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 ABSTRACT 

Named Entity Recognition (NER) is a fundamental natural 
language processing task for the identifi cation and classifi cation 
of expressions into predefi ned categories, such as person and 
organization. Existing NER systems usually target about 10 
categories and do not incorporate analysis of category relations. 
However, categories often belong naturally to some predefi ned 
hierarchy. In such cases, the distance between categories in 
the hierarchy becomes a rich source of information that can 
be exploited. This is intuitively useful particularly when the 
categories are numerous. On that account, this paper proposes an 
NER approach that can leverage category hierarchy information 
by introducing, in the structured perceptron framework, a cost 
function more strongly penalizing category predictions that 
are more distant from the correct category in the hierarchy. 
Experimental results on the GENIA biomedical text corpus 
indicate the effectiveness of the proposed approach as compared 
with the case where no cost function is utilized. In addition, the 
proposed approach demonstrates the superior performance over 
a representative work using multi-class support vector machines 
on the same corpus. A possible direction to further improve the 
proposed approach is to investigate more elaborate cost functions 
than a simple additive cost adopted in this work. 

Keywords: Named entity recognition, category hierarchy, cost-sensitive 
learning, biomedical text mining. 
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INTRODUCTION

Named Entity Recognition (NER) is a fundamental natural language processing 
(NLP) task that requires the identifi cation and classifi cation of expressions 
into predefi ned categories (e.g., person, location, organization, etc). Existing 
NER systems typically target about 10 categories and do not assess category 
relations. However, it is often the case that categories belong to some 
predefi ned hierarchy. For example, organization can be sub-categorized into 
company and university. Named entities that are categorized into fi ne-grained 
types could be useful for practical NLP tasks, such as information extraction, 
question answering, and text data mining. For example, stock price prediction 
using news articles requires determination of whether each word recognized 
as an organization name is a company name or not. In such case, it is benefi cial 
that there be a company subcategory of organization. In general, varieties of 
categories are required so that NER systems can extract diverse information 
and knowledge. For these reasons, some researchers have investigated 
categorization of named entities into more specifi c categories. For example, 
Fleischman (2001) and Fleischman and Hovy (2002) have proposed a method 
for automatic sub-categorization of entities. Sekine, (2002; 2004) Sudo and 
Sekine and Nobata have developed a named entity hierarchy consisting of 
around 200 categories. However, the focus of these works was to extend the 
category set and NER was performed on standard approaches which do not 
incorporate the relations among category hierarchy in the learning procedure.
In this paper, we propose a structured prediction-based approach which 
leverages the named entity hierarchy. To motivate our approach, we give an 
example of named entity hierarchy in Figure 1. The hierarchy contains high-
level categories, such as person and location, but also more specifi c categories, 
such as politician, doctor, country, and city. Although it is incorrect to assign 
the categories doctor or city to the entity “Japan”, city is clearly closer to the 
correct category country. Thus, the degree of misclassifi cation of city can be 
regarded as lower than that of doctor. Our approach can leverage this intuition 
by incorporating misclassifi cation costs in the learning algorithm. It is 
naturally important to assign entities to the correct categories to achieve more 
accurate recognition of entities. Additionally, it is necessary to reduce the degree 
of misclassifi cation because it directly affects NLP tasks for which extracted 
entities are important clues (e.g., information extraction and question answering).
 

Figure  1. Example of hierarchy of named entities.
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For the case in which NE categories belong to some predefi ned hierarchy, the 
distance between categories in the hierarchy is a rich source of information that 
can be exploited. It is intuitively useful particularly for numerous categories. 
We defi ne a hierarchical cost function tailored for NER which captures the 
intuition that a greater distance between categories in the hierarchy induces 
a larger misclassifi cation cost. Using this function, we develop an NER 
system based on the structured perceptron framework (Collins, 2002). We 
perform experiments on the GENIA biomedical text corpus and the results 
demonstrate the effectiveness of our approach at both reducing the degree of 
misclassifi cations and increasing the accuracy of exact category predictions.

