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ABSTRACT

This study proposes a neural oscillator-based brain–computer 
interface (BCI) that controls a bipedal neuromusculoskeletal 
(NMS) model by inputting electroencephalogram (EEG) signals. 
In this BCI system, while the bipedal NMS system realizes 
bipedal locomotion through internal entrainment among neural 
oscillators and a musculoskeletal system, the locomotion of 
the system is controlled via external entrainment of the neural 
oscillators to the external input of EEG signals. As the first 
step in developing the neural oscillator-based BCI controlling 
a bipedal NMS model, exploratory numerical simulations were 
conducted to investigate the behavior of the proposed BCI when 
sinusoidal waves and alpha waves were inputted. The following 
tendencies were observed: (a) inputting sinusoidal waves with 
small amplitudes and high frequencies did not affect the natural 
walking behavior of the bipedal NMS model that was generated 
by including only offset values in the external input, (b) inputting 
sinusoidal waves with small amplitudes and low frequencies 
disturbed and decelerated the walking behavior, (c) inputting 
sinusoidal waves with large amplitudes accelerated the walking 
behavior, (d) inputting sinusoidal waves with large amplitudes 
and a particular frequency changed  walking behavior to running 
behavior, (e) changing the external input of alpha waves between 
an eyes-open condition and an eyes-closed condition successfully 
changed the walking behavior. The eyes-open condition led to 
faster walking compared with the eyes-closed condition.

Keywords: bipedal locomotion, brain–computer interface, bipedal 
neuromusculoskeletal model, entrainment, neural oscillator.
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INTRODUCTION

Shik, Severin, and Orlovsky (1966) reported that a decerebrated cat started 
walking when subjected to electrical stimulation to the midbrain. The 
experiment showed that walking motion is primarily maintained by the 
function of the lower brain. Central pattern generators (CPGs) are assumed to 
be at the center of the function. CPGs in spinal nerves autonomously generate 
rhythmic neuronal activity. Periodic motion is generated by a musculoskeletal 
system that receives motor commands sent from CPGs.

A mathematical model of neuronal activity in CPGs, called a neural oscillator, 
was proposed (Matsuoka, 1985, 1987). A neural oscillator generates a 
stable periodic solution. In addition, a mathematical model of interaction 
among neural oscillators and a musculoskeletal system, called a bipedal 
neuromusculoskeletal (NMS) model, was proposed (Taga, Yamaguchi, 
& Shimizu, 1991; Taga, 1995). Numerical simulations have shown that 
the models generate bipedal locomotion as a stable periodic solution for a 
nonlinear dynamical system. Entrainment among periodic neural activity in 
the neural oscillators and periodic kinetic patterns in the musculoskeletal 
system realize bipedal locomotion under appropriately set parameters of 
the model. Moreover, the model changes gait patterns between walking 
and running depending on the constant input to the neural oscillators. The 
changes between the gait patterns occur as a bifurcation phenomenon in the 
nonlinear dynamical system. The model also shows that walking behavior 
adaptive to the external environment, such as walking on a slope or recovering 
from stumbling, occurs through entrainment between the neural oscillators 
and the musculoskeletal system. More recently, the neural oscillator has been 
applied to the control of real bipedal (Endo, Nakanishi, Morimoto, & Cheng, 
2005; Matsubara, Morimoto, Nakanishi, Sato, Doya, 2006; Miyakoshi, Taga, 
Kuniyoshi, & Nagakubo, 1998), dog-like (Fukuoka & Kimura, 2009), and 
snake-like robots (Matsuo & Ishii, 2007). 

On the contrary, there has been growing interest in robot control using a brain–
computer interface (BCI) (Choi, & Jo, 2013). Typical electroencephalogram 
(EEG)-based BCIs extract specific features from raw EEG signals and 
discriminate among the features to generate discrete commands, such as on/
off commands based on classification algorithms (Lotte, Congedo, Lecuyer, 
Lamarche, & Arnaldi, 2007). 

