Journal of ICT, 11, pp: 163—177

KNOWLEDGE INTERNALIZATION IN PAIR PROGRAMMING
PRACTICES

Mawarny Md. Rejab', Mazni Omar? and Mazida Ahmad’

School of Computing
UUM College of Arts & Sciences
Universiti Utara Malaysia

mawarny@uum.edu.my’
mazni@uum.edu.my’
mazida@uum.edu.my,’

Khairul Bariah Ahmad

School of Multimedia Technology & Communication
UUM College of Arts & Sciences
Universiti Utara Malaysia

kbariah(@uum.edu.my

ABSTRACT

Pair programming practice has been widely used as a pedagogical
approach in educational setting specifically in the programming
course. Most pair programming studies agree that this practice
can foster knowledge sharing among students. However, the
studies do not highlight knowledge internationalization during
pair programming practice. Therefore, this paper will discuss
knowledge internalization based on tacit knowledge that occurs
from knowledge sharing activities in pair programming practices.
This is achieved by employing the process of Socialization,
Externalization, Combination, and Internalization (SECI) in the
form of learning, thinking and decision-making skills among
the students. 119 participants were actively engaged in the pair
programming practice in this study. The participants were required
to answer questionnaires, which were adapted from the SECI
model to suit the educational context. Statistical t-test was used to
analyse the data. The results showed that pair programming was
able to promote knowledge internationalization in the thinking
process. This study contributes to a better understanding of
important knowledge sharing activities to construct student’s skills

//jict.uum.edu.my

http

163

Journal of ICT, 11, pp: 163—177

during the internalization process through pair programming.
Future works will be focused into a rigorous theoretical
framework for constructing tacit knowledge among the students
in pair programming environment.

Keywords: Pair programming, knowledge sharing, internalization, tacit
knowledge.

>

E INTRODUCTION
|
earning a programming course is generally considered hard, difficult and
ften contributes to high dropout rates among students. “Too bad, too hard,
asy to understand the concept but difficult to write the programme” are some
common reasons that have been given by students about the programming
q)ourse. Many innovative approaches had been introduced to overcome this
mroblem. Innovation in pedagogical approaches and programming tools
used to assist teaching and learning of programming courses were introduced
in order to provide a positive impact on students’ performance (Abdullah,
006). Thus, pair programming is one alternative used as a pedagogical tool
n teaching and learning programming courses.

Jair programming as one of the key practices in Extreme Programming has
wp=dbcen gaining acceptance among practitioners and the software development

ommunity. This success leads to wide use of pair programming in the
= mmmeducational setting as a computer science or software engineering pedagogical
= ™! especially in programming courses (Canfora, Cimitile & Visaggio 2003;
\Brereton, Turner & Kaur 2009, Cliburn, 2003; Mendes, Al-Fakhri & Luxton-
ﬁ{eilly 1997). Various studies have been done on determining the usefulness

nd effectiveness of pair programming as a pedagogical tool and the following
-gﬂsitive results were indicated:

e

:. Pair programming can improve students’ performance by gaining higher
scores on programming assignments (Werner, Hanks & McDowell
2004; McDowell, Werner, Bullock & Fernald, 2003; Cliburn, 2003;
Slaten, Droujkova, Beenson, Willioms & Layman, 2005).

2. Pair programming can increase student’s confidence and satisfaction
(Werner et al., 2004; McDowell et al., 2003; Cliburn, 2003; Slaten et
al., 2005).

3. Pair programming can encourage students to complete the programming

course (Werner et al., 2004; McDowell et al., 2003).

164

Journal of ICT, 11, pp: 163—177

Pair programming shifts programming learning from a solitary activity into
a collaborative learning process (McDowell et al., 2003). It involves two
students who act as a driver and navigator working on the same problem from
design to the testing phase. In general, the driver is the person who is involved
in creating and implementing the code, whereas the navigator is responsible
for checking the errors and suggesting the implementation technique. The
navigator provides an alternative solution to the given problem and assists
the driver to solve the problem. Meanwhile, the driver fully controls all input
through the keyboard or mouse and comes out with solutions based on his/her
E idea or the navigator’s suggestions (Williams & Kesler, 2000; Beck, 2005).

