
21

Journal of ICT, 13, 2014, pp: 21–36

STATISTICALLY CONTROLLED ROBUST TRUST COMPUTING
MECHANISM FOR CLOUD COMPUTING

1 Mohamed Firdhous, 2Osman Ghazali & 3Suhaidi Hassan
1 Faculty of Information Technology, University of Moratuwa, Sri Lanka

2 ,3School of Computing, Universiti Utara Malaysia, Malaysia

fi rdhous@uom.ik; osman@uum.edu.my; suhaidi@uum.edu.my

ABSTRACT

Quality of service plays an important role in making distributed
systems. Users prefer service providers who meet the
commitments specifi ed in the Service Level Agreements to
these who violate them. Cloud computing has been the recent
entrant to the distributed system market and has revolutionized
it by transforming the way the resources are accessed and
paid for. Users can access cloud services including hardware,
development platform and applications and pay only for the
usage similar to the other utilities. Trust computing mechanisms
can play an important role in identifying the right service
providers who would meet the commitments specifi ed in the
Service Level Agreements. Literature has reported several trust
computing mechanisms for different distributed systems based
on various algorithms and functions. Almost all of them modify
the trust scores monotonously even for momentary performance
deviations that are reported. This paper proposes a trust
computing mechanism that statistically validates the attribute
monitored before modifying the trust scores using a hysteresis-
based algorithm. Hence the proposed mechanism can protect
the trust scores from changes due to momentary fl uctuations in
system performances. The experiments conducted show that the
trust scores computed using the proposed mechanism are more
representative of the long-term system performance than the
ones that were computed without the validation of the inputs.

Keywords: Trust management, system performance, system fl uctuations.

ht
tp

://
jic

t.u
um

.e
du

.m
y/

Journal of ICT, 13, 2014, pp: 21–36

22

INTRODUCTION

Cloud computing has been identifi ed as the 5th utility in the line of electricity,
water, gas and 5th telephony as it enables computing to be available as and
when required and paid for only what is accessed by clients. Computing
resources including hardware, operating system, development tools, software
applications and other services can be made available over the Internet as
utilities through cloud computing (Buyya, Yeo, Venugopal, Broberg, &
Brandic, 2009). Similar to any other market, the cloud computing market
has also attracted a lot of service providers who host their services on the
Internet for clients to access (Rimal, Choi, & Lumb, 2009). Depending on the
physical resources and the loading of these systems (the number of clients
accessing them), these systems will show varying service qualities (Rahim &
Ku-Mahamud, 2011). Similar to any other business transaction, clients and
service providers enter into a Service Level Agreement (SLA) that stipulates
the conditions that must be met by both the service provider and the client.
Quality of Service (QoS) would be one of the most important conditions to be
met by the service provider in these agreements (Wu & Buyya, 2012). The QoS
can be monitored through several attributes depending on the requirements
of the customers. The dynamic nature of cloud computing requires the
QoS to be monitored continuously (Patel, Ranabahu, & Sheth, 2009). Prior
to entering into an SLA, customers may like to know the QoS offered by
the service providers based on their preferred attribute. So a system that
quantifi es the QoS would be ideal for customers to identify the right service
provider. Firdhous, Ghazali, Hassan, Harun, and Abas (2011) have proposed
that a trust management system could be used to quantify the QoS of service
providers. Several researchers have proposed trust computing mechanisms
based on different algorithms and functions (Chen & Yeo, 2008; Tian, Zou,
Wang, & Cheng, 2008; Yang, Qin, Wang, Liu, & Feng, 2010; Firdhous,
Ghazali, & Hassan, 2011c). Almost all of these mechanisms use functions that
continuously modify (increase or decrease) the trust score for every reported
input value. In this paper the authors propose a novel statistically-controlled
robust trust-computing mechanism, where the QoS attribute monitored is fi rst
checked whether it is within a certain confi dence interval. If it is within the
confi dence interval, it is assumed that it has met the committed service quality
and the trust score is left unchanged else the trust score is modifi ed using
a hysteresis function. Using the confi dence interval to determine if the QoS
attribute is within the required interval helps stabilize the fl uctuations in the
trust scores due to momentary variations (Firdhous et al., 2011c). Also the use
of the hysteresis function to compute the trust score makes the systems more
rugged in the events of malicious attacks (Morris, 2012). The combination of
the above two techniques makes the proposed mechanism a robust one in the
event of malicious attacks and momentary fl uctuations in performance.

