceal that there are rather heated debates about the virtues of UNUMs between
Gustafson (2016a) and Kahan (2016) who by the way was the primary architect of the IEEE 754 standard. At
the same time, Gustafson emancipated himself even more from the IEEE 754 heritage (Gustafson, 2016).
Whether his UNUMs 2.0 will be even more profitable than UNUMs 1.0, only applications in scientific
computing on high performance computer systems will show.

REFERENCES

Alefeld, G. & Mayer, G., (2000). Interval analysis: Theory and applications. Journal of

Computational and Applied Mathematics, 121 421–464. Retrieved from

http://www-sbras.nsc.ru/interval/Introduction/AleMaSurvey.pdf

Bailey, D. (2012). Resolving numerical anomalies in scientific computation. Retrieved from

www.davidhbailey.com/dhbpapers/numerical-bugs.pdf

maximum curvature of the integrand, ℓ = √Δ2 + (𝑓𝑓(𝑡𝑡𝑜𝑜 + Δ) − 𝑓𝑓(𝑡𝑡𝑜𝑜))2 is the length and where 𝛼𝛼 is
the slope angle of the secant.

Similar to (Needham, 1997) we can bound the absolute error for 𝑔𝑔 = ℜ𝑔𝑔𝑛𝑛 and 𝑔𝑔 = ℑ𝑔𝑔𝑛𝑛 respectively
and for some partition 𝑡𝑡𝑜𝑜, 𝑡𝑡1, … , 𝑡𝑡𝑁𝑁 of the integration interval with Δ𝑗𝑗 = 𝑡𝑡𝑗𝑗+1 − 𝑡𝑡𝑗𝑗 by

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ≤∑(|𝑃𝑃𝑗̇𝑗𝑄𝑄𝑗̇𝑗̅̅ ̅̅ ̅̅ | + ℎ𝑗𝑗) Δ𝑗𝑗 =
𝑁𝑁

𝑗𝑗=1
∑|

𝑔𝑔(𝑡𝑡𝑗𝑗) + 𝑔𝑔(𝑡𝑡𝑗𝑗+1)
2 − 𝑔𝑔 (

𝑡𝑡𝑗𝑗 + 𝑡𝑡𝑗𝑗+1
2)| Δ𝑗𝑗

𝑁𝑁

𝑗𝑗=1
+ ∑ℎ𝑗𝑗Δ𝑗𝑗

𝑁𝑁

𝑗𝑗=1

where ℎ𝑗𝑗Δ𝑗𝑗 = ℓ𝑗𝑗 (𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 − √𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
2 − ℓ𝑗𝑗2

4) with ℓ𝑗𝑗 = √Δj2 + (𝑔𝑔(𝑡𝑡𝑗𝑗+1) − 𝑔𝑔(𝑡𝑡𝑗𝑗))2 . The absolute value of

both sums can be made as small as desired by controlling max𝑗𝑗 Δ𝑗𝑗 .

So we do not need and cannot use tricks similar to the one Gustafson used when dealing with a
physical pendulum (Gustafson, 2015).

CONCLUSION and OUTLOOK

We have demonstrated the shortcomings of the IEEE 754 floating point numbers, arithmetic on such numbers
is not trustworthy and the usage of memory and bus bandwidth are not efficient. UNUMs however do not
show these deficiencies. However, they make new types of numerical algorithms necessary. We illustrated the
problem to design a zero finding algorithm and tailored a suitable one to the use of UNUMs.
At the moment there seems to be only Gustafson’s UNUM library written in Mathematica. Of course, libraries
which can be used in more common languages are badly needed. But all the same, there are several attempts
just to provide such libraries, e.g. in Julia (Gustafson, 2016). Also, there are promising projects under way to
implement UNUMs on hardware, e.g. on FPGAs (Gustafson, 2016).

Finally, we do not want to conceal that there are rather heated debates about the virtues of UNUMs between
Gustafson (2016a) and Kahan (2016) who by the way was the primary architect of the IEEE 754 standard. At
the same time, Gustafson emancipated himself even more from the IEEE 754 heritage (Gustafson, 2016).
Whether his UNUMs 2.0 will be even more profitable than UNUMs 1.0, only applications in scientific
computing on high performance computer systems will show.