The remainder of this paper is structured as follows: First, we describe 
the background of the present work, focusing on NER and the structured 
perceptron. Second, we summarize the existing works on NER in general 
and cost-sensitive learning. Then, we detail our proposed approach exploiting 
category hierarchy in the cost-sensitive learning framework. After that, we 
report the methodology and results of our evaluative experiments. Lastly, we 
conclude this paper with a brief summary of the key fi ndings and future work.

INTRODUCTION

Named Entity Recognition

Named entity types and hierarchies

The sixth Message Understanding conference (MUC-6) (Grishman and 
Sundheim, 1996) was the fi rst to dedicate a task to extracting entities. This 
task targeted entities of seven types, which include proper names of three 
types (person, location and organization) and numeral expressions of four 
types (date, time, money and percent). In addition to these types, the IREX 
project (Sekine and Isahara, 2000) added the type artifact (product name or 
book title) and the ACE program (Doddington, Mitchell, Przybocki, Ramshaw, 
Strassel and Weischedel,  2004) added geographical and political entity 
(GPE) (location that has a government). The shared task at the CoNLL-2003 
workshop (Tjong Kim Sang and De Meulder, 2003) aimed at language-
independent NER and its data set has been widely used in a number of recent 
works. The workshop only targeted entities of four types (person, location, 
organization and miscellaneous). For these reasons, existing NER studies 
have historically targeted small category sets (usually less than 10 categories) 
and have not considered relations between these categories (Chieu & Ng, 
2002; Isozaki & Kazawa, 2002; McCallum & Li, 2003; Ritter, Clark, Mausam 
& Etzioni, 2011; Zamin,  Oxley & Bakar, 2013; Zhou & Su, 2002).
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However, some studies have examined fi ne-grained entities, which have 
been proven useful for NLP tasks such as information extraction, question 
answering, and automated ontology construction. Fleischman (2001) divided 
the type location into subtypes, such as country, city, and street using machine 
learning algorithms, such as decision tree. Similarly, Fleischman and Hovy 
(2002) divided the type person into subtypes such as athlete, politician 
and doctor. Sekine and Nobata (2004) defi ned a named entity hierarchy 
that includes many fi ne-grained subcategories such as museum and river, 
and added a wide range of categories such as product and event. Moreover, 
Ohta, Tateisi and Kim (2002) constructed the GENIA corpus for use in the 
biomedical domain and introduced a hierarchy consisting of entities, such as 
gene and protein names, appearing in the corpus. A drawback of these works 
is that their focus was mainly on extending the category set and NER was 
performed by standard approaches. In other words, they do not take advantage 
of the rich information contained in the hierarchy.

Identifying named entity scope

NER can be formulated as a sequence labeling task that requires assignment 
of a label sequence to an input sequence. However, it is also important for 
an NER system to identify the entity scope (its beginning and its end). To 
do so, individual word tokens are typically assigned with labels created by 
combining a semantic class (e.g., person and location) and an chunk IOB 
tag, where I, O and B denote the inside, outside, and beginning of an entity, 
respectively. For example, continuous tokens “in”, “New”, “York” and “City” 
are denoted with labels O, B-LOCATION, I-LOCATION, I-LOCATION, 
respectively, meaning that “New York City” is recognized as an entity with 
semantic class location. Note that noun phrase detection (Rahman and Omar, 
2013) may precede NER to fi rst identify named entity scopes. 

The Structured Perceptron

The perceptron is a classic machine learning algorithm originally proposed 
by Rosenblatt (1958). It was later extended to voted and averaged variants by 
Freund and Schapire (1999). They showed that, despite the simplicity of those 
algorithms, the perceptron performs comparably to support vector machines 
(SVMs) on various classifi cation problems. The structured perceptron 
(Collins, 2002) is an extension of the averaged perceptron to structured 
prediction problems. Collins applied the structured perceptron to sequence 
labeling tasks, such as part-of-speech tagging, and empirically demonstrated 
its higher performance than that of maximum entropy. It is well-known that 
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the structured perceptron can be seen as a special case of structured SVMs 
(Tsochantaridis, Hofmann, Joachims and Altun, 2004) which does not employ 
regularization. It sets the step size to one at every iteration. Shalev-Shwartz, 
Singer and Srebro  (2007) proposed an algorithm to analytically set the step 
size. We use the structured perceptron as our baseline because this method is 
easy to implement and can be expected to achieve high performance. We show 
in our experiment section that it performs comparably to the more complicated 
structured Passive–Aggressive algorithm (Crammer, Dekel, Keshet, Shalev-
Shwartz and Singer , 2006).

