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ABSTRACT

The allocation of workload to a network of computers is 
investigated. A new workload allocation model based on 
Generalized Exponential (GE) distribution is proposed for user-
level performance measures. The criterion used for effective 
workload allocation is the one that minimizes the expected 
response time in systems to which jobs are routed. A closed-
loop expression for workload arrival to minimize systems means 
queue length and response time are derived using the optimization 
technique. Results are presented with numerical examples and 
sensitivity analysis with respect to changes of total workload. 
Results are verified using the simulation technique. 

Keywords: Workload allocation, Multi server queuing system, Optimization, 
Generalized exponential distribution.

INTRODUCTION

Recently process improvement has been given a lot of attention. Since 
then many modelling techniques and tools have been used to support the 
effort. However most of the currently available tools use static models 
such as diagrams to model such processes. Some are quite dynamic where 
the functional aspects of the process have been modelled using simulation. 
Furthermore feedback to the designer concerning process functional and 
alternative design option should be done at early the process design. At this 
stage, analytical modelling provides quantitative properties, whereby these will 
provide the global indication of the expected performance. In the final stage, 
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more accurate predictions may be required to fine-tune the designs; therefore, 
the analytical modelling proposed here is at the highest abstraction level of the 
process design, i.e. to get the initial idea on the process performance. 

In this paper, we stress the quantitative measures of the processes in a network 
of computers to those of the concurrent discrete-event system. Based on this, 
we show that by using quantitative modelling, arrival to computers can be 
reallocated to get optimal performance measures. We focus on the issue of job 
allocation in a network of computers where different computers have different 
job processing times. The optimization criterion studied here is to minimize 
the expected job-response time in the systems to which jobs are allocated. 
Jobs arrive at a scheduler that allocates jobs to the computers according to a 
pre-calculated arrival rate using the optimization method.
 

RELATED WORK

The problem of workload allocation is common to a variety of communication 
systems especially when it involves a network of computers. Workload 
allocation seeks to allocate job arrival among computers as evenly as possible. 
In a parallel setting, where jobs may have many possible paths at the job’s 
scheduler, the job allocation problem is of interest. For each job entering the 
scheduler, a path is assigned to optimize the allocation of workload. Many 
studies considered developing a closed-loop expression for service rate  (Hsiao 
& Lazar, 1990; Harrison & Patel, 2000; Gunther, 2000), and studies concerned 
with optimizing the allocation based on the total arrival rate at the service 
centers are quite recent (Rahim & Ku-Mahamud, 2006; 2008). For networks 
of computers, the workload-allocation problem is of particular interest, since 
there are several ways to affect the distribution of workload among computers. 
In general, network traffic is assumed exponentially distributed (Gelenbe & 
Mitrani, 1980; Bennani & Menasc´e, 2005). The general exponential (GE) 
distributions for traffic arrival and service time have been considered (Rahim 
& Ku-Mahamud, 2002; 2006; 2008; 2010), as these types of distribution 
posses flexible parameters.