It has been known that nonlinear dynamical systems are entrained to an 
external rhythmic input. Thus, BCIs to control the locomotion of the robots 
are expected; it would be dynamically controllable based on neural oscillators 
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receiving continuous waves of EEG signals as rhythmic input. Feasibility 
studies of such BCIs are important because a novel BCI might provide a 
dynamic, adaptive, and robust control mechanism. Although analyses of 
rhythmic signals in EEGs observed during locomotion have been studied 
(Castermans, Duvinage, Cheron, & Dutoit, 2014), neural oscillator-based 
BCIs have been studied less (Ikeda & Horie, 2014; Horie, Ikeda, Otsuka & 
Hashimoto, 2016). 

Some studies have proposed hybrid systems combining a BCI and neural 
oscillators (Gui, Ren, & Zhang, 2010; Jia, Huang, Luo, Pu, Chen, & Bai, 2012; 
Zhang, Liu, Huan, Liu, & Zhu, 2009). In the systems, a BCI generates discrete 
commands and the commands changed a mode of neural oscillator-based 
locomotion. The neural oscillators don’t receive continuous EEG signals. 

This study proposes a novel BCI that controls a bipedal NMS model by 
inputting EEG signals. Figure 1 shows a conceptual diagram of proposed 
neural oscillator-based BCI. While the bipedal NMS system realizes bipedal 
locomotion via internal entrainment among the neural oscillators and the 
musculoskeletal system, the system locomotion is controlled via external 
entrainment of the neural oscillators to the externally inputted EEG signals. 

Figure 1.  Conceptual diagram of neural oscillator-based BCI.
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This preliminary study revealed that motion patterns of a pendulum, the 
simplest NMS system, were successfully modulated by the change of 
external inputting of alpha waves between eyes-open and eyes-closed 
conditions (Ikeda & Horie, 2014). This study is the first step in developing 
the neural oscillator-based BCI controlling a bipedal NMS model. The idea 
of the proposed model and the preliminary results were partially reported 
(Horie et al., 2016). In this paper, a wholly empirical approach was taken to 
reveal the feasibility of the neural oscillator-based BCI while the theoretical 
interpretation of the entrainment phenomena has been widely studied (Glass, 
2001; Pikovsky, Rosenblum, & Kurths, 2001). The behavior of the proposed 
BCI was investigated when sinusoidal waves and alpha waves were inputted 
by conducting exploratory numerical simulations. 

MATHEMATICAL MODEL

Figure 2(a) shows Matsuoka’s neural oscillator model (Matsuoka, 1985, 1987). 
In the model, one oscillator is composed of a pair of dynamical neurons. Each 
neuron is modeled by two-dimensional (2D) ordinary differential equations. 
Figure 2(b) shows Taga’s bipedal NMS model (Taga et al., 1991), which is 
composed of six of Matsuoka’s neural oscillators and a 2D musculoskeletal 
system of the lower body. The six neural oscillators correspond to hip, knee, 
and ankle units on the left and right sides. In this study, Taga’s model was 
used as a control target of the BCI. The model of the six neural oscillators was 
represented by 12 pairs of ordinary differential equations, as follows:

								                 (1)

								                 (2)

								                 (3)

where ui is the inner state of the ith neuron, vi is a variable representing the 
degree of adaptation or self-inhibition of the ith neuron, β is the strength of 
the adaptation, yi is the output of the ith neuron, wij is the connecting weight 
between the ith and jth neurons, τ and τ are time constants of the inner state and 
adaptation effect, respectively. Feedi(t) is a sensory feedback signal to the ith 
neuron from the musculoskeletal system, and uₒ(t) is the external input to the 
ith neuron. A unique external input uₒ(t) is inputted to all 12 neurons. In this 
study, the ordinary differential equations and values of their parameters were 
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the same as in Taga’s model [4], except that the external input uₒ(t) was time 
dependent. In this proposed BCI, the external input was provided using EEG 
signals. 

(a)	 Matsuoka’s neural oscillator.

(b)	 Taga’s bipedal NMS model.

Figure 2. Neural oscillator and bipedal NMS model.

The kinetic model of the musculoskeletal system, not shown in this paper, 
and their parameters were the same as in Taga’s model (Taga et al., 1991), 
wherein the equations of motion for the musculoskeletal system were derived 
using the Newton–Euler method. Interactions between the neural oscillators 
and the musculoskeletal system, and its parameters were also the same as in 
Taga’s model (Taga et al., 1991). The torque acting at the joints is induced by 
the output of neural oscillators. The states of the joint angles determine the 
feedback signal inputted to the neural oscillators. 

