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The 1985 IEEE 754 standard for the representation of and the arithmetic with floating point numbers has been 

reconsidered. On the one hand today, its technological assumptions are by no means longer valid. On the other 

hand, the irritating numerical phenomena which have been collected cast a doubt as to whether this much 

uncertainty in numerical results is fate. Fortunately, around 2015, Gustafson proposed UNUMs, a modification 

of the IEEE 754 standard with the potential to heal the said shortcomings. Till now, there are some attempts to 

implement his ideas, both in software and in hardware. With these activities well under way, the other necessity 

is development of a mathematical library for UNUMs when one wants UNUMs to become the new floating 

point standard. This paper presented the ideas leading to UNUMs, gave some hints on floating point units for 

UNUMs and illustrated the difficulties in developing the said mathematical library by the example of 
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ABSTRACT

The 1985 IEEE 754 standard for the representation of and the 
arithmetic with floating point numbers has been reconsidered. 
On the one hand today, its technological assumptions are by no 
means longer valid. On the other hand, the irritating numerical 
phenomena which have been collected cast a doubt as to whether 
this much uncertainty in numerical results is fate. Fortunately, 
around 2015, Gustafson proposed UNUMs, a modification 
of the IEEE 754 standard with the potential to heal the said 
shortcomings. Till now, there are some attempts to implement 
his ideas, both in software and in hardware. With these 
activities well under way, the other necessity is development of 
a mathematical library for UNUMs when one wants UNUMs to 
become the new floating point standard. This paper presented 
the ideas leading to UNUMs, gave some hints on floating point 
units for UNUMs and illustrated the difficulties in developing 
the said mathematical library by the example of approximating 
zeroes of analytic functions. 
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INTRODUCTION

The IEEE 754 standard is to be considered as a milestone in the attempt to 
make floating number representations and arithmetic machine independent. 
Before 1985, floating point operations on different machines produced 
different answers. Against considerable special interests of the industry, IEEE 
754 standardizes how floating point numbers are represented in memory and 
how floating point operations are to be performed (IEEE, 1985 and 2008). 
Alas, IEEE 754 is a child of its time. It mirrors the technological conditions 
of the 1980s. And over time a lot of deficiencies have been identified which 
nevertheless are widely considered as fate. Remedies often worked only at a 
symptom level (Bailey, 2012). 

In 2015 John Gustafson proposed Universal Numbers, (UNUMs), a 
modification of IEEE 754. These novel formats for floating point numbers 
have the potential to overcome the shortcomings of IEEE 754 floats and 
doubles. 	
 
Here, we set out to sketch IEEE 754 representations, the arithmetic and its 
abnormalities. Then we will show how UNUMs promise to remedy both the 
technological as well as the numerical deficiencies (Gustafson, 2015).	
  
In order to spread the benefits of UNUMs for any kind of scientific computing, 
a library with the classical numerical methods is indispensable. We present 
zero finding algorithms and discuss their suitability for UNUMs. 

IEEE 754 FLOATING POINT NUMBERS

In general, IEEE 754 floating point numbers are represented by a fixed number 
of bytes which contain a sign bit, a mantissa or fraction and a power of two 
given by the exponent (the order actually is sign, exponent and mantissa). 
So IEEE 754 allows the representation of some rational numbers. In order to 
avoid ambiguities like 1 = 1 . 20 = 2 . 2-1 the mantissa is normalized to lie in 
the interval [1, 2). Hence, the mantissa has the form  1. m1m2m3... with Nfrac  
mantissa bits m1, m2, m3 ... so that the first bit need not be stored, it is hidden. 
Also, the exponent is stored in  bits with an offset in order to avoid another sign 
bit. IEEE 754 specifies most prominently single and double precision floats by 

Nfrac   Nexpt  Range Ndecd

Floats 24 8   ≈7 

Doubles 53 11  ≈16 

IEEE 754 FLOATING POINT NUMBERS 

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign 
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and 
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like 
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form 
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden. 
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies 
most prominently single and double precision floats by 
 

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒   Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Floats  24  8  ±1.18 × 10−38 to ±3.4 × 1038  ≈7  

Doubles  53  11  ±2.23 × 10−308 to ±1.80 × 10308 ≈16  

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell 
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that 
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of  
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the 
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).  

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot 

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication 
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller 
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is 
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more 
very unsettling phenomena in more detail. 

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.  

 Even innocent numbers like 0.1 = 1
10  cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2)  has a 

periodic binary representation.  
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1)  so that associativity cannot be 

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑)  by the compiler, different functional floating point units in the processor may not do the two 
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.  

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only. 

 Computing √22𝑛𝑛  by √√⋯√√2  , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to 

the obviously wrong result √22𝑛𝑛 = 1.  

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities 
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving 
[2]   
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = ( 0

1.3) instead of the 

exact solution (𝑥𝑥𝑦𝑦) = (−1
2 ).  

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): =  𝑒𝑒
𝑥𝑥−1
𝑥𝑥  and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|
 

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns 
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.  
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whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller 
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is 
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more 
very unsettling phenomena in more detail. 

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.  

 Even innocent numbers like 0.1 = 1
10  cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2)  has a 

periodic binary representation.  
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1)  so that associativity cannot be 

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑)  by the compiler, different functional floating point units in the processor may not do the two 
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.  

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only. 

 Computing √22𝑛𝑛  by √√⋯√√2  , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to 

the obviously wrong result √22𝑛𝑛 = 1.  

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities 
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving 
[2]   
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = ( 0

1.3) instead of the 

exact solution (𝑥𝑥𝑦𝑦) = (−1
2 ).  

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): =  𝑒𝑒
𝑥𝑥−1
𝑥𝑥  and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|
 

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns 
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.  

IEEE 754 FLOATING POINT NUMBERS 

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign 
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and 
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like 
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form 
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden. 
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies 
most prominently single and double precision floats by 
 

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒   Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Floats  24  8  ±1.18 × 10−38 to ±3.4 × 1038  ≈7  

Doubles  53  11  ±2.23 × 10−308 to ±1.80 × 10308 ≈16  

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell 
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that 
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of  
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the 
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).  
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whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller 
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is 
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more 
very unsettling phenomena in more detail. 

 99
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2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.  
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 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only. 

 Computing √22𝑛𝑛  by √√⋯√√2  , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to 

the obviously wrong result √22𝑛𝑛 = 1.  

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities 
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving 
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0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
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1.3) instead of the 

exact solution (𝑥𝑥𝑦𝑦) = (−1
2 ).  

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): =  𝑒𝑒
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for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns 
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.  
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In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign 
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and 
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1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden. 
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where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell 
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that 
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of  
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the 
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whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller 
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is 
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more 
very unsettling phenomena in more detail. 

 99
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2
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𝑑𝑑)  by the compiler, different functional floating point units in the processor may not do the two 
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.  

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only. 

 Computing √22𝑛𝑛  by √√⋯√√2  , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to 

the obviously wrong result √22𝑛𝑛 = 1.  

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities 
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving 
[2]   
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = ( 0

1.3) instead of the 

exact solution (𝑥𝑥𝑦𝑦) = (−1
2 ).  

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): =  𝑒𝑒
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𝑥𝑥  and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1
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for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns 
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.  

IEEE 754 FLOATING POINT NUMBERS 

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign 
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and 
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like 
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form 
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden. 
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies 
most prominently single and double precision floats by 
 

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒   Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Floats  24  8  ±1.18 × 10−38 to ±3.4 × 1038  ≈7  

Doubles  53  11  ±2.23 × 10−308 to ±1.80 × 10308 ≈16  

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell 
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that 
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of  
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the 
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).  

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot 

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication 
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller 
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is 
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more 
very unsettling phenomena in more detail. 
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 Computing √22𝑛𝑛  by √√⋯√√2  , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to 

the obviously wrong result √22𝑛𝑛 = 1.  

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities 
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving 
[2]   
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𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.  
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In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign 
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whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller 
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is 
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more 
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 Computing √22𝑛𝑛  by √√⋯√√2  , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to 
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 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities 
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving 
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1.3) instead of the 
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 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): =  𝑒𝑒
𝑥𝑥−1
𝑥𝑥  and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|
 

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns 
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.  

IEEE 754 FLOATING POINT NUMBERS 

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign 
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and 
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like 
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form 
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden. 
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies 
most prominently single and double precision floats by 
 

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒   Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Floats  24  8  ±1.18 × 10−38 to ±3.4 × 1038  ≈7  

Doubles  53  11  ±2.23 × 10−308 to ±1.80 × 10308 ≈16  

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell 
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that 
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of  
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the 
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).  

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot 

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication 
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller 
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is 
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more 
very unsettling phenomena in more detail. 

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.  

 Even innocent numbers like 0.1 = 1
10  cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2)  has a 

periodic binary representation.  
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1)  so that associativity cannot be 

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑)  by the compiler, different functional floating point units in the processor may not do the two 
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.  

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only. 

 Computing √22𝑛𝑛  by √√⋯√√2  , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to 

the obviously wrong result √22𝑛𝑛 = 1.  