ht
tp

://
jic

t.u
um

.e
du

.m
y/

23

Journal of ICT, 13, 2014, pp: 21–36

LITERATURE REVIEW

Cloud Computing

Distributed computing has gone through a paradigm shift in making the
computing resources to clients with the arrival of cloud computing (Buyya et al.,
2009). Cloud computing enables the distributed systems to make the resources
available on the fl y when needed and turn them off once the requirement has
been satisfi ed. When clients outsource their computing requirements to the
cloud service providers, the resource provision closely follows the resource
requirements along with seasonal and daily fl uctuations. The strict following
of the resource provision along the resource demand helps both the service
providers and the clients fi nancially as clients can only pay for the resources
consumed and the service providers can sell the same resource to more clients
without affecting other clients. Figure 1 shows the Capacity-Utilization curve
for computing power, which compares the fl uctuating demand for computing
resources and the effect of over-or-under provisioning of them (AWS, 2012).
The graph also shows how cloud computing can follow the demand pattern
closely against traditional hardware provisioning, where resources are either
over-provisioned or under provisioned. Both over-provisioning and under-
provisioning would lead to reduced economic benefi ts in terms of wastage of
resources or lack of resources when needed most.

Source. Amazon Web Services

Figure 1. Capacity utilization curve (AWS, 2012).

Predicted Demand

Actual Demand

Committed Cloud Capacity
Traditional Hardware

Capacity-Cost PerformancePredictions Cost Money.....

Time

Predicted Demand

Opportunity
Cost

Large
Capital
Expenditure

Lost
Customers

Computer
Storage

Capacity

ht
tp

://
jic

t.u
um

.e
du

.m
y/

Journal of ICT, 13, 2014, pp: 21–36

24

The other distinction that makes cloud computing more attractive for clients
to traditional outsourcing is the total absence of a commitment with regard
to the resource requirements at the beginning itself (An, Lesser, Irwin &
Zink, 2010). Under the traditional outsourcing model, the commitment for
the resources must be made at the beginning itself and paid for the committed
usage irrespective of the actual usage or demand patterns. If the actual usage
is lower than the resources leased, the resources would be idle and on the
other hand if the demand for the resources is higher than the resources leased,
the application would suffer due to shortage of resources. From the service
providers’ point of view, once the resources have been committed to a client,
he is unable to reallocate the resources to other clients, even if the resources
are idle. Therefore with cloud computing, organizations that start small can
grow big without any hindrance as the computing resources provisioning can
closely follow the demand patterns. Since organizations are now required to
pay only for the resources consumed, they can now invest the capital on their
core business operations and other performing assets.

Cloud computing resources are hosted on virtualized platforms (Zaman &
Grosu, 2010). The computer system that is to be made available as the cloud
system must be fi rst installed with a special-purpose software system called
hypervisor or Virtual Machine Manager (VMM). This hypervisor creates
virtual computers commensurate with CPU cycles, memory, storage and other
resources on the fl y when required and remove those virtual computers in a
similar fashion releasing the resources once the work has been completed.
On demand creation and removal of virtual computers makes it possible to
market the same resource to multiple clients and help the system to follow
the demand patterns closely. Selling the same hardware to multiple customers
increases the utilization of the resources enabling the cost to be shared by all
the customers. Sharing the resources and the cost by multiple clients results in
higher utilization of the resources and lower cost for users.

Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software
as a Service (SaaS) are the cloud services that have been commonly sold
in the market (Vecchiola, Pandey, & Buyya, 2009). Under IaaS, hardware
resources including CPU cycles, storage space, memory, database etc., are
made available on virtualized systems. The virtualized systems thus marketed
strictly resemble the real systems and can be treated as real systems for all the
practical purposes. Clients can install any operating system and application
as if they are installing them on real systems. Hence multiple operating
systems and applications can run on a single physical computer at any time
without interfering with each other. The VMM provides necessary isolation
and security for these operating systems. PaaS provides complete software

ht
tp

://
jic

t.u
um

.e
du

.m
y/

25

Journal of ICT, 13, 2014, pp: 21–36

Cloud Business Layers

 Cloud Infrastructure Layers

Software as a Service Layers

Platform as a Service Layers

Infrastructure as a Service Layers

Virtualized Hardware Layers

 Physical Hardware Layers

development platforms on virtualized hardware systems. The development
platforms thus made available include operating systems, development and
testing tools, Application Programming Interface (API) etc. PaaS helps
software programmers minimize the cost and time of development as they
are now provided with the readymade platform instead of requiring them to
purchase, install and maintain their own hardware and software (Rimal et al,
2009). SaaS is the new way of marketing software applications as a service
over the Internet. Until recently, computer applications needed to be purchased
outright, installed and maintained in-house (Prodan & Ostermann, 2009).
Through SaaS, web-based applications developed and hosted on the cloud
systems are made available as services over the Internet. Clients can access
these applications over the Internet using a standard web browser. These
applications include many features in common including personalization and
customization to suit the specifi c requirements of individuals. The capability to
personalize the software provides the feeling that they have been exclusively
accessed by users similar to the ones installed locally. Figure 2 shows the
layered architecture of cloud computing comprising the physical hardware,
virtualized hardware that can be combined as cloud infrastructure layers, and
IaaS, PaaS and SaaS can be combined as cloud business layers.

Communication as a Service (CaaS), Data as a Service (DaaS), Network as
a Service (NaaS) and Identity and Policy Management as a Service (IPaaS)
are some of the other services that are available in the cloud arena, in addition
to the cloud business services described earlier (Zhou, Zhang, Zeng, & Qian,
2010). Also new services under new names are introduced to the market daily
by service providers. Some researchers have combined all these services under
a single name XaaS-Anything as a Service (Rao & Vijay, 2009).

Figure 2. Layers of cloud computing (Firdhous, Ghazali & Hassan, 2011a).

ht
tp

://
jic

t.u
um

.e
du

.m
y/

Journal of ICT, 13, 2014, pp: 21–36

26

Quality of Service in Cloud Computing

Cloud systems are hosted in large virtualized data centres where thousands
of servers provide services to a large customer base (Garg, Gopalaiyengar,
& Buyya, 2011). Though cloud services are attractive to end users in terms
resource utilization and economy important issues still remain to be addressed.
One of the important issues that requires immediate attention is strict QoS
guarantees, so that customers will confi dently outsource their computational
needs to cloud services (Yeo & Buyya, 2005). Optimum resource provisioning
will ensure that cloud providers maximize the utilization of their physical
resources while adequately meeting their obligations to customers.
Cloud data centres host a wider range of applications with different QoS
requirements (Quiroz, Kim, Parashar, Gnanasambandam, & Sharma, 2009).
The transactional applications demand better response times and throughput
guarantees while non-interactive batch jobs are concerned with performance
in terms of job-completion time and accuracy (Carrera, Steinder, Whalley,
Torres, & Ayguade, 2008). Hence it can be seen that the QoS demands of the
applications are more complex and depend on multiple factors or parameters.

