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ABSTRACT 

This study addresses the challenge of applying ant colony optimisation 
algorithms to imbalanced datasets, focusing on a bankruptcy dataset. 
The application of ant colony optimization (ACO) algorithms has 
been limited by their performance on imbalanced datasets, particularly 
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within bankruptcy prediction where the some of bankruptcy cases 
leads to skewed data distributions. Traditional ACO algorithms, 
including the original Ant-Miner, often fail to accurately classify 
minority classes, which is a critical shortcoming in the context of 
financial distress analysis. Hence, this study proposes an improved 
algorithm, the Hellinger Distance Ant-Miner (HD-AntMiner), which 
employs Hellinger distance as the heuristic for ants to gauge the 
similarity or dissimilarity between probability distributions. The 
effectiveness of HD-AntMiner is benchmarked against established 
classifiers—PART and J48—as well as the conventional Ant-Miner, 
using public datasets and a specialized dataset of 759 Shariah-
compliant securities companies in Malaysia. Utilising the Friedman 
test and F-score for validation, HD-AntMiner demonstrates superior 
performance in handling imbalanced datasets compared to other 
algorithms, as affirmed by the Friedman test. The F-score analysis 
highlights HD-AntMiner’s excellence, achieving the highest F-score 
for Breast-cancer and Credit-g datasets. When applied to the Shariah-
compliant dataset, HD-AntMiner is compared with Ant-Miner and 
validated through a t-test and F-score. The t-test results confirm 
HD-AntMiner’s higher accuracy than Ant-Miner, while the F-score 
indicates superior performance across multiple years in the Shariah-
compliant dataset. Although the number of rules and conditions is not 
statistically significant, HD-AntMiner emerges as a robust algorithm 
for enhancing classification accuracy in imbalanced datasets, 
particularly in the context of Shariah-compliant securities prediction.

Keywords: Ant colony optimisation, bankruptcy prediction, Hellinger 
distance, Shariah-compliant securities.

INTRODUCTION

Bankruptcy prediction is essential for all businesses to monitor 
respective financial statements in avoiding corporate bankruptcy. 
Through a bankruptcy prediction model, enterprises would be alerted to 
notice bankruptcy signs by determining whether the signs correspond 
to the financial statement. Firm managers could act swiftly with 
appropriate actions to resolve relevant issues by assessing the details 
of financial statements with the bankruptcy prediction results. Besides 
reducing the time required to determine risky financial statements, 
an efficient model also provides high prediction accuracy to prevent 
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corporations from massive losses. While traditional methods employ 
mathematical functions to predict bankruptcy (Uthayakumar et al., 
2020a), the latest machine learning (ML) algorithms are the popular 
method to predict bankruptcy. Although the number of successful 
companies is larger than that of bankrupted firms, imprecise 
bankruptcy prediction remains the main challenge, primarily due to 
the imbalanced dataset.

Ant colony optimisation (ACO) is a popular algorithm for conducting 
approximate optimisation (Dorigo et al., 1996) by serving as the first 
swarm intelligence-based metaheuristic algorithm to imitate the ant 
foraging behaviour in a colony. The algorithm has solved many real-
world issues, including the travelling salesman problem (Dorigo & 
Gambardella, 1997), scheduling (Wang, 2021; Sharma, 2022; Elcock 
& Edward, 2023), and industrial challenges (Dzalbs & Kalganova, 
2020). Dorigo and Blum (2005) employed the ACO algorithm to 
resolve a tedious combinatorial challenge in the 1990s. Subsequently, 
Parpinelli et al. (2002) introduced the Ant-Miner algorithm based on 
ACO to extract classification rules from data. Ant-Miner is a robust 
algorithm compared to other famous taxonomy algorithms. Past 
experimental results discovered the acceptable performance of Ant-
Miner with simpler laws. Nonetheless, Ant-Miner is only competent 
for a balanced dataset and unsuitable for an imbalanced version.

Despite the versatility of the ACO algorithm like Ant-Miner in 
addressing classification problems, a significant gap persists in 
its application to bankruptcy prediction due to the prevalence of 
imbalanced datasets. These datasets, wherein the instances of 
bankruptcy are substantially outnumbered by non-bankruptcy 
instances, present a skewed distribution that traditional ACO 
algorithms struggle to interpret accurately. This imbalance results 
in a classification bias towards the majority class, leading to a 
high rate of misclassification of the minority class, which, in the 
context of bankruptcy prediction, is often the class of interest. The 
Ant-Miner, while robust for balanced datasets, exhibits limitations 
when applied to imbalanced datasets. Hence, there is a need for an 
enhanced ACO-based algorithm that can effectively navigate through 
the complexities of imbalanced data, particularly for predicting the 
bankruptcy of Shariah-compliant securities companies where the cost 
of misprediction is especially high. Therefore, this study incorporates 
the Hellinger distance to improve discrimination power and prediction 
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accuracy. By addressing this need, the study aims to contribute a more 
precise tool for financial risk assessment and aid in the early detection 
of bankruptcy, particularly within the unique context of Shariah-
compliant financial entities where conventional prediction models 
may not suffice.