 

(a) Matsuoka’s neural oscillator. 

 

(b) Taga’s bipedal NMS model. 

Figure 2. Neural oscillator and bipedal NMS model. 
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METHODOLOGY

This section presents the method used in the study. This includes the 
descriptions of numerical simulation, sinusoidal waves as input and the 
experimental protocol to measure EEG.

Numerical Simulation

Taga’s model, explained above, was reconstructed using Simulink/
SimMechanics from Mathworks Inc. The initial conditions of the bipedal 
NMS model were the same as in Taga’s study (Taga et al., 1991). The ground 
on which the musculoskeletal system walked was a horizontal floor. Using the 
NMS model, bipedal locomotion was simulated for 60 s. The number of steps, 
average stride length [m], and moving distance [m] in the locomotion were 
calculated. All indices were measured during the 60 s. In addition, to identify 
whether a gait pattern was walking or running, it was investigated whether the 
number of jumps becomes equal to the number of steps. When a gait pattern 
becomes running, the number of jumps becomes equal to the number of steps 
because of the presence of the flight phase. In contrast, when a gait pattern is 
walking, the number of jumps becomes less than the number of steps (ideally 
zero) because of the presence of the double-support phase. At the beginning of 
a simulation, the model converged to a steady walking/running within a few 
cycles of walking/running. Transient behavior was removed from the analyses.

Sinusoidal Waves as Input

To obtain basic knowledge of how the model behaves according to the 
time-dependent external input  to the neural oscillators, motion 
patterns of the model were simulated when various types of sinusoidal waves 
were inputted as the external input, and examined the resulting behavior of the 
model. The amplitude of the sinusoidal wave was set to 5 or 30. The frequency 
of the sinusoidal wave was changed from 1 Hz up to 50 Hz in steps of 1 Hz. 
In the external input, an offset value of 6.5 was added to the sinusoidal waves. 
When the external input is only the offset without the sinusoidal wave, the 
system becomes the original bipedal NMS model investigated in Taga’s study 
(Taga et al., 1991).

EEG Experimental Protocol 

EEG signals were measured while a participant was relaxed in both the 
eyes-open and eyes-closed conditions, each for 60 s. It has been known that 
EEG changes depending on human mental state and activity. Alpha waves 
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(8–13 Hz) markedly appear when one relaxes or closes one’s eyes. One reason 
that both the eyes-open and eyes-closed conditions were used was to obtain 
clear changes in the increase and decrease of the alpha waves. In the first 
step of investigating how EEG signals affect the bipedal NMS model, clear 
changes in EEG signals must be used, even though the changes between the 
two conditions had no practical meaning in the context of controlling a bipedal 
robot using BCI.

In the experiment to measure EEG, an electrode was attached to each 
participant’s scalps at the Pz sites of the International 10-20 system. The 
electrode was referenced to the left mastoid. Impedance at the electrode sites 
was less than 5 kΩ. The EEG was amplified by a DC amplifier (Melon Technos 
Co. Ltd., 8ch amplifier) with a gain of 50,000, a 1–30-Hz bandpass filter, and a 
50-Hz notch filter, and was continuously sampled at 1,000 Hz in 16 bits using 
a data recorder (NF Corporation, EZ7510). 

Inputting EEG Signals

Motion patterns of the model were simulated when the EEG signals were 
inputted as the external input to the neural oscillators. The measured EEG 
signals were passed through an offline finite impulse response bandpass 
filter (8–13 Hz) to extract the alpha-band waves. As the external input to the 
neural oscillators, the filtered EEG signal was inputted to all oscillators with 
a commonly defined gain. The gain for the alpha wave was changed from 
one up to a gain at which the bipedal NMS fell down in steps of one. In the 
external input, the offset value of 6.5 was added to the alpha waves. Behaviors 
with the alpha wave inputted in the eyes-open and  eyes-closed conditions 
were compared.