Trust Management in Distributed Systems

Users select a suitable peer to interact with based on the trust they place on
those members of the system. In distributed systems like peer-to-peer systems,
grid-computing systems, cluster computing systems, sensor networks and
cloud-computing systems trust-management systems are commonly employed
to manage the interaction between peers (Firdhous, Hassan, & Ghazali, 2012).
Several trust-computing mechanisms have been proposed in the literature
based on different techniques and algorithms. Chen and Yeo have proposed a
P2P trust-system based on Fuzzy decision-making (Chen & Yeo, 2008). Tian et
al. (2008) have developed a trust computing model based on recommendation
evidence. Yang et al. (2010) have developed a trust-computing mechanism
using the entropy function. Firdhous et al. (2011c) have proposed a multilevel
thresholding-based trust-computing mechanism that continuously computes
and adjusts the trust values based on many confi dence levels simultaneously.
This mechanism helps reduce the complexity of the system as a single system
can be used to serve customers with varying quality requirements. All these
mechanisms employ a function that either increments or decrements the trust
score continuously depending on the outcome of the most recent interaction.
Firdhous et al. (2012) have proposed a hysteresis-based trust-computing
mechanism for cloud computing that makes use of the memory inherent in the
hysteresis function to compute a robust trust score. In this paper, the authors

ht
tp

://
jic

t.u
um

.e
du

.m
y/

27

Journal of ICT, 13, 2014, pp: 21–36

further improve this mechanism by incorporating a statistical validation
mechanism at the beginning of the trust-computing algorithm to reduce the
impact of the momentary fl uctuation of the system on the fi nal trust scores.

STATISTICALLY-CONTROLLED TRUST-COMPUTING
MECHANISM

The management of trust consists of three main functions (Carbone, Nielsen
& Sassone, 2003). They are:

1. Trust Formation.
2. Trust Evolution.
3. Trust Distribution.

The fi rst two functions, namely trust formation and trust evolution can be
combined in a single unit called trust-computing unit. The initial trust score
for a system that has not interacted with any client is formed using the trust-
forming unit. As no previous record regarding the trustworthiness of the system
exists, either a neutral value taken as the initial score or the score is computed
based on system capabilities. The trust-evolution unit improves the trust
scores based on the results of the interaction of the system with clients. Trust
distribution unit shares the trust scores thus computed among the cooperating
systems. This paper concentrates only on trust computing especially the trust-
evolution mechanism. The trust distribution is left for future work.

Computing Trust

Trust has been studied by researchers working in diverse fi elds including
sociology, psychology, economics, communication and computer science
(Firdhous, Ghazali, & Hassan, 2011b). These researchers have identifi ed
several features of trust and come up with defi nitions based on the area of
interest and perspective through which trust has been approached. The authors
of this paper have adopted the following defi nition combining the important
features of all the defi nitions and adapting them to suit the problem at hand.

“Trust is the belief on the capability of a system to carry out
certain specifi c tasks to the satisfaction of the other, derived as a
result of interaction between the systems over a period.”

The above defi nition focuses on the direct interaction between the systems to
build trust on a system. This kind of trust is known as direct trust. If the trust
is built based on recommendations from other systems that had interacted

ht
tp

://
jic

t.u
um

.e
du

.m
y/

Journal of ICT, 13, 2014, pp: 21–36

28

with the system and built their own direct trust on the system, then it is
known as recommendation trust (Wang, Tao, Yu, Xu, & Lü, 2005). Notationally
trust can be represented as a relationship between two entities i and j as in
Equation (1):

 (1)

where, i provides certain services to j at the QoS s and T represents the resulting
trust in j on i about its capability.

Trust-Management System

Figure 3 shows the block diagram of a trust-management system proposed
in this paper. The client sends a service request to the cloud service provider
along with the required performance levels and the confi dence interval. The
performance level is characterized by the expected or committed (in the SLA)
QoS performance attribute values and the confi dence level determines the
stringency of the expected performance. The QoS monitor tracks the actual
performance of the system and feeds the trust-computing system with the
relevant QoS parameters. The trust-forming unit computes the initial trust
score and feeds the trust evolution unit with it. The mid-value between the
two extreme trust scores is assumed as the initial trust score in this paper for
convenience. Whenever a system joins the network for the fi rst time, it is
provided with this initial neutral trust score. The trust-evolution unit receives
two inputs; the client provides the system with the expected value (agreed
upon in the SLA) of the QoS attribute (tc) at the beginning of the session and
the QoS monitor with the actual observed value (ta) at the end of the session.
The trust-evolution unit in detail is shown in Figure 4. The trust-evolution
unit consists of the temporary buffer, confi dence-interval computing module,
comparator, summing point, parameter-normalization module and trust buffer.
The temporary buffer stores the predetermined number of the most recent
performance metric values which is input to the confi dence-level computing
module. The observed performance metric is compared with the confi dence
interval in order to determine if the observed value is within the confi dence
interval. If the observed value falls within the interval, the performance
of the system is acceptable and the trust score is not modifi ed. Otherwise
the system computes the new trust score and modifi es the stored value
accordingly. The comparator acts as the switch that controls writing on the
trust buffer. Figure 5 shows the trust-evolution algorithm employed in the
proposed mechanism.

