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ABSTRACT

The current research focuses on the designing of an intelligent
controller for the Attitude Control System (ACS) of the
Innovative Satellite (InnoSAT). The InnoSAT mission is to
demonstrate local innovative space technology amongst the
institutions of higher learning in the space sector. In this study,
an Adaptive Neuro-controller (ANC) based on the Hybrid Multi
Layered Perceptron (HMLP) network has been developed. The
Model Reference Adaptive Control (MRAC) system is used as
a control scheme to control a time varying systems where the
performance specifications are given in terms of a reference
model. The Weighted Recursive Least Square (WRLS) algorithm
will adjust the controller parameters to minimize error between
the plant output and the model reference output. The objective
of this paper is to analyse the time response and the tracking
performance of the ANC based on the HMLP network and the
ANC based on the standard MLP network for controlling an
INnNoSAT attitude. These controllers have been tested using an
INnnoSAT model with some variations in operating conditions
such as varying gain, measurement noise and disturbance torques.
The simulation results indicated that the the ANC based on the
HMLP network is adequate to control satellite attitude and give
better results than the ANC based on the MLP network.
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INTRODUCTION

Small satellites have become more popular in the last few decades due to
their relative simplicity resulting in an attractive short period of design and in
low cost (Bushenkov, 2002; Martinelli & Pena, 2005). Beginning in 1999, the
California Polytechnic State University and the Stanford University developed
the CubeSat specifications to help universities worldwide to perform space
science exploration. The InnoSAT is a nano class satellite and is based on the
basic unit CubeSat. A CubeSat is a type of miniaturized satellite for space
research that usually of 10cm x 10cm x 10cm, a volume of exactly one liter,
weighs no more than one kilogram, and typically uses commercial, off-the-
shelf electronics components (Gregory, 2004). The InnoSAT consists of a
few CubeSats stacked together, which carries a few payloads designed by
Astronautic Technology Sdn. Bhd. (ATSB) and Malaysia Universities. Figure
1 shows the external view of the InnoSAT (Yusoff, Hamzah & Arshad, 2009).
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Figure 1. InnoSAT External View
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The Attitude Control System (ACS) is part of the attitude determination
and control system payload. The ACS fully operates as a three-axis attitude
stabilization control system. Attitude refers to the coordinate for satellite
movement in space where the coordinates are the data of X, Y and Z axes.
The data are the main information to evaluate the movement of the satellite
(‘Yaakop, Yaacob, Saad & Harihran, 2009). The usual ACS used in small or
large satellites includes several kinds of sensors, actuators and an on-board
computer that processes the data through a control algorithm (Martinelli &
Pena, 2005).

The MLP network is a variant of the Multilayer Feedforward neural network. It
can be trained to form arbitrary decision surfaces in the input space. However,
the training process of the multilayer perceptron takes a large computation
time and often leads to local minimum problems (Mat Isa & Mamat, 2010).
In the satellite attitude control system, a few controllers have been developed
by using the neural network (Krishnakumar, Rickard & Bartholomew, 1995;
Hao Sun & Zhang, 2004; Talebi & Patel, 2005; Sivaprakash & Shanmugam,
2005). The development of an intelligent real time control system based on
neural network is possible for the satellite in space that has been exposed to
non-probabilistic uncertainties such as sun flare and time-dependant noises in
measurement (Zak, 2003).

A few performance comparisons have been done between the adaptive neuro-
controller based on the HMLP network and other controllers. The results
show that the ANC based on the HMLP network have given significant
improvement in the performance of controlling unstable systems (Sharun,
Mashor, Jaafar, Yaacob & Norhayati, 2010a; Sharun et al., 2010b & Sharun
et al., 2010c). In the current study, the advantages of the HMLP network and
the WRLS algorithm are combined to improve the performance of tracking
control techniques in various operating conditions such as noise, varying gain
and disturbance torques.