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities 
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving 
[2]   
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = ( 0

1.3) instead of the 

exact solution (𝑥𝑥𝑦𝑦) = (−1
2 ).  

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): =  𝑒𝑒
𝑥𝑥−1
𝑥𝑥  and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|
 

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns 
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.  

IEEE 754 FLOATING POINT NUMBERS 

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign 
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and 
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like 
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form 
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden. 
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies 
most prominently single and double precision floats by 
 

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒   Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Floats  24  8  ±1.18 × 10−38 to ±3.4 × 1038  ≈7  

Doubles  53  11  ±2.23 × 10−308 to ±1.80 × 10308 ≈16  

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell 
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that 
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of  
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the 
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).  

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot 

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication 
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller 
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is 
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more 
very unsettling phenomena in more detail. 

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.  

 Even innocent numbers like 0.1 = 1
10  cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2)  has a 

periodic binary representation.  
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1)  so that associativity cannot be 

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑)  by the compiler, different functional floating point units in the processor may not do the two 
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.  

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only. 

 Computing √22𝑛𝑛  by √√⋯√√2  , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to 

the obviously wrong result √22𝑛𝑛 = 1.  

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities 
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving 
[2]   
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = ( 0

1.3) instead of the 

exact solution (𝑥𝑥𝑦𝑦) = (−1
2 ).  

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): =  𝑒𝑒
𝑥𝑥−1
𝑥𝑥  and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|
 

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns 
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.  

IEEE 754 FLOATING POINT NUMBERS 

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign 
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and 
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like 
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form 
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden. 
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies 
most prominently single and double precision floats by 
 

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒   Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Floats  24  8  ±1.18 × 10−38 to ±3.4 × 1038  ≈7  

Doubles  53  11  ±2.23 × 10−308 to ±1.80 × 10308 ≈16  

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell 
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that 
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of  
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the 
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).  

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot 

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication 
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller 
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is 
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more 
very unsettling phenomena in more detail. 

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.  

 Even innocent numbers like 0.1 = 1
10  cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2)  has a 

periodic binary representation.  
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1)  so that associativity cannot be 

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑)  by the compiler, different functional floating point units in the processor may not do the two 
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.  

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only. 

 Computing √22𝑛𝑛  by √√⋯√√2  , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to 

the obviously wrong result √22𝑛𝑛 = 1.  

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities 
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving 
[2]   
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = ( 0

1.3) instead of the 

exact solution (𝑥𝑥𝑦𝑦) = (−1
2 ).  

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): =  𝑒𝑒
𝑥𝑥−1
𝑥𝑥  and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|
 

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns 
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.  

IEEE 754 FLOATING POINT NUMBERS 

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign 
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and 
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like 
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form 
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden. 
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies 
most prominently single and double precision floats by 
 

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒   Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Floats  24  8  ±1.18 × 10−38 to ±3.4 × 1038  ≈7  

Doubles  53  11  ±2.23 × 10−308 to ±1.80 × 10308 ≈16  

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell 
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that 
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of  
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the 
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).  

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot 

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication 
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller 
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is 
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more 
very unsettling phenomena in more detail. 

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.  

 Even innocent numbers like 0.1 = 1
10  cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2)  has a 

periodic binary representation.  
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1)  so that associativity cannot be 

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑)  by the compiler, different functional floating point units in the processor may not do the two 
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.  

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only. 

 Computing √22𝑛𝑛  by √√⋯√√2  , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to 

the obviously wrong result √22𝑛𝑛 = 1.  

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities 
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving 
[2]   
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = ( 0

1.3) instead of the 

exact solution (𝑥𝑥𝑦𝑦) = (−1
2 ).  

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): =  𝑒𝑒
𝑥𝑥−1
𝑥𝑥  and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|
 

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns 
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.  

IEEE 754 FLOATING POINT NUMBERS 

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign 
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and 
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like 
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form 
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden. 
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies 
most prominently single and double precision floats by 
 

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒   Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Floats  24  8  ±1.18 × 10−38 to ±3.4 × 1038  ≈7  

Doubles  53  11  ±2.23 × 10−308 to ±1.80 × 10308 ≈16  

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell 
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that 
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of  
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the 
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).  

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot 

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication 
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller 
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is 
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more 
very unsettling phenomena in more detail. 

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.  

 Even innocent numbers like 0.1 = 1
10  cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2)  has a 

periodic binary representation.  
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1)  so that associativity cannot be 

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑)  by the compiler, different functional floating point units in the processor may not do the two 
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.  

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only. 

 Computing √22𝑛𝑛  by √√⋯√√2  , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to 

the obviously wrong result √22𝑛𝑛 = 1.  

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities 
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving 
[2]   
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = ( 0

1.3) instead of the 

exact solution (𝑥𝑥𝑦𝑦) = (−1
2 ).  

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): =  𝑒𝑒
𝑥𝑥−1
𝑥𝑥  and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|
 

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns 
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.  

IEEE 754 FLOATING POINT NUMBERS 

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign 
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and 
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like 
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form 
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden. 
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies 
most prominently single and double precision floats by 
 

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒   Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Floats  24  8  ±1.18 × 10−38 to ±3.4 × 1038  ≈7  

Doubles  53  11  ±2.23 × 10−308 to ±1.80 × 10308 ≈16  

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell 
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that 
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of  
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the 
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).  
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whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller 
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is 
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more 
very unsettling phenomena in more detail. 

 99
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2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.  
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 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only. 

 Computing √22𝑛𝑛  by √√⋯√√2  , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to 

the obviously wrong result √22𝑛𝑛 = 1.  

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities 
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving 
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1.3) instead of the 

exact solution (𝑥𝑥𝑦𝑦) = (−1
2 ).  
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for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns 
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.  
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In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign 
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and 
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where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell 
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that 
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of  
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the 
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).  

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot 

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication 
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller 
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is 
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more 
very unsettling phenomena in more detail. 

 99
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2
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additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.  

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only. 

 Computing √22𝑛𝑛  by √√⋯√√2  , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to 

the obviously wrong result √22𝑛𝑛 = 1.  

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities 
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving 
[2]   
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = ( 0

1.3) instead of the 

exact solution (𝑥𝑥𝑦𝑦) = (−1
2 ).  

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): =  𝑒𝑒
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for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns 
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.  

IEEE 754 FLOATING POINT NUMBERS 

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign 
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and 
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like 
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form 
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden. 
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies 
most prominently single and double precision floats by 
 

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒   Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Floats  24  8  ±1.18 × 10−38 to ±3.4 × 1038  ≈7  

Doubles  53  11  ±2.23 × 10−308 to ±1.80 × 10308 ≈16  

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell 
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that 
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of  
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the 
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).  

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
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be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication 
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller 
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is 
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more 
very unsettling phenomena in more detail. 

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.  

 Even innocent numbers like 0.1 = 1
10  cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2)  has a 

periodic binary representation.  
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1)  so that associativity cannot be 

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑)  by the compiler, different functional floating point units in the processor may not do the two 
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.  

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only. 
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the obviously wrong result √22𝑛𝑛 = 1.  

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities 
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving 
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𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.  
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0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = ( 0

1.3) instead of the 

exact solution (𝑥𝑥𝑦𝑦) = (−1
2 ).  

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): =  𝑒𝑒
𝑥𝑥−1
𝑥𝑥  and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|
 

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns 
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.  

IEEE 754 FLOATING POINT NUMBERS 

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign 
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and 
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like 
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form 
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden. 
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies 
most prominently single and double precision floats by 
 

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒   Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Floats  24  8  ±1.18 × 10−38 to ±3.4 × 1038  ≈7  

Doubles  53  11  ±2.23 × 10−308 to ±1.80 × 10308 ≈16  

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell 
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that 
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of  
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the 
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).  

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot 

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication 
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller 
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is 
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more 
very unsettling phenomena in more detail. 

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.  

 Even innocent numbers like 0.1 = 1
10  cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2)  has a 

periodic binary representation.  
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1)  so that associativity cannot be 

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑)  by the compiler, different functional floating point units in the processor may not do the two 
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.  

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only. 

 Computing √22𝑛𝑛  by √√⋯√√2  , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to 

the obviously wrong result √22𝑛𝑛 = 1.  

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities 
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving 
[2]   
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = ( 0

1.3) instead of the 

exact solution (𝑥𝑥𝑦𝑦) = (−1
2 ).  

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): =  𝑒𝑒
𝑥𝑥−1
𝑥𝑥  and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|
 

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns 
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.  

IEEE 754 FLOATING POINT NUMBERS 

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign 
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and 
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like 
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form 
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden. 
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies 
most prominently single and double precision floats by 
 

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒   Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Floats  24  8  ±1.18 × 10−38 to ±3.4 × 1038  ≈7  

Doubles  53  11  ±2.23 × 10−308 to ±1.80 × 10308 ≈16  

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell 
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that 
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of  
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the 
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).  