REFERENCES

Alefeld, G. & Mayer, G., (2000). Interval analysis: Theory and applications. Journal of

Computational and Applied Mathematics, 121 421–464. Retrieved from

http://www-sbras.nsc.ru/interval/Introduction/AleMaSurvey.pdf

Bailey, D. (2012). Resolving numerical anomalies in scientific computation. Retrieved from

www.davidhbailey.com/dhbpapers/numerical-bugs.pdf

maximum curvature of the integrand, ℓ = √Δ2 + (𝑓𝑓(𝑡𝑡𝑜𝑜 + Δ) − 𝑓𝑓(𝑡𝑡𝑜𝑜))2 is the length and where 𝛼𝛼 is
the slope angle of the secant.

Similar to (Needham, 1997) we can bound the absolute error for 𝑔𝑔 = ℜ𝑔𝑔𝑛𝑛 and 𝑔𝑔 = ℑ𝑔𝑔𝑛𝑛 respectively
and for some partition 𝑡𝑡𝑜𝑜, 𝑡𝑡1, … , 𝑡𝑡𝑁𝑁 of the integration interval with Δ𝑗𝑗 = 𝑡𝑡𝑗𝑗+1 − 𝑡𝑡𝑗𝑗 by

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ≤∑(|𝑃𝑃𝑗̇𝑗𝑄𝑄𝑗̇𝑗̅̅ ̅̅ ̅̅ | + ℎ𝑗𝑗) Δ𝑗𝑗 =
𝑁𝑁

𝑗𝑗=1
∑|

𝑔𝑔(𝑡𝑡𝑗𝑗) + 𝑔𝑔(𝑡𝑡𝑗𝑗+1)
2 − 𝑔𝑔 (

𝑡𝑡𝑗𝑗 + 𝑡𝑡𝑗𝑗+1
2)| Δ𝑗𝑗

𝑁𝑁

𝑗𝑗=1
+ ∑ℎ𝑗𝑗Δ𝑗𝑗

𝑁𝑁

𝑗𝑗=1

where ℎ𝑗𝑗Δ𝑗𝑗 = ℓ𝑗𝑗 (𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 − √𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
2 − ℓ𝑗𝑗2

4) with ℓ𝑗𝑗 = √Δj2 + (𝑔𝑔(𝑡𝑡𝑗𝑗+1) − 𝑔𝑔(𝑡𝑡𝑗𝑗))2 . The absolute value of

both sums can be made as small as desired by controlling max𝑗𝑗 Δ𝑗𝑗 .

So we do not need and cannot use tricks similar to the one Gustafson used when dealing with a
physical pendulum (Gustafson, 2015).

CONCLUSION and OUTLOOK

We have demonstrated the shortcomings of the IEEE 754 floating point numbers, arithmetic on such numbers
is not trustworthy and the usage of memory and bus bandwidth are not efficient. UNUMs however do not
show these deficiencies. However, they make new types of numerical algorithms necessary. We illustrated the
problem to design a zero finding algorithm and tailored a suitable one to the use of UNUMs.
At the moment there seems to be only Gustafson’s UNUM library written in Mathematica. Of course, libraries
which can be used in more common languages are badly needed. But all the same, there are several attempts
just to provide such libraries, e.g. in Julia (Gustafson, 2016). Also, there are promising projects under way to
implement UNUMs on hardware, e.g. on FPGAs (Gustafson, 2016).

Finally, we do not want to conceal that there are rather heated debates about the virtues of UNUMs between
Gustafson (2016a) and Kahan (2016) who by the way was the primary architect of the IEEE 754 standard. At
the same time, Gustafson emancipated himself even more from the IEEE 754 heritage (Gustafson, 2016).
Whether his UNUMs 2.0 will be even more profitable than UNUMs 1.0, only applications in scientific
computing on high performance computer systems will show.