T:

ht
tp

://
jic

t.u
um

.e
du

.m
y/

29

Journal of ICT, 13, 2014, pp: 21–36

Figure 3. Trust management system.

Figure 4. Trust evolution unit.

Figure 5. Trust evolution algorithm.

Actual performance
(attribute values, a)

Service Request
Cloud Service Provider

Trust Forming UnitTrust Evolution Unit
Initial trust score

Actual performance
(attribute values, a)

Required performance
(attribute values, c)

QoS Minitoring Unit

Observed QoS
Parameter (a)

Temporary
Storage

Compute
Confi dence
Interval

Hysteresis Function

Trust Score Trust Buffer Final Trust Score

Enable

 +
-

Commited
QoS Value (a)

c - a) c - a
c

+
-

=

Store Actual (Observed) QoS value (a) in temporary storage
Compute the confi dence interval using the sample mean and sample
variance Compare the QoS value a with the confi dence interval

if within
 No change in trust score
else

 Compute the normalized QoS parameter

 Compute the trust score using Hysteresis function with attribute 

end if

c - a
c

=ht
tp

://
jic

t.u
um

.e
du

.m
y/

Journal of ICT, 13, 2014, pp: 21–36

30

Experimental Setup

The proposed algorithm was tested for its function and accuracy with
simulations. The simulation environment was set up using the GNU Octave
software and the Open Source Matlab Clone. The sigmoid function defi ned
in Equation (2) has been selected as the basis for creating a hysteresis loop
required in the experiment. The shape of the sigmoid function shown in Figure
6(a). The sigmoid function has odd symmetry about both the x and y axes and
asymptotically approaches for large values of x (Namin, Leboeuf, Muscedere,
Wu, & Ahmadi, 2009).

 (2)

The hysteresis function was created by combining two horizontally shifted
sigmoid functions as shown in Equation (3). The hysteresis loop thus created
is shown in Figure 6 (b). The hysteresis functions have the special feature
of traversing through different paths while increasing and decreasing the
independent variable making the output more stable in the events of momentary
fl uctuations of input (Morris, 2012).

 (3)

where k - amount of horizontal shift

 (a) (b)

Figure 6. (a) Sigmoid function (b) Hysteresis function.

Thirty most recent sample values were stored in the temporary storage for
computing the median and variance values of performance, which in turn
has been used to compute the confi dence interval. This number has been
selected as the minimum number required to eliminate the bias inherent in

1.5

1.0

0.5

0

-0.5

-1.0

-1.5
-10 -5 0 5 10

x

sigma(x)
1.5

1.0

0.5

0

-0.5

-1.0

-1.5

hyst(x)

-15 -10 0 5 10-5 15
x

ht
tp

://
jic

t.u
um

.e
du

.m
y/

31

Journal of ICT, 13, 2014, pp: 21–36

small samples (Agresti & Min, 2002). The response time of the system was
selected as the QoS parameter of interest during this study for convenience.
But, the selection of any QoS parameter is independent of the proposed
mechanism and the mechanism would work equally well with any parameter.
The required response time was fi xed and the actual response times were
generated using a random number generator in order to obtain consistent
results. Also the randomly generated response times were trimmed to contain
them within a specifi ed range as extreme values would not be practical in real
world situations.