Learning algorithm

We now describe the structured perceptron learning algorithm. Let  be the set 
of instances and let Yx be the set of possible label sequences for an instance 
xX, where x denotes a token sequence (e.g., a sentence) in the training or test 
set. Likewise, yx denotes a possible label sequence of x. x is equivalent to 
the direct product L, where n is the length of x and L is the set of labels (e.g., 
B-PERSON and O). Let f: → be the discriminative function defi ned as 

f(x,y)=w,Φ(x,y) ,                                                      (1)

whe re , denotes the inner product and ΦxyR is the feature vector of 
x and y. The goal of learning is to fi nd a weight vector wRd so that the 
discriminative function f predicts the correct label sequences of training 
instances. The prediction ŷ for x is given by 

ŷ=argmaxyf(x,y)          (2)

On each roun d t of training, the structured perceptron receives a training 
instance-label pair xtyt and outputs its prediction ŷt by Eq. (2). If ŷt≠yt, w is 
then updated as follows: 

wt+1←wt+Φ(xt,yt) −Φ(xt,ŷt)          (3)

where wt is the wei ght vector on round t. Learning is iterated through all the 
(permuted) training instances T times. Label sequences of test instances can 
be predicted by Eq. (2) in the same manner as training instances.

Parameter averaging

Collins (2002) showed that the accuracy of the structured perceptron model 
can be improved by averaging learned parameters wj,i in the end of learning. In 
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precise, let wj,i denotes the weight vector after updating it by the i-th instance 
in the j-th iteration. Then, the averaged weight vector   w  is defi ned as follows: 

               (4)

where m is the num ber of training iterations and n is the number of instances 
in the training data. After the entire training phase, one could use w as the 
weight vector instead of wm,n. This technique is called “parameter averaging”, 
which will be also employed in the present work.

LITERATURE REVIEW

Named Entity Recognition

Recent NER methods mostly rely on supervised machine learning. In the 
CoNLL-2003 shared task, the most popular method among the participants 
was maximum entropy. In particular, Florian (2003) achieved the best 
performance by a system that combines maximum entropy with other methods 
such as hidden Markov models. Chieu and Ng (2003) achieved the second 
best performance by also using maximum entropy. Conditional random 
fi elds (CRFs) (Lafferty, McCallum & Pereira., 2001) extend maximum 
entropy to structured prediction. For decoding, Finkel et al. (2005) used 
Gibbs sampling instead of the more widely used the Viterbi and Forward–
Backward algorithms. They applied the method to the English dataset in the 
CoNLL-2003 shared task and reported comparable performance to that of the 
participants. Tsochantaridis et al. (2004) proposed an extension of SVMs to 
structured prediction. They applied the structured SVMs to NER and reported 
lower error rates of the methods than those of CRFs. 

As for studies of entities from categories belonging to some predefi ned 
hierarchy, some have used the GENIA corpus (Ohta, Tateisi & Kim., 2002). 
In the GENIA corpus, the named entity hierarchy is represented by a tree and 
includes 48 categories of biomedical terms. In fact, 36 of those categories 
corresponding to leaf nodes are used for annotation. However, many studies 
using the GENIA corpus target only a subset of the categories. For example, 
the JNLPBA shared task (Kim, Ohta, Isuruoka and Tsujii, 2004) was limited to 
5 out of the 36 categories for simplifying the task. However, Lee et al. (2004) 
targeted all categories in the GENIA corpus. They formulated hierarchical 
NER as a two-phase classifi cation problem: fi rst identifying whether a word 
is a named entity or not, then classifying identifi ed entities using multi-class 

 w  = 
1

nm 
j=1

m
  
i=1
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 wj,i  
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SVMs. They reported higher performance than a one-phase classifi cation or a 
rule-base method.