REFERENCES

Alefeld, G. & Mayer, G., (2000). Interval analysis: Theory and applications. Journal of

Computational and Applied Mathematics, 121 421–464. Retrieved from

http://www-sbras.nsc.ru/interval/Introduction/AleMaSurvey.pdf

Bailey, D. (2012). Resolving numerical anomalies in scientific computation. Retrieved from

www.davidhbailey.com/dhbpapers/numerical-bugs.pdf

maximum curvature of the integrand, ℓ = √Δ2 + (𝑓𝑓(𝑡𝑡𝑜𝑜 + Δ) − 𝑓𝑓(𝑡𝑡𝑜𝑜))2 is the length and where 𝛼𝛼 is
the slope angle of the secant.

Similar to (Needham, 1997) we can bound the absolute error for 𝑔𝑔 = ℜ𝑔𝑔𝑛𝑛 and 𝑔𝑔 = ℑ𝑔𝑔𝑛𝑛 respectively
and for some partition 𝑡𝑡𝑜𝑜, 𝑡𝑡1, … , 𝑡𝑡𝑁𝑁 of the integration interval with Δ𝑗𝑗 = 𝑡𝑡𝑗𝑗+1 − 𝑡𝑡𝑗𝑗 by

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ≤∑(|𝑃𝑃𝑗̇𝑗𝑄𝑄𝑗̇𝑗̅̅ ̅̅ ̅̅ | + ℎ𝑗𝑗) Δ𝑗𝑗 =
𝑁𝑁

𝑗𝑗=1
∑|

𝑔𝑔(𝑡𝑡𝑗𝑗) + 𝑔𝑔(𝑡𝑡𝑗𝑗+1)
2 − 𝑔𝑔 (

𝑡𝑡𝑗𝑗 + 𝑡𝑡𝑗𝑗+1
2)| Δ𝑗𝑗

𝑁𝑁

𝑗𝑗=1
+ ∑ℎ𝑗𝑗Δ𝑗𝑗

𝑁𝑁

𝑗𝑗=1

where ℎ𝑗𝑗Δ𝑗𝑗 = ℓ𝑗𝑗 (𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 − √𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
2 − ℓ𝑗𝑗2

4) with ℓ𝑗𝑗 = √Δj2 + (𝑔𝑔(𝑡𝑡𝑗𝑗+1) − 𝑔𝑔(𝑡𝑡𝑗𝑗))2 . The absolute value of

both sums can be made as small as desired by controlling max𝑗𝑗 Δ𝑗𝑗 .

So we do not need and cannot use tricks similar to the one Gustafson used when dealing with a
physical pendulum (Gustafson, 2015).

CONCLUSION and OUTLOOK

We have demonstrated the shortcomings of the IEEE 754 floating point numbers, arithmetic on such numbers
is not trustworthy and the usage of memory and bus bandwidth are not efficient. UNUMs however do not
show these deficiencies. However, they make new types of numerical algorithms necessary. We illustrated the
problem to design a zero finding algorithm and tailored a suitable one to the use of UNUMs.
At the moment there seems to be only Gustafson’s UNUM library written in Mathematica. Of course, libraries
which can be used in more common languages are badly needed. But all the same, there are several attempts
just to provide such libraries, e.g. in Julia (Gustafson, 2016). Also, there are promising projects under way to
implement UNUMs on hardware, e.g. on FPGAs (Gustafson, 2016).

Finally, we do not want to conceal that there are rather heated debates about the virtues of UNUMs between
Gustafson (2016a) and Kahan (2016) who by the way was the primary architect of the IEEE 754 standard. At
the same time, Gustafson emancipated himself even more from the IEEE 754 heritage (Gustafson, 2016).
Whether his UNUMs 2.0 will be even more profitable than UNUMs 1.0, only applications in scientific
computing on high performance computer systems will show.