MODEL OF SATELLITE

Since the InnoSAT model is dealing with second-order systems, some
damping control must also be provided to improve stability. Thus the control
torques will have to include a term that is dependent on the attitude rates to
be measured or estimated. The control torques to be activated are normally
a function of the attitude errors. The simplest torque control law is based on
the Euler angle errors. For a satellite with a diagonal inertia matrix and small
Euler angle rotations, the attitude dynamic equations can be approximated as
(Sidi, 2001):
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The Euler angles @, © and @ are defined as the rotational angles about the
satellite body axes: @ , about the X axis; O, about the Y axis; and ¢, about the
Z axis. The term w, represents the orbital angular velocity of the satellite.
T,'s are control moments to be used for controlling the attitude motion of the
satellite; and Ty's are those moments due to different disturbing environmental
phenomena. I, 1, and I, are the moments of inertia for the satellite body.
These are second order linear differential equations of the Euler angles. The
Laplace Transform of the Roll, Pitch and Yaw axes from Equal 1 are given by:
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The Euler angles and their derivatives with subscript O represent the initial
conditions of the satellite attitude about its equilibrium position. For the
INnoSAT, the initial angles for all axes ( @ (g, © (g), @ (0) are assumed to
be zero. Consequently, the transfer function of the InnoSAT model for Roll,
Pitch and Yaw axes equation are simplified as Equal 3:

_Tdy ch ] 2
6(5) = T + T + 0(0) S (3)

DESIGN SCHEME OF ADAPTIVE NEURO-CONTROLLER

In this research, the control torque will be generated from the Adaptive
Neuro_Controller (ANC). A neural network called the Hybrid Multi-Layered
Perceptron (HMLP) network has been selected as the basis for the ANC,
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whereas the Model Reference Adaptive Control (MRAC) has been chosen
to be the controller scheme. Meanwhile, a Weighted Recursive Least Square
(WRLS) algorithm is used as an adjustment mechanism to adjust the controller
parameters in order to improve the stability of the satellite model’s response.

Model Reference Adaptive Control System

Mashor (2007) proposed the Model Reference Adaptive Control (MRAC)
system as shown in Figure 2. In this MRAC, a reference model is chosen to
generate the desired output trajectory and to ensure the output of the controlled
system tracking the desired reference output. In order to achieve the desired
system performance in the sense of the closed-loop stability, adaptive laws
are used to update the controller parameter. A stable linear continuous-time
reference model is specified by the following differential equation (Mashor,
2007):

ym (t) = amlym (t _1) - amzym (t - 2) + bmlr(t _1) + mer(t - 2) (4)

wherer r (t) is the reference input and Ym (t) is the reference model output; a and
b are fixed model parameters and their values are chosen for any desired stable
response for which the controlled system is expected to acquire. The model
following error is defined by:

e(t) = Y (1) — ¥, (1) ©)

REFERENCE Vi (1)
. MODEL

ADJUSTMENT
MECHANISM
a(t) 60

L
ANC
CONTROLLER [ ——¥

r(t) .

Figure 2. Block Diagram of a Model Reference Adaptive Control System
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Hybrid Multi-Layered Perceptron Network

Cybenko (1989) and Funahashi (1989) have proved that the Multi-Layered
Perceptron (MLP) network with one hidden layer is sufficiently complete to
approximate any continuous function with reasonable accuracy. However,
the training process of the MLP takes a large computation time and often
leads to local minima problem. To reduce this problem, the MLP network
with linear connection, called the Hybrid Multi-Layered Perceptron (HMLP)
network was introduced which proved to have better performance than the
conventional MLP network (Mashor, 2000).

