Journal of ICT, 11, pp: 1736

A MIXED INTEGER LINEAR PROGRAMMING MODEL FOR
REAL-TIME TASK SCHEDULING IN MULTIPROCESSOR
COMPUTER SYSTEM

Samuel Adebayo Oluwadare

Department of Computer Science
Federal University of Technology
Akure, Nigeria

oluwadaresam(@yahoo.com
Basil Oluwafemi Akinnuli

Department of Mechanical Engineering
Federal University of Technology
Akure, Nigeria

boakinnuli@yahoo.com

ABSTRACT

There has been an upsurge in real-time multimedia applications
in recent time. On a network, the ability of an average uni-
processor computer to handle such data may be limited due to
the large size of such data. Also, there may be a high number
of concurrent users who may want to retrieve data and the
need to process them in real-time; and in continuous stream.
This may lead to low quality service and deadline misses. The
advent of multi-processor systems offers a more efficient way of
processing multimedia data in real-time. With the development
of appropriate scheduling algorithm, another challenge is the
mode of assigning tasks in multi-processor systems. This calls
for the use of an appropriate mathematical model that will take
cognizance of the nature of variables involved. In this research
work, a Mixed Integer Linear Programming Model was developed
to assign tasks in a multiprocessor system. The model was used
to assign tasks to multi-processor systems ranging between 5 and
10 homogenous processors. The result of the simulation runs
shows that with the appropriate scheduling algorithm, a high
success rate ratio and guaranteed number of deadlines met could
be achieved.

17



Journal of ICT, 11, pp: 17—36

Keywords: Task scheduling, multiprocessor systems, multimedia, genetic
algorithms, simulation.

INTRODUCTION

The reduction in physical size and corresponding increase in storage capacity,
as well as the speed of processing of computers have led to the computer being
used to store, process and output a large volume of different types data. The
introduction of computer networking which permits the sharing of computing
resources, both hardware and software, further broadened the horizon of the
use of computers. The advent of the internet has also expanded the horizon of
the types of data that can be transmitted from one end to another. This ranges
from simple numeric data to multimedia data, which is usually large in size.
Due to this development, there has been an increase in multimedia applications
as well as the number of users. The term multimedia literally means more than
one medium. However, technically speaking, multimedia refers to a document
containing two or more continuous media that must be played back over some
time interval. Multimedia data includes audio and video clips and live web
casts which may be delivered to personal computers, handheld devices such
as Portable Digital Assistants and smart phones. Multimedia data is stored
in the file system just like ordinary data. However, multimedia data must be
accessed with specific timing requirements.

Multimedia applications are often characterized as soft real-time applications,
because they require support for timely correct behaviour. However, deadline
misses do not naturally lead to catastrophic consequences even though the
Quality of Service degrades, perhaps making the user annoyed. For instance,
video frames are generated in a fixed frequency (or period), but the size of the
frames and execution times to handle these frames are not constant (Goyal,
Quo & Vin, 1996). Furthermore, the degree of user interactivity is much higher
in recent multimedia applications, for example, interactive distance learning,
than in earlier applications, like Video-on-Demand. This trend has continued,
thus making resource requirements even harder to predict.

Although, most average personal computers are capable of handling the load
that such multimedia applications impose on the client system, the potentially
high number of concurrent users retrieving data presents a problem. With
regard to the processing of multimedia data, the uni-processor systems seem
to have been stretched to their limit. The advent of multiprocessor systems
seems to offer a solution to this problem. However, with a very efficient
scheduling algorithm the issue of an appropriate mathematical model to be

18



Journal of ICT, 11, pp: 17-36

used in assigning tasks to constituent processors in a multiprocessor system
remains a challenge. Some of the challenges include the nature of variables
involved. For instance, the Linear Programming model could only handle
integer variables. Hence, in this paper, a Mixed Integer Linear Programming
(MILP) model was used in order to accommodate both integer and real-
valued variables.