Figure 7 and 8 show the trust values computed using statistically-validated (@
95 and 90 per cent confi dence levels) inputs and non-validated inputs against
the normalized response times. The non-validated inputs were supplied to
two different trust-computing mechanisms, namely hysteresis-based and
entropy-based mechanisms. From these fi gures, it can be seen that the trust
scores computed using statistically-validated inputs are more stable than that
produced by non-validated inputs. In Figure 7 the trust scores computed using
the validated inputs do not change at all whereas the trust scores computed
using the direct inputs fl uctuate heavily. The fl uctuation is clearly pronounced
on the entropy-based trust-scoring mechanism as the entropy functions as
monotonously varying against the more stable hysteresis function. From
Figure 8, it is very clear that even when the confi dence level is relaxed, trust
scores computed using the validated inputs are more stable changing only
when the inputs fl uctuate heavily but lesser than that due to the non-validated
inputs irrespective of the trust-computing algorithm employed.

Figure 7. Trust values computed using validated @ 95 per cent and non-
validated inputs.

non-validated
validated

entropy
response times

Attempt
0 5 10 15 20

 2.8104, 4.46049

Tr
us

t S
co

re

4

3

2

1

0

-1ht
tp

://
jic

t.u
um

.e
du

.m
y/

Journal of ICT, 13, 2014, pp: 21–36

32

Figure 8. Trust values computed using validated @ 90 per cent and non-
validated inputs.

Figure 9 shows the effect of the confi dence level on the trust scores computed.
When the confi dence level is set at 95 per cent the fl uctuation in the trust scores
computed is totally eliminated compared to when the confi dence level is set
at 90 per cent. Hence it can be concluded that by setting a more restrictive
confi dence level, it is possible to eliminate the effect of fl uctuations in the trust
scores computed due to momentary fl uctuations in performance.

Figure 9. Effect of confi dence level on the trust scores.

non-validated
 validated

entropy
response times

Attempt
0 5 10 15

 -2.73993, 4.13941

Tr
us

t S
co

re

4

3

2

1

0

-1
20

Tr
us

t S
co

re

1

0.5

0

-0.5

-1
0 5 10 15 20

Attempt
 2.94532, 0.670598

90% Confi dence Level
95% Confi dence Level

response times

ht
tp

://
jic

t.u
um

.e
du

.m
y/

33

Journal of ICT, 13, 2014, pp: 21–36

Figure 10 shows the change in trust scores when the deviation between
the observed response time and the expected response time is large. From
this fi gure, it can be observed that when the deviation is large both trust
scores computed using the validated and the non-validated inputs using the
hysteresis-based algorithm close by follow each other. Large deviations can
be assumed to occur due to the actual degradation of performance rather
than spurious momentary fl uctuations. Hence the change in the trust scores
computed using the validated inputs refl ects the actual performance change in
the system. It can also be observed from Figure 10 that when the hysteresis-
based mechanisms follow each other closely, the entropybased mechanism
shows large deviations in the computed scores. This is mainly due the fact that
the entropy is a monotonously varying (increasing or decreasing) function
whereas the hysteresis function stabilizes the output within a given range.

Figure 10. Effect of large deviation of input on trust scores.

Hence it can be concluded that introducing a statistical validation of the inputs
to the hysteresis-based trust-computing mechanism makes it more robust by
protecting the scores from fl uctuations due to spurious inputs.

CONCLUSION

In this paper, the authors have presented a statistically-controlled robust trust-
computing mechanism for cloud computing. Most of the trust-computing
mechanisms reported in the literature employ algorithms that monotonously

non-validated

 validated

entropy

response times

Tr
us

t S
co

re

Attempt

2.5

2

1.5

1

0.5

0

-0.5
0 5 10 15 20

 -1.63665, 2.47362

ht
tp

://
jic

t.u
um

.e
du

.m
y/

Journal of ICT, 13, 2014, pp: 21–36

34

change the trust scores when performance changes are reported. This is a
major limitation as the trust scores thus computed would fl uctuate heavily.
The proposed mechanism introduces a statistical validation of the inputs with
the prescribed confi dence levels. This validation mechanism protects the
fl uctuation of the computed trust scores due to small changes in performance
while letting the large deviations to go through as large deviations may
actually be due to performance degradations rather than spurious fl uctuations.
The proposed mechanism has been tested and validated using simulations
that use other mechanisms reported in the literature as reference. The results
show that the proposed mechanism can perform better than other mechanisms
especially the hysteresis-based trust-computing mechanism and the entropy
based trust-computing mechanism in the event of momentary system
fl uctuations.