Queueing network models have been recognized as powerful tools for 
evaluating the performance of computer systems (Allen, 1990; Smith & 
Williams, 2001) and the communication network (Lazar, 1982; Koavatsos & 
Othman, 1989a; 1989b; Koole, 1999; Boxma, 1995). These analytical models 
have become very important tools for predicting the behaviour of new designs 
or proposed changes to existing systems (Koavatsos, 1985; Menasce & 
Almeida, 2000; Urgaonkar, Pacifici, Shenoy, Spreitzer & Tantawi, 2005). Most 
queueing network models are used either by making assumptions to assure 
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exact numerical solution or by employing approximate methods (Kobayashi, 
1974; Lazar, 1983; Koavatsos & Othman, 1989b). The control of arrivals to 
a network of queues with the objective of maximizing throughput subject 
to a response-time constraint has been considered (Kleinrock, 1975; Ross 
& Yao, 1991; Combe & Boxma, 1991; Hsiao & Lazar, 1991). A throughput 
time-delay function based on an optimality criterion has been developed 
(Kleinrock, 1975; Hsiao & Lazar, 1991) where the arrival that maximizes the 
throughput under the constraint of the average response time will not exceed 
a preassigned value. Then Ku-Mahamud, (1993) continued with the problem 
of random routing. All these literature have been devoted to the probabilistic 
analysis of the queueing system; their optimization is somewhat lagging 
behind. Only recently, optimization problems related to the network of queues 
have been studied for instance by Lazar (1981; 1984), Tantawi and Towsley 
(1985), Harrison and Patel (1992), Koole (1999), Liu (1999), Jongh (2002), 
Srikant (2004), Felegyhazi and Hubaux (2006), and Rahim, Ibrahim, Syed 
Yahaya and Khalid (2010). Most of the studies focus on reducing the amount 
of waiting time in a system with several servers either parallel or serial. 
However none of the studies consider the impact of jobs inter-arrival and 
service-time variation (CV’s) in modelling the systems performance. Without 
considering the effect of variation in measuring, systems performance may 
lead to inaccurate results. This has somehow motivated this study, that is, 
to develop a predictive analytical model which can optimize the systems 
performance and consider data variation.

MULTISERVER QUEUEING SYSTEM MODEL

When several users compete for the use of a common resource, the limited 
capacity of the resource can give rise to congestion, hence queueing is a 
common phenomena. Queueing occurs normally when the demand exceeds 
the service capacity of the resource and even when the otherwise occurs. This 
is due to the fact that the inter-arrival times of the users, and their required 
service times, are generally not fixed; therefore, a mathematical model of 
congestion phenomena represents the inter-arrival and the service-times of the 
users by random variables. The Queueing Theory is devoted to the description, 
analysis and optimization of such a queueing system (Lazar, 1981). It focuses 
on a few key performance measures, like queue lengths and waiting times. 
Due to the stochastic nature of the arrival and service processes, and of the 
routing process of jobs through a network of queues, the main performance 
measures are also random variables. With this in mind we use the multiple-
queue multiple server model to represent a central job routing system which 
is shown in Figure 1.
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In using this model, hardware resources are represented by service centers 
at which jobs queue and compete for service. The workload is modelled as a 
single stream of jobs (file request), with total arrival φ . Each newly-arrived job, 
is assigned to computer i according to a new arrival rate iλ  which is a fraction 
of the total arrivals. We consider the set of computers to be heterogeneous as 
this is common in real systems and also it can be generalized to homogeneous 
servers. In the context of general queueing network models, the generalized 
exponential (GE) distributional model is of the form;

           	
							                (1)

Where μ is the mean service rate, C is the coefficient of variation and u0 (t) is 
the unit impulse function, which has been used to represent the inter-arrival 
and service-time distributions. This model is robust and versatile due to it 
memoryless properties and has been shown to maximize the entropy function 
subject to mean value constraints. Furthermore it can be shown that the exact 
mean number of jobs in the GE/GE/1 queue as given by Liu (1999): 

                                                         (2)
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sCaC  are the squared coefficients of variation for the inter-arrival and 

service-time distributions (CV’s) respectively. This means the queue length 
function will be used as an objective in the optimization model.
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OPTIMIZATION MODEL USING GENERALIZED 
EXPONENTIAL (GE) DISTRIBUTION

In this section, a workload allocation model for the GE type distribution system 
is proposed. In this case, an optimization problem of the queueing system can 
be generalized to a number of arrival and service distributions by configuring 
the value of coefficient of variation for inter-arrival and service time. 

