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ABSTRACT

Energy consumption planning of an area is very important. It is 
essential to accurately predict the amount of short-term power required 
by an area using a highly effective prediction technique. The real-
value-genetics-algorithm (RVGA) is the most effective technique that 
is currently used. However, the RVGA has some drawbacks, including 
the fact that it gets caught in premature convergence even when the 
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search is performed over long iterations. This study proposes a hybrid 
prediction algorithm which comprises the RVGA and the extended-
Nelder-Mead (ENM) algorithm. The ENM was implemented to speed 
up the search for the best among all solutions produced by the RVGA. 
The RVGA was configured to run under small iterations, and the 
ENM was used to achieve convergence. Experiments were performed 
on historical datasets containing the monthly electricity demand of 
the Gorontalo area, a region in Indonesia. The performance of the 
hybrid algorithm was compared to the hybrid Genetic Algorithm-
Particle Swarm Optimisation (GA-PSO) and Real Coded-Genetic 
Algorithm (RC-GA) energy demand models based on the mean-
absolute-percentage-error (MAPE), mean-square-error (MSE), root-
mean-square-error (RMSE), and mean-absolute-deviation (MAD) 
error rates.  The results showed that the proposed hybrid algorithm’s 
MAPE, MSE, RMSE, and MAD errors were 2.95 percent, 0.13 
percent, 0.36 percent and 1.29 percent, respectively. Based on the 
accuracy measure obtained from this study, it implies that the RVGA-
ENM hybrid is the best model for forecasting monthly electricity 
demand.

Keywords: Short term power planning, energy demand prediction, 
convergence speed, prediction accuracy, exploration and exploitation.

INTRODUCTION

Accurate demand prediction is essential when it comes to national 
energy planning. However, while the existing model assigned with 
the task of predicting energy demands could only accurately predict 
projected long-term demand under different scenarios, there has been 
an issue of low predictive accuracy and performance with short-term 
demand predictions (Cascone et al., 2023; Li-Siwei et al., 2023). In 
addition, the non-iterative structure of the algorithm used in building 
the existing model significantly affects its predictive accuracy. Larger 
datasets have been commonly used by previous researchers (Aslam et 
al., 2021; Gao et al., 2020; Jiang et al., 2020; Johannesen et al., 2019). 
Various studies have been conducted using different scenarios to 
forecast future energy demand based on the analysis carried out with 
these datasets, thus making the predictions of long-term demand quite 
accurate (Huang et al., 2018; Tan et al., 2019; Ugwu et al., 2022). 
However, it is also necessary to predict the demand of regions in the 
short term on a daily or monthly basis (Kartikasari et al., 2018; Li-Ke 
et al., 2023).
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Several approaches using artificial intelligence-based methods have 
been applied to address energy demand forecasting (Boriratrit et al., 
2022; Casteleiro-Roca et al., 2019; Huang et al., 2018; Kazemzadeh 
et al., 2020). These methods can be classified into two, namely, single 
algorithm and hybrid algorithm methods. A predictive model built 
using a single algorithm has some disadvantages, which affect the 
model’s performance. These disadvantages include the stagnation 
of incorrect solutions when the search approaches the global 
optimum, low convergence, and high computational cost (Deepa & 
Venkataraman, 2021; Fernandes et al., 2022; Yadav et al., 2022). Most 
energy demand-predicting models that use evolutionary algorithms 
cannot obtain good results because of these problems (Satrio et al., 
2019; Xu et al., 2021; Zhou et al., 2020).

Forecasting with genetic algorithms (GA) using linear and non-linear 
equations was carried out in research conducted by Peng and Xiang 
(2020), Taghavi et al. (2019), and Yun et al. (2021). These equations 
are used for optimisation of complex problems that have many 
variables. Meanwhile, the performance of the optimised GA remains 
low, and this is due to the large number of iterations, longer running 
time, high computational cost, and high prediction error (Kim & Kim, 
2023; Lu et al., 2023). Implementing GA alone is usually inadequate, 
especially in the face of complex problems with many obstacles. The 
biggest limitation of genetic algorithms is that they cannot achieve a 
global optimum like heuristic methods and their optimisation time is 
long (Long et al., 2023; Yusran et al., 2020).