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot 

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication 
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller 
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is 
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more 
very unsettling phenomena in more detail. 

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.  

 Even innocent numbers like 0.1 = 1
10  cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2)  has a 

periodic binary representation.  
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1)  so that associativity cannot be 

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑)  by the compiler, different functional floating point units in the processor may not do the two 
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.  

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only. 

 Computing √22𝑛𝑛  by √√⋯√√2  , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to 

the obviously wrong result √22𝑛𝑛 = 1.  

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities 
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving 
[2]   
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = ( 0

1.3) instead of the 

exact solution (𝑥𝑥𝑦𝑦) = (−1
2 ).  

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): =  𝑒𝑒
𝑥𝑥−1
𝑥𝑥  and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|
 

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns 
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.  

IEEE 754 FLOATING POINT NUMBERS 

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign 
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and 
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like 
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form 
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden. 
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies 
most prominently single and double precision floats by 
 

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒   Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Floats  24  8  ±1.18 × 10−38 to ±3.4 × 1038  ≈7  

Doubles  53  11  ±2.23 × 10−308 to ±1.80 × 10308 ≈16  

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell 
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that 
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of  
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the 
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).  

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot 

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication 
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller 
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is 
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more 
very unsettling phenomena in more detail. 

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.  

 Even innocent numbers like 0.1 = 1
10  cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2)  has a 

periodic binary representation.  
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1)  so that associativity cannot be 

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑)  by the compiler, different functional floating point units in the processor may not do the two 
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.  

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only. 

 Computing √22𝑛𝑛  by √√⋯√√2  , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to 

the obviously wrong result √22𝑛𝑛 = 1.  

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities 
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving 
[2]   
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = ( 0

1.3) instead of the 

exact solution (𝑥𝑥𝑦𝑦) = (−1
2 ).  

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): =  𝑒𝑒
𝑥𝑥−1
𝑥𝑥  and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|
 

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns 
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.  

IEEE 754 FLOATING POINT NUMBERS 

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign 
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and 
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like 
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form 
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden. 
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies 
most prominently single and double precision floats by 
 

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒   Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Floats  24  8  ±1.18 × 10−38 to ±3.4 × 1038  ≈7  

Doubles  53  11  ±2.23 × 10−308 to ±1.80 × 10308 ≈16  

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell 
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that 
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of  
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the 
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).  

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot 

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication 
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller 
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is 
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more 
very unsettling phenomena in more detail. 

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.  

 Even innocent numbers like 0.1 = 1
10  cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2)  has a 

periodic binary representation.  
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1)  so that associativity cannot be 

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑)  by the compiler, different functional floating point units in the processor may not do the two 
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.  

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only. 

 Computing √22𝑛𝑛  by √√⋯√√2  , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to 

the obviously wrong result √22𝑛𝑛 = 1.  

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities 
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving 
[2]   
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = ( 0

1.3) instead of the 

exact solution (𝑥𝑥𝑦𝑦) = (−1
2 ).  

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): =  𝑒𝑒
𝑥𝑥−1
𝑥𝑥  and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|
 

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns 
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.  

IEEE 754 FLOATING POINT NUMBERS 

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign 
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and 
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like 
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form 
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden. 
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies 
most prominently single and double precision floats by 
 

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒   Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Floats  24  8  ±1.18 × 10−38 to ±3.4 × 1038  ≈7  

Doubles  53  11  ±2.23 × 10−308 to ±1.80 × 10308 ≈16  

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell 
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that 
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of  
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the 
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).  

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot 

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication 
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller 
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is 
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more 
very unsettling phenomena in more detail. 

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.  

 Even innocent numbers like 0.1 = 1
10  cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2)  has a 

periodic binary representation.  
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1)  so that associativity cannot be 

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑)  by the compiler, different functional floating point units in the processor may not do the two 
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.  

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only. 

 Computing √22𝑛𝑛  by √√⋯√√2  , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to 

the obviously wrong result √22𝑛𝑛 = 1.  

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities 
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving 
[2]   
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = ( 0

1.3) instead of the 

exact solution (𝑥𝑥𝑦𝑦) = (−1
2 ).  

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): =  𝑒𝑒
𝑥𝑥−1
𝑥𝑥  and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|
 

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns 
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.  

IEEE 754 FLOATING POINT NUMBERS 

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign 
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and 
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like 
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form 
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden. 
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies 
most prominently single and double precision floats by 
 

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒   Range 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Floats  24  8  ±1.18 × 10−38 to ±3.4 × 1038  ≈7  

Doubles  53  11  ±2.23 × 10−308 to ±1.80 × 10308 ≈16  

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell 
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that 
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of  
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the 
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).  

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot 

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication 
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller 
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is 
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more 
very unsettling phenomena in more detail. 

 99
7 −

97
7 −

2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.  

 Even innocent numbers like 0.1 = 1
10  cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2)  has a 

periodic binary representation.  
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1)  so that associativity cannot be 

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑)  by the compiler, different functional floating point units in the processor may not do the two 
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.  

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only. 

 Computing √22𝑛𝑛  by √√⋯√√2  , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to 

the obviously wrong result √22𝑛𝑛 = 1.  

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities 
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving 
[2]   
0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = ( 0

1.3) instead of the 

exact solution (𝑥𝑥𝑦𝑦) = (−1
2 ).  

 Evaluate 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥)) with 𝐸𝐸(0): = 1 and 𝐸𝐸(𝑥𝑥): =  𝑒𝑒
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𝑥𝑥  and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 − √𝑥𝑥2 + 1| − 1

|𝑥𝑥+√𝑥𝑥2+1|
 

for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns 
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.  

IEEE 754 FLOATING POINT NUMBERS 

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign 
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and 
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like 
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form 
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden. 
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies 
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Doubles  53  11  ±2.23 × 10−308 to ±1.80 × 10308 ≈16  

where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell 
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that 
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of  
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the 
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).  

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
10 cannot 

be represented exactly; the laws of associativity or distributivity cannot be guaranteed. There is no indication 
whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller 
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is 
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more 
very unsettling phenomena in more detail. 

 99
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2
7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.  

 Even innocent numbers like 0.1 = 1
10  cannot be represented exactly because 0.1(10) = 0.00011̅̅ ̅̅ ̅̅ ̅(2)  has a 

periodic binary representation.  
 For example (1016 − 1016) + 1 = 1 ≠ 0 = 1016 + (−1016 + 1)  so that associativity cannot be 

guaranteed. This prevents automatic parallelization of expressions like 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 = (𝑎𝑎 + 𝑏𝑏) + (𝑐𝑐 +
𝑑𝑑)  by the compiler, different functional floating point units in the processor may not do the two 
additions 𝑎𝑎 + 𝑏𝑏 and 𝑐𝑐 + 𝑑𝑑 in parallel.  

 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only. 

 Computing √22𝑛𝑛  by √√⋯√√2  , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to 

the obviously wrong result √22𝑛𝑛 = 1.  

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities 
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving 
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0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = ( 0

1.3) instead of the 

exact solution (𝑥𝑥𝑦𝑦) = (−1
2 ).  
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for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns 
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.  

IEEE 754 FLOATING POINT NUMBERS 

In general, IEEE 754 floating point numbers are represented by a fixed number of bytes which contain a sign 
bit, a mantissa or fraction and a power of two given by the exponent (the order actually is sign, exponent and 
mantissa). So IEEE 754 allows the representation of some rational numbers. In order to avoid ambiguities like 
1 = 1 ⋅ 20 = 2 ⋅ 2−1 the mantissa is normalized to lie in the interval [1,2). Hence, the mantissa has the form 
1.𝑚𝑚1𝑚𝑚2𝑚𝑚3 … with 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  mantissa bits 𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 … so that the first bit need not be stored, it is hidden. 
Also, the exponent is stored in 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 bits with an offset in order to avoid another sign bit. IEEE 754 specifies 
most prominently single and double precision floats by 
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where the number 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of decimal digits approximates the accuracy achieved. Here, we do not want to dwell 
on subnormals which for the minimal exponent allow not normalized fractions, but we want to point out that 
there are two representations of ±0, representations of +∞ as well as −∞ and very many representations of  
NaN (Not a Number,) which stand for any indefinite expressions like ∞−∞, 00, or ∞∞ . Details are found in the 
standard (IEEE, 1985 and amended 2008) and in Goldberg (1991).  

Now, arithmetic with IEEE 754 is in several aspects by no means trustworthy. Numbers like 0.1 = 1
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whether an overflow or an underflow occurred, i.e. whether some numbers bigger than maxreal or smaller 
than –maxreal is represented by Inf or –Inf respectively or whether a non-zero numbers very close to 0 is 
represented by 0.0. The only indication may be some flags in the processor status word. Let us list some more 
very unsettling phenomena in more detail. 
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7 = 9.992007221626409 ⋅ 10−16 in double precision which is close to but not equal to zero.  

 Even innocent numbers like 0.1 = 1
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 For example 𝑎𝑎 + 𝑏𝑏 == 𝑎𝑎 not necessarily implies 𝑏𝑏 == 0 but |𝑏𝑏| ≪ |𝑎𝑎| only. 