In this current study, a HMLP network with one hidden layer as shown in
Figure 3 has been selected as the basis for the ANC. The network allows
the inputs to be connected directly to the output nodes with some weighted
connections to form a linear system (dotted line connections) parallel with
the original non-linear system from the standard MLP model (continuous line
connection). These additional linear input connections do not significantly
increase the complexity of the MLP network since the connections are linear.
Since the parameters of the network appear linearly within the network model,
the simple RLS algorithm is used to train the network. In this paper, both
controllers have used the Weighted Recursive Least Square (WRLS) algorithm
as a mechanism to adjust the controller parameters.

The HMLP network with one hidden layer can be expressed by the following
equation:

j(t) = %W?F(%Wﬁvf’(t)+b}j+ S wivO (t) ©)
j=1 i=1 i=0

where Wl%-, sz and Wl-l f or 1 <j <n, denote the weights in the first layer,

weights in the second layer and weights of the extra linear connections between
the input and the output layers, respectively. Meanwhile, b]-1 and vio denote
the thresholds in the hidden nodes and the inputs that are supplied to the
input layer, respectively. The number of input nodes and hidden nodes are
represented by n; and n, respectively. F (.) is an activation function that is
normally selected as a sigmoid function:

1
F(v(t)= Tro® 7 @)
The weight Wl%- , sz and w! and the threshold, bj1 are unknowns and should

be selected to minimize the prediction error. They are defined as:
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&(t) = y(t) - (t) (8)

where y (t) and y (t) are the actual and the network outputs, respectively.

— — —» Additional connection

Figure 3. One Hidden Layer HMLP Network

Adjustment Mechanism

The least square algorithm is one of the most used parameter estimators.
Basically, this algorithm minimizes the cost function of the controlled output.
The corrective adjustment is designed to make the satellite output approach the
desired output. When applying to parameters or state estimation, the recursive
least square algorithm presents two advantages, which are: to avoid matrix
inversion in the presence of uncorrelated measurement errors, and needing
smaller matrix sizes which means less need of memory storage (Pardal,
Kuga & Moraes, 2009). In order to deal with parameters of varying plants, a
weighted recursive least square (WRLS) will be used. Some modifications are
required to enable the WRLS algorithm to estimate the controller parameters
instead of the conventional estimation of plant parameters.
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Forallt > to given @ (tp) and set P, (t) = a [ 1], the WRLS estimate & (t)
using the following recursive equations (Mashor, 2007):

O(t) = Ot -1) + K()]y(t) - " (1)0 1) ©)
K(t) = P(t—Do®)[ 201 + o Pt -] (10)
P(t) =1 - K)o ©)P(t-1)/2() (1)

Equation (9) needs to be modified to become:

O(t) = O(t —1) + K(t)e(t —1) (12)

where e is the difference between the plant output and the reference input.
p(t)is the information vector that consists of the controller inputs and @(t) is
the vector of controller parameters. Other symbols are defined and assigned
according to the standard WRLS algorithm that could be found in Astrom
(1995).

Another modification that is required to speed up the learning process is
resetting the covariant matrix P(t) and forgetting factor, A(t) if the model
following error becomes significantly large. The resetting is based on the
following equation:

P(t) =10[1]

13
A(t) =0.95 9

RESULTS AND DISCUSSIONS

In this section, the simulation results of the InnoSAT model are presented.
The simulation results were produced for the controllers using some operating
conditions such as varying gain, noise and disturbance. The performances of the
controllers were evaluated based on time response and tracking performance
in response to the model reference output. The InnoSAT characteristics and
initial conditions for active control are shown in Table 1.
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Table 1

InnoSAT Characteristics and Initial Conditions

Moment of inertia, I, 0.0327 kg-m?
Moment of inertia, I, 0.0498 kg-m?
Moment of inertia, I, 0.0330 kg-m?
Orbital rate, w, 0.01095 rad/s
Initial angular velocity, é)o (Roll) 5 deg

Initial angular velocity, 8, (Pitch) 5 deg

Initial angular velocity, ¢, (Yaw) 5 deg
Disturbance Torque, Ty, 5x10¢ N-m
Disturbance Torque, Ty, 5x10° N-m
Disturbance Torque, T, 5x10° N-m