LITERATURE REVIEW

The problem of task scheduling had received considerable attention in the
literature. The Early Deadline First (EDF) algorithm which was proposed
by (Liu & Layland, 1973) always chose the task with the earliest deadline.
However, it had been proved that while the algorithm was optimal in a uni-
processor system, it could not consider priority nor analyze it. This caused
the algorithm to fail under overloading conditions (Tanenbaum, 2007; Thai,
2002). In Lee and Yen (1994), it was proposed that an algorithm that used
task laxity and criticality as system parameters be adopted. The simulation
model contained a small number of tasks on a uni-processor system and did
not consider system overloads. Therefore, all tasks were seen as real-time
and fairness was not considered. A real-time distributed system in which the
task with higher computation time was assigned to bottleneck processor and
the system’s worst case processing time computed was also proposed in Thai
(2002). The proposed algorithm had acceptable resistance to system overload,
especially when the number of processors was increased. The algorithm needed
communication time between processors, and assumed tasks processing times
were different in real-time. The algorithm did not consider heterogeneous
tasks and fairness.

A fuzzy inference for scheduling non-preemptive periodic tasks in soft real-
time multiprocessor systems was presented in Sabeghi, Naghibzadeh and
Taghavi (2006). Priorities and deadlines were used as tasks parameters, and a
fuzzy inference engine was used to compute each task’s priority and to select
the task with maximum priority to process. All tasks were assumed to be
periodic and it was not clear whether the multiprocessor that was proposed
was homogeneous or heterogeneous. The proposed model did not consider
a task’s processing time. Therefore, results are more similar to EDF and not
suitable for multiprocessing systems. Also, a scheduling model and a related
algorithm that were suitable for both uni-processor and multiprocessor
systems was discussed in Chen, Ozturk and Kandemir (2005). The model
provided a method to detect work overloading and tried to balance load
with task dispatching. It is however, doubtful if the proposed model could

19



Journal of ICT, 11, pp. 17—36

handle multimedia data efficiently. Also, dynamic integrated scheduling of
hard real-time, soft real-time and non-real-time tasks was proposed in Brandt,
Banachowski, Caixue and Bisson (2003). The model could generate feasible
schedules, but the model was restricted to periodic tasks and the task periods
were changed dynamically when overloading occurred.

Some researchers had used Genetic Algorithms (GA) to schedule tasks. For
instance, a dynamic scheduling of computer tasks using GA was proposed in
Alberto et al. (1994). The scheduling algorithm which was non-preemptive
hard real-time was aimed at dynamically scheduling as many tasks as possible
such that each task met its execution deadline while minimizing the total delay
time of all the tasks. A sequential MicroGA that used a small population size
of 10 chromosomes running for 10 trials and using a rather high mutation
rate with a sliding window of 10 tasks had also been developed. A parallel
MicroGA model designed for parallel processors was also developed. The
performance of the sequential MicroGA model and the parallel MicroGA
model were compared with other algorithms, namely First-In-First-Out
(FIFO) and EDF for solving similar problems. The results showed that the
sequential MicroGA and the parallel MicroGA models produced superior
task scheduling compared to the other algorithms tested. However, the work
was limited due to the fact that it was meant to handle hard real-time tasks.
Also, it used a small population size of 10 chromosomes, and only 10 trials
were conducted.

Similarly, a memetic algorithm for task scheduling for multiprocessor systems
was presented in Sutar, Sawant and Jadhav (2006). The memetic algorithm
which was aimed at reducing the shortcomings of Genetic Algorithms
combined GA with another optimization technique called Simulated
Annealing (SA). SA transversed the search space by testing random mutations
on an individual. A mutation that increased fitness was always accepted. The
memetic algorithms allocated a set of tasks such that optimum performance
was obtained. Tasks were distributed among the processors in such a way
that the precedence constraints were preserved, and total execution time was
minimized. It also defined an order of processing tasks that were ready to
run on a given processor. The memetic algorithms represented tasks in a task
graph. The task graphs were then mapped onto a multiprocessor system in
a way that maintained precedence relations, and ensured that all tasks were
completed in the shortest possible time. The paper also developed a coding
scheme and algorithms for generating initial population of chromosomes;
and genetic operators such as crossover, reproduction and mutation. Even
though the memetic algorithms seemed promising in being able to mitigate
the shortcomings of GA, it was not implemented. Hence, the efficiency of the
algorithms could not be ascertained.