 Computing √22𝑛𝑛  by √√⋯√√2  , i.e. taking 𝑛𝑛 times square roots of square roots will eventually lead to 

the obviously wrong result √22𝑛𝑛 = 1.  

 Solving ill conditioned systems of linear equations naively, i.e. without taking numerical peculiarities 
into consideration, i.e. here without (partial) pivotization, leads to obviously wrong results. E.g. solving 
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0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 by Cramer’s rule results in (𝑥𝑥𝑦𝑦) = ( 0

1.3) instead of the 

exact solution (𝑥𝑥𝑦𝑦) = (−1
2 ).  
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for 𝑥𝑥 = (15,16,17,9999) . Then e.g. MATLAB (like any other computing environment) returns 
𝑦𝑦 = (0,0,0,0) instead of the correct result 𝑦𝑦 = (1,1,1,1) because actually 𝑄𝑄(𝑥𝑥) ≡ 0.  
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•	 Consider the Kahan sequence recursively specified by           
and                                         which should converge to the stable fix 
point 6 but instead goes astray to the other fix point 100. 

•	 More examples like those of Kahan can be found in Risse (2016).

There are lists of disasters which occurred in the real world due to these floating 
point anomalies (Bailey, 2015). 

In order to counter these numerical errors one tends to use as much accuracy 
as available (Bailey, 2014). For example, MATLABs standard data type is 
double, and thus is independent of the actual requirements. 

We conclude this short introduction of IEEE 754 floating point numbers with 
a comparison of the technological conditions of the 1980s with the conditions 
forty years later. In the eighties of the last century the 80x86 architecture was 
predominant with its eight floating point registers, organized as a stack, and 
performing arithmetic using these registers which were internally 80 bit wide. 
The difference becomes apparent if one, for example, does floating point 
arithmetic using JAVA. Also the proportion of time and energy spent for floating 
point arithmetic compared to moving data between processor and memory 
has dramatically changed. In the 1980s, when the IEEE standard was finally 
approved, the following Table 1 (https://en.wikipedia.org/wiki/Intel_8086) 
allows one to estimate that a floating point operation took hundreds of clock 
cycles at                  each where the memory access with about 10 cycles accounts 
for less than 10%. 

Table 1

Execution Times for Typical Instructions (in clock cycles) at a Clock Rate of 
5MHz to 10MHz for 8086

Instruction Register-
register 

Register 
immediate 

Register-
memory 

Memory-
register 

Memory-
immediate

mov 2 4 8+EA 9+EA 10+EA
ALU 3 4 9+EA, 16+EA, 17+EA
jump 11 for register; 15 for label; 16 for condition and label 
integer multiply 70~160 (depending on operand data as well as size) including any EA 
integer divide 80~190 (depending on operand data as well as size) including any EA 

Note: EA = time to compute effective address, ranging from 5 to 12 cycles.	
Timings are best case, depending on prefet status, instruction alignment and other factors.

 Consider the Kahan sequence recursively specified by 𝑢𝑢𝑜𝑜 = 2,𝑢𝑢1 = −4 and 𝑢𝑢𝑖𝑖+2 = 111 − 113
𝑢𝑢𝑖𝑖+1

+ 3000
𝑢𝑢𝑖𝑖 𝑢𝑢𝑖𝑖+1

 
which should converge to the stable fix point 6 but instead goes astray to the other fix point 100.  

 More examples like those of Kahan can be found in Risse (2016). 

There are lists of disasters which occurred in the real world due to these floating point anomalies 
(Bailey, 2015).  
In order to counter these numerical errors one tends to use as much accuracy as available (Bailey, 
2014). For example, MATLABs standard data type is double, and thus is independent of the actual 
requirements.  
We conclude this short introduction of IEEE 754 floating point numbers with a comparison of the 
technological conditions of the 1980s with the conditions forty years later. In the eighties of the last 
century the 80x86 architecture was predominant with its eight floating point registers, organized as a 
stack, and performing arithmetic using these registers which were internally 80 bit wide. The difference 
becomes apparent if one, for example, does floating point arithmetic using JAVA. Also the proportion 
of time and energy spent for floating point arithmetic compared to moving data between processor and 
memory has dramatically changed. In the 1980s, when the IEEE standard was finally approved, the 
following Table 1 (https://en.wikipedia.org/wiki/Intel_8086) allows one to estimate that a floating point 
operation took hundreds of clock cycles at 0.1𝜇𝜇sec each where the memory access with about 10 
cycles accounts for less than 10%.  

Table 1. 

Execution Times for Typical Instructions (in clock cycles) at a Clock Rate of 5MHz to 10MHz for 8086 

Instruction  Register-
register  

Register 
immediate  

Register-
memory  

Memory-
register  

Memory-
immediate 

mov  2  4  8+EA  9+EA  10+EA 

ALU  3  4  9+EA,  16+EA,  17+EA 

jump  11 for register; 15 for label; 16 for condition and label  

integer multiply  70~160 (depending on operand data as well as size) including any EA  

integer divide  80~190 (depending on operand data as well as size) including any EA  

Note: EA = time to compute effective address, ranging from 5 to 12 cycles.  
Timings are best case, depending on prefet status, instruction alignment and other factors. 

 

Today, the relation of the execution time of arithmetic operations compared to that of 
memory access is inverted as the following Table 2 shows (Gustafson, 2016a) with less than 
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The relation in terms of energy consumption is even more stunning and of great importance 
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 More examples like those of Kahan can be found in Risse (2016). 

There are lists of disasters which occurred in the real world due to these floating point anomalies 
(Bailey, 2015).  
In order to counter these numerical errors one tends to use as much accuracy as available (Bailey, 
2014). For example, MATLABs standard data type is double, and thus is independent of the actual 
requirements.  
We conclude this short introduction of IEEE 754 floating point numbers with a comparison of the 
technological conditions of the 1980s with the conditions forty years later. In the eighties of the last 
century the 80x86 architecture was predominant with its eight floating point registers, organized as a 
stack, and performing arithmetic using these registers which were internally 80 bit wide. The difference 
becomes apparent if one, for example, does floating point arithmetic using JAVA. Also the proportion 
of time and energy spent for floating point arithmetic compared to moving data between processor and 
memory has dramatically changed. In the 1980s, when the IEEE standard was finally approved, the 
following Table 1 (https://en.wikipedia.org/wiki/Intel_8086) allows one to estimate that a floating point 
operation took hundreds of clock cycles at 0.1𝜇𝜇sec each where the memory access with about 10 
cycles accounts for less than 10%.  

Table 1. 

Execution Times for Typical Instructions (in clock cycles) at a Clock Rate of 5MHz to 10MHz for 8086 

Instruction  Register-
register  

Register 
immediate  

Register-
memory  

Memory-
register  

Memory-
immediate 

mov  2  4  8+EA  9+EA  10+EA 

ALU  3  4  9+EA,  16+EA,  17+EA 

jump  11 for register; 15 for label; 16 for condition and label  

integer multiply  70~160 (depending on operand data as well as size) including any EA  

integer divide  80~190 (depending on operand data as well as size) including any EA  

Note: EA = time to compute effective address, ranging from 5 to 12 cycles.  
Timings are best case, depending on prefet status, instruction alignment and other factors. 

 

Today, the relation of the execution time of arithmetic operations compared to that of 
memory access is inverted as the following Table 2 shows (Gustafson, 2016a) with less than 
10%. An arithmetic operation takes a fractional amount of the time a memory access takes. 
The relation in terms of energy consumption is even more stunning and of great importance 
in today’s densely packed high performance multiprocessor systems.  

Table 2. 

Energy and Execution Times for Typical 80x86 Operations  

Operation Energy/pJ Time/nsec 

64 bit multiply add 200 1 

Read 64 bit from cache 800 3 

 Consider the Kahan sequence recursively specified by 𝑢𝑢𝑜𝑜 = 2,𝑢𝑢1 = −4 and 𝑢𝑢𝑖𝑖+2 = 111 − 113
𝑢𝑢𝑖𝑖+1

+ 3000
𝑢𝑢𝑖𝑖 𝑢𝑢𝑖𝑖+1

 
which should converge to the stable fix point 6 but instead goes astray to the other fix point 100.  

 More examples like those of Kahan can be found in Risse (2016). 

There are lists of disasters which occurred in the real world due to these floating point anomalies 
(Bailey, 2015).  
In order to counter these numerical errors one tends to use as much accuracy as available (Bailey, 
2014). For example, MATLABs standard data type is double, and thus is independent of the actual 
requirements.  
We conclude this short introduction of IEEE 754 floating point numbers with a comparison of the 
technological conditions of the 1980s with the conditions forty years later. In the eighties of the last 
century the 80x86 architecture was predominant with its eight floating point registers, organized as a 
stack, and performing arithmetic using these registers which were internally 80 bit wide. The difference 
becomes apparent if one, for example, does floating point arithmetic using JAVA. Also the proportion 
of time and energy spent for floating point arithmetic compared to moving data between processor and 
memory has dramatically changed. In the 1980s, when the IEEE standard was finally approved, the 
following Table 1 (https://en.wikipedia.org/wiki/Intel_8086) allows one to estimate that a floating point 
operation took hundreds of clock cycles at 0.1𝜇𝜇sec each where the memory access with about 10 
cycles accounts for less than 10%.  