The combination of GA with another heuristic method can potentially 
increase the model’s ability to achieve global optimal solutions. 
Hybrid methods consisting of GA and other optimisation algorithms 
can significantly improve the results, making them better than single 
algorithms (Boonyopakorn & Meesad, 2017; Chen et al., 2023; Long 
et al., 2023; Omar et al., 2018). Furthermore, the GA is already being 
widely used to tackle global optimisation problems (Elaziz et al., 
2023; Houssein et al., 2023). When used for parameter optimisation, 
the algorithm mostly explored solutions globally that need to be 
exploited to achieve convergence. This exploration process takes a 
long time and requires many iterations, resulting in lost opportunities 
to achieve convergence, and sometimes even being trapped in 
premature convergence (Goldanloo & Gharehchopogh, 2022; Naqvi 
& Shad, 2021; Rizal & Suyanto, 2020; Xi et al., 2019).
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In this study, GA and ENM algorithms were hybridised to develop the 
hybrid GA-ENM energy demand forecasting algorithm. This study 
uses the GA-ENM algorithm to solve the short-term energy prediction 
problem. The GA is used to exploit the parameters in short iterations 
without requiring the achievement of a convergent solution, while the 
ENM algorithm is used to optimise the parameters by exploring the 
results obtained from the GA. The following section presents several 
models that are related to the proposed hybrid GA-ENM algorithm (in 
the third section). This is followed by a discussion of the experimental 
results. The last section highlights the conclusion and future work.

RELATED WORKS

This section describes the work done to forecast monthly electricity 
demand in several areas, along with a number of exemplary studies 
(Krstev et al., 2023; Li-Siwei et al., 2023; Neshat et al., 2021; 
Tarmanini et al., 2023). In decision-making, the role of short-term 
electricity load demand prediction is crucial. A study by Li-Siwei 
et al. (2023) developed a hybrid method that uses support vector 
machine search and manta ray search to optimise parameters in short-
term load forecasting. The performance of hybridisation techniques in 
their research was explored through case studies examining various 
statistical indicators based on real-world data. The results of the 
hybridisation technique proved superior to the single method. 

The search for the best parameters’ values to produce the optimal 
solution was conducted in a study by Muthana and Ku-Mahamud 
(2023). This study has successfully used the Pareto Ant Colony System 
to find a solution to the scheduling problem in generator maintenance. 
The search for the best parameter values was also carried out in 
research by Nasir et al. (2019), where it was shown that the values 
are in a certain range. The best value of each parameter from the 
experimental results were used for energy consumption, latency and 
throughput. The results of their research were adopted for the packet 
routing process in achieving optimal performance.

A hybridisation technique was performed by Tarmanini et al. (2023), 
by combining Auto-Regressive Integrated Moving Average (ARIMA) 
and Artificial Neural Network (ANN) to predict electricity demand. 
The results show that the ARIMA+ANN hybridisation technique is 
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better than ARIMA alone for non-linear load data. Krstev et al. (2023) 
looked at ANN as a machine learning technique to achieve the model 
with the best prediction results. They found that ANN, as a machine 
learning technique, predicts medium-term power consumption more 
accurately than traditional time series techniques. Neshat et al. (2021) 
proposed a hybridisation technique between Nelder-Mead (N-M) and 
other heuristics to predict electricity load. They combined Greedy 
N-M with Local Adaptive Randomisation. The results show that 
their hybridisation technique can improve the hyperparameter tuning 
performance of the prediction model.

In our proposed method, energy demand prediction is performed after 
the best parameters are obtained from the improved N-M process. This 
hybridisation technique combines GA and Enhanced N-M (ENM) 
to calculate energy requirements. These types of proposed hybrid 
energy demand algorithms incorporate linear, exponential, and mixed 
models, such as those in (Huang et al., 2018; Piltan et al., 2012). The 
relationship between electrical energy demand and other variables is 
expressed by mathematical equations, as shown in Equations 1 and 
2. The energy model in Equations 1 and 2 by Piltan et al. (2012), 
were used for comparison. These models are used during the training 
and testing of the proposed hybrid energy demand algorithm.            
 
    

                                                                                                     (1)
                                                                                                  

                             
                                                                                 (2)

                 

where,    
 yl ,  ye are electricity demand models in linear, and exponential 
forms.  
Xi  is the factor affecting the i-th electricity demand. N  is the 
number of electricity demand. 
Wi  is the corresponding weights.  

The proposed hybrid energy demand algorithm is expressed in 
Equations 3 and 4.
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log_ yt  =   w0 + w1  ln X1 + w2 ln X2  + w3 ln X3 + w4 ln X4 + w5 ln X5        (4)

where,
             ym  is RVGA-ENM1 mixed model
            log-yt is RVGA-ENM2 linear logarithmic model 
            wi  is independent variable parameter
            Xn  is electricity demand at time n.