The transfer function for roll, pitch and yaw axes after substituting the
parameter value of the InnoSAT become:

d(s) = 30.58T,, +30.58T,, +5/s°
0s) = 20.08T,, +20.08T,, +5/s (14)
() =30.21Ty, +30.21T,, +5/s

For this comparison, the InnoSAT model can be described by a different
equation of the discrete form:

X(t) = 2*x(t-1) - x(t—2) + K, (1) *15.29* (ug, (t -1 +ug (t-2))  (15)
+15.29* (Uy, (t —1) + Uy (t - 2))

y(t) =2*y(t-1) - y(t—2) + K, (t) *10.04* (ug, (t —1) + ug, (t - 2)) (16)
+10.04*(uy (t—1) +Ug, (t-2))
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2(t) = 2% 2(t-1) - 2(t - 2) + K , (t) *15.10* (ug, (t 1) + ug, (t - 2)) (17)
+15.10* (ug, (t —1) +ug, (t - 2))

where K, (t) is a varying gain u’s are the controller output and u,‘s(t) are
the constant disturbance torque. Meanwhile x(t),y(t) and z(t) are the
output from the InnoSAT model for the Roll, Pitch and Yaw axes. Model
reference has been selected as:

Yo (t) =Yy, ({t-1)-0.15y, (t—2)+0.15r(t -1) (18)

where r(t) is a square wave reference input signal. Parameter @, = 1, apy =
-0.15 and b, = 0.15 have been chosen such that a desired trajectory y,,(t) is
obtained for the plant output ¥, (t) to follow. The cost functions for the model
following has been set to:

e, (t) =0.7e(t) + 0.2Ae(t) (19)

where e(¢) is the proportional error and Ae(¢) is the differential error.

With the same number of input, hidden and output nodes, the HMLP network
will have extra weights that are equal to the number of input nodes. The
equation for calculating the number of weight can be referred to Mashor
(2000). For the comparison to be fair, the ANC based on the MLP network
with extra hidden node is also considered. Therefore, the HMLP network will
be assigned to have 3 hidden nodes whereas the MLP network with 5 hidden
nodes is also considered for comparison.

The HMLP network with 3 hidden nodes (HMLP) will have 35 weights, the
MLP network with 3 hidden nodes (MLP3) will have 27 weights and the MLP
with 5 hidden nodes (MLP5) will have 45 weights. Thus, in the comparison
of the ANCs the MLP network with 5 hidden nodes will have an extra weight
over the HMLP network with 3 hidden nodes.

The input reference for this simulation is a square wave and step input. Figure 4
shows the varying operating conditions such as the varying gain, measurement
noise and step disturbance that have been added into the system.
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Figure 4. Varying Operating Conditions

Table 2

The Analysis of ANC Step Response for Roll Axis

System Charateristics MLP3 MLP5 HMLP
Rise Time (Tr) 5.82 2.55 5.37
Delay Time 13.48 12.97 8.06
% Overshoot 23.44 17.07 6.67
% Undershoot 2.60 33.31 0
Settling Time (Ts) 39.84 47.73 32.97
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Table 3

The Analysis of ANC Step Response for Pitch Axis

System Characteristics MLP3 MLP5 HMLP

Rise Time (Tr) 4.21 2.95 4.81

Delay Time 12.41 14.15 7.76

% Overshoot 25.80 72.79 14.43

% Undershoot 4.66 25.72 0

Settling Time (Ts) 56.81 43.72 36.80
Table 4

The Analysis of ANC Step Response for Yaw Axis

System Characteristics MLP3 MLP5 HMLP
Rise Time (Tr) 5.86 2.58 5.30
Delay Time 13.52 13.00 8.03
% Overshoot 24.37 16.53 7.18
% Undershoot 2.57 32.96 0
Settling Time (Ts) 30.37 36.90 32.74

Performances of the ANC controllers are computed and compared in Table 2
to Table 4 for Roll (X), Pitch (Y) and Yaw (Z) axes. Figure 5 illustrates the
step response of the controllers while Figure 6 shows the output response with
square wave input. The analysis indicates that the HMLP controller produced
better results for all the axes where the percentage of overshoot, settling time
and percentage of undershoot are significantly less compared to the other
MLP controllers. Only in terms of rise time, the MLP controller with 5 hidden
nodes produced a better rise time for all the axes but the responses had delays
and more than 25% undershoots.