Table 1. 

Execution Times for Typical Instructions (in clock cycles) at a Clock Rate of 5MHz to 10MHz for 8086 

Instruction  Register-
register  

Register 
immediate  

Register-
memory  

Memory-
register  

Memory-
immediate 

mov  2  4  8+EA  9+EA  10+EA 

ALU  3  4  9+EA,  16+EA,  17+EA 

jump  11 for register; 15 for label; 16 for condition and label  

integer multiply  70~160 (depending on operand data as well as size) including any EA  

integer divide  80~190 (depending on operand data as well as size) including any EA  

Note: EA = time to compute effective address, ranging from 5 to 12 cycles.  
Timings are best case, depending on prefet status, instruction alignment and other factors. 

 

Today, the relation of the execution time of arithmetic operations compared to that of 
memory access is inverted as the following Table 2 shows (Gustafson, 2016a) with less than 
10%. An arithmetic operation takes a fractional amount of the time a memory access takes. 
The relation in terms of energy consumption is even more stunning and of great importance 
in today’s densely packed high performance multiprocessor systems.  

Table 2. 

Energy and Execution Times for Typical 80x86 Operations  

Operation Energy/pJ Time/nsec 

64 bit multiply add 200 1 

Read 64 bit from cache 800 3 



5

Journal of ICT, 17, No. 1 (Jan) 2018, pp: 1–16

Today, the relation of the execution time of arithmetic operations compared to 
that of memory access is inverted as the following Table 2 shows (Gustafson, 
2016a) with less than 10%. An arithmetic operation takes a fractional amount 
of the time a memory access takes. The relation in terms of energy consumption 
is even more stunning and of great importance in today’s densely packed high 
performance multiprocessor systems. 

Table 2

Energy and Execution Times for Typical 80x86 Operations 

Operation Energy/pJ Time/nsec
64 bit multiply add 200 1

Read 64 bit from cache 800 3
move 64 bit across chip 2000 5
Execute an instruction 7500 1

Read 64 bit from DRAM 12000 70

So IEEE 754 has two shortcomings: floating point operations are not trustworthy 
and the available bandwidth of the channels between processor (or caches) and 
memory is not used efficiently. Both problems are addressed by UNUMs. 

UNIVERSAL NUMBERS 

Universal numbers, UNUMs for short, are an extension of IEEE 754 with the 
potential to solve both the numerical problems of IEEE 754 floating point numbers 
as well as their inefficiency in exploiting the bandwidth when exchanging floating 
point numbers between processor and memory and when storing them in memory 
(Gustafson, 2015). As IEEE 754 numbers UNUMs consist of three fields: the sign 
bit, the exponent field and the fraction field. The first extension is the fourth field, 
the so called ubit which addresses the numerical problems. If the ubit is not set the 
number                                                                        is the exact representation of some 
rational number. If the ubit is set then the UNUM stands for the open real interval 
                where     denotes the next exactly representable UNUM. Thus 
UNUMs cover the whole real line by monotonically alternating between 
exactly represented rational numbers and open real intervals. Hence UNUMs 
are either exactly represented rational numbers or open real intervals. As in 
IEEE 754 also  – ∞ and + ∞ can be expressed as UNUMs as well as quietly 
and signaling NaN. 	
 
With UNUMs there is no rounding and thus no cheating. UNUMs are truly honest 
about what they represent. 
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The second extension consists of the two additional fields esizesize and fsizesize which specify the number of 
bits of the exponent field and the number of bits of the fraction field, respectively. The two fields render the 
UNUM format self-descriptive. These two parameters define a so called environment.   
Now the range and the accuracy of UNUMs can be controlled (in the best case by the computer hardware 
itself) and thus adapted to the actual needs. The investment in the two fields by far pays out in terms of net 
memory savings and transmission savings. So UNUMs are the natural candidates for scientific computing on 
today’s high performance computing systems.  

 

Arithmetic with UNUMs  

The ubit implies that the objects of UNUM arithmetic are intervals, the so called ubounds, namely either 
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implementation of each of the basic arithmetic operations two tables are needed which specify the lower bound 
low and the upper bound upp of the interval representing the result as is shown by the two addition, ⊕, tables.  

Arithmetic with UNUMs never generate an underflow or an overflow. For example, if 𝑥𝑥 + 𝑦𝑦 >maxreal or 
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The second extension consists of the two additional fields esizesize and fsizesize 
which specify the number of bits of the exponent field and the number of bits of the 
fraction field, respectively. The two fields render the UNUM format self-descriptive. 
These two parameters define a so called environment. 	
 
Now the range and the accuracy of UNUMs can be controlled (in the best case by 
the computer hardware itself) and thus adapted to the actual needs. The investment 
in the two fields by far pays out in terms of net memory savings and transmission 
savings. So UNUMs are the natural candidates for scientific computing on today’s 
high performance computing systems. 

Arithmetic with UNUMs 

The ubit implies that the objects of UNUM arithmetic are intervals, the so called 
ubounds, namely either closed intervals of the form [x, x]  or open and closed intervals 
[x, y], [x, y), (x, y], or (x, y). Hence for the implementation of each of the basic 
arithmetic operations two tables are needed which specify the lower bound low and 
the upper bound upp of the interval representing the result as is shown by the two 
addition, ⊕, tables. 

Arithmetic with UNUMs never generate an underflow or an overflow. For example, 
if  x + y > maxreal or x + y <  – maxreal then the result is the correct ubound 
(maxreal ∞,) or (– ∞, maxreal), respectively, where maxreal denotes the greatest 
representable UNUM. 
	

There are corresponding tables for subtraction, multiplication and division which 
show that the set of ubounds is closed under the four basic arithmetic operations. 

Fused Operations and the Mathematica Math Library 

Gustafson (2015) provides a basic math library for UNUMs written in Mathematica. 
It contains built-in functions to compute powers or a more general expression xy  
which is an algebraic function for any exactly representable x and y. Also there is an 
exact dot product which has to be used in case associativity of addition is needed. 
Similarly, an exact product guarantees the associativity of multiplication. One has 
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the intervals computed are too big to be meaningful. But, the environment can 
automatically be adapted if the need is detected by suitable library functions. 

•	 Computing            iteratively with Unums is done in Mathematica by 	       
 	  

 

E.g. in the {3,3} environment the result is stable after seven iterations 
returning intervals           with monotonically decreasing upper bound    . So 
the results are always greater than 1. 

•	 Solving                                                                                               using Cramer’s 

rule with Unums in the {3,6} environment gives the correct solution (x, y)= 
(–1,2). The same is true in the  {3,5} environment if one uses the fused dot 
product fdotu [{a, – c}, {d, b}] to compute the determinant              instead of 
the naïve expression                                                    

•	 Evaluating                                         with                        and                                  and 
                    for x = (15,16,17,9999) with

•	 UNUMs in even the poorest {0,0}environment (one exponent bit and 
one fraction bit) returns the correct solution (1,1,1,1). 

•	 The Kahan sequence does not go astray but in the example the {3,6}
environment nicely converges to the fix point 6. 

These few examples should corroborate the claim that UNUMs avoid numerical 
anomalies. They, at the same time show that careful examination by hand or by 
hardware is needed to choose the environment in which the required accuracy is 
achieved. 

SCIENTIFIC COMPUTING WITH UNUMS 

There are already quite a lot of examples which demonstrate the suitability of 
UNUMs in scientific computing. They also show that algorithms with UNUMs 
are different from those with IEEE 754 floating numbers. Algorithms with 
UNUMs often are declarative and use methods similar to inclusion/exclusion, 
region growing, lumping, grid refinement, etc. (Gustafson, 2014, 2015a), to solve 
problems like. 
•	 finite integrals (quadrature determines an area), 
•	 linear equations with exact and inexact coefficients, 
•	 evaluation of polynomials; computation of zeroes, extreme points and fix 

points, 
•	 computation of the location ϑ of a physical pendulum where speed 

υ = υ(ϑ), acceleration a = a(ϑ) , and time t = t(ϑ) are modelled depending 
on ϑ, 

 Computing √22𝑛𝑛   iteratively with Unums is done in Mathematica by   
  𝑟𝑟 = 𝑥𝑥2𝑢𝑢[2]; .   
  𝐷𝐷𝐷𝐷[𝑟𝑟 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑟𝑟];𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[“𝑟𝑟 = ” , 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣[𝑟𝑟]], {𝑖𝑖, 1,8}]  
E.g. in the {3,3} environment the result is stable after seven iterations returning intervals (1,𝑢𝑢) 
with monotonically decreasing upper bound 𝑢𝑢. So the results are always greater than 1.  