" Besides the roles, switching partners is an important issue that should be
considered in implementing pair programming. Switching partners and role
rotation can induce knowledge sharing among students (Chau & Maurer, 2004;
Beck, 2005). This leads to an exchange or spreads information and knowledge
throughout the whole team of software development (Muller & Tichy, 2001).
Indeed, a better structured pair interaction is required by having proper
communication within a pair (Gallis, Arisholm & Dyba 2003; Beck, 2005).
Pair programming involves an informal and spontaneous communication as
it relies on face-to-face communication between the driver and the navigator
(Chau & Maurer, 2004). However, frequent switching of partners is required
in achieving knowledge sharing (Gallis et al., 2003).

uUum.e

Pair programming can foster knowledge sharing among students. Pair
whmd programming is usually performed by students as novice programmers to

develop small programming tasks, which improve knowledge transfer and
= mmmm quality (Vanhanen & Korpi, 2007). Many studies have been done with pair
= mmm—mhrogramming in education, however, most of them do not highlight internalized
knowledge particularly tacit knowledge from the knowledge-sharing processes
. = between students who act as drivers and navigators in the pair-programming
Q-Eractice. Thus, this study discusses knowledge internalization based on the

nowledge sharing activities in pair-programming practices by employing the
process of Socialization, Externalization, Combination and Internalization
(SECI). For completeness, the overview of knowledge sharing will be
discussed in more detail in the next section. Then, this study will cover the
method used in the implementation of this study. The last section describes
the result and discussion of this study.

/l

KNOWLEDGE SHARING

Knowledge management is an important consideration in software development
to ensure that knowledge flows efficiently among software development team

165

Journal of ICT, 11, pp: 163—177

members. Knowledge management is more than the centralized repository
project data and information (Komchaliaw & Wongthongtham, 2010).
Knowledge management is needed to properly manage the knowledge shared
within the software-development team involving all software stakeholders.
In a broad sense, knowledge management is defined as a multidisciplinary
paradigm which uses technology to enable the creation, codification, transfer
and application of knowledge in the organization (Nonaka, 1991; Gover &
venport, 2001). Knowledge transfer is an important part of knowledge
anagement and promotes knowledge transmission among individuals in
Elcommunity or an organization. Generally, knowledge transfer involves
nowledge sharing from the starting point of knowledge creation to the point
®f knowledge application (Gover & Davenport, 2001). According to Hsia
t al. (2006), knowledge transfer is also obtained by adapting several cyclic
ctivities namely mobilizing knowledge, knowledge searching, knowledge
ﬁistributing, knowledge sharing, and knowledge pulling and pushing.

q)_‘venerally, knowledge management covers the obtaining process, sharing,
'tilizing and storing knowledge among individuals in an organization.
Enowledge sharingisanimportant part ofknowledge-managementandacrucial
sk in the agile software development processes. It promotes the knowledge-
Qansmission among individuals in the community or the organization and
ormally is supported by the knowledge-sharing mode (Fengjie, Fei & Xin,
004). There are various kinds of knowledge management modes that enable
wndividuals to exchange knowledge such as face-to-face communication,
wpmmdonference, knowledge network, and organization learning. However, this
tudy focuses on the face-to-face communication as a knowledge sharing
= mmm10de in co-located pair programming practices.
u q
\According to Fengjie et al. (2004), the knowledge-sharing process involves
_\:Wo main parties namely the contributor and the receiver. Figure 1 depicts an
verview of the knowledge-sharing process which involves the two parties
Qﬁd the process of knowledge transmission. The contributor contributes a part
wed his/her knowledge and transmits it to the receiver. The receiver will receive
he knowledge and try to add his/her understanding and transform it into his/
her knowledge. This scenario is similar to the pair-programming practices
where the navigator plays the role of a contributor and the driver the role of
a receiver. Then navigator will provide suggestions in assisting the driver to
solve the given problem in implementing the programme whereas the driver
will use the suggestions given and blend them with his/her own knowledge
to come out with the best solution. Knowledge sharing in pair-programming
practices involves communication, updates, advice, problem-solving,
decision-making, discussion over project data and information (Komchaliaw
& Wongthongtham, 2010).

166

Journal of ICT, 11, pp: 163—177

.

Contributor = Transmit in /7:>
S knowledge sharing <

- space

.my

Figure 1. Knowledge sharing process.