REFERENCES

Alefeld, G. & Mayer, G., (2000). Interval analysis: Theory and applications. Journal of

Computational and Applied Mathematics, 121 421–464. Retrieved from

http://www-sbras.nsc.ru/interval/Introduction/AleMaSurvey.pdf

Bailey, D. (2012). Resolving numerical anomalies in scientific computation. Retrieved from

www.davidhbailey.com/dhbpapers/numerical-bugs.pdf

maximum curvature of the integrand, ℓ = √Δ2 + (𝑓𝑓(𝑡𝑡𝑜𝑜 + Δ) − 𝑓𝑓(𝑡𝑡𝑜𝑜))2 is the length and where 𝛼𝛼 is
the slope angle of the secant.

Similar to (Needham, 1997) we can bound the absolute error for 𝑔𝑔 = ℜ𝑔𝑔𝑛𝑛 and 𝑔𝑔 = ℑ𝑔𝑔𝑛𝑛 respectively
and for some partition 𝑡𝑡𝑜𝑜, 𝑡𝑡1, … , 𝑡𝑡𝑁𝑁 of the integration interval with Δ𝑗𝑗 = 𝑡𝑡𝑗𝑗+1 − 𝑡𝑡𝑗𝑗 by

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ≤∑(|𝑃𝑃𝑗̇𝑗𝑄𝑄𝑗̇𝑗̅̅ ̅̅ ̅̅ | + ℎ𝑗𝑗) Δ𝑗𝑗 =
𝑁𝑁

𝑗𝑗=1
∑|

𝑔𝑔(𝑡𝑡𝑗𝑗) + 𝑔𝑔(𝑡𝑡𝑗𝑗+1)
2 − 𝑔𝑔 (

𝑡𝑡𝑗𝑗 + 𝑡𝑡𝑗𝑗+1
2)| Δ𝑗𝑗

𝑁𝑁

𝑗𝑗=1
+ ∑ℎ𝑗𝑗Δ𝑗𝑗

𝑁𝑁

𝑗𝑗=1

where ℎ𝑗𝑗Δ𝑗𝑗 = ℓ𝑗𝑗 (𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 − √𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
2 − ℓ𝑗𝑗2

4) with ℓ𝑗𝑗 = √Δj2 + (𝑔𝑔(𝑡𝑡𝑗𝑗+1) − 𝑔𝑔(𝑡𝑡𝑗𝑗))2 . The absolute value of

both sums can be made as small as desired by controlling max𝑗𝑗 Δ𝑗𝑗 .

So we do not need and cannot use tricks similar to the one Gustafson used when dealing with a
physical pendulum (Gustafson, 2015).

CONCLUSION and OUTLOOK

We have demonstrated the shortcomings of the IEEE 754 floating point numbers, arithmetic on such numbers
is not trustworthy and the usage of memory and bus bandwidth are not efficient. UNUMs however do not
show these deficiencies. However, they make new types of numerical algorithms necessary. We illustrated the
problem to design a zero finding algorithm and tailored a suitable one to the use of UNUMs.
At the moment there seems to be only Gustafson’s UNUM library written in Mathematica. Of course, libraries
which can be used in more common languages are badly needed. But all the same, there are several attempts
just to provide such libraries, e.g. in Julia (Gustafson, 2016). Also, there are promising projects under way to
implement UNUMs on hardware, e.g. on FPGAs (Gustafson, 2016).

Finally, we do not want to conceal that there are rather heated debates about the virtues of UNUMs between
Gustafson (2016a) and Kahan (2016) who by the way was the primary architect of the IEEE 754 standard. At
the same time, Gustafson emancipated himself even more from the IEEE 754 heritage (Gustafson, 2016).
Whether his UNUMs 2.0 will be even more profitable than UNUMs 1.0, only applications in scientific
computing on high performance computer systems will show.

REFERENCES

Alefeld, G. & Mayer, G., (2000). Interval analysis: Theory and applications. Journal of

Computational and Applied Mathematics, 121 421–464. Retrieved from

http://www-sbras.nsc.ru/interval/Introduction/AleMaSurvey.pdf

Bailey, D. (2012). Resolving numerical anomalies in scientific computation. Retrieved from

www.davidhbailey.com/dhbpapers/numerical-bugs.pdf

maximum curvature of the integrand, ℓ = √Δ2 + (𝑓𝑓(𝑡𝑡𝑜𝑜 + Δ) − 𝑓𝑓(𝑡𝑡𝑜𝑜))2 is the length and where 𝛼𝛼 is
the slope angle of the secant.