 Solving 0.25510582 𝑥𝑥 + 0.52746197 𝑦𝑦 = 0.79981812
0.80143857 𝑥𝑥 + 1.65707065 𝑦𝑦 = 2.51270273 using Cramer’s rule with Unums in 

the {3,6} environment gives the correct solution (𝑥𝑥,𝑦𝑦) = (−1,2). The same is true in the {3,5} 
environment if one uses the fused dot product fdotu[{𝑎𝑎,−𝑐𝑐}, {𝑑𝑑, 𝑏𝑏}] to compute the determinant 
|𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑| instead of the naïve expression (𝑎𝑎 ⊗ 𝑑𝑑) ⊝ (𝑏𝑏 ⊗ 𝑐𝑐).  

 Evaluating 𝐻𝐻(𝑥𝑥): = 𝐸𝐸(𝑄𝑄2(𝑥𝑥))  with 𝐸𝐸(0): = 1  and 𝐸𝐸(𝑥𝑥): =  𝑒𝑒
𝑥𝑥−1
𝑥𝑥  and 𝑄𝑄(𝑥𝑥): = |𝑥𝑥 −

√𝑥𝑥2 + 1| − 1
|𝑥𝑥+√𝑥𝑥2+1|  for 𝑥𝑥 = (15,16,17,9999)  with UNUMs in even the poorest {0,0} 

environment (one exponent bit and one fraction bit) returns the correct solution (1,1,1,1).  

 The Kahan sequence does not go astray but in the example the {3,6}  environment nicely 
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•	 two- and many-body problems (Gustafson, 2015), 
•	 inverse kinematics (Gustafson, 2016 radical), 
•	 mass-spring-systems, trusses, FFT, CFD, etc. 

This list of classical problems in scientific computing alone is in our opinion 
proof of concept. 

THE UNUM MATH LIBRARY 

Gustafson provides a library of all elementary mathematical functions for 
UNUMs written in Mathematica (Gustafson, 2015). It relies on the Mathematica 
implementations of these elementary mathematical functions. As an unusual 
departure, the trigonometric functions in this library take their arguments in 
degrees in order to provide more exact values (Jahnel, 2006, 2013), even in 
more or less all scientific computing applications these functions take their 
arguments in radians. 

Easy and comfortable deployment of UNUMs in scientific computing relies on 
the availability of a UNUM math library as is available for IEEE 754 floating 
point numbers. For example, a library like Basic Linear Algebra Subprograms, 
BLAS, (http://www.netlib.org/blas/) provides highly optimized versions of all 
sorts of algorithms of linear algebra. The library Linear Algebra Package, 
LAPACK, (http://www.netlib.org/lapack/) can be seen as an extension to BLAS 
providing, e.g. routines for solving systems of linear equations and linear least 
squares, eigenvalue problems and singular value decomposition. 	
 
Libraries allow easy and comfortable adoption of scientific computing 
algorithms. Also, many hardware manufacturers offer libraries tailored for 
their special architectures, for example Intel’s Math Kernel Library, MKL 
(https://software.intel.com/en-us/mkl.)
 
So, in order to support spreading the use of UNUMs a UNUM math library 
is needed as the examples in the previous section show some algorithms 
are already available. In order to add more algorithms we focus here quite 
arbitrarily on root finding algorithms. The problem is to identify zeroes of 
a given function y = (x)  or w = f(z)  in a given interval of the real line or 
in a given rectangular region of the complex plane. Classical algorithms 
comprise, for example, bisection, secant method (regula falsi), Newton’s 
method, inverse interpolation, Brent’s method which combines bisection, the 
secant method and the inverse quadratic interpolation. All these methods have 
deficiencies, they do not find complex zeroes or multiple roots. An alternative 
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is based on the idea to use Cauchy’s residue calculus (Delves, Lyness, 1966). 
For any analytic function                 and any connected region             we have 

where  z1, z2, ..., zN are the zeros of  in , according to multiplicity,  C = ∂R is 
the boundary of R and                Now, this formula can be used to approximate 
every (complex) zero of any analytic function in some regions R including 
their multiplicity. The idea is to use a quad tree approach. A rectangular region 
R is quartered and each quarter is examined for the number so  of zeroes in the 
quarter. Quarters with no zeroes are discarded; those with zeroes are further 
quartered. Once there is only one zero in some quarter it is approximated by  
s1 and if several zeroes are located in a sufficiently small quarter one uses s2, s3,… 
in order to distinguish multiple zeroes from several simpler ones. In case a 
zero lies on C, lumping the current sub-region with neighboring sub-regions 
can circumvent this case and allows the approximation of zeros to continue. If 
one is interested in real zeros only, one just chooses some small banded region 
around the abscissa. 

Let us consider some examples to see how zero finding is done by computing 
line or contour integrals. 

1.	 The polynomial                                         has the two real zeros                and                
            . Then                                                                        so that Cauchy’s           
theorem implies                      1 for       		  and C = ∂R for any 
open region R with 1∈ R and                 A priori knowing  helps in the 
quadrature. We then approximate z1 by s1 which by Cauchy’s theorem 
evaluates to                                     
Here, quadrature depends on the requirements of the accuracy of the 
zeros. 

2.	 The polynomial f(z) = (z–2)2 with the double zero in 2 
and                   shows how to verify or falsify the hypothesis of 
a multiple zero; if  zo is thought to be the only zero of  in some region  
2 ∈ R its multiplicity is  
					      holds approximately. Hence, the 
more of the  sn for  n ≥ 1 approximate  the more the hypothesis of  f 
having a zero of multiplicity m  in  zo is corroborated. 

3.	 The rational function 		   has the single, simple real zero zo = 1 
and so = 						    
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1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2  has the two real zeros 𝑧𝑧1 = 1  and 𝑧𝑧2 = 2 . Then 
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋  ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2  and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori 
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s 
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1  for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 .   Here, 

quadrature depends on the requirements of the accuracy of the zeros.  
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to 

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓 
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶  𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁  for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁  holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛  for 
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is 
corroborated.  

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧  has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1  and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1  for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕  and any connected 

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.  
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧  with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.  

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.  
 
Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex 

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2  has the two real zeros 𝑧𝑧1 = 1  and 𝑧𝑧2 = 2 . Then 
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋  ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2  and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori 
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s 
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1  for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 .   Here, 

quadrature depends on the requirements of the accuracy of the zeros.  
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to 

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓 
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶  𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁  for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁  holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛  for 
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is 
corroborated.  

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧  has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1  and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1  for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕  and any connected 

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.  
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧  with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.  

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.  
 
Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex 

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2  has the two real zeros 𝑧𝑧1 = 1  and 𝑧𝑧2 = 2 . Then 
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋  ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2  and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori 
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s 
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1  for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 .   Here, 

quadrature depends on the requirements of the accuracy of the zeros.  
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to 

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓 
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶  𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁  for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁  holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛  for 
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is 
corroborated.  

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧  has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1  and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1  for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕  and any connected 

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.  
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧  with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.  

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.  
 
Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex 

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2  has the two real zeros 𝑧𝑧1 = 1  and 𝑧𝑧2 = 2 . Then 
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋  ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2  and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori 
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s 
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1  for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 .   Here, 

quadrature depends on the requirements of the accuracy of the zeros.  
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to 

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓 
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶  𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁  for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁  holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛  for 
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is 
corroborated.  

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧  has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1  and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1  for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕  and any connected 

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.  
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧  with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.  

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.  
 
Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex 

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2  has the two real zeros 𝑧𝑧1 = 1  and 𝑧𝑧2 = 2 . Then 
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋  ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2  and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori 
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s 
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1  for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 .   Here, 

quadrature depends on the requirements of the accuracy of the zeros.  
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to 

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓 
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶  𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁  for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁  holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛  for 
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is 
corroborated.  

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧  has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1  and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1  for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕  and any connected 

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.  
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧  with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.  

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.  
 
Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex 

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2  has the two real zeros 𝑧𝑧1 = 1  and 𝑧𝑧2 = 2 . Then 
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋  ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2  and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori 
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s 
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1  for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 .   Here, 

quadrature depends on the requirements of the accuracy of the zeros.  
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to 

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓 
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶  𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁  for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁  holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛  for 
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is 
corroborated.  

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧  has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1  and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1  for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕  and any connected 

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.  
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧  with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.  

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.  
 
Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex 

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2  has the two real zeros 𝑧𝑧1 = 1  and 𝑧𝑧2 = 2 . Then 
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋  ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2  and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori 
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s 
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1  for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 .   Here, 

quadrature depends on the requirements of the accuracy of the zeros.  
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to 

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓 
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶  𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁  for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁  holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛  for 
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is 
corroborated.  

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧  has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1  and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1  for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕  and any connected 

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.  
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧  with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.  

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.  
 
Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex 

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2  has the two real zeros 𝑧𝑧1 = 1  and 𝑧𝑧2 = 2 . Then 
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋  ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2  and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori 
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s 
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1  for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 .   Here, 

quadrature depends on the requirements of the accuracy of the zeros.  
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to 

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓 
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶  𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁  for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁  holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛  for 
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is 
corroborated.  

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧  has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1  and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1  for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕  and any connected 

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.  
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧  with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.  

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.  
 
Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex 

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2  has the two real zeros 𝑧𝑧1 = 1  and 𝑧𝑧2 = 2 . Then 
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋  ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2  and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori 
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s 
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1  for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 .   Here, 

quadrature depends on the requirements of the accuracy of the zeros.  
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to 

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓 
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶  𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁  for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁  holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛  for 
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is 
corroborated.  