Three steps are involved in transmitting fluent knowledge. Firstly, the receiver
is not just the knowledge beneficiary but also the knowledge provider during
the knowledge-sharing process. In pair programming, the tendency to avail
knowledge-sharing should be overcome by promoting it as a reward (Yin &
Zhang, 2005). In a learning environment, a grade satisfaction is a reward
to encourage them to share their knowledge to achieve a good solution in
programming. Besides, a well-designed knowledge-sharing space is required
to assist knowledge transition such as NetMeeting, Yahoo/MSN Messenger,
web-based knowledge-sharing system and others. There is no restriction of
time and place especially to implement the distributed pair programming.
Students need the virtual collaboration environment when their schedules
conflict and they cannot get physically together in finishing the programming
assignment (Ho et al., 2003). Lastly, a proper way is needed to ensure the
knowledge is easy to understand by having an effective communication.

ct.uum.edu

J

~~ Duringthepair-programming process, some explicitand mostly tacitknowledge
= = jsshared between the driver and the navigator (Chau & Maurer, 2004). Explicit
knowledge is easy to share because it can be expressed in words and numbers
Nonaka & Konno, 1988; Ho, Raha, Gehringer & Williams 2003; Fengjie et
e al., 2004). However, the representation of explicit knowledge which is easy to
understand and convenient to retrieve should be considered during the explicit
: knowledge-sharing process (Fengjie et al., 2004). Meanwhile, more efforts
are required to gain tacit knowledge because it is very hard to formalize and
difficult to codify tacit knowledge. Tacit knowledge is human judgment and
strategic decision making (Brockmann & Simmonds, 1997; Guthrie, 1995).
The main sources of tacit knowledge are experience and thinking (Gerard,
2003). Tacit knowledge is related to the teaching and learning process and is
also generated through the learning experience (Gerholm, 1990). Thus, tacit
knowledge will be obtained through pair-programming practices between
pairs to generate learning, thinking and decision-making skills.

{

167

Journal of ICT, 11, pp: 163—177

Opposed to explicit knowledge, tacit knowledge is hard to share due to its
difficulty to express it in language (Fengjie et al., 2004). Thus, Socialization,
Externalization, Combination and Internalization (SECI) are adopted in this
study to facilitate knowledge conversion between tacit and explicit knowledge
and also to promote knowledge-sharing between partners during pair-
programming practice. Socialization is a process of sharing experiences and
thereby creating tacit knowledge such as shared mental models and technical
ills. Externalization means the process of articulating tacit knowledge into
ritten form or explicit knowledge but still in inconsistent condition so that it
E'Van be shared by others and become the basis of new knowledge. Combination
-efers to the process of converting explicit knowledge that is inconsistent
nto a more complex and systematic set of explicit knowledge. During the
jntemalization process, systematic explicit knowledge will be converted into
Uacit knowledge. The experience acquired through the previous process is
converted into valuable knowledge for individuals and organizations (Nonaka
Takeuchi, 1995). Normally, knowledge internalization is referred to as
= knowledge application capability” which focuses on the ability to apply
he particular knowledge in a real situation. However, students should have
‘knowledge creation capability” which leads them to create new knowledge
o solve programming tasks during knowledge internalization (Nonaka &
akeuchi, 1995; McElroy, 2000).

:n pair-programming practices, knowledge-sharing involves social interaction,
Sharing and constructing knowledge between the partners. The SECI model
is applicable to promote sharing and constructing tacit knowledge between

q:irtners in generating learning, thinking and decision-making skills. Thus, this

. =nqper discusses on internalization based on the knowledge-sharing activities
“=n pair-programming practices by employing the process of SECI. The factors
snvestigated were types of internalized tacit knowledge in the form of learning,
Ifhinking and decision-making skills among the students. In order to assess

Qmpirically the effect of knowledge-sharing amongst programmers using pair

whmsdrogramming, the following hypotheses has been formulated:

E Ho: There is no difference in the state of learning activities in the
internationalization of knowledge-sharing between pair programmers
and non-pair programmers.

° H,: There is significant difference in the state of learning activities in the
internationalization of knowledge-sharing between pair programmers
and non-pair programmers.

o Ho: There is no difference in the state of thinking activities in the
internationalization of knowledge-sharing between pair programmers
and non-pair programmers.

168

my.

ct.uum.edu

Journal of ICT, 11, pp: 163—177

o H,: There is significant difference in the state of thinking activities in the
internationalization of knowledge-sharing between pair programmers
and non-pair programmers.

o Ho: There is no difference in the state of decision-making activities in the

internationalization of knowledge-sharing between pair programmers

and non-pair programmers.