The following mathematical equation explains the relationship 
between the proposed energy demand algorithm and the objective 
function. The mathematical model of the energy demand algorithm 
is expressed in the form of a function that is calculated in the process 
of training and testing stages. The best parameters are used to find 
the error that occurs between actual data and simulation results 
(predictions). The objective function of the prediction model (S) 
referring to Equations 3 and 4 is to minimise the squared error, as in 
Equations 5 and 6.
                                                                                                                                                      

                
                                          (5)

               
(6)

where,
S1  =  sum of squared errors by RVGA-ENM1,  
S2  =  sum of squared errors by RVGA-ENM2

y  =  actual electricity demand at time t,  
ym =  simulated (predicted) value of electricity demand by            

     RVGA-ENM1,    
log_yt =  simulated (predicted) value of electricity demand by    

     RVGA-ENM2, 
k,n  =  valid prediction duration.

The relationship between the proposed hybrid energy demand 
algorithm and the objective function is expressed in Equations 7 and 8.

yt = ym                                                                       (7)

yt = log-yt                                                         (8)
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where,
ym  =  simulated (predicted) value of electricity demand by   

 RVGA-ENM1, 
log-yt =  simulated (predicted) value of electricity demand by   

 RVGA-ENM2

The evaluation steps are focused on the demands of the application. 
Furthermore, the objective function (minimum error) in this study 
measures mean-absolute-percentage-error (MAPE), and other 
indicators such as mean-square-error (MSE), root-mean-square-error 
(RMSE), and mean-absolute-deviation (MAD). These errors are 
calculated as in Equations 9, 10, 11, and 12.

                        n
                              ∑  | (yi - yi’)2 / yi

  |
      i=1
    MAPE = _________________           (9)

                               n 
 
                                                                                                        
                    

 
        
  

(11)

      

           
                                                                                                        (12) 
   
where,
       yi  = actual value of electricity demand,   
     yi’  = predicted value of electricity demand
       n   = number  of observations

THE HYBRID PREDICTION ALGORITHM

The flowchart depicted in Figure 1 represents the hybrid RVGA-ENM 
energy demand algorithm. This algorithm consists of two main parts, 
i.e., the RVGA followed by the ENM algorithm.
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Figure 1

RVGA-ENM Energy Demand Algorithm

RVGA is performed to find the optimal solution. It starts by initialising 
several parameters including population size, maximum number of 
generations, mutation and crossover rates, and number of bits. These 
are the parameters of the objective function. This is followed by 
fitness computation which is done by mimicking the natural fitness 
principles of living things. This principle translates into the notion of 
keeping the high-fitness chromosomes necessary to produce a new 
generation with a greater chance of survival. A selection process is 

     

RVGA is performed to find the optimal solution. It starts by initialising 
several parameters including population size, maximum number of 
generations, mutation and crossover rates, and number of bits. These 
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computation which is done by mimicking the natural fitness principles 
of living things. This principle translates into the notion of keeping the 
high-fitness chromosomes necessary to produce a new generation with 
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then performed to rank the chromosomes in a hierarchy based on their 
objective function values (for error minimisation problems). After 
that, only the best-ranked chromosomes are kept, while the rest are 
discarded to make room for a new generation.

The highest- ranked chromosomes are stored and converted from real 
value to binary form prior to crossover and mutation processes. The 
crossover and mutation processes are carried out after the selection 
process. In the crossover process, the descent solution will be produced 
first. Each individual in the proposed hybrid algorithm uses a 40-bit 
uniform crossover and the genes between these crossover points are 
exchanged after they have been randomly selected. In addition, two 
parents that will contribute genes at each position in extreme cases 
are selected randomly from points. No new information is introduced 
at this point since the introduction of new genetic materials solely 
depends on the mutation. The mutation operator introduces variability 
by altering some of its genes to randomly select chromosomes. 

The frequency of next-generation mutated parameters varies depending 
on the method used. Furthermore, these genes are transferred from the 
parent to the next generation via different combinations. The blending 
method finds ways to solve this problem by combining genes from 
the parents to form new offspring genes. The number of genes in a 
uniform mutation is determined by the mutation’s rate (µM), after 
which each randomly selected gene has an equal opportunity to 
process the mutation. Here, the genetic sequence will change from its 
original state randomly and this is important because it helps prevent 
premature convergence of bad solutions. For this, some random parts 
of the genetic sequence will be inverted from 0 to 1 and vice versa.