20



Journal of ICT, 11, pp: 1736

Also, in Hamzeh, Fakhraie and Lucas (2007) a soft real-time fuzzy task
scheduling for multiprocessor systems was proposed. The algorithm arranged
real-time periodic and non-periodic tasks in multiprocessor systems. Since
most static and dynamic optimal scheduling algorithms would fail with a non-
critical overload, the fuzzy approach proposed in the study was an attempt to
balance task loads of processors successfully, prevent starvation and ensure
fairness which would cause higher priority tasks to have higher running
probability. Experimental results showed that the proposed fuzzy scheduler
created feasible schedules for homogeneous and heterogeneous tasks. It also,
considered tasks priorities which caused higher system utilization and lowered
deadline misses. However, the model was deficient because it did not consider
scheduler processing time, and it was independent of the number of system
processors.

Apart from the scheduling of tasks, some researchers had also applied
genetic-fuzzy methods to some real life problems. For instance, Chin and Lan
(2007) used genetic-fuzzy based Generalized Dimension Exchange (GDE) to
uniformly distribute the unprecedented web cluster workload. This approach
provided non-trivial information and techniques which were useful for
network administrators who intend to manage their network capacity.

Some researches had also been carried out in the scheduling of hard real-
time tasks. An example of such research is found in Mahmood (2000) in
which a hybrid scheduling algorithm for task scheduling in multiprocessor
real-time systems was developed. The system was an attempt to overcome
the shortcomings of pure genetic algorithm, and recorded a significant
improvement in guarantee ratio of tasks that arrived in the system. However,
the system was not designed to handle multimedia tasks which had both hard
real-time and soft real-time components.

Withregard to the scheduling of multimedia tasks, a study reported in Oluwadare
(2009) developed a Hybrid Genetic Algorithms for Scheduling Multimedia
Tasks in a Multiprocessor System. It employed heuristic knowledge of the
problem domain to model a hybrid genetic algorithm in a multiprocessor
environment. The system model was made up of the scheduler model and the
task model. The scheduler model involved a centralized dynamic scheduling
scheme in which all tasks would arrive at a central processor called the
scheduler. The scheduler model consisted of a minimum of 5 and a maximum
of 10 identical processors. In genetic algorithms, tasks are mapped (coded) on
chromosomes just as genes are mapped on chromosomes in living organisms.
Each chromosome in hybrid genetic algorithms in a multiprocessor system
represents a particular schedule of tasks. Determining the chromosome
that gives optimal schedule of tasks is a major motivation for using hybrid

21



Journal of ICT, 11, pp: 17—36

genetic algorithms. Therefore, the thrust of this paper is to present a Mixed-
Integer Linear Programming (MILP) model for finding the optimal schedule
(chromosome) for implementation in a multi-processor system.

MILP MODEL FOR TASK SCHEDULING

In traditional linear programming (LP), the goal is to maximize or minimize a
linear function, subject to linear constraints. The constraints may be equalities
or inequalities. The function to be maximized or minimized is called the
objective function. The constraints on the other hand, may be technical
(functional) constraints and non-negativity constraints. Integer programming
(IP) is employed when all the variables in the objective function and the
constraints can only take on integer values.

Mixed-Integer Programming (MIP) is employed when some of the variables
in the model are real-valued (can take on fractional values), and some of the
variables are integer-valued. The model, therefore, is described as “mixed”.
When the objective function and constraints are all in linear form, then it is a
Mixed-Integer Linear Program (MILP). Although in common parlance, MIP
is often taken to mean MILP, it should be noted that Mixed-Integer Non-linear
Programs (MINLP) also exist, and are much harder to solve. The rest of this
section describes the proposed MILP model.

Let / be the number of processors available for processing J jobs. The time
taken to finish a job j is called the makespan. The makespan of a job j assigned
to processor P, working for a given period of time is

a, for/=1, .., Landj=1,.., J

The problem is to choose an assignment of jobs to processors to minimize the
total finish time (total makespan) of jobs in a schedule. An assignment is a
choice of numbers.

Let x;1<i<J,1< <1 beabinary variable as follows:

. {lijTHSk -is -assigned  -to - processor

i 0-otherwise

Where X, represents the proportion of the processor i s time to be spent on
jobj A task is assigned to a processor. The following constraints, therefore, is
introduced:

>x, <l j=1l1<i<J (1)

22



Journal of ICT, 11, pp: 17—36

x; fori=1,., I andj=1, .. J,where x; represents the proportion of the
processor i’s time to be spent on job j. Thus,

J
Za,. <lfori=1,..,1 2)

Equation (2) reflects the fact that a processor i cannot spend more than 100%
of'its resources (time) working.