H : There is significant difference in the state of decision-making

activities in the internationalization of knowledge-sharing between pair

programmers and non-pair programmers.

METHOD

Procedure and Sample

The sample of the study consisted of undergraduate College of Arts and
Sciences (CAS) students at Universiti Utara Malaysia (UUM) enrolled in the
Basic Programming course. The Basic Programming course is a compulsory
course for first year students in information technology (IT), multimedia,
and education in IT. Each week students attend two hours of lectures and a
two-hour laboratory session. In the laboratory, students are required to solve
programming assignments assigned by the lecturer. The students were divided
into two groups; pair programming group and non-pair programming group to
work on the assignments. During the lab session, an instructor was assigned to
assist and support the students to solve programming problems for both groups.

In the midst of the semester, 119 questionnaires were distributed to the students
who were actively engaged in pair-programming practices and had experience

- “Wpplying non-pair activities. Students were required to complete a ten-minute

survey to determine the level of knowledge-sharing amongst pair and non-pair
programmers. All questionnaires were returned completed, representing an

MCceptable response rate. Of the 119 questionnaires administered, 77 students

e

L

rom the pair-programming groups and 42 from the non-pair programming
groups completed the survey. To ensure the validity of the knowledge-sharing
scores, outliner data was excluded in the analysis, resulting in a data set of
118 respondents. The age of the respondents ranged from 20 to 25 years, with
a mean age of 18.7 years. Slightly more than 65.5% of the respondents were
females.

Measure
In order to test the hypotheses, a survey study was conducted. The questionnaire

was adapted from the SECI model in a educational context (Mazida, 2010)
particularly focusing on the internalization factor. The validity and reliability

169

Journal of ICT 11, pp. 163—177

of this questionnaire was demonstrated in an other study (Mazida, 2010). The
factors investigated were the types of internalized tacit knowledge in the form
of learning, thinking and decision making skills among the students. All items
in the questionnaire were measured using a five-point Likert scale ranging
from “1-Strongly disagree”, “2-Disagree”, “3-Don’t know”, “4-Agree*, and
“5-Strongly agree”.

n independent t-test was conducted to measure the level of knowledge-

aring between the pair-programming and non-pair programming groups. The

Endependent t-test was used to compare the two groups’ level of knowledge-

haring in terms of learning, thinking and decision-making skills between

these groups. The SPSS tool was used to analyse the data. Reliability analysis

or this questionnaire was 0.7, which exceeds the minimum requirement of
(Cronbach Alpha, 0.6 (Nunally, 1978).

O

q) RESULT AND DISCUSSION

|
ata was analysed in terms of learning, thinking and decision-making skills.
The main goal was to demonstrate that pair-programming practice is a viable
ol to promote knowledge-sharing activities, particularly amongst the
jogramming students.

:_Jearning

el

yhere was no significant difference in the score of learning for pair
rogramming (M =20.24, SD=3.40), and non-pair programming groups [M
ﬁ9.43, SD=3.76; t(116)=1.19 , p=0.24]. This is illustrated in Table 1.

~~

.\.rable |

Qioup Differences for Learning between Pair Programming and Non-pair
rogramming Groups

L Pair Programming Non-Pair Programming
Learning M SD M SD T
20.24 3.40 19.43 3.76 1.19
*p < 0.05

In educational context, pair programming involves two novices that need
guidance from the lecturer as an expert. Since the data was from new first-
year students, who were exposed to the programming course, it was not

170

Journal of ICT, 11, pp: 163—177

surprising that they still needed guidance from their lecturers in solving the
programming tasks. They needed time to understand and gain knowledge of
the programming concepts and applications. Even though they could do the
tasks, facilitation from the lecturer exceeded what could be attained in pair
work (Vygotsky, 1978). The level of the students’ potential ability was uplifted
to a higher level with guidance from the experts compared to self-learning
(Holtzman, 2009). This finding is supported by Heywood et al. (1992) and
Berg, Bergendahl and Lundberg (2003) who claimed that students require
trong support from the instructor for a better education. With continuous
guidance from the lecturer, the lecturer’s tacit knowledge is transferred and
the knowledge is shared amongst the pair. This finding suggests that expert
» knowledge from the lecturers is important in guiding students to acquire the
3 required knowledge in the fundamental programming course. Different and
imbalanced levels of programming skills and knowledge (Katira et al., 2004;
U William etal., 2006; Hahn et al., 2009) between the partners also have an impact
on the learning process. The partner with higher knowledge in programming
GJ may prefer to work alone as he/she feels that working alone can quicken his/
= her programming tasks, whereas the partner with a lower level of knowledge
requires support from his/her partner to learn and solve the tasks. This has
E shown that the lecturer needs to take into account the student’s knowledge
level before selecting the partners. By having a balanced knowledge level
between the pairs, the learning process in pair programming can be facilitated,

3 and thus internationalization process can be achieved.