The convergence assessment process is for checking whether the 
termination criteria have been met. The process halts either when 
an optimum solution is found (convergent) or when the maximum 
iteration has finished execution. This iteration value can be configured 
to initialise at the beginning of the process. However, convergence 
can be achieved when the algorithm finds the required solution value. 
The search for the required value, for a couple of reasons, could fail. 
These reasons include: (i) when it is trapped in a local optimum and 
stagnant at an approximate value even though the iteration of the 
search process is undertaken continuously, (ii) when the data are not 
properly normalised, leading to an increase in deviations between 
the data points and, thus, causing the prediction system to respond 
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abnormally. The best value of the optimal solution produced by the 
crossover and mutation processes is converted, again, from the binary 
form to the real form as the new generation.

The new generation chromosomes are produced upon completion 
of the RVGA algorithm. However, the best generation could not 
be obtained after this process because of the uncertainty of which 
generation was better in both the previous and the new. According to 
the configurations, the RVGA will end if any of these two options are 
met. First, when the value of the objective function is smaller than 
that of the threshold set before it, this only happens when the RVGA 
reaches an optimal solution. Second, when the RVGA has executed 
the total predetermined maximum iteration, this only occurs when the 
algorithm cannot find an optimal solution. Accordingly, all the best 
solutions predicted by the RVGA are reported back to the local search 
process in ENM.

The proposed hybrid algorithm continues with the ENM algorithm 
which starts by setting up an initial simplex (Barati, 2011). As 
aforementioned, the best RVGA solution (x0) is the initial solution 
for ENM. The ENM method begins with a triangle with three vertices: 
the smallest is the best (B), the second smallest is good (G), and the 
greatest is the worst (W). The method tries to reduce the triangle until 
the minimum is reached. The ENM algorithm rescales the (x0) using 
reflection, expansion, contraction, and shrinkage (see Figure 1). In 
some cases, GA does not carry out its job properly, and this is because 
its population is based on meta-heuristics (Lian et al., 2009). A hybrid 
system consisting of two mechanisms is introduced to solve this 
problem.

One mechanism (i.e., RVGA) combines local search with a genetic 
algorithm to find solutions based on objective functions, while the 
other (i.e., ENM) selects the best solution from all the solutions 
made available by the first. Accordingly, to improve the unoptimised 
RVGA results, the ENM local search phase was established. In the 
proposed mechanism, the best-unoptimised solution provided by 
the RVGA operation (x0) was selected as the initial solution for the 
ENM. To supplement non-optimal RVGA results, a local ENM search 
phase is introduced. This phase is required to aid with a convergence 
that the RVGA is unable to achieve. The processes involved in this 
phase include initialising a simplex (x0), selecting an additional 
vertex, approximating gradients, calculating the new reflected vertex, 
calculating the newly expanded vertex, and checking convergence. 



    35      

Journal of ICT, 23, No. 1 (January) 2024, pp: 25-47

Furthermore, in the local search process, the individual fitness update 
process is undertaken in an iteration by successively replacing the 
current obtained solution with the next best solution in the solutions 
environment until convergence is reached. The process only 
terminates when no better solution is found in the environment. The 
algorithm’s performance can be improved by optimising parameters 
through simultaneous exploration and exploitation. Exploration and 
exploitation issues to optimise the predictive model’s parameters 
should occur simultaneously during the occurrence of local 
convergence as they are important and mutually influencing, thus 
affecting the system’s accuracy (Ali et al., 2021; Liu et al., 2019).

EVALUATION AND RESULTS

Monthly regional energy demand datasets from 2012 to 2017 in the 
Gorontalo region in Indonesia were used to evaluate the performance 
of the proposed algorithm (see Table 1). In total, there are 72 monthly 
data and, during the experiment, 76% of the data is used for training 
and the remaining 24% is used for testing. We used Matlab tools to 
run the experiments.