Cost-sensitive Learning and Category Hierarchies

Cost-sensitive learning is an machine learning framework that incorporates 
misclassifi cation costs. Although standard non-cost-sensitive methods 
maximize the accuracy of classifi cation, cost-sensitive methods lower the 
expected misclassifi cation costs defi ned by a cost function that returns a 
different cost for each different error.

An existing cost-sensitive approach, Passive–Aggressive (PA) (which is a 
kind of margin perceptron) was proposed by Crammer, Dekel, Keshet, Shalev 
Shwart & Singer (2006). PA is very similar to the cost-sensitive structured 
perceptron approach that we develop. Johansson and Nugues (2008) applied 
cost-sensitive PA to semantic role labeling (SRL). Although they reported 
that their system particularly addressing dependency syntax has performance 
approaching that of more general constituent-based systems for SRL, they 
did not report a comparison with non-cost-sensitive models. Therefore, 
contributions by cost functions were not clear. Moreover, Johansson and 
Nugues used a somewhat crude cost function for an input sentence and a parse 
tree, which returns only three values: zero for a correct tree, 0.5 for a partial 
error, and one for an outright error. Hierarchical classifi cation was previously 
formulated as cost-sensitive online learning problem by Dekel, Keshet & Singer 
(2004), but their method only supports regular classifi cation. Song, Son, Noh, 
Park and Lee (2012) applied cost-sensitive multi-class SVMs to part-of-
speech (POS) tagging using cost functions that consider a hierarchy of POS 
tags. They reported that their methods reduced serious errors compared to 
other non-cost-sensitive POS taggers and achieved higher performance for 
a subsequent NLP task of text chunking. However, they formulated POS 
tagging task as not a sequence labeling problem but a multi-class classifi cation 
problem. Therefore, the cost functions that they used only support multi-class 
classifi cation, similarly to the work by Dekel et al. (2004).

We target a somewhat more diffi cult problem, since NER is a sequence labeling 
problem. Moreover, we propose a cost function that is tailored for NER.

EXPLOITING CATEGORY HIERARCHY VIA 
COST-SENSITIVE LEARNING

As we emphasized, category hierarchy is a rich source of information which 
encodes prior knowledge about the category relationships. By considering this 
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information, we can expect to achieve lower degree of misclassifi cation errors. 
In this section, we formulate NER with a category hierarchy as a cost-sensitive 
structured prediction problem. To achieve lower misclassifi cation costs, we 
use a cost-sensitive extension of the structured perceptron and propose a novel 
hierarchical cost function tailored for NER. In Evaluation section later, we 
compare our hierarchical cost function with other cost functions traditionally 
used for structured prediction.

Cost-sensitive Structured Perceptron

In this section, we briefl y describe how to extend the standard structured 
perceptron to incorporate a cost function. We defi ne a cost function over labels 
c:L×L→R+, i.e., a function which from a pair of labels returns a non-negative 
real value. We assume that the cost function returns zero if the two labels are 
the same. As an example, the 0/1 cost function can be defi ned as a function 
which returns 0 when the two labels are the same and always returns 1 when 
the two labels differ (i.e., all misclassifi cations are assumed to have an equal 
cost). From the cost function over labels, we then defi ne a cost function over 
label sequences as the sum of individual costs: 

Cyy’= k=1|y| cyky’k             (5)

where y and y’Y a re sequences of equal length, |y| denotes the length of y 
and yk (or y’k) denotes the k th element in the sequence yk (or y'k). The basic 
idea of the cost-sensitive extension of the structured perceptron is to use the 
following evaluation function fC instead of f as in Eq. (1): 

fC(x_i,y)=wΦx,y>+αC(y_t,y)=>w,Φ(x,y)>+αC(y_t,y)      (6)

where intuitively α>0 co ntrols the effect of the cost function C on learning. 
In the training phase where correct label sequences are available, the evaluation 
function fC is utilized and the score of y is computed. Then, the label sequence 
with the highest score is output as in Eq. (7). 

ŷt=argmaxyyfxty+αCyty              (7)

If the output ŷt is differ ent from the correct label sequence, the weight vector 
w is updated by Eq. (3) as with the standard structured perceptron where the 
cost of misclassifi cation is not considered. In the test phase, on the other hand, 
the correct label sequence is not known and the prediction is made based on 
Eq. (2).