Similar to (Needham, 1997) we can bound the absolute error for 𝑔𝑔 = ℜ𝑔𝑔𝑛𝑛 and 𝑔𝑔 = ℑ𝑔𝑔𝑛𝑛 respectively
and for some partition 𝑡𝑡𝑜𝑜, 𝑡𝑡1, … , 𝑡𝑡𝑁𝑁 of the integration interval with Δ𝑗𝑗 = 𝑡𝑡𝑗𝑗+1 − 𝑡𝑡𝑗𝑗 by

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ≤∑(|𝑃𝑃𝑗̇𝑗𝑄𝑄𝑗̇𝑗̅̅ ̅̅ ̅̅ | + ℎ𝑗𝑗) Δ𝑗𝑗 =
𝑁𝑁

𝑗𝑗=1
∑|

𝑔𝑔(𝑡𝑡𝑗𝑗) + 𝑔𝑔(𝑡𝑡𝑗𝑗+1)
2 − 𝑔𝑔 (

𝑡𝑡𝑗𝑗 + 𝑡𝑡𝑗𝑗+1
2)| Δ𝑗𝑗

𝑁𝑁

𝑗𝑗=1
+ ∑ℎ𝑗𝑗Δ𝑗𝑗

𝑁𝑁

𝑗𝑗=1

where ℎ𝑗𝑗Δ𝑗𝑗 = ℓ𝑗𝑗 (𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 − √𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
2 − ℓ𝑗𝑗2

4) with ℓ𝑗𝑗 = √Δj2 + (𝑔𝑔(𝑡𝑡𝑗𝑗+1) − 𝑔𝑔(𝑡𝑡𝑗𝑗))2 . The absolute value of

both sums can be made as small as desired by controlling max𝑗𝑗 Δ𝑗𝑗 .

So we do not need and cannot use tricks similar to the one Gustafson used when dealing with a
physical pendulum (Gustafson, 2015).

CONCLUSION and OUTLOOK

We have demonstrated the shortcomings of the IEEE 754 floating point numbers, arithmetic on such numbers
is not trustworthy and the usage of memory and bus bandwidth are not efficient. UNUMs however do not
show these deficiencies. However, they make new types of numerical algorithms necessary. We illustrated the
problem to design a zero finding algorithm and tailored a suitable one to the use of UNUMs.
At the moment there seems to be only Gustafson’s UNUM library written in Mathematica. Of course, libraries
which can be used in more common languages are badly needed. But all the same, there are several attempts
just to provide such libraries, e.g. in Julia (Gustafson, 2016). Also, there are promising projects under way to
implement UNUMs on hardware, e.g. on FPGAs (Gustafson, 2016).

Finally, we do not want to conceal that there are rather heated debates about the virtues of UNUMs between
Gustafson (2016a) and Kahan (2016) who by the way was the primary architect of the IEEE 754 standard. At
the same time, Gustafson emancipated himself even more from the IEEE 754 heritage (Gustafson, 2016).
Whether his UNUMs 2.0 will be even more profitable than UNUMs 1.0, only applications in scientific
computing on high performance computer systems will show.

REFERENCES

Alefeld, G. & Mayer, G., (2000). Interval analysis: Theory and applications. Journal of

Computational and Applied Mathematics, 121 421–464. Retrieved from

http://www-sbras.nsc.ru/interval/Introduction/AleMaSurvey.pdf

Bailey, D. (2012). Resolving numerical anomalies in scientific computation. Retrieved from

www.davidhbailey.com/dhbpapers/numerical-bugs.pdf

maximum curvature of the integrand, ℓ = √Δ2 + (𝑓𝑓(𝑡𝑡𝑜𝑜 + Δ) − 𝑓𝑓(𝑡𝑡𝑜𝑜))2 is the length and where 𝛼𝛼 is
the slope angle of the secant.