RESULTS AND DISCUSSION

Exploratory numerical experiments have been performed to investigate the 
behavior of the proposed BCI. This section presents the simulated walking 
behavior of the bipedal NMS model when sinusoidal waves with small 
amplitude, sinusoidal waves with large amplitude, and EEG signals were input.  

Results of Inputting Sinusoidal Waves with Small Amplitude

Figure 3 shows the results of the simulations wherein the sinusoidal waves 
were inputted to the model with the external input and amplitude of the 
sinusoidal waves set to five as a small amplitude. The vertical axes of the 
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four graphs, (a), (b), (c), and (d), of Figure 3 indicate the number of steps, 
average stride lengths [m], moving distance [m], and number of steps and 
jumps, respectively, indicating a gait pattern. The horizontal axes of the graphs 
indicate the frequency of the sinusoidal wave used for the external input. In 
the top three graphs, (a), (b), and (c), dashed lines indicate results when only 
the offset value of 6.5 was inputted as the external input. In graph (d), black 
cross marks and lines connecting them indicate the number of steps, which 
is the same as that in graph (a), while gray cross marks and lines connecting 
them indicate the number of jumps. In the four graphs, the absence of cross 
marks indicates that the model fell down from inputting the sinusoidal wave 
of the specified frequency.

(a)	 Numbers of steps.

(b)	 Average stride lengths.

10 
 

down from inputting the sinusoidal wave of the specified frequency. 

 

(a) Numbers of steps. 

 

(b) Average stride lengths. 

 

(c) Moving distances. 

 

(d) Gait patterns. 

10 
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(a) Numbers of steps. 

 

(b) Average stride lengths. 

 

(c) Moving distances. 

 

(d) Gait patterns. 
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(c)	 Moving distances.

(d)	 Moving distances.

Figure 3. Inputting sinusoidal waves with small amplitude.

In graphs (b) and (c), the average stride lengths and moving distance had a 
tendency to increase when the frequency of the sinusoidal wave increased. 
When the frequency of the sinusoidal wave was greater than approximately 
30 Hz, the two indices converged to the values that were acquired when only 
the offset value was inputted. Graph (d) shows that every gait pattern was 
walking. In addition, the model fell down when the frequency of the sinusoidal 
wave was less than 8 Hz.

The results show an overall tendency for the model locomotion to be unaffected 
by the input of the sinusoidal wave when the frequency of the sinusoidal wave 
increases (above approximately 30 Hz). It is assumed that the locomotion was 
entrained to the natural behavior that the system generates with only the offset 
value. The external input with the small amplitude (amplitude of 5) might have 
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a weak influence. On the contrary, when the frequency of the sinusoidal wave 
was less (less than approximately 30 Hz), the speed of walking became slower 
than the speed of the natural behavior. It is assumed that the natural behavior 
was disturbed and decelerated by the external input of the low-frequency 
sinusoidal wave even when the amplitude of the sinusoidal wave was small.

Result of Inputting Sinusoidal Waves with Large Amplitude

Figure 4 shows results of the simulations wherein the sinusoidal waves were 
inputted to the model as the external input, and amplitude of the sinusoidal 
waves was set to 30 as a large amplitude. The vertical and horizontal axes in 
the four graphs, (a), (b), (c), and (d), the dashed lines in the top three graphs, 
(a), (b), and (c), and the black/gray cross marks and lines connecting them 
in graph (d) are the same as that in Figure 3, respectively. In the four graphs, 
the absence of cross marks indicates that the model fell down as a result of 
inputting the sinusoidal waves of the frequency.

In the graphs (b) and (c), the average of stride lengths and moving distance 
decreased when the frequency of the sinusoidal wave increased. The graph (d) 
shows that the gait pattern changed suddenly from walking to running when 
the frequency of the sinusoidal wave became 29 Hz. In addition, the model fell 
down when the frequency of the sinusoidal wave was 21 Hz, 23 Hz, 25 Hz, 
and less than 20 Hz.

(a)	 Numbers of steps.

12 
 

connecting them in graph (d) are the same as that in Figure 3, respectively. In the four graphs, 

the absence of cross marks indicates that the model fell down as a result of inputting the 

sinusoidal waves of the frequency. 

 
(a) Numbers of steps. 