C(y,y')= 
k=1

|y|
 c(yk,y'k) ,  

ŷt=argmaxy Yf(xt,y)+αC(yt,y) 
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Effects of Introducing Cost Function in Learning

The previous section described our proposed approach incorporating 
misclassifi cation cost and how it can be trained and can be used for prediction. This 
section discusses the expected effect by introducing the cost function in learning.

The evaluation function fC defi ned in Eq. (6) is the sum of the original (cost-
insensitive) function f in Eq. (1) and the cost function C weighted by α. As will 
be defi ned in the next section, the cost indicates how much a label sequence y 
and the correct sequence yt for input xt differ. This means that more different 
label sequences tend to have larger scores for the function fC and thus are 
often chosen as the prediction. This may sound counterintuitive but works as 
follows: if the prediction ŷ is incorrect, it will be used to update the weight 
vector w by Eq. (3) such that the inner product of the feature vector Φ(x_t,y) 
and w becomes smaller and, at the same time, that of Φ(xtyt) and w becomes 
greater. In short, because of the boost by the cost function, label sequences 
more different from the correct label sequence may be initially chosen, but 
through a number of updates, those label sequences will eventually have 
smaller scores. Here, it should be mentioned that, despite the cost function, 
even if a label sequence similar to the correct one had a high score and were 
chosen, then the right side of Eq. (3) will be mostly canceled out due to the 
similarity between the correct sequence and the predicted one and thus it 
would not have a large effect on the update of the weight vector w.

In addition, mutually similar label sequences would have a similar set of 
features. Therefore, adjusting weights w for the correct label sequence yt 
would also adjust them, to some extent, in favor of label sequences similar to 
yt. The same applies to an incorrect prediction ŷ and its similar sequences as 
well. As a result, after many iterations, label sequences similar to the correct 
sequence would have high scores for the evaluation function according to 
their similarities and, conversely, those which are far from the correct one 
would have low scores.

In the test phase using Eq. (1), on the other hand, there is no longer the boost 
by the cost function and the difference between the scores of the correct label 
sequence and incorrect ones will be made greater. Therefore, it is expected 
that more correct sequences will be chosen for prediction.

In summary, the advantages of using the evaluation function fC as defi ned in 
Eq. (6) are 
• To actively use label sequences far different from the correct one, which 

enables us to effectively update the weight vector w and 
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• To further differentiate the scores of the evaluation function for the cor-
rect and incorrect label sequences by way of removing the term repre-
senting the cost function in the test phase. 

Especially, when we use a cost function considering the hierarchical nature 
of the categories of named entities, even incorrect tags in predicted label 
sequences will contribute in learning since they are distinguished by their 
distance or closeness to the correct ones in the hierarchy.

A Hierarchical Cost Function for NER

We now describe our hierarchical co st function tailored for NER. When a 
token that is a component of an entity is misclassifi ed into an incorrect 
category, its misclassifi cation cost can be defi ned as the distance between the 
correct and the predicted category in the hierarchy. However, as we previously 
emphasized, we do not assign directly entity categories (e.g., location) to 
individual word tokens but rather IOB-augmented labels (e.g., B-LOCATION 
and I-LOCATION). This means that we cannot use the category hierarchy 
(such as the one illustrated in Figure 1) directly, since it is defi ned over entity 
categories, not IOB-augmented labels. Thus, we combine a distance function 
over entity categories and a mapping function for retrieving entity categories 
from IOB-augmented labels. We fi rst assume that the hierarchical structure 
of categories forms a tree and defi ne the distance d between two nodes as the 
number of edges in the shortest path connecting them in the tree.