I
Dox, <lfori=1,..J (3)

=1
Equation (3) means that only one job can be processed at a time.
and x; 20 fori=1 .., Landj=1..J 4)

Equation (4) means that no processor can spend a negative amount of time to
process a job.

a; 2 Ofori=1 .., Landj=1.. J (5)

Equation (5) means that no job can have negative makespan. Task ; starts
between its arrival time @, and its deadline time d.. The start time s, is, therefore
bounded as follows:

a/Ss}.Sd/.,lSJ

Since, Task ; must finish by its deadline time dj, a constraint on the deadline
time of a task is introduced as follows:

Dax, <d;j=12,.J (6)
The model also assumes that we have precedence constraints as follows:

If two tasks are assigned to the same processor they must be examined and
executed based on the following criteria:

Let l/, = criticality of task ;
m, = dynamic priority of task j
n= user priority of task j

a_ = arrival time of task

23



Journal of ICT, 11, pp: 17—36

Task with the highest criticality should be scheduled first that is, execute task
J, before j, if

[, >1, where L denotes criticality of task ;.
1f L, Al then

consider dynamic priority m and execute task j, firstifm_>m,
: J1 J2

if l/,/ = l/._, and m, =m, then consider user priority » and schedule
first if n,=n,

if l B l],, m,_ m, and n,.n, then consider arrival time and execute
on ﬁrst come first serve ba515 and execute / first if and only if a,>a,
otherwise execute j, before ;.

The precedence constraints can be put together as follows, execute task |
before task /, if and only if ’

L>1

7 Ly my = myn, =0, anda, >a, %

Also, there is the constraint that the number of the processors cannot be less
than 5 or greater than 10.

5<Y P <10 ®)

Finally, the number of tasks to be scheduled cannot be less than 1

irf >1 )

j=1

The full MILP model for scheduling tasks in a multiprocessor system can be
stated as follows:

Minimize makespan

lJ
Z:ZZaixl

i=l j=I

Subject to:
Dox,j=Lll<i<J

J
(i) > a, <lfori=1,.,1

24



Journal of ICT, 11, pp: 17—36

I

(i) D x, <lfori=1,.,J

i=1

(iv) x;20fori=1 .. Landj=1..J
(V) a; >0 fori=1 .. Landj=1 .., J

Vi) Dax, <d;j=12,..J

(vii) [, > 1, m,>m,n,>n,anda,>a,
7

(vii) 5<> P<I
i=1

(ix) ZJ:TJ >1

Jj=1
Variables
(i)  x,.q, arebinary integer variables
(i) [.m.n.,a,p,1, J areinteger variables

(ili) s,,d,,a, are real-valued variables

MODEL IMPLEMENTATION

In the model implementation, we have adopted a hybrid genetic algorithm
in which tasks are mapped (represented) as genes on a chromosome.
Traditionally, in genetic programming, chromosomes are represented as
binary vectors. However, the binary coding scheme may not be suitable in
certain situations. This is because in certain situations, the type of the problem
to be solved dictates the coding scheme to be adopted (Mahmood, 2000).
Experiments have shown that other representations and operators can perform
in the same way that binary vectors do in traditional GAs (Syswerda, 1991).
For a multiprocessor system, there are a number of issues to be addressed.
First, there should be the list of tasks to be scheduled. The second is the order
in which these tasks should be executed on a given processor. The third is the
list of processors which these tasks should be assigned to. The chromosome
representation scheme used in this study is such that each gene is a pair of
decimal values (7, P) which indicates that task 7, is assigned to processor
P, The position of genes in the chromosome indicates the order in which
tasks should be executed. For instance, the chromosome representation shown

25



Journal of ICT, 11, pp: 1736

in Fig. 1 indicates that task 1 should be executed on processor 4, task 5 on
processor 1, task 2 on processor 3, and task 3 on processor 1. It also indicates
that if two tasks are assigned to the same processor, for instance, tasks 5 and
3, task 5 is executed first followed by task 3.

14) | 5D 123 G

Figure 1. Chromosome representation in HGAMTS.