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧  has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1  and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1  for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕  and any connected 

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.  
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧  with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.  

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.  
 
Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex 

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2  has the two real zeros 𝑧𝑧1 = 1  and 𝑧𝑧2 = 2 . Then 
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋  ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2  and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori 
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s 
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1  for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 .   Here, 

quadrature depends on the requirements of the accuracy of the zeros.  
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to 

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓 
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶  𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁  for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁  holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛  for 
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is 
corroborated.  

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧  has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1  and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1  for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕  and any connected 

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.  
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧  with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.  

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.  
 
Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex 

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2  has the two real zeros 𝑧𝑧1 = 1  and 𝑧𝑧2 = 2 . Then 
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋  ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2  and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori 
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s 
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1  for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 .   Here, 

quadrature depends on the requirements of the accuracy of the zeros.  
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to 

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓 
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶  𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁  for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁  holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛  for 
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is 
corroborated.  

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧  has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1  and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1  for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕  and any connected 

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.  
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧  with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.  

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.  
 
Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex 

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2  has the two real zeros 𝑧𝑧1 = 1  and 𝑧𝑧2 = 2 . Then 
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋  ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2  and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori 
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s 
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1  for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 .   Here, 

quadrature depends on the requirements of the accuracy of the zeros.  
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to 

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓 
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶  𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁  for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁  holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛  for 
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is 
corroborated.  

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧  has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1  and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1  for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕  and any connected 

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.  
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧  with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.  

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.  
 
Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex 

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2  has the two real zeros 𝑧𝑧1 = 1  and 𝑧𝑧2 = 2 . Then 
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋  ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2  and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori 
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s 
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1  for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 .   Here, 

quadrature depends on the requirements of the accuracy of the zeros.  
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to 

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓 
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶  𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁  for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁  holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛  for 
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is 
corroborated.  

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧  has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1  and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1  for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕  and any connected 

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.  
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧  with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.  

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.  
 
Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex 
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1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2  has the two real zeros 𝑧𝑧1 = 1  and 𝑧𝑧2 = 2 . Then 
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋  ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2  and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori 
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s 
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1  for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 .   Here, 

quadrature depends on the requirements of the accuracy of the zeros.  
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to 

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓 
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶  𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁  for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁  holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛  for 
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is 
corroborated.  

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧  has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1  and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1  for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕  and any connected 

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.  
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧  with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.  

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.  
 
Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex 

and any connected open region R with                              and  as well 
as 				          for                     . 

4.	 We want to approximate the greatest real zero of          
			     which because of          
			   0 lies in 	   Figure 2 visualizes the graph of  
and its real zeroes. 

Figure 2. Graph of the real valued function y =f(x) = sin (2x) –x                         . 
 

Then so = 1for integration along the edge C = ∂R  of the rectangle R with 
lower left vertex             and upper right vertex  	   for any small 
constant                    . The zero sought-after of  is then approximated by                   

5.	 Lambert’s W-function presents a more serious example. W(z)  is defined 
to be the inverse of            	   (shown by the dotted curve). 
Geometrically obvious is that W(x) has two real branches W–1 (shown 
by the continuous curve) and Wo (shown by the dashed curve). Figure 
3 visualizes the graphs of both f(x)  as well as of W(x)with its two 
branches Wo and W–1. 

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2  has the two real zeros 𝑧𝑧1 = 1  and 𝑧𝑧2 = 2 . Then 
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋  ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2  and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori 
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s 
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1  for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 .   Here, 

quadrature depends on the requirements of the accuracy of the zeros.  
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to 

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓 
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶  𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁  for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁  holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛  for 
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is 
corroborated.  

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧  has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1  and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1  for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕  and any connected 

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.  
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧  with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.  

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.  
 
Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex 

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2  has the two real zeros 𝑧𝑧1 = 1  and 𝑧𝑧2 = 2 . Then 
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋  ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2  and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori 
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s 
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1  for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 .   Here, 

quadrature depends on the requirements of the accuracy of the zeros.  
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to 

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓 
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶  𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁  for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁  holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛  for 
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is 
corroborated.  

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧  has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1  and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1  for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕  and any connected 

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.  
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧  with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.  

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.  
 
Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex 

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2  has the two real zeros 𝑧𝑧1 = 1  and 𝑧𝑧2 = 2 . Then 
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋  ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2  and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori 
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s 
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1  for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 .   Here, 

quadrature depends on the requirements of the accuracy of the zeros.  
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to 

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓 
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶  𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁  for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁  holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛  for 
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is 
corroborated.  

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧  has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1  and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1  for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕  and any connected 

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.  
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧  with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.  

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.  
 
Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex 

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2  has the two real zeros 𝑧𝑧1 = 1  and 𝑧𝑧2 = 2 . Then 
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋  ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2  and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori 
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s 
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1  for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 .   Here, 

quadrature depends on the requirements of the accuracy of the zeros.  
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to 

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓 
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶  𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁  for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁  holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛  for 
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is 
corroborated.  

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧  has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1  and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1  for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕  and any connected 

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.  
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧  with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.  

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.  
 
Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex 

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2  has the two real zeros 𝑧𝑧1 = 1  and 𝑧𝑧2 = 2 . Then 
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋  ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2  and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori 
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s 
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1  for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 .   Here, 

quadrature depends on the requirements of the accuracy of the zeros.  
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to 

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓 
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶  𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁  for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁  holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛  for 
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is 
corroborated.  

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧  has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1  and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1  for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕  and any connected 

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.  
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧  with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.  

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.  
 
Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex 

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2  has the two real zeros 𝑧𝑧1 = 1  and 𝑧𝑧2 = 2 . Then 
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋  ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2  and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori 
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s 
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1  for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 .   Here, 

quadrature depends on the requirements of the accuracy of the zeros.  
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to 

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓 
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶  𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁  for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁  holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛  for 
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is 
corroborated.  

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧  has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1  and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1  for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕  and any connected 

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.  
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧  with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.  

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.  
 
Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex 

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2  has the two real zeros 𝑧𝑧1 = 1  and 𝑧𝑧2 = 2 . Then 
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋  ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2  and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori 
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s 
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1  for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 .   Here, 

quadrature depends on the requirements of the accuracy of the zeros.  
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to 

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓 
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶  𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁  for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁  holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛  for 
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is 
corroborated.  

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧  has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1  and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1  for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕  and any connected 

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.  
4. We want to approximate the greatest real zero of 𝑓𝑓(𝑧𝑧) = sin(2𝑧𝑧) − 𝑧𝑧  with 𝑓𝑓′(𝑧𝑧) =

2 cos(𝑧𝑧) − 1 which because of 𝑓𝑓 (𝜋𝜋4) = 1 − 𝜋𝜋
4 ≈ 0.2146 > 0 and 𝑓𝑓 (𝜋𝜋2) = 0 − 𝜋𝜋

2 ≈ −1.57 <
0 lies in (𝜋𝜋4 , 𝜋𝜋2) ⊂ ℝ. Figure 2 visualizes the graph of 𝑓𝑓 and its real zeroes.  

Figure 2. Graph of the real valued function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = sin(2𝑥𝑥)− 𝑥𝑥.  
 
Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex 

1. The polynomial 𝑓𝑓(𝑧𝑧) = 𝑧𝑧2 − 3𝑧𝑧 + 2  has the two real zeros 𝑧𝑧1 = 1  and 𝑧𝑧2 = 2 . Then 
𝑠𝑠𝑜𝑜 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑓𝑓´(𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋  ∫
2𝑧𝑧−3

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 so that Cauchy’s theorem implies 𝑠𝑠𝑜𝑜 = 𝑔𝑔1(1) =
1 for 𝑔𝑔1(𝑧𝑧) = 2𝑧𝑧−3

𝑧𝑧−2  and 𝐶𝐶 = 𝜕𝜕𝜕𝜕 for any open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 2 ∉ 𝑅𝑅 ∪ 𝐶𝐶 . A priori 
knowing 𝑠𝑠𝑜𝑜 ∈ ℕ𝑜𝑜 helps in the quadrature. We then approximate 𝑧𝑧1 by 𝑠𝑠1 which by Cauchy’s 
theorem evaluates to 𝑠𝑠1 = 1

2𝜋𝜋𝜋𝜋  ∫
𝑧𝑧(2𝑧𝑧−3)

(𝑧𝑧−1)(𝑧𝑧−2)𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔2(1) = 1  for 𝑔𝑔2(𝑧𝑧) = 𝑧𝑧(2𝑧𝑧−3)
𝑧𝑧−2 .   Here, 

quadrature depends on the requirements of the accuracy of the zeros.  
2. The polynomial 𝑓𝑓(𝑧𝑧) = (𝑧𝑧 − 2)2 with the double zero in 2 and 𝑓𝑓′(𝑧𝑧) = 2𝑧𝑧 − 4 shows how to 

verify or falsify the hypothesis of a multiple zero; if 𝑧𝑧𝑜𝑜 = 2 is thought to be the only zero of 𝑓𝑓 
in some region 2 ∈ 𝑅𝑅 its multiplicity is 𝑚𝑚 = 2 if 𝑠𝑠𝑁𝑁 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑧𝑧𝑁𝑁2(𝑧𝑧−2)

(𝑧𝑧−2)2𝐶𝐶  𝑑𝑑𝑑𝑑 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧𝑁𝑁2
𝑧𝑧−2𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔𝑁𝑁(2) = 2𝑁𝑁 + 2𝑁𝑁  for 𝑔𝑔𝑁𝑁(𝑧𝑧) = 2𝑧𝑧𝑁𝑁  holds approximately. Hence, the more of the 𝑠𝑠𝑛𝑛  for 
𝑛𝑛 ≥ 1 approximate 𝑚𝑚𝑧𝑧𝑜𝑜𝑛𝑛 the more the hypothesis of 𝑓𝑓 having a zero of multiplicity 𝑚𝑚 in 𝑧𝑧𝑜𝑜 is 
corroborated.  