Then, to extend the notion of distance between entity categories to IOB-
augmented labels, we introduce a simple mapping function. Formally, 
let E={e1,....,eN} be the set of entity categories, where N is the number of 
categories. Additionally, let Le={l1Bl1I....,lNB,lNI} be the set of augmented labels. 
We used lnB to denote the label of the category en with tag B. Similarly, lnI 
denotes the label of the category en with tag I. We use lO to denote the label of 
non-entity tag O. The entire set over which the structured perceptron makes 
prediction for each individual word token is thus L=Le{lO}. We defi ne a 
mapping function ϕ:Le→E, which from an augmented label outputs the 
corresponding entity category as 

ϕ(lnB) = en          (8)
ϕ(lnI) = en 

Using the distance between categories d:E×E→R+ and the mapping function 
ϕ, we now defi ne the hierarchical cost function chie:L×L→R+ in Eq. (9). 
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                (9)

Therein, M denotes the  maximum value of function chie. Function chie returns 
the maximum value M when either l or l’ is equal to lO. In our model, we 
determine M by 

M=maxe,e’Led(e,e’)}+1         (10)

The fi rst term on the right-hand side of the equation  is the maximum value 
of the distance d which depends on the hierarchical structure. To summarize, 
we have defi ned a hierarchical cost function chie which describes the distance 
separating labels, including entity and non-entity labels. We use the chie 
function in the structured perceptron framework for lowering misclassifi cation 
costs based on the category hierarchy.

EVALUATION

Dataset

We evaluated our approach for NER with category hi erarchy with the GENIA 
corpus ver. 3.02. The corpus contains 2,000 biomedical literature abstracts 
annotated with named entity types and boundaries of terms in molecular 
biology. The corpus provides a hierarchy of biomedical entity categories, such 
as protein and gene names. The number of unique entity categories occurring 
in the corpus is 36. The maximum depth of the hierarchy is six1. The GENIA 
corpus sometimes includes nested entities. For example, in the sentence “IL-2 
gene expression and NF-kappa B activation through CD28 requires reactive 
oxygen production by 5-lipoxygenase”, “IL-2 gene expression” is annotated 
with other_name and “IL-2 gene” is also annotated with DNA_domain_or_
region. When entities are nested in that way, we targeted the most shallowly 
nested entities. That is, in the previous example, we assumed that “IL-2 gene 
expression” was annotated only with other_name.

1  The GENIA corpus ver. 3.0 hierarchy is described in the paper by Kim et al. (2003). The 
same hierarchy is used for ver. 3.02 except that some parts of names of categories differ 
from those for the ver. 3.0.

chie(l,l')=  
d(ϕ(l);ϕ(l')) if  l;l’ Le
0   if  l=l’=lO
M   otherwise 

if 1=1’=1O

1;1’
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Features

For features, we used a combination of general-purpose NER features and 
biomedical domain features. Specifi cally, our features were based on the 
followings: 
• Tokens in a window of size two around the current token, 
• The prefi x and the suffi x of the current token, and 
• The character types of the current token. 

We restricted prefi x and suffi x features to those occurring at least 30 times in 
the corpus and used character type features of 17 types as proposed by Zhou 
and Su (2004). This included biomedical domain features, such as Roman 
numerals, Greek letters and base sequence features (A, T, C, and G).

These features were used along with the k-th label, yk, in label sequence y and 
a pair of k−1-th and k-th labels, (yt−1,yt) (i.e., label bi-gram). Let O denotes 
the vocabulary set appearing in the training data. Then, for example, features 
for a term ohO and labels liljL are defi ned below, where xk is the term we 
currently focus on. 

Evaluation metrics

We evaluated our approach on the GENIA corpus using a 10-fold cross-
validation, i.e., all results in this section are averaged over 10 randomized 
experiments. For an evaluation metric, we used the average of the chie costs 
over all tokens in the test set. To be specifi c, the average cost was computed 
as follows: 

c hie= 1NT x�T  xt�x chieŷkyk       (11)

where T denotes the test set, N(T) denotes the total number of terms  appearing 
in T, and yk and ŷk denote the correct and predicted labels for k-th term xk of 
xT , respectively.