REFERENCES

Agresti, A., Min, Y. (2002). On sample size guidelines for teaching inference
about the binomial parameter in introductory statistics (Unpublished).
Retrieved from http://www.stat.ufl .edu

An, B., Lesser, V., Irwin, D., & Zink, M. (2010). Automated negotiation with
decommitment for dynamic resource allocation in cloud computing.
Proceedings of the 9th International Conference on Autonomous Agents
and Multi Agent System pp. 981–988). Toronto, Canada.

AWS. (2012). AWS economics center. Retrieved from http://aws.amazon.com
Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud

computing and emerging IT platforms: Vision, type and reality for
delivering computing as the 5th utility. Journal of Future Generation
Computer Systems, 25(6), 599–616.

Carbone, M., Nielsen, M., & Sassone, V. (2003). A formal model for trust
in dynamic networks. Proceedings of the 1st International Conference
on Software Engineering and Formal Methods (pp. 54–61). Brisbane,
Australia.

Carrera, D., Steinder, M., Whalley, I., Torres, J., & Ayguade, E. (2008).
Enabling resource sharing between transactional and batch workloads
using dynamic application placement. Proceedings of the 9th ACM/
IFIP/USENIX International Conference on Middleware (pp. 203–222).
Leuven, Belgium.

Chen, H., & Yeo, Z. (2008). Research of P2P trust based on fuzzy decision-
making. Proceedings of the 12th International Conference on Computer
Supported Cooperative Work in Design (pp. 793–796). Xi’an, China.

ht
tp

://
jic

t.u
um

.e
du

.m
y/

35

Journal of ICT, 13, 2014, pp: 21–36

Firdhous, M., Ghazali, O., & Hassan, S. (2011a). A trust computing mechanism
for cloud computing. Proceedings of the Fourth ITU Kaleidoscope
Academic Conference (pp. 199–205). Cape Town, South Africa.

Firdhous, M., Ghazali, O., & Hassan, S. (2011b). Trust management in cloud
computing: A critical review. International Journal on Advances in ICT
for Emerging Regions (ICTer), 4(2), 24–36.

Firdhous, M., Ghazali, O., & Hassan, S. (2011c). A trust computing mechanism
for cloud computing with multilevel thresholding. Proceedings of the
Sixth International Conference on Industrial & Information Sysems
(ICIIS2011) pp. 457–461). Kandy, Sri Lanka.

Firdhous, M., Ghazali, O., Hassan, S., Harun, N. Z., & Abas, A. (2011). Honey
bee based trust management system for cloud computing. Proceedings
of the 3rd International Conference on Computing and Informatics
(ICOCI 2011) (pp. 327–332). Bandung, Indonesia.

Firdhous, M., Ghazali, O., & Hassan, S. (2012). Hysteresis-based robust trust
computing mechanism for cloud computing. Proceedings of the IEEE
Region 10 Conference (TENCON 2012) (pp. 796−801). Cebu, the
Philippines.

Garg, S. K., Gopalaiyengar, S. K., & Buyya, R. (2011). SLA-based resource
provisioning for heterogeneous workloads in a virtualized cloud
datacenter. Proceedings of the 11th International Conference on
Algorithms and Architectures for Parallel Processing pp. 371–384).
Melbourne, Australia: Springer.

Morris, K. A. (2012). What is hysteresis? Applied Mechanics Reviews, 64(5),
1–14.