Similar to (Needham, 1997) we can bound the absolute error for 𝑔𝑔 = ℜ𝑔𝑔𝑛𝑛 and 𝑔𝑔 = ℑ𝑔𝑔𝑛𝑛 respectively
and for some partition 𝑡𝑡𝑜𝑜, 𝑡𝑡1, … , 𝑡𝑡𝑁𝑁 of the integration interval with Δ𝑗𝑗 = 𝑡𝑡𝑗𝑗+1 − 𝑡𝑡𝑗𝑗 by

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ≤∑(|𝑃𝑃𝑗̇𝑗𝑄𝑄𝑗̇𝑗̅̅ ̅̅ ̅̅ | + ℎ𝑗𝑗) Δ𝑗𝑗 =
𝑁𝑁

𝑗𝑗=1
∑|

𝑔𝑔(𝑡𝑡𝑗𝑗) + 𝑔𝑔(𝑡𝑡𝑗𝑗+1)
2 − 𝑔𝑔 (

𝑡𝑡𝑗𝑗 + 𝑡𝑡𝑗𝑗+1
2)| Δ𝑗𝑗

𝑁𝑁

𝑗𝑗=1
+ ∑ℎ𝑗𝑗Δ𝑗𝑗

𝑁𝑁

𝑗𝑗=1

where ℎ𝑗𝑗Δ𝑗𝑗 = ℓ𝑗𝑗 (𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 − √𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
2 − ℓ𝑗𝑗2

4) with ℓ𝑗𝑗 = √Δj2 + (𝑔𝑔(𝑡𝑡𝑗𝑗+1) − 𝑔𝑔(𝑡𝑡𝑗𝑗))2 . The absolute value of

both sums can be made as small as desired by controlling max𝑗𝑗 Δ𝑗𝑗 .

So we do not need and cannot use tricks similar to the one Gustafson used when dealing with a
physical pendulum (Gustafson, 2015).

CONCLUSION and OUTLOOK

We have demonstrated the shortcomings of the IEEE 754 floating point numbers, arithmetic on such numbers
is not trustworthy and the usage of memory and bus bandwidth are not efficient. UNUMs however do not
show these deficiencies. However, they make new types of numerical algorithms necessary. We illustrated the
problem to design a zero finding algorithm and tailored a suitable one to the use of UNUMs.
At the moment there seems to be only Gustafson’s UNUM library written in Mathematica. Of course, libraries
which can be used in more common languages are badly needed. But all the same, there are several attempts
just to provide such libraries, e.g. in Julia (Gustafson, 2016). Also, there are promising projects under way to
implement UNUMs on hardware, e.g. on FPGAs (Gustafson, 2016).

Finally, we do not want to conceal that there are rather heated debates about the virtues of UNUMs between
Gustafson (2016a) and Kahan (2016) who by the way was the primary architect of the IEEE 754 standard. At
the same time, Gustafson emancipated himself even more from the IEEE 754 heritage (Gustafson, 2016).
Whether his UNUMs 2.0 will be even more profitable than UNUMs 1.0, only applications in scientific
computing on high performance computer systems will show.

REFERENCES

Alefeld, G. & Mayer, G., (2000). Interval analysis: Theory and applications. Journal of

Computational and Applied Mathematics, 121 421–464. Retrieved from

http://www-sbras.nsc.ru/interval/Introduction/AleMaSurvey.pdf

Bailey, D. (2012). Resolving numerical anomalies in scientific computation. Retrieved from

www.davidhbailey.com/dhbpapers/numerical-bugs.pdf

15

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 1–16

(Gustafson, 2016). Whether his UNUMs 2.0 will be even more profitable than
UNUMs 1.0, only applications in scientific computing on high performance
computer systems will show.