We formulated an optimization problem of the N GE/GE/1 queueing system 
as below:
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When 1aiC and 1siC  the GE workload expression is reduced to the N-M/M/1 model. Di is the cost 
associated with having one job in queue and for simplicity we assign the value of 1. 
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When 1aiC and 1siC  the GE workload expression is reduced to the N-M/M/1 model. Di is the cost 
associated with having one job in queue and for simplicity we assign the value of 1. 
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When 1aiC and 1siC  the GE workload expression is reduced to the N-M/M/1 model. Di is the cost 
associated with having one job in queue and for simplicity we assign the value of 1. 
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When 1aiC and 1siC  the GE workload expression is reduced to the N-M/M/1 model. Di is the cost 
associated with having one job in queue and for simplicity we assign the value of 1. 
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Response Time 
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Figure 2. Performance Improvement 
of Mean Queue Length Simulation 
Result   

Figure 3. Analytical Versus for a 
Dual GE/GE/Queuing System
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Table  2

Results of the Classical and Proposed Approaches of 2-GE/GE/1 Queuing 
System

Classical Proposed Classical Proposed

λ1 λ2 λ1 λ2 L W L W

1.6 2.1   1.465  2.235  0.906  0.245 0.897 0.212
1.8 2.4   1.698  2.502  1.14  0.27 1.132 0.253
2.0 2.7   1.931  2.769  1.455  0.31 1.449 0.298
2.2 2.9   2.117  2.983  1.82  0.357 1.805 0.342
2.4 3.2   2.35  3.25  2.52  0.45 2.507 0.446
2.6 3.4   2.536  3.464  3.599  0.6 3.539 0.598

Further analysis for sample cases of a number of computers, }6,5,4,3{=N , are 
shown below.

A sample of parameters for three queueing system.
  

A sample of parameters for four queueing system.
  

Figure 5. Performance Improvement 
of Mean Response Time for a Dual 
GE/GE/1 Queueing System

Figure 6. Performance Improvement 
of Mean Queue Length
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A sample of parameters for five queueing system.
 

A sample of parameters for six queueing system.
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time have improved for a network of more than 3 computers. However this 
study requires more number of computers for results generalization. The 
improvement in the system’s performance can be seen in Figures 2, 5, 6, and 
8. From the result, we can conclude that the optimal arrival rate improved 
the queue’s performance by reducing the mean number of jobs and the mean 
response time in the system. One factor to note here is the performance 
improvement is achieved by increasing the rate of arrival to task with a higher 
service rate and reducing the rate of arrival to task with a lower service rate. 
Simulation models were developed to validate the proposed analytical results. 
Similar generic data as used in the proposed analytical model was used in 
the simulation for model validation. The simulation results were obtained 
from the simulation models run at 500 replications using ARENA. The results 
of the proposed model were compared with the results from the simulation, 
which are depicted in Figures 3, 4, 7 and 9. 

CONCLUSION

In this paper, a new optimization model of allocating arrivals to a network of 
computers on Generalized Exponential arrival and service-time distribution 
has been proposed. A closed loop-expression to obtain the routing rate was 
constructed. An analytical model and simulation approaches were used to show 
that the classical queueing allocation of total arrivals among parallel systems 
with the same utilization rate does not provide an efficient performance result. 
A sample of results for up to six computers is shown to view the improvement. 
The GE distribution has been used as it could represent exponential and other 
general distributions. There are several directions to extend the applicability 
of this allocation model such as different performance objective functions, 
other arrival and service distribution and arrival with different types of jobs. 
These examples would involve interesting mathematical problems and could 
be the subject of future research.

REFERENCES

Allen, A. (1990). Probability, statistics, and queuing theory with computer 
science applications (2nd ed.). San Diego: Academic Press.

Bennani, M. N., & Menasc´e, D. A. (2005). Resource allocation for autonomic 
data centers using   analytic performance models.  IEEE, International 
Conference on Autonomic Computing, 229–240.

Boxma, O. (1995). Static optimization of queuing systems. CWI Report. 
BS-R 9302.



11

Journal of ICT, 10, pp: 1–13

Harrison, P., & Patel, N. (1992), Performance modeling of communication 
networks and computer architectures. Addison-Wesley.

Felegyhazi, M., & Hubaux, J. (2006), Game theory in wireless networks: A 
tutorial. Technical Report LCA-REPORT-2006-002. EPFL Switzerland.

Gelenbe, E., & Mitrani, I. (1980). Analysis and synthesis of computer systems: 
London: Academic Press.