One of the advantages of this multiprocessor system is that two tasks assigned
to two different processors may execute in parallel provided they do not require
the same resource in exclusive mode. Tasks assigned to the same processor
must execute in the specified order. In the chromosome representation scheme,
each chromosome has a fixed length/size. This means that the maximum
number of tasks that may be considered for scheduling at a time is bounded by
the chromosome size. The remaining tasks together with the newly arriving
tasks are kept in the task queue (Mahmood, 2000). When one set of task is
scheduled, a new set of tasks from the task queue is selected for scheduling. If
the number of tasks in the task queue is less than the chromosome size, then
only part of the chromosomes is used, and the application of genetic operators
is restricted to that part only. The part of a chromosome being used is called
the active part. It should be noted that the maximum size of the active part is
equal to the chromosome size.

Genetic Operators

In order to construct the appropriate genetic operators, it is necessary to do
a thorough analysis of the chromosome syntax. In this study, the position
of a task on the chromosome which is a greedy consideration based on the
domain-specific knowledge, determines the order in which the task will be
executed. The closer the task is to the front of the chromosome, the greater are
the chances of it being scheduled. Also, the nature of the task that precedes a
particular task may impose some constraints on where it can be placed. For
instance, if two tasks require a resource, at least one task in exclusive mode,
the first task in the list may prevent the second from being scheduled. This
implies that the relative order of the tasks is also important. Another important
parameter is the processor on which a task is scheduled for execution. It
may not be feasible to schedule a task on a processor already heavily loaded.
Therefore, one has to consider not only the order of tasks in the chromosomes
but also the processor on which a task is finally executed. The three genetic
operators employed in this study are crossover, reproduction and mutation.

26



Journal of ICT, 11, pp: 17-36

a. Crossover

The crossover operator randomly selects two chromosomes from the
population, and swaps the second part of each gene after a randomly selected
point. This is equivalent to assigning a subset of tasks to different processors.
The crossover point is indicated byI) arrows.

(5,6) (2,5)2

(6,2) (7,g)
|

Parent1 | (1,3)

|
|

Parent2 | (3,4)

Figure 2. Two parents involved in crossover.

After crossover, the two parents produce these two children.

Child 1 3.6) |(56) (2,3 [(64) | (7.) | (1,3) | (3T

i

25 |62 [T |(52) |42) [ (42) (64

Child 2

Figure 3. Two children produced from the crossover.

b. Mutation

Mutation provides and maintains diversity in a population, most especially
when used in conjunction with other operators. On its own, it also serves as
a search engine. In this study, three mutation operators used are order-based
mutation, sublist-based mutation and partial-gene mutation.

Order-based mutation: [t randomly selects two genes of a chromosome (the
chromosome is also randomly selected) and interchange their positions.

Sublist-based mutation (also known as inversion): It randomly selects two
points in a chromosome and reverses the order of the genes between these two
points.

Partial-gene mutation: It randomly selects a chromosome and changes
a randomly selected gene (7, P) to (7, P) for which available time (Pj) is
minimum over all processors for task 7. This mutation operator is based on
the heuristic that a task should be assigned to a processor where it has the
earliest start time. Fig. 4 illustrates the three mutation operators.

27



Journal of ICT, 11, pp: 17—36

Actual chromosome | (2,5) | (6:2) | (7.2) | (1,2) | 34) | (1,3) | 4,3) | (5.1)
Order-based 2,5 162 | (13) | (1.2) | G4 | (72) | 4,3) | (5.1)

mutation

Actual chromosome | (2,5) | (6:2) | (7.2) | (1,2) | 34) | (1,3) | (4,3)

Sublist-based 25 62| (72) | 43) | (13) | 3.4)

-
—
"
]
~—
n N
- -
[ —
~— —

mutation

Actual chromosome | (2,5) | (6,2) | (7,2) | (1,2) | 34) | (1,3) | 4,3) | (5,1)

Partial-gene 25 |62 (72 |12 (3,?) 1,3 | 43) | 5.1

mutation

Figure 4. lllustration of mutation operators.

Hint: Mutated genes are shown in boldface.

Syswerda (1991) showed through several experiments that the application of
mutation and crossover operators with varying probabilities produces better
results than those obtained with fixed probabilities. Hence, in this study, the
probability of applying partial-gene mutation and crossover is not fixed.