 

(b) Average stride lengths. 

 

(c) Moving distances. 
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(b)	 Average stride lengths.

(c)	 Moving distances.

(d)	 Gait patterns

Figure 4. Inputting sinusoidal waves with large amplitude.
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The results show an overall tendency for the locomotion of the model to be 
affected by the input of the sinusoidal wave in the entire frequency range of 
the sinusoidal wave. When that frequency was less (less than approximately 
40  Hz), the speed of walking became faster than the speed of the natural 
behavior that the system generates only with the offset value. It is assumed that 
the locomotion was entrained to the external input with the large amplitude 
(amplitude of 30) and accelerated. Additionally, the results show a sudden 
change from walking to running for a particular frequency (29  Hz). It is 
suspected that the sudden change might be a type of nonlinear resonance. 

Controlling Bipedal Locomotion by Inputting EEG Signals

The results above show that the locomotion behavior of the model was 
decelerated and accelerated when the low-frequency sinusoidal wave with the 
small and large amplitudes, respectively, were inputted to the model. Thus, it 
was expected that a low-frequency EEG signal might control the locomotion 
of the model depending on its amplitude. Consequently, the change in the 
locomotion behavior was investigated when an alpha wave used as a low-
frequency wave was inputted to the model and the amplitude of the alpha 
wave increased and decreased. The increase and decrease of the amplitude 
were caused by changing the gain of the external input and changing between 
the eyes-open and eyes-closed conditions.

Result of Inputting EEG Signals

Figures 5 shows the results of simulations wherein the alpha waves were 
inputted as the external input. The vertical axes of the five panels, (a), (b), 
(c), (d) and (e), of Figure 5 indicate the number of steps, average stride 
lengths [m], moving distance [m], and number of steps and jumps in the eyes-
open condition, indicating a gait pattern, and in the eyes-closed condition, 
respectively. All indices were measured within 60 s. The horizontal axes of the 
graphs indicate the gain for the alpha wave. In the top three graphs, (a), (b), 
and (c), the black cross marks and lines connecting them, the gray cross marks 
and lines connecting them, and the dashed lines, indicate the indices acquired 
in the eyes-open condition, in the eyes-closed condition, and when only the 
offset value of 6.5 was inputted. In graphs (d) and (e), the black cross marks 
and lines connecting them indicate the number of steps, just as in the graph 
(a), while gray cross marks and lines connecting them indicate the number of 
jumps. In the five graphs, the absence of cross marks indicates that the model 
fell down from inputting the alpha wave with the gain.
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(a)	 Numbers of steps.

(b)	 Average stride lengths.

(c)	 Moving distances.

(d)	 Gait patterns in eyes-open condition.    

 (e)     Gait patterns in eyes-closed condition.

Figure 5. Result of inputting EEG signals.
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In graphs (b) and (c), the average of stride lengths and moving distance 
decreased when the gain of the alpha wave increased. The figures show that 
the alpha wave in the eyes-closed condition caused lower average stride 
lengths and shorter moving distances than those acquired in the eyes-open 
condition. The model kept walking in a wider range of the gain (gain from 
one to eight, from 10 to 12, and 17), while the model fell down in a range of 
high gain (gain above 10) in the eyes-closed condition. In both conditions, 
walking became slower than the speed of the natural behavior that the system 
generates with only the offset value. Graphs (d) and (e) show that every gait 
pattern was walking.

The results indicate that walking behavior was successfully changed by the 
change of external input of the alpha waves between the eyes-open and eyes-
closed conditions. The eyes-open condition caused faster walking compared 
with the eyes-closed condition. The change was obtained when the bipedal 
NMS model did not fall down in both conditions. The gain of the alpha waves 
that satisfy the requirement was in the range of one to eight or set to ten. A 
relatively large change of walking behavior was obtained when the gain was 
in the range of approximately five to eight or set to ten.

It is assumed that the mechanism of controlling walking behavior by inputting 
alpha waves was similar to that of inputting sinusoidal waves with a small 
amplitude (amplitude of 3). It is widely known that the amplitude of alpha 
waves increases in the eyes-closed condition in comparison with the eyes-
open condition. Thus, the large amplitude of the alpha wave caused in the 
eyes-closed condition disturbed and decelerated the natural behavior that the 
system generates with only the offset value. The disturbance was strong when 
the gain of the alpha wave increased.