3. The rational function 𝑓𝑓(𝑧𝑧) = 1 − 1
𝑧𝑧  has the single, simple real zero 𝑧𝑧𝑜𝑜 = 1  and 𝑠𝑠𝑜𝑜 =

1
2𝜋𝜋𝜋𝜋 ∫

1/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔𝑜𝑜(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑜𝑜(1) = 1  for 𝑔𝑔𝑜𝑜(𝑧𝑧) = 1

𝑧𝑧 , C = 𝜕𝜕𝜕𝜕  and any connected 

open region 𝑅𝑅 with 1 ∈ 𝑅𝑅 and 0 ∉ 𝑅𝑅 ∪ 𝐶𝐶 as well as 𝑠𝑠1 = 1
2𝜋𝜋𝜋𝜋 ∫

𝑧𝑧/𝑧𝑧2
(𝑧𝑧−1)/𝑧𝑧𝐶𝐶  𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋𝜋𝜋 ∫
𝑔𝑔1(𝑧𝑧)
𝑧𝑧−1𝐶𝐶  𝑑𝑑𝑑𝑑 =

𝑔𝑔(1) = 1 for 𝑔𝑔1(𝑧𝑧) = 1.  
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Then 𝑠𝑠𝑜𝑜 = 1 for integration along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of the rectangle 𝑅𝑅 with lower left vertex 
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4 − 𝑖𝑖𝑖𝑖 and upper right vertex 𝜋𝜋2 + 𝑖𝑖𝑖𝑖 for any small constant 0 < 𝑐𝑐 ≪ 1. The zero sought-after 

of 𝑓𝑓 is then approximated by 𝑠𝑠1 = 1
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𝑓𝑓(𝑧𝑧)𝐶𝐶  𝑑𝑑𝑑𝑑 ≈ 0.94775.  
5. Lambert’s W-function presents a more serious example. 𝑊𝑊(𝑧𝑧) is defined to be the inverse of 

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑒𝑒𝑥𝑥 (shown by the dotted curve). Geometrically obvious is that 𝑊𝑊(𝑥𝑥) has two 
real branches 𝑊𝑊−1 (shown by the continuous curve) and 𝑊𝑊𝑜𝑜  (shown by the dashed curve). 
Figure 3 visualizes the graphs of both 𝑓𝑓(𝑥𝑥) as well as of 𝑊𝑊(𝑥𝑥) with its two branches 𝑊𝑊𝑜𝑜 and 
𝑊𝑊−1.  

 

Figure 3. The two branches of the Lambert W-function, inverse of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 𝑒𝑒𝑥𝑥.  
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algorithm produces 𝑠𝑠𝑜𝑜 = 1 and 𝛺𝛺 = 𝑠𝑠1 ≈ 0.5671 when integrating along the edge 𝐶𝐶 = 𝜕𝜕𝜕𝜕 of 
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return 𝑠𝑠1 ≈ −0.6931 approximating the exact value 𝑊𝑊(𝑥𝑥𝑜𝑜) = −ln (2). 
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four line integrals is computed as 					      
for some complex valued analytic function  with some analytic parametrization  
for     of the line segment line. There are quadrature rules based on different 
interpolating functions 		          with some analytic parametrization γ(t) 
for t∈ of                 the line segment line. There are quadrature rules based 
on different interpolating functions (e.g. rectangle or midpoint, trapezoidal, 
Simpson, Boole), and adaptive rules (e.g. Gauss-Legendre, Gauss-Kronrod, 
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to say is inherited by the midpoint rule and 𝑄𝑄  is inherited by the trapezoidal rule (Needham, 
1997).Figure 4 shows the section of the graph of ℜ𝑔𝑔𝑛𝑛 or ℑ𝑔𝑔𝑛𝑛, respectively restricted to the interval 
[𝑡𝑡𝑜𝑜, 𝑡𝑡𝑜𝑜 + Δ] together with the areas measured by the midpoint and the trapezoidal rule.   
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To guarantee that the graph of the integrand runs in some quadrangle we  

increase the height of
  

where  		  is the maximum curvature of the integrand, 

			       is the length and where  is the slope angle of the 
secant. 

Similar to (Needham, 1997) we can bound the absolute error for             and            
respectively and for some partition              of the integration interval with           
	       by
 

 

where				    with 		                        The absolute 
value of both sums can be made as small as desired by controlling           . 

So we do not need and cannot use tricks similar to the one Gustafson used 
when dealing with a physical pendulum (Gustafson, 2015). 

CONCLUSION AND OUTLOOK 

We have demonstrated the shortcomings of the IEEE 754 floating point 
numbers, arithmetic on such numbers is not trustworthy and the usage of 
memory and bus bandwidth are not efficient. UNUMs however do not show 
these deficiencies. However, they make new types of numerical algorithms 
necessary. We illustrated the problem to design a zero finding algorithm and 
tailored a suitable one to the use of UNUMs.
	  
At the moment there seems to be only Gustafson’s UNUM library 
written in Mathematica. Of course, libraries which can be used in 
more common languages are badly needed. But all the same, there 
are several attempts just to provide such libraries, e.g. in Julia 
(Gustafson, 2016). Also, there are promising projects under way to 
implement UNUMs on hardware, e.g. on FPGAs (Gustafson, 2016).	  
 
Finally, we do not want to conceal that there are rather heated debates about 
the virtues of UNUMs between Gustafson (2016a) and Kahan (2016) who 
by the way was the primary architect of the IEEE 754 standard. At the same 
time, Gustafson emancipated himself even more from the IEEE 754 heritage 
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maximum curvature of the integrand, ℓ = √Δ2 + (𝑓𝑓(𝑡𝑡𝑜𝑜 + Δ) − 𝑓𝑓(𝑡𝑡𝑜𝑜))2 is the length and where 𝛼𝛼 is 
the slope angle of the secant.  

Similar to (Needham, 1997) we can bound the absolute error for 𝑔𝑔 = ℜ𝑔𝑔𝑛𝑛 and 𝑔𝑔 = ℑ𝑔𝑔𝑛𝑛 respectively 
and for some partition 𝑡𝑡𝑜𝑜, 𝑡𝑡1, … , 𝑡𝑡𝑁𝑁 of the integration interval with Δ𝑗𝑗 = 𝑡𝑡𝑗𝑗+1 − 𝑡𝑡𝑗𝑗 by   
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where ℎ𝑗𝑗Δ𝑗𝑗 = ℓ𝑗𝑗 (𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 − √𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
2 − ℓ𝑗𝑗2

4 ) with ℓ𝑗𝑗 = √Δj2 + (𝑔𝑔(𝑡𝑡𝑗𝑗+1) − 𝑔𝑔(𝑡𝑡𝑗𝑗))2 . The absolute value of 

both sums can be made as small as desired by controlling max𝑗𝑗 Δ𝑗𝑗 .  

So we do not need and cannot use tricks similar to the one Gustafson used when dealing with a 
physical pendulum (Gustafson, 2015).  

 

CONCLUSION and OUTLOOK  

We have demonstrated the shortcomings of the IEEE 754 floating point numbers, arithmetic on such numbers 
is not trustworthy and the usage of memory and bus bandwidth are not efficient. UNUMs however do not 
show these deficiencies. However, they make new types of numerical algorithms necessary. We illustrated the 
problem to design a zero finding algorithm and tailored a suitable one to the use of UNUMs.  
At the moment there seems to be only Gustafson’s UNUM library written in Mathematica. Of course, libraries 
which can be used in more common languages are badly needed. But all the same, there are several attempts 
just to provide such libraries, e.g. in Julia (Gustafson, 2016). Also, there are promising projects under way to 
implement UNUMs on hardware, e.g. on FPGAs (Gustafson, 2016).  
 
Finally, we do not want to conceal that there are rather heated debates about the virtues of UNUMs between 
Gustafson (2016a) and Kahan (2016) who by the way was the primary architect of the IEEE 754 standard. At 
the same time, Gustafson emancipated himself even more from the IEEE 754 heritage (Gustafson, 2016). 
Whether his UNUMs 2.0 will be even more profitable than UNUMs 1.0, only applications in scientific 
computing on high performance computer systems will show.  
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