φ0
h,i(xk,yk)       =   

1  if  xk=ok yk=li
0   otherwise 

 

φh,i,j(xk,yk,yk−1) =   
1  if  xk=ok yk=li yk-1=lj
0   otherwise 

 

 c  hie= 
1

N(T) 
x T

  
xt x

 chie(ŷk,yk) 

T T
T
T
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The performance is considered better when the average cost is lower. The value 
range of the function chie depends on category hierarchies. For the GENIA 
corpus, chie takes 0 as the minimum value and 11 as the maximum value (M in 
Eq. (10)). Later, we also use the F-measure for the purpose of comparing our 
approach with an existing method. Note however that the F-measure can not 
distinguish different degrees of misclassifi cation costs and is not suitable for 
evaluating our approach. On the other hand, the average cost defi ned above 
becomes 0 for the perfect predictions and becomes greater as the predictions 
become farther from the correct label sequences in the category hierarchy. In 
this sense, the average cost is more suitable for assessing the performance of 
the models considering the hierarchical structure of NE categories, such as our 
approach, than the F-measure.

Effect of the parameter α

For using the cost function in Eq. (6), parameter α needs to be properly s et. 
For this purpose, we determined the optimal value for α as follows: 

1. For each fold of cross-validation, we divided the fold into two subsets; 
one was for learning and the other was for validation. The former was 
randomly chosen 75% of the fold and the latter was the remaining 25%. 

2. We set α to a certain value and learned a model using the learning data. 
Then, we computed the average cost (see Eq. (11)). This procedure was 
repeated for all the folds and the mean average cost over all the folds 
was associated with the particular value of α chosen in the beginning. 

3. We change the value of α and repeat the above procedure. The value of 
α leading to the least cost was considered as the optimum. 

To examine the effect of our hierarchical cost function, we computed the 
average cost for different values of α. Specifi cally, α was increased from 0 to 
10 by a step size of 0.2. The number of iterations in training was set to fi ve. 
Note that α=0 is equivalent to the model with no cost function. The results are 
plotted in Figure 2. When the value of α is relatively small, the cost function 
has a small effect on the resulting model and consequently the average cost 
is large. When α becomes larger, the average cost gradually decreases, which 
indicates that the cost function is working properly in updating the weight 
vector w. However, the average cost more or less saturated after around α=6. 
There, we decreased the step size to 0.1 and explored the optimal α in the 
range between 6 and 10. As a result, we found that α=9.0 yielded the least 
average cost and determined it as the optimum.
 
In the following experiments, we used the optimal α=9.0 and performed 
cross-validation. For each fold, we re-trained the model using the entire fold 
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data (the original fold data before splitting into training and validation data 
mentioned above) and used the test data for assessing the performance.

Figure 2. Average cost for increasing values of α when using the cost 
function chi e.

Comparison with Other Cost Functions

In the present work, we defi ned the hierarchical cost function chie conside ring 
the category hierarchy as in . However, other cost functions, especially those 
that do not use category hierarchy information, are important for validating 
the effectiveness of our proposed cost function. To this end, we defi ne a 0/1 
cost function c0/1, which returns zero when two labels belong to the same 
category and one when they do not as shown in Eq. (12). 

c0/1ll’=  if  ϕl=ϕ� �1   otherwise        (12)

Note that in this case, C in Eq. (12) corresponds to the Ha mming loss. In 
addition to using c0/1, we also compared our approach to the standard 
structured perceptron (i.e., without cost function). The optimal value of α for 
the 0/1 cost function was determined in a similar way to that described in the 
previous section. The average costs obtained from a 10-fold cross-validation 
are given in Table 1.

c0/1(l,l')=  
0  if  ϕ(l)=ϕ(l’) 
1   otherwise  
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It is observed that the models using cost functions outperformed the standard 
structured perceptron. In particular, the chie function performed the best. 
Based on paired t-tests, we found that the results were signifi cant at the 0.01 
confi dence level. These results suggest that cost functions are effective for 
decreasing the degree of misclassifi cations. In addition, that cost functions 
considering the category hierarchy are more effective. However, we found 
that the cost-sensitive structured perceptron needs slightly more iterations to 
obtain optimal performance.
 