Here, the delay time for Roll, Pitch and Yaw axes are 12.97s, 14.15s and
13.00s, respectively. In other words, the HMLP still provides a faster response
without a delay or undershoot. On the other hand, the output response of the
MLP controllers has a longer settling time and the percentage of overshoot is
more than 25% for the Pitch axis.
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Output Response of Three Axes HMLP vs MLP controller
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Figure 5. Step Response of HMLP and MLP Controllers for Unity Gain

By referring to Figure 5 and 6, the output response at unity gain for all the
axes shows that the ANC controllers can track smoothly the model reference.
However, the MLP controllers have delay time and undershoot which make it

take more time to converge.
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Output Response of Three Axes HMLP vs MLP controller
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Figure 6. Output Response of ANC’s Controller with Unity Gain
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Figure 7. Output Response of ANC’s Controller with Varying Gain

Figure 7 shows the output response of the ANC controllers at varying gain

where the HMLP controller asymptotically follows the desired response at

the high gain but degrades with small oscillations at the low gain. Meanwhile,

the output response of the MLP controllers is even worse especially for the

Pitch axis where it has divergence output response.
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Output Response of Three Axes HMLP vs MLP controller
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Figure 8. Output Response of ANC’s Controller with Measurement Noise

Figure 8 shows the system is subjected to measurement noise known as
Gaussian white noise sequence with zero mean and a variance of 0.00013. It
is rather difficult to distinguish the performance between the HMLP and the
MLP controllers in these figures. This is because the plots show that the MLP
controllers can produce results that are as good as the HMLP controller. For
the Roll and Pitch axes, the output response of the HMLP is slightly better
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than the MLP controllers but the response for the Yaw axes are degraded. It
also can be observed that the simulation results for the HMLP and the MLP
controllers are capable of following the output of the reference model and
remain stable under measurement noise.
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Figure 9 (a). Output Response of ANC’s Controller with Step Disturbance
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Output Response of Three Axes HMLP vs MLP controller
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Figure 9 (b). After They Have Been Zoomed

Figure 9 (a) and (b) show the response of the system when a step disturbance
with a strength of 0.05 has been introduced between 300s and 600s. The
output response from the HMLP controller for all the axes is better than the
output response from the MLP controllers due to its ability to converge in a

shorter time after disturbance. Meanwhile, the MLP controllers have unstable

output response for the Roll and Yaw axes. From the simulation result, it can
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be said that the ANC based on the HMLP network can improve the efficiency
of attitude stabilization better than the ANC controllers based on the standard
MLP network.

CONCLUSIONS

Based on the above analyses, the simulation results of the ANC based on
the HMLP network and the ANC based on the standard MLP network are
compared for satellite attitude control of the InnoSAT model. The comparison
is based on the capability of the controlled output tracking the model reference
output and also in terms of time response analysis. Here, the simulated data has
used for the comparison. From Table 2 to Table 4, it can be observed that the
performance of the HMLP controller has been significantly improved than the
MLP controllers in terms of percentage of overshoot, percentage of undershoot
and settling time. The simulation results signify that the HMLP controller is
sufficient to control the satellite attitude with unpredictable conditions and
disturbances. In addition, it has been shown that the ANC based on the HMLP
network provide better tracking and is more stable compared to the standard
MLP network with more hidden nodes.
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