= Thinking
el
O There was significant difference in the score of thinking for pair programming
e (M =20.24, SD=3.40), and non-pair programming groups [M =19.43,
n mm—SD=3.76; ((116)=2.47 , p=0.015]. This is illustrated in Table 2.

/l

" " Table?2

tp

Group Differences for Thinking between Pair Programming and Non-pair
whd Programming Groups

h

Pair Programming Non-Pair Programming
Thinking M SD M SD T
18.97 2.26 17.90 2.25 2.47*

*p < 0.05
Pair programming activities require support from a partner in solving
programming problems. Therefore, this activity will be stimulating both

programmers to think and exchange ideas during the activity. This in

171

Journal of ICT, 11, pp: 163—177

line with the findings of Williams et al. (2002) who claimed that students
applying pair-programming showed higher order thinking skills compared

to solo programmers. This is because they could share knowledge to solve
programming assignments with their partner during pair programming.
Therefore, the students are more independent in their thinking without fully
relying on the instructor to discuss solutions during lab sessions. In addition,

by doing programming in pairs, tacit knowledge instilled in the brain can be
>;&nsferred among the students, which encourages intrinsic motivation among
eam members (Mazni et al., 2009). In pair programming, students need to be
Elert and attentive to check and review their partner’s code programme. This
ituation encourages them to think more compared to non-pair programmers,
®vhich develops codes in isolation. When this happened, logical thinking
mongst the pair increased and assisted them to broaden their way of thinking,

hich improved the internationalization process during programming

dtivities.

m)ecision-making

here was no significant difference in the score of decision-making for pair
rogramming (M =17.82, SD=2.28), and non-pair programming groups [M
jl 7.76, SD=1.97; ((116)=0.13 , p=0.9]. This is illustrated in Table 3.

jable 3

|
CIJJroup Differences for Decision-making between Pair Programming and Non-

air Programming Groups

H
u
h Pair Programming Non-Pair Programming
“~~Decision Making M SD M SD T
u |

Q 17.82 2.28 17.76 1.97 0.13

e, .05
e

S In this study, the internationalization process of decision-making refers to
students’ independence of making decisions in their learning process. Chong
et al. (2005) noted that pair programming promotes better decision-making
when two heads are better than one. However, in reality, this position is
not always true. Students in pair have to put more effort in creating mutual
understanding between them in order to make better decisions. In addition,
they need to lean and consider appropriate action taken by their partner to
solve the programming tasks. Although pair programming promotes the
exchange of ideas and knowledge between pairs, internationalization process

172

Journal of ICT, 11, pp: 163—177

cannot be achieved due to the reliance of the pair to make decisions. Unlike
solo programmers, students are more independent in making decisions based
on their individual knowledge level. In order for pair programming to achieve
higher internationalization in the decision-making process, investigation
into pair characteristics such as programming ability and personality types
(Hannay et al., 2010; Hahn et al., 2009; Katira et al., 2004; Williams et al.,
2006) can be carried out. Common characteristics of pair partners are important
o drive consensus in the decision-making. Nevertheless, programmers need
to understand each partner’s differences to reach project goals successfully.
Understanding others’ differences yield more added values and better decision-
. making process in programming tasks.

3 From the results, it can be seen that both pair programming and non-
U pair programming achieved a statistically significant result in thinking
activities. Therefore the null hypothesis H for thinking activities in the
internationalization of knowledge-sharing has been rejected. However, two
= null hypotheses, H, for learning and decision-making in internationalization
of knowledge-sharing has been accepted because there were no statistically

E significant difference for both groups.
-

3 CONCLUSION

% This study contributed to better understanding of important knowledge-

sharing activities to construct students’ skills during the internalization process

O through pair programming. It is undisputed that pair programming is one of
H . cge e .