Table 1

Comparison of cost functions. Results were signifi cant at the 0.01 confi dence 
level

Ave. cost α T
With no cost function 0.94 0 6
c0/1 function 0.90 47 9
chie function 0.88 9 10
 
Comparison with structured Passive–Aggressive

To evaluate the effectiveness of using the structured perceptron for learning, 
we compared it to the structured extension of the Passive–Aggressive (PA) 
algorithm (Crammer et al., 2006). PA is a kind of margin perceptron that 
updates the parameter vector at each iteration by solving a small quadratic 
program. PA differs from the structured perceptron in that the step size of PA 
depends on the cost function shown below: 

where C>0 is a regularization parameter. Our preliminary experiments using 
the validation sets showed that a smaller value of C led to a larger number of 
iterations but achieved a lower average cost when converged. A trade-off was 
found between training time and performance. The value of C which achieved 
the highest performance was 0.03.

ŷt = argmaxy Yw Φ(xt,y)+C(y,yt)  

τt = min C, 
w (Φ(xt,ŷt)−Φ(xt,yt))+C(ŷt,yt)

|Φ(xt,yt)−Φ(xt,ŷt)|
2  

w ← w+τt(Φ(xt,yt)−Φ(xt,ŷt)) ,  
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The results on the test sets (after re-training the model on the entire training set 
once α and T have been selected) are shown in Table 2. The performance and 
the number of iterations for the structured perceptron (SP) are listed again for 
reference. The average cost for PA was slightly lower than that for the structured 
perceptron, but no signifi cant difference was found by a paired t-test even 
at the 0.05 signifi cance level. In the meantime, the number of iterations for 
training PA was almost three times as large as that of the structured perceptron 
due to the fact that PA needed a larger number of iterations to achieve the 
highest performance. Therefore, we can say that the structured perceptron has 
close performance to PA in spite of the much shorter training time.
 
Table 2

Comparison with structured Pa ssive–Aggressive

Ave. cost Regularization T
SP + chie function 0.88 α=9 10
PA + chie function 0.87 C=0.03 29

 
Comparison with an Existing Method

We compared our ap proach with the method of Lee, Hwang, Yim & Rim, 
(2004). We chose their method because they targeted all categories in the 
GENIA corpus unlike many studies, including those from the JNLPBA 
shared task (Kim et al., 2004). Their method performed NER using a two-
step approach. In the fi rst step, a word token was classifi ed into entity or 
non-entity. In the second step, if a word token was an entity, it was further 
classifi ed in entity categories using multi-class SVMs. They used a 10-
fold cross-validation and reported a 66.7% F-measure for all categories. 
We evaluated the structured perceptron with no cost function and with our 
proposed hierarchical cost function. Unlike the previous experiments, we used 
the F-measure as an evaluation metric in this experiment. The value of α and 
the number of iterations T are the same as those found and reported previously.

Our method outperformed the method reported in earlier study (Lee et al., 
2004) by around four points. The structured perceptron (with no cost function) 
even outperformed it by around three points. This is presumably due to that Lee 
et al. predicted labels in a sequence independently. That is, preceding terms’ 
labels had no effect on the succeeding terms’ labels. However, the structured 
perceptron does consider the preceding terms and labels. Our results suggest 
that approaches considering the overall sequence of tokens when predicting 
the label sequence are more effective for NER tasks.
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From this experiment, we see that our hierarchical cost function improved the 
F-measure. The F-measure for the structured perceptron with and without the 
cost function was signifi cantly different in a paired t-test at a 0.01 signifi cance 
level. We can thus conclude that our hierarchical cost function not only 
reduces the degree of misclassifi cations but also increases the accuracy of 
exact category predictions, as indicated by the F-measure.

Table 3

Comparison with an  existing method

F-measure
Lee et al. (2004) 66.7
SP (with no cost function) 69.8
SP (chie function) 70.7
 

CONCLUSION

This paper described our named entity recognition method considering 
category relations of named entities in a hierarchy. The proposed method 
leverages category hierarchy information by introducing a hierarchical cost 
function tailored for NER in the cost-sensitive framework. We evaluated the 
effectiveness of our proposed method on the GENIA biomedical text corpus. 
Experimental results strongly suggest that our approach not only decreases 
the degree of misclassifi cations but also signifi cantly increases the accuracy 
of exact category predictions. For simplicity, the cost of an entire sequence in 
Eq. (5) was defi ned as the sum of individual costs. In future work, we plan to 
investigate more elaborate cost functions on the entire sequence.
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