C. Reproduction

The reproduction operator kills the bottom x% of chromosomes of a population
sorted in an ascending order of their fitness values, and then produces a clone
of the fittest chromosomes. In this way, only the fittest offsprings passes into
the next generation. As we go from one generation to another, fitter offspring

are produced.

d. Fitness Function

In genetic algorithms, the evaluation of chromosomes is a central issue. For
task scheduling problem, the fitness value of a chromosome is determined
by the number of tasks in the chromosome that meet their deadlines. In this

28



Journal of ICT, 11, pp: 17-36

study, the fitness value of the chromosomes are generated, and are arranged in
a descending order, and the bottom 10% are killed before we go into the next
generation. In this way, we are able to get the best chromosome that produces
the most efficient schedule based on criticality and time constraint. Once the
chromosome that represents the optimal schedule of tasks has been determined
by the MILP model, it is then passed on to a multi-processor system depicted
in Fig. 5.

Task
queue

Scheduler

Dispatch Processors
queues

Figure 5. The scheduler model.

The scheduler model depicted in Fig. 5 involves a centralized dynamic
scheduling scheme in which all tasks arrive at a central processor, called the
scheduler. Each scheduler has a task queue attached to it. The task queue holds
newly arriving tasks. The role of the central scheduler is to distribute the tasks
to other processors in the system for execution. There is a dispatch queue
associated with each processor. The communication between the scheduler
and the processors is through the dispatch queues.

29



Journal of ICT, 11, pp: 1736

The scheduler makes sure that each dispatch queue is filled with a minimum
number of tasks so that a processor could always find a task in its dispatch
queue when it finishes execution of a task. The scheduler determines a feasible
schedule based on the worst case computation times of tasks satisfying their
timing and resource constraints. The scheduling algorithm has full knowledge
about the currently active set of tasks, but not about the new set of tasks that may
arrive while scheduling the current task set (Mahmood, 2000). The objective
of the dynamic scheduling is to minimize the makespan, thereby improving
the guarantee ratio (Shen et al., 1993). The guarantee ratio is the percentage
of tasks that arrived in the system whose deadlines are met. The scheduler
must also guarantee that the tasks already scheduled are going to meet their
deadlines. The scheduler model consists of a minimum of 5 processors and a
maximum of 10 processors.

The performance of the system is measured in terms of the success ratio,
which is the percentage of tasks that arrived in the system whose deadlines are
met. Simulation experiments were carried out in order to test the efficiency of
the system. Software simulation was adopted instead of analytical or hardware
prototyping because analytical modeling and hardware prototyping are costly
and inflexible. Software simulations, on the other hand, are easier to work
with, and are less expensive than their hardware counterparts. They are more
flexible, allowing enhancements with new measuring features and real-world
behavior capturing. Also, many simulations can be run simultaneously. The
simulation environment is an execution-driven simulator which simulates
operations of a multiprocessor system on a uni-processor host machine. The
host machine is Pentium 1V 3.0GHz, 160GB Hard disk and 1.0GB RAM with
Windows XP Operating System.

Also, the scheduling and simulation were carried out using a partitioning
scheme as against the global scheme. In the partitioning scheme, all the
instances (or tasks) of a job are executed on the same processors, which are
partitioned into between 5 and 10 processors during the different simulation
runs. In the experiment, parallelism is prohibited, that is, no task of any job
can be executed at the same time on more than one processor.

EXPERIMENTAL RESULTS

In the simulation experiment, 300 tasks were randomly generated for each
simulation run, and the maximum iteration was set to 700. The chromosome
size (maximum number of tasks on a chromosome) was varied between 5

30



Journal of ICT, 11, pp: 17—36

and 20. The task arrival rate at the central processor (the scheduler) which
also handles admission control was varied between 0.2 and 0.6 seconds. The
dispatch queues were of length 2 each, that is, only two tasks could wait in
the queue associated with a particular processor while waiting for a vacant
slot. The results presented in Table 1 show that the success ratio increases as
chromosome size increases.

Table 1

Average Success Ratio for Different Chromosome Sizes

Chromosome Size Success Ratio
5 75
10 81
15 92
20 97

Source: Simulation studies, 2010

Also, the success ratio was computed at different task arrival rates and number
of iterations. The results are presented in Tables 2 and 3, and the performance
curves in Figs. 6 and 7.