- qthe pedagogical approaches that can enhance students abilities in the areas

"= of programming. Pair programming is able to promote internationalization

in the thinking process because both programmers are actively involved

" in solving programming tasks. However, students as novice programmers

till need guidance from the experts, who are their lecturers to improve

whmd their learning process. In terms of decision-making skills, students that are

= involved in pair-programming activity are relying on their partners on making

: decisions. Therefore, they need to achieve consensus before finalizing their

programming tasks. To ensure that internationalization in the decision-making

process can be increased in pair programming, investigating the level of

programming knowledge and personality types of the students can be carried

out. Knowledge-sharing in pair programming can be improved with the

guidance of lecturers and also by increasing the frequency of programming

activities between the pairs. Socialization factors a such as meeting daily

is an important factor in ensuring the success of pair programming. Pair

programmers need time to understand the other’s differences. This can lead

173

Journal of ICT, 11, pp: 163—177

them to share insights, lead their thoughts, make sound decisions, and thus
induce knowledge-sharing during programming activities. Further work to
be considered can be a rigorous theoretical framework for constructing tacit
knowledge among the students in pair programming environments.

REFERENCES

bdullah, M. Z. (2006). Improving learning of programming through
e-Learning by using asynchronous virtual pair programming. Journal
of Distance Education, 7, 162-173.

336(:1(, K. (2005). Extreme programming explained: Embrace change (2nd ed.).
U Reading, Mass: Addison-Wesley.

rereton, P., Turner, M., & Kaur, R. (2009). Pair programming as a

. teaching tool: A student review of empirical studies. Proceedings of
the Conference on Software Engineering Education and Training,
E 22,240-247.

Jrockmann, E.N., & Simmonds, P. G. (1997). Strategic decision making: The
3 influence of CEO experience and use of tacit knowledge. Journal of
Managerial Issues, 1X(4), 454-467.
u
‘lc_j,lanfora, G., Cimitile, A., & Visaggio. C. A. (2003). Lessons learned about
distributed pair programming: What are the knowledge needs to
- ; address? Proceedings of the Twelfh IEEE International Workshops on
~— Enabling Technologies: Infrastructure for Colloborative Enterprises.
" thau, T., & Maurer, F. (2004). Knowledge sharing in agile software teams.
Q Lecture Notes in Computer Science, 3075/2004, 173-183.
—J
wh=t hong, J. et al. (2005). Pair programming: When and why it works. /7th
: Workshop of the Psychology of Programming Interest Group. Brighton,
UK.

Cliburn, D.C. (2003). Experiences with pair programming at a small college.
Consortium for Computing Science in College, 19(1), 20-29.

Fengjie, A., Fei,Q., & Xin, C. (2004). Knowledge sharing and web-based
knowledge-sharing platform. Proceedings of the IEEE International
Conference on E-Commerce Technology for Dynamic E-Business.

174

d

Journal of ICT, 11, pp: 163—177

Gallis, H., Arisholm, E., & Dyba, T. (2003). An initial framework for research
on pair programming. Proceedings of the International Symposium on
Empirical Software Engineering.

Gerard, J. G. (2003). Measuring knowledge source tacitness and explicitness:
A comparison of paired items. Proceedings 5th Annual Organizational
: Learning and Knowledge Conference.

Gerholm, T. (1990). On tacit knowledge in academia. European Journal of
Education, 25(3), 263-271.

|
3 Gover, V., & Davenport, T. H. (2001). General perspectives on knowledge
management: Fostering a research agenda. Journal of Management
Information Systems, 18(1), 5-21.

q) Guthrie, S. (1995). The role of tacit knowledge in judgement and decision-
making. Proceedings of the International Conference on Qutdoor
Recreation and Education, 105-115.

m.

3 Hahn, J. H. et al. (2009). Assessment strategies for pair programming. Journal
of Information Technology, 8, 273-284.

u

= Heywood, J. (1992). The training of student-teachers in discovery methods

e of instruction and learning and comparing guided discovery and
O expository method: Teaching the water cycle in geography. Technical

" — Report, Research in Teacher Education Monograph, 1/92. Dept. of

u q . . . B

~— Teacher Education, Dublin University.

\

http

® ® Ho, (., Raha,S., Gehringer, E., & Williams, L. (2003). Sangam — A distributed
pair programming plug-in for eclips. Retrieved 1 August 2010 from
http://collaboration.csc.ncsu.edu/laurie/Papers/Sangam.pdf.