REFERENCES

Alefeld, G. & Mayer, G., (2000). Interval analysis: Theory and applications. Journal
of Computational and Applied Mathematics, 121 421–464. Retrieved from
http://www-sbras.nsc.ru/interval/Introduction/AleMaSurvey.pdf

Bailey, D. (2012). Resolving numerical anomalies in scientific computation.
Retrieved from www.davidhbailey.com/dhbpapers/numerical-bugs.pdf

Bailey, D. (2014). Using high-precision arithmetic to conquer numerical error.
Retrieved from www.davidhbailey.com/dhbtalks/dhb-numerical-error.pdf

Bailey, D. (2015). Numerical reproducibility in high-performance computing.
Retrieved from www.davidhbailey.com/dhbtalks/dhb-num-repro.pdf

Delves, L. M. & Lyness, J. N. A (1966). Numerical method for locating the zeros
of an analytic function. AMS. Retrieved from www.ams.org/journals/
mcom/1967-21-100/S0025-5718-1967-0228165-4

Goldberg, D. (1991). What every computer scientist should know about floating-
point arithmetic. ACM Computing Surveys. Retrieved fromhttps://cr.yp.
to/2005-590/goldberg.pdf

Gustafson, J. L. (2014). An energy-efficient and massively parallel approach to
valid numerics. SCAN2014 or ICRAR Seminar, June 2nd, 2016, Australia.
Retrieved from www.johngustafson.net/presentations/UnumArithmetic-
ICRARseminar.pdf or www.slideshare.net/insideHPC/unum-computing-
an-energy-efficient-and-massively-parallel-approach-to-valid-numerics

Gustafson, J. L. (2015). The end of error – Unum computing. CRC Press, Boca
Raton, Florida.

Gustafson, J. L. (2015a). The end of numerical error. 22nd IEEE Symposium on
Computer Arithmetic. June 22nd – 24th 2015 Lyon, France. Retrieved from
http://arith22.gforge.inria.fr/slides/06-gustafson.pdf

Gustafson, J. L. (2016). A radical approach to computation with real numbers.
Retrieved from www.johngustafson.net/pubs/RadicalApproach.pdf

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 1–16

16

Gustafson, J. L. (2016a). The great debate – Unum arithmetic position
statement. 23rd IEEE Symposium on Computer Arithmetic. Retrieved
from http://arith23.gforge.inria.fr/slides/Gustafson.pdf

IEEE 754. (1985). IEEE standard for binary floating-point arithmetic.
Retrieved from http://ieeexplore.ieee.org/document/30711/

IEEE 754. (2008). IEEE standard for binary floating-point arithmetic.
Retrieved from http://ieeexplore.ieee.org/document/4610935/

IEEE 1788. (2015). IEEE standard for interval arithmetic. Retrieved from
http://ieeexplore.ieee.org/document/7140721/

Jahnel, J. (2006, 2013). When is the (co)sine of a rational angle equal to a
rational number. Göttingen University. Retrieved from www.uni-math.
gwdg.de/jahnel/Preprints/cos.pdf and www.uni-math.gwdg.de/jahnel/
Preprints/cos2.pdf

Kahan, W. (2016). A critique of John L. Gustafson’s The End of Error –
Unum computation and his radical approach to computation with real
numbers. 23rd IEEE Symposium on Computer Arithmetic. Retrieved from
http://arith23.gforge.inria.fr/slides/Kahan.pdf

Needham, T. (1997). Visual complex analysis. Clarendon Press, Oxford. Retrieved
from http://people.math.sc.edu/girardi/m7034/book/VisualComplex
Analysis-Needham.pdf

Risse, Th. (2016). It’s time for UNUMs – an alternative to IEEE 754 floats
and doubles. In Proc. 34th International Scientific Conf. Science in
Practice 2016, Subotica, Serbia, 50–51, Dec 8th – 9th. Retrieved from
www.vts.su.ac.rs/data/files/1/uploads/sip2016/proceedings/10_Risse_
SIP2016.pdf

Romik, D. (2016). Complex analysis lecture notes. University of California
at Davis. Retrieved from www.math.ucdavis.edu/~romik/data/uploads/
notes/complex-analysis.pdf

Revol, N. (2015). The (near) future IEEE 1788 standard for interval arithmetic.
8th Small Workshop in Interval Methods, Prague, June 9th – 11th.
Retrieved from	 http://kam.mff.cuni.cz/conferences/swim2015/
slides/revol.pdf

	risse.pdf
	1-16