100 7
95 1
90 7
85 7

80 7

Success Ratio

75 9

70 7

65

Chromosome Size

Figure 6. Average success ratio for different chromosome sizes.

31



Journal of ICT, 11, pp. 17—36

Table 2

Success Ratio at Different Task Arrival Rates and Chromosome Sizes

Task Arrival Rate Success Ratio

=5 =10 =15 1=20
0.2 95 95 100 100
0.25 91 93 100 100
0.3 87 90 98 100
0.35 80 86 98 100
0.4 77 84 95 98
0.45 70 83 93 97
0.5 68 80 89 97
0.55 65 76 85 95
0.6 60 72 80 95

| = Chromosome size

Source: Simulation studies, 2010

Table 2 reveals that chromosome size of length 20 gives a success ratio
from 95% to 100% for different task arrival rates. For chromosome size
15, the success ratio ranges between 80% and 100%. The success ratio for
chromosome size of length 10 and length 5 ranges from 72% to 95% and
60% to 95% respectively. This clearly shows that chromosome size 20 has the
highest success ratio with chromosome size 5 having the least success ratio.
However, for small task arrival rates, the success ratio of chromosome size 15
is at par with that of chromosome size 20. The gap widens as the task arrival
rates increases. Generally, Table 2 also reveals that success ratio decreases as
task arrival rate increases. This result could be explained by the fact that small
arrival rates minimize the amount of time spent in the dispatch queue. thus
improving the success ratio (percentage of tasks arriving in the system that
meets their deadlines). The result is also depicted in Fig. 7. Each point on the
performance curve is an average of 10 simulation runs.

32



Journal of ICT, 11, pp: 1736

=
=
o
2 50 o
g —-—1-=5
S 40 4 _
=2 —1=10
30 —A—1=15
=X=1=20
20 . . . . ’ . . .
02 025 0.3 0.35 0.4 0.45 0.5 0.55 0.6

Chromosome Size

Figure 7. Success ratio vs task arrival rate for different chromosome sizes.

Table 3

Success Ratio at Different Number of Iterations

Number of Success Ratio
[terations =5 1=10 1=15 1=20
100 41 43 47 48
200 46 47 58 59
300 48 51 62 65
400 52 58 69 72
500 57 63 83 85
600 60 66 89 96
700 61 67 92 98

| = Chromosome size

Source: Simulation studies, 2010

The result displayed in Table 3 shows that for the different chromosome
sizes, the success ratio increases with the increase in the number of iterations.
However, the success ratio for chromosome size 20 is the highest, reaching up
to 98 with 700 iterations. The result is also shown in Fig. 8.

33



Journal of ICT, 11, pp: 1736

100

90

80

70

60

50

Success Ratio

40

——1=15
30 o
-1 =20
20 L] L] 1] L] L] L
100 200 300 400 500 600 700

Number of Iteration

Figure 8. Success ratio vs number of iterations.

CONCLUSION

In recent times, there has been an upsurge in multimedia applications due to
the advancement in electronic technology. This has led to the production of
computer hardware smaller in size, but with a higher computing power. The
storage space which used to be a major limiting factor in processing in the
early days of computing is virtually becoming a non-critical issue. However,
multimedia data are usually large in size, and some of them have to be
processed in continuous stream in real-time. This scenario often leads to loss
of quality and deadline misses. Uni-processor systems have been stretched to
their limit, and multiprocessor systems have been designed in order to cope
with the ever increasing need for higher speed and reduced deadline misses
in real-time critical applications. However, the problem of determining an
optimal schedule of tasks in a multiprocessor system is a major challenge in
the use of multiprocessor systems.

Various models have been proposed in the literature with varying degrees of
success. Finding an optimal schedule involves extensive search in the vast
solution space. Some of the solutions may even be trapped in local optima
due to in-exhaustive search, thus leading to inefficiency in the system. The
problem is more cumbersome when there are precedent constraints to be
fulfilled. The constraints for optimal schedule of tasks are often many and

34



Journal of ICT, 11, pp: 17—36

varied. The linear programming approach has been suggested, as it minimizes
the objective function which is subject to constraints. However, it is also
observed that some of the variables in a linear programming model may be
real-valued (can take on fractional values) while others are integer-valued.
This calls for a model that can handle both kinds of variables.