Table 1
 
Monthly Electricity Demand (GWh) From January 2012 to December 
2017 Gorontalo Region

2012 2013 2014 2015 2016 2017
January 19.502 24.085 28.584 31.632 33.690 35.046
February 14.694 22.082 28.198 29.747 35.872 34.618
March 21.120 24.322 27.726 33.173 36.798 36.976
April 19.927 22.854 27.525 33.556 37.323 37.772
May 22.735 23.570 33.891 33.418 38.076 38.970
June 18.817 24.509 31.692 34.603 37.138 36.600
July 22.085 24.688 32.990 33.386 37.037 36.772

August 21.180 23.733 30.338 32.276 37.936 38.418
September 21.336 27.728 29.244 34.018 37.130 37.118

October 22.110 25.771 31.769 31.810 37.033 40.801
November 23.199 25.897 31.104 36.031 37.283 40.256
December 22.188 25.512 33.534 35.164 39.267 43.778

Source: PT. PLN Persero Gorontalo Region
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The original data in Table 1 is initially pre-processed so that it can 
be recognised by the algorithm. Data pre-processing can be done 
using the simple method of dividing all historical data by a constant 
value and after prediction, the data is restored to its original value. 
For example, in Table 1, the maximum value of monthly electricity 
demand is 43.78 GWh. This value is chosen as the constant (C) for 
the divisor of each data. All data after dividing by C will be less than 
or equal to 1 (in the range of 0 to 1). Data that falls within this range 
will be recognised by the algorithm. The performance of the model 
is tested through the estimation of the objective function parameter 
values.  

Formulas that show the relationship between parameters and electricity 
demand are used to calculate fitness values (see Equations 3 and 4). 
This formula is expressed in the form of the algorithm’s objective 
function (Khazem, 2008). The initial target estimated was 100% 
accuracy or 0% error (Hussein, 2018). This target was not achievable 
given the MAPE found during this study, which was around 2.9503% 
(shown in Table 4). Nevertheless, a value very close to the ideal value 
was obtained. RVGA played role in improving the accuracy of the 
prediction system, but to strengthen its accuracy further, a hybrid 
ENM was introduced.

The objective function parameters are set in Table 2 in the initialisation 
phase.

Table 2

Initial Values for RVGA-ENM Algorithm Parameters

Parameter Initial value
Population 50 chromosomes
Maximum generation 100 iterations
Mutation rate 0.02 µm
Crossover rate 1.0 µC
Bit number 40 bits
Simplex size 1.0
Minimum deviation 0.001 %

Output data were obtained from the simulation of the prediction system 
(see Table 4). Part of this data is used to estimate the parameters of 
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the independent variables, while the rest is used to test the prediction 
system (Equations 3 and 4). Table 3 shows the results of parameter 
estimation with the RVGA-ENM algorithm.

Table 3

Parameter Estimation With the RVGA-ENM1Algorithm (Equation 3)

Iteration RVGA best 
parameter estimations

ENM best 
parameter estimations

1 3101.069 0.195
2 985.288 0.190
3 155.121 0.189
97 0.201 0.187
98 0.201 0.186
99 0.201 0.183
100 0.201 0.175

RVGA can extract predictable global solutions as well as solve non-
linear stochastic problems (Daraban et al., 2014; Shaiek et al., 2013). 
However, this algorithm has the drawback that its performance is 
determined by random coefficients and complicated calculations. 
This can significantly reduce the convergence speed and lower the 
prediction accuracy. Therefore, the RVGA algorithm was executed 
using short iterations, followed by a solution search using the 
ENM algorithm. Implementing these two processes increased the 
convergence speed and improved the accuracy of the system. The 
best fitness objective of this algorithm is zero (to minimise error), 
but the ideal condition that can be achieved is f(best) = 0.175. The 
independent variable parameters (wi) when f(best) is achieved are 
used in the prediction process. 

The prediction results obtained by the RVGA-ENM1 and RVGA-
ENM2 algorithms through Equations 3 and 4, respectively, are shown 
in Table 4.
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Table 4 

RVGA-ENM1and RVGA-ENM2Predictions

Month number Actual (GWh) RVGA-ENM1

Predictions (GWh)
RVGA-ENM2

Predictions (GWh)
56 37.93 37.63 37.61
57 37.13 38.35 38.56
58 37.03 38.02 37.84
59 37.28 37.64 37.49
60 39.26 37.85 38.17
61 38.04 39.32 38.83
62 34.61 38.89 38.41
63 36.97 36.26 36.31
64 37.77 37.18 38.17
65 38.97 38.41 38.85
66 36.60 39.01 37.55
67 36.77 37.53 37.53
68 38.41 37.53 37.48
69 37.11 37.38 39.28
70 40.80 38.17 37.69
71 40.25 40.19 39.20
72 43.77 40.92 40.44

       MAPE                                     3.1521%            2.9503%

Figure 2

RVGA-ENM1 Prediction
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Figure 3 

RVGA-ENM2Prediction

The results obtained from the proposed hybrid prediction model are 
compared with the best results from Piltan et al. (2012) as a reference 
model. The performance metrics used for comparison are MAPE, 
MSE, RMSE, and MAD. See Table 5 for the performance of RVGA-
ENM1 and RVGA-ENM2.