Namin, A. H., Leboeuf, K., Muscedere, R., Wu, H., & Ahmadi, M. (2009).
Effi cient hardware implementation of the hyperbolic tangent sigmoid
function. Proceedings of the IEEE International Symposium on Circuits
and Systems pp. 2117− 2120). Taipei, Taiwan: IEEExplore.

Patel, P., Ranabahu, A., & Sheth, A. (2009). Service level agreement in
cloud computing. Proceedings of the ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages,
and Applications (pp. 1–10). Orlando, FL, USA.

Prodan, R., & Ostermann, S. (2009). A survey and taxonomy of Infrastructure
as a Service and web hosting cloud providers. Proceedings of the 10th
IEEE/ACM International Conference on Grid Computing (pp. 17–25).
Banff, AL, Canada.

Quiroz, A., Kim, H., Parashar, M., Gnanasambandam, N., & Sharma, N.
(2009). Towards autonomic workload provisioning for enterprise
grids and clouds. Proceedings of the 10th IEEE/ACM International
Conference on Grid Computing (pp. 50–57). Banff, AL, Canada.

ht
tp

://
jic

t.u
um

.e
du

.m
y/

Journal of ICT, 13, 2014, pp: 21–36

36

Rahim, R., & Ku-Mahamud, K. R. (2011). Optimizing workload allocation
in a network of heterogeneous computers. Journal of Information and
Communication Technology, 10, 1−13.

Rao, M., & Vijay, S. (2009). Cloud computing and the lessons from the past.
Proceedings of the 18th IEEE International Workshops on Enabling
Technologies: Infrastructures for Collaborative Enterprises (WETICE
‘09) (pp. 57−62). Groningen, The Netherlands.

Rimal, B. P., Choi, E., & Lumb, I . (2009). A taxonomy and survey of cloud
computing systems. Proceedings of the Fifth International Joint
Conference on INC, IMS and IDC (pp. 44–51). Seoul, Korea.

Tian, C. Q., Zou, S. H., Wang, W. D., & Cheng, S. D. (2008). A new trust
model based on recommendation evidence for P2P networks. Chinese
Journal of Computers, 31(2), 270–281.

Vecchiola, C., Pandey, S., & Buyya, R. (2009). High-performance cloud
computing: A view of scientifi c applications. Proceedings of the 10th
International Symposium on Pervasive Systems, Algorithms, and
Networks (ISPAN) (pp. 4–16). Kaohsiung, Taiwan.

Wang, Y., Tao, Y., Yu, P., Xu, F., & Lü, J. (2005). A trust evolution model
for P2P networks. Proceedings of the 4th International Conference on
Autonomic and Trusted Computing (pp. 216−225). Hong Kong, China:
Springer.

Wu, L., & Buyya, R. (2012). Service Level Agreement (SLA) in Utility
Computing Systems. In V. Cardellini, E. Casalicchio, K. Castelo
Branco, J. Estrella, & F. Monaco (Eds.), Performance and dependability
in service computing: Concepts, techniques and research directions
(pp. 1−25). Hershey, PA: Information Science Reference.

Yang, L., Qin, Z. G., Wang, C., Liu, Y., & Feng, C. S. (2010). A P2P reputation
model based on ant colony algorithm. Proceedings of the International
Conference on Communications, Circuits and Systems pp. 236–240).
Chengdu, China.

Yeo, C. S., & Buyya, R. (2005). Service level agreement based allocation
of cluster resources: Handling penalty to enhance utility. Proceedings
of the 7th IEEE International Conference on Cluster Computing
(pp. 27–30). Boston, MA, USA.

Zaman, S., & Grosu, D. (2010). Combinatorial auction-based allocation of
virtual machine instances in clouds. Proceedings of the IEEE Second
International Conference on Cloud Computing Technology and Science
(pp. 127–134). Indianapolis, IN, USA.

Zhou, M., Zhang, R., Zeng, D., & Qian, W. (2010). Services in the cloud
computing era: A survey. Proceedings of the Fourth International
Universal Communication Symposium (pp. 40–46). Beijing, China.

ht
tp

://
jic

t.u
um

.e
du

.m
y/