Ho, C. W. (2003). Tacit knowledge management and pair programming.
CSC591m Term Paper 2003. Retrieved | July 2010 from http://www4.
ncsu. edu/~cho/articles/TCMandPP.pdf

Holzman, L. (2009). VWygotsky at work and play. NY: Routledge.

Katira, N. et al. (2004). On understanding compatibility of student pair

programmers. ACM Technical Symposium on Computer Science

Education (SIGCSE) Norfolk, VA, 7-11.

175

Journal of ICT, 11, pp: 163—177

Komchaliaw, S., & Wongthongtham, P. (2010). A state of the art review on
software project performance management. 4% JIEEE International
Conference on Digital Ecosystem and Technologies (IEEE DEST
2010), 653-655.

Mazida, A. (2010). An investigation of knowledge creation processes in LMS-
supported expository and PBL teaching methods (Unpublished doctoral
dissertation). Universiti Sains Malaysia.

E/Iazni, O.etal. (2009). Being agile in classroom: An improvement to learning
programming. Seminar Kebangsaan ICT dalam Pendidikan. Ipoh,
" Malaysia.
cDowell, C., Hanks, B., & Werner, L. (2003). Experimenting with pair
ﬁ/’ programming in the classroom. Proceedings of the 8" Annual Conference
m on Innovation and Technology in Computer Science Education, 35(3),
60-64.

E/chowell, C., Werner, L., Bullock, H. E., & Fernald, J. (2003). The impact of

pair programming on student performance, perception and persistence.

3 Proceedings of the 25th International Conference on Software
Engineering, 602-607.

McElroy, M. W.(2000). Integrating complexity theory, knowledge management
s el and organizational learning. Journal of Knowledge Management, 4(3),

O 195-203.

=™ ®Rendes, E., Al-Fakhri, L. B., & Luxton-Reilly, A. (1997). Investigating pair-
Q programming in a 2nd year software development and design computer
- science course. Proceedings of the ITiICSE 05, 285-295.

Qﬁuller, M., & Tichy, W. (2001). Case study: Extreme programming in
— a university environment. Proceedings of the 23 International

s Conference on Software Engineering, 537-544.

Natarajan, G., & Shekhar, S. (2001). Knowledge management: Enabling
business growth. Singapore: McGraw-Hill International Edition.

Nonaka, I. (1991). The knowledge creating company. Harvard Business
Review, 69(6), 96-104.

Nonaka, I., & Konno, N. (1988). The concept of ba: Building a foundation
of knowledge creation. California Management Review, 40(3), 40-55.

176

Journal of ICT, 11, pp: 163—177

Nonaka, I. & Takeuchi, H. (1995). The knowledge creating company: How
Japanese companies create the dynamics of innovation. Oxford: Oxford
University Press.

Nunnally, J. C. (1978). Psychometric theory. NY: McGraw-Hill.

Slaten, K. M., Droujkova, M., Beenson, S. B., Williams, L., & Layman, L.

> (2005). Undergraduate student perceptions of pair programming and

agile software methodologies: Verifying a model of social interaction.

E Proceedings of the Agile Development Conference. Software
Engineering, 36, 61-80.

3 Sommerville, J., & Craig, N. (2006). Implementing IT in construction, NY:
U Taylor and Francis Group.

q) Vanhanen, J., & Korpi, H. (2007). Experiences of using pair programming

- in an agile project. Proceedings of the 40" Hawaii International

E Conference on System Sciences.
Vygotsky, L. S. (1978). Mind in society. MA: Harvard University Press.

Werner, L. L., Hanks, B., & McDowell, C. (2004). Pair-programming helps
3 female computer science students. ACM Journal of Educational

" Resources in Computing, 4, 1(3).
T
Williams, L. et al. (2002). In support of pair programming in the introductory
pair prog Y
= — computer science course. Computer Science Education, 12, 197-212.
u q
. Williams, L. et al. (2006). Examining the compatibility of student pair
= . programmers. Agile Conference 2006. Minneapolis, MN, 411-420.
e Williams, L. A., & Kessler, R. R. (2000). The effects of “pair-pressure”
e e— and “pair-learning” on software engineering education. Thirteenth
: Conference on Software Engineering Education and Training, 59-65.

Yin, T. S., & Zhang, Q. (2005). Dynamic game analysis in worker’s tacit
knowledge sharing process in enterprise. Proceedings of the Fourth
International Conference on Machine Learning and Cybernetics,
Guangzhou.

177

Aw npa wnn-oll//:dny