Table 5 

Prediction  Errors for the Proposed RVGA-ENM, GAPSO and 
RCGA Models

Error (%) Piltan et al. 2012
GAPSO      RCGA

Proposed Model
RVGA-ENM1 RVGA-ENM2

MAPE 4.93 8.31 3.15 2.95
MSE 35.94 4.46 0.57 0.13
RMSE 5.99 4.71 0.75 0.36
MAD 6.33 6.43 1.38 1.29

The analysis in Table 5 shows that the proposed RVGA-ENM hybrid’s 
prediction estimation approach for electricity demand provides better-

Figure 3  

RVGA-ENM2Prediction 
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predicting accuracy than the other prediction algorithm. This is due 
to the overall estimation capability settings in the proposed hybrid 
algorithm.

DISCUSSIONS

Based on Figures 2 and 3 and Table 4, we can calculate the relative 
absolute error of the forecast results for RVGA-ENM1 and RVGA-
ENM2 per month. The results of this calculation are shown in Table 6.  

Table 6

A Relative Error by RVGA-ENM1 and RVGA-ENM2

Month Number Relative error  by 
RVGA-ENM1 (%)

Relative error  by 
RVGA-ENM2 (%)

56 0.3907 0.7339
57 2.7610 3.2778
58 2.8102 1.8559
59 1.0317 0.4846
60 3.0777 2.5138
61 2.6581 1.8007
62 11.2814 8.6643
63 0.3276 1.5130
64 2.7220 0.9086
65 1.6981 0.2822
66 5.5523 2.1669
67 3.7946 1.7369
68 2.3953 2.1352
69 3.3566 4.9530
70 5.2913 7.1080
71 0.5281 2.4051
72 3.9092 7.6147

The superiority of each model can be seen from the calculation results. 
From the observations, the RVGA-ENM2 model is superior, with the 
smallest prediction error (0.2822%) for the 65th month and the largest 
(8.6643%) for the 62nd month. The RVGA-ENM1 model excelled in 
forecasting the following months, excelling with the smallest error 
(0.3276%) in month 63, and month 62 had the largest prediction error 
(11.2814%). 
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Using Table 5 to compare the errors of the two proposed models 
(RVGA-ENM1 and RVGA-ENM2) with other models used for 
comparison (GAPSO and RCGA), we find that RVGA-ENM1 and 
RVGA-ENM2 are superior. The superiority of the two proposed 
models is illustrated by the four types of errors measured: MAPE, 
MAD, MSE and RMSE. The RVGA-ENM2 model has an error range 
of 0.13 % to 2.95 %. The RVGA-ENM1 model has an error range of 
0.77 % to 3.7 %. Meanwhile, the two comparison models (GAPSO 
and RCGA) had their respective error ranges, with GAPSO having 
a minimum error of 4.93 % to a maximum of 35.94 %, and RCGA 
from a minimum of 4.46 % to a maximum of 8.31 %. Based on the 
accuracy measures (i.e., MAPE, MAD, MSE, and RMSE) obtained 
from this study, it can be concluded that RVGA-ENM2 is the best 
model for forecasting monthly electricity demand. It should be noted 
that the error of the proposed hybrid model is smaller compared to 
that reported in other studies on the best model.

CONCLUSION

In conclusion, the proposed algorithm has accurately forecasted 
energy demand and demonstrated that it has outperformed other 
short-term energy demand forecasting algorithms. The hybridisation 
of RVGA and ENM is able to enhance the exploration and exploitation 
capabilities resulting in better prediction accuracy. Furthermore, 
the pre-processing of the algorithm’s input data, the tuning of short 
iterations in RVGA, and the exploration of the results by ENM 
have greatly and positively affected the precision of the system. For 
future work, this algorithm can be applied to solve various real-life 
optimisation problems with minimal customisation. It is recommended 
for future development that  the proposed hybrid algorithm be applied 
to medium- and long-term energy planning. For that, it is necessary to 
pre-process the data according to the type of medium- and long-term 
data.
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