Gunther, N. (2000). The practical performance analyst. McGraw-Hill.

Hsiao, M., & Lazar, A. (1991). Optimal decentralized flow control of 
Markovian queuing networks with multiple controllers. Performance 
Evaluation, 13(3),181–204.

 Hsiao, M., & Lazar, A. (1990). Optimal flow control of multiclass queuing 
networks with partial information. IEEE Transaction on Automatic 
Control, 35(7), 855–860.

Jongh, J. (1999). Share scheduling in distributed system (Unpublished doctoral 
dissertation). Netherland: University of Technische.

Kleinrock, L. (1975). Queuing systems volume 1: Theory. John Wiley.

Kobayashi, H. (1974). Application of the diffusion approximation to queuing 
networks I: Equilibrium queue distributions. Journal of the Association 
for Computing Machinery, 21(2), 316–328.

Koole, G. (1999). On the static assignment to parallel servers. IEEE 
Transactions on Automatic Control, 44, 1588–1592.

Kouvatsos, D., & Othman, A. (1989a). Optimal flow control of end-to-end 
packet switched network with random routing. IEE Proceedings-
Computers and Digital Techniques, 136(2), 90–100.

Kouvatsos, D., & Othman, A. (1989b). Optimal flow control of a G/G/1 queue. 
International Journal of Systems Science, 20 (2), 251–265.

Kouvatsos, D. (1985). A maximum entrophy queue length distribution for a 
G/G/1  finite capacity queue.  Journal of ACM, 224–236.

Menascé, D. & Almeida, V. (2000). Scaling for e-business. Prentice Hall.



Journal of ICT, 10, pp: 1–13

12

Ku-Mahamud, K. (1993). Analysis and decentralized optimal flow control of 
heterogeneous computer communication network models (Unpublished 
doctoral dissertation). Universiti Pertanian Malaysia.

Lazar, A. (1982).  Centralized optimal control of a Jacksonian network. 
Proceedings of the 16th Annual Conference on Information Sciences 
and Systems, 316–324.

Lazar, A. (1981). Optimal control of an M/M/1 queue. In Proceedings. 
19th Allerton Conference on Communication, Control and Computing, 
279–289.

Lazar, A. (1984). Optimal control of an M/M/m queue. Journal of the 
Association for Computing Machinery, 31, 86–98.

Lazar, A. (1983).  The throughput time delay function of an M/M/1 queue. 
IEEE Transaction on Information Theory, 6, 1001–1007.

Liu, J. (1999)  A multilevel load balancing algorithm in a distributed  
system. Proceedings of the 19th Annual Conference on Computer 
Science, 35–142.

Rahim, R., Ku-Mahamud, K. R., & Othman, A. T. (2002). Performance 
modeling of e-procurement workflow using generalised stochastic 
petri net (GSPN). The Journal of Information and Communication 
Technology,  1(1), 55–68.

Rahim, R., & Ku-Mahamud, K. R. (2006). Analytical modeling and analysis 
of workload allocation in a network of service centers. Jurnal Teknologi 
Maklumat dan Multimedia, 3(1), 17–26.

Rahim, R., & Ku-Mahamud, K. R. (2008). Optimal workload allocation in a 
network of computers with single class job.  Journal of Modern Applied 
Science, 2(2) 101–107.

Rahim, R., Ibrahim, H., Syed Yahaya, S. S., & Khalid, K. (2010). Measurement 
and analysis of web portal’s performance: A case study in UUM.  
Journal of Quality Measurement and Analysis, 6(2),17–22.

Srikant, R. (2004).  The mathematics of internet congestion control.  Birkhouser.

Tantawi, A., & Towsley, D. (1985). Optimal static load balancing in distributed 
computer systems, Journal ACM, 32( 2), 445–465.



13

Journal of ICT, 10, pp: 1–13

Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M., & Tantawi, A. (2005). 
An analytical model for multi-tier internet services and its application. 
In Proceeding of the ACMSIFMETRICS’2005.