Another controlling mechanism similar to the case of inputting sinusoidal 
waves with large amplitude (amplitude of 30) was expected. In that 
mechanism, locomotion might be accelerated by low-frequency EEG signals 
such as alpha waves. However, the model fell down when the gain of the alpha 
wave increased, as shown in the results obtained in this study.

Motion Trace of the Simulated Walking Behavior

Figure 6 shows the typical walking behavior plotted by a motion trace of the 
simulated model in steps of 0.1 s. Figure 6(a) illustrates the natural walking 
behavior when only the offset value of 6.5 was inputted as the external input. 
Figure 6(b) illustrates the walking behavior when the sinusoidal wave with a 

ht
tp

://
jic

t.u
um

.e
du

.m
y



33

Journal of ICT, 15, No. 2 (December) 2016, pp: 19–37

small amplitude (amplitude of 5) and a low frequency (10 Hz) was inputted. 
Figure 6(c) illustrates running behavior when the sinusoidal wave with a large 
amplitude (amplitude of 30) and a special frequency of 29 Hz, which induced 
the running behavior, were inputted. Figure 6(d) illustrates the walking 
behavior when the alpha wave was inputted with a gain of ten. In the four-
motion trace, arrows indicate steps of 1.0 s.

(a) Inputting only offset value.

(b) Inputting a sinusoidal wave with small amplitude.

(c) Inputting a sinusoidal wave with large amplitude.

(d) Inputting an EEG signal.

Figure 6. Motion trace of the simulated walking behavior.
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The walking behavior for inputting the sinusoidal wave with a small amplitude, 
illustrated in Figure 6(b), was slower than the natural walking behavior, 
illustrated in Figure 6(a). The running behavior for inputting the sinusoidal 
wave with a large amplitude, illustrated in Figure 6(c), was faster than the 
natural walking behavior.

The walking behavior for inputting the alpha wave, illustrated in Figure 
6(d), had fluctuations in its strides, as observed in the real walking behavior 
(Dingwell & Cusumano, 2010), in comparison with the walking behavior for 
inputting the sinusoidal waves and natural walking behavior. Fluctuation in the 
alpha wave might cause fluctuation in the walking behavior. It is speculated 
that the bipedal NMS model for EEG signals being inputted can be used for 
the modeling of real walking behavior.

CONCLUSION

This paper has proposed a neural oscillator-based BCI that controls a bipedal 
NMS model by inputting EEG signals. In the BCI system, while the bipedal 
NMS system realizes bipedal locomotion through internal entrainment among 
the neural oscillators and musculoskeletal system, the locomotion of the bipedal 
NMS system is controlled via external entrainment of the neural oscillators to 
externally inputting EEG signals. The behavior of the proposed BCIs, when 
sinusoidal and alpha waves were inputted, was investigated by conducting 
exploratory numerical simulations. The following tendencies were found: 
(a) inputting sinusoidal waves with a small amplitude and a high frequency 
did not affect the natural walking behavior of the bipedal NMS model that 
was generated by only the offset value, (b) inputting sinusoidal waves with a 
small amplitude and a low frequency disturbed and decelerated the walking 
behavior, (c) inputting sinusoidal waves with a large amplitude accelerated 
the walking behavior, (d) inputting sinusoidal waves with a large amplitude 
with a particular frequency caused running behavior, and (e) walking behavior 
was successfully changed by a change of the external input of the alpha waves 
between the eyes-open and eyes-closed conditions. The eyes-open condition 
generated faster walking compared with the eyes-closed condition.

Future studies, need to evaluate the reproducibility of the results with more 
subjects and using a real-time system. The control of walking behavior by 
inputting alpha waves, in this study, was realized by the deceleration of the 
natural behavior. There is the possibility of realizing control mechanisms for 
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acceleration of walking and transition to running by inputting EEG signals, 
as found in the case of inputting sinusoidal waves with large amplitudes. The 
final goal is to develop EEG-based BCIs that control bipedal locomotion of 
robots based on human mental states related to lower limb motion.
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