This paper therefore, presents the use of the Mixed-Integer Linear
Programming (MILP) model to optimize task schedule in a multi-processor
system. In implementing the model, a hybrid genetic algorithm was used in
which the optimal schedule derived from the MILP model was mapped onto
chromosomes. The chromosome that corresponds to the optimal schedule
is then processed on a multiprocessor system with a minimum of 5 and a
maximum of 10 homogeneous processors. The results of the simulation
runs show that the model generates a high success ratio for the tasks that
are scheduled by the system. In our future research, we will combine genetic
algorithm with artificial neural network and or fuzzy logic to design a powerful
hybrid genetic algorithm for multimedia task scheduling.

REFERENCES

Alberto, C., Pico, G., & Wainwright. (1994). Dynamic Scheduling of
Computer Tasks using Genetic Algorithms. Proceedings of the first
IEEE Conference on Evolutionary Computation, IEEE World Congress
on Computation Intelligence, 829-833, Orlando, Florida.

Brandt, S. A., Banachowski, S., Caixue, L., & Bisson, T. (2003). Dynamic
integrated scheduling of hard real-time, soft real-time and non-real-
time processes. Proceeding 24" [EEE International Real-Time Systems
Symposium, 396 — 407 .Cancun, Mexico.

Chen, G., Ozturk, O., & Kandemir, M. (2005). An adaptive locally-conscious
process scheduler for embedded systems. Proceding 11" IEEE Real-
Time and Embedded Technology and Applications Symposium, 354 —
364. San Francisco, CA.

Chin, C. W., & Lan, A. L. H. (2007). Web load balancing via genetic-
fuzzy based algorithm. Journal of Information and Communications
Technology, 6, 73 — 86.

Goyal, P., Guo, X., & Vin, H. M. (1996). A hierarchical CPU scheduler for
multimedia operating systems. Proceeding of USENIX on Operating
Systems Design and Implementation (OSDI’96), 107-121, Seattle,
Symposium WA, USA.

35



Journal of ICT, 11, pp: 1736

Hamzeh, M., Fakhraie, S. M., & Lucas, C. (2007). Soft real-time fuzzy
task scheduling for multiprocessor systems. International Journal of
Intelligent Technology, 2 (4), 211 —236.

Lee, J., Tiao, A., & Yen, J. (1994). A fuzzy rule-based approach to real-time
scheduling. Proceeding 3 IEEE Conf. Fuzzy Systems, IEEE World
Congress Computational Intelligence., 2, 1394 — 1399, Florida.

Liu, C. L., & Layland, J. W. (1973). Scheduling algorithms for
multiprogramming in a hard real time environment. Journal of the
ACM, 20, (1), 46 - 61.

Mahmood, A. (2000). A hybrid scheduling algorithm for task scheduling
in multiprocessor real-time systems. Technical Paper. Department of
Computer Science, University of Bahrain.

Oluwadare, S. A. (2009). A scheduling algorithm for enhancing operating
system support forhigh-speed multimedia systems (Unpublished
doctoral dissertation). Department of Computer Science, The Federal
University of Technology, Akure, Nigeria.

Shen, C., Ramamritham, K., & Stankovic, J. A. (1993). Resource reclaiming
in multiprocessor real-time systems. /EEE Transactions on Parallel
and Distributed Systems, 4, 382-397.

Sutar, S. R,, Sawant, J. P., & Jadhav, J. R. (20006). Task scheduling for
multiprocessor systems using memetic algorithms, 27/1 —27/9.

Syswerda, G. (1991). Schedule optimization using genetic algorithms. In L.
Davis (Ed.) Handbook of genetic algorithms (332-349). New York: Van
Nostrand Reinhold.

Tanenbaum, A. S. (2007). Modern operating systems (2nd ed.). Prentice Hall.
pp. 250 —275.

Thai, N. D. (2002). Real-time scheduling in distributed systems. Proceeding
International Conference Parallel Computing in Electrical Engineering.
Warsaw, Poland, 165 —170.

Sabeghi, M., Naghibzadeh, M., & Taghavi. (2006) Scheduling non-preemptive
periodic tasks in soft real-time systems using fuzzy inference. In
Proceeding 9" IEEE International Symposium Object and Component
Oriented Real-time Distributed Computing. Gyeongju, Korea, 27-32.

36