Veganzones and Séverin (2018) explained that a bankruptcy prediction 
model is inaccurate when most datasets contain a class monopoly rate 
exceeding at least 80 percent. Therefore, the Hellinger Distance Ant-
Miner (HD-AntMiner) algorithm was proposed with the Hellinger 
distance as the heuristic of ants, as the Hellinger distance is skew-
insensitive and functions optimally with imbalanced datasets (Cieslak 
& Chawla, 2008). The study hypothesised that the HD-AntMiner 
algorithm could resolve the discrimination power of the majority 
classes and increase the accuracy of bankruptcy prediction compared 
to the ACO-based Ant-Miner. We compared the proposed algorithm 
to three algorithms: Ant-Miner, PART (Frank & Witten, 1998), and 
J48 (an implementation of the C4.5 algorithm in Weka) (Quinlan, 
1993), which is the industry-standard algorithm for data classification 
to predict the bankruptcy of Shariah-compliant securities companies 
in Malaysia. Specifically, the bankruptcy of Shariah-compliant 
securities enterprises would depend on the Malaysian legal system. 
The companies adhere to the Shariah law, which is different from 
conventional companies that do not adhere to any religious law (Hayat 
et al., 2014).

RELATED WORK

Imbalanced Datasets

Classes exhibit an unequal distribution, creating imbalanced datasets 
(He & Garcia, 2009). One can measure the severity of imbalance 
through the imbalanced ratio (IR). For example, only 10 percent of 
the individuals in a dataset are diagnosed with the disease, while the 
remaining are healthy. As such, the dataset achieved a 10 percent 
IR, whereas the majority class dominated 90 percent of class labels 
in the dataset. In the bankruptcy dataset, the number of successful 
companies was generally higher than that of bankrupt companies. 
Zalenkov and Volodarskiy (2021) proposed and examined a multi-
objective classifier selection (MOCS) algorithm on a dataset of 
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2457 Russian companies, with 456 declared bankrupt and a dataset 
of 5910 Polish companies with 410 declared bankrupt. The MOCS 
algorithm could improve the prediction results by considering the 
classification as a multi-objective optimisation challenge, minimising 
the parameters of false positive rates (FPRs) and false negative rates 
(FNR), and developing a prediction algorithm as an ensemble.

Borowska and Stepaniuk (2022) postulated a rough-granular approach 
(RGA) model to resolve the imbalanced dataset issue and enhance 
classification efficiency. The RGA model was proven effective 
regarding the Area under the ROC curve (AUC) and recall measures 
on a severely imbalanced dataset. Meanwhile, Mushava and Murray 
(2022) developed an alternative technique, namely the quantile 
function of the generalised extreme value (GEV) distribution, as a 
link function in extreme gradient boosting (XGBoost) to improve the 
categorisation of an imbalanced dataset. To address the multiclass 
imbalanced problem, Sainin et al. (2021) experimented with the 
design of the meta-classifier ensemble, which is a combination of 
sampling and feature selection. The findings demonstrated that the 
design through sampling and feature selection with the ensemble 
classifier method via the random forest and AdaboostM1 led to a 
significant improvement. Huang et al. (2022) also discovered that the 
primary indicator of balanced data is the equivalence of the gradient 
norms of positive and negative classes. The neural network algorithm 
for highly imbalanced data classification (NN_HIDC) propounded a 
controllable gradient rotation strategy to determine local boundary 
expansion for positive samples. 

Cieslak and Chawla (2008) introduced the Hellinger distance as 
a decision tree splitting criterion in another work dealing with an 
imbalanced dataset. Cieslak et al. (2012) extended the previous 
work by proposing an alternative decision tree technique through the 
Hellinger distance as the splitting criterion, namely Hellinger distance 
decision trees (HDDTs). The results revealed the high practicality of 
HDDTs with bagging without any sampling method for an imbalanced 
dataset. In a pioneer study, Razali et al. (2021) developed an improved 
algorithm, Hellinger-ant-tree-miner (HATM), inspired by the ACO 
meta-heuristic. The HATM algorithm outperformed the existing 
algorithm, namely ant-tree-miner (ATM), regarding minority class 
prediction (MCP) and F-measure. Razali et al. (2022) extended the 
work by splitting the datasets into 70 percent training and 30 percent 
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testing domains compared to the initial study with 90 percent training 
and 10 percent testing domains. The study experimented with real-
world data, revealing that the HATM algorithm outperformed the 
original ATM algorithm, a result validated by the Friedman test.

Ant Colony Optimization

Numerous research works in recent years have utilised ACO to resolve 
classification and optimisation challenges. Uthayakumar et al. (2020a) 
developed an ACO-based financial crisis prediction (FCP) algorithm 
through a combination of ACO-based feature selection (ACO-FS) and 
ACO-based data classification (ACO-DC) algorithms. The ACO-FS 
algorithm underwent a comparison with three other FS algorithms, 
namely the genetic algorithm (GA), particle swarm optimisation 
(PSO) algorithm, and grey wolf optimisation (GWO) algorithm. 
Meanwhile, they compared the ACO-DC method with other state-
of-the-art methods regarding classification outcomes. The ACO-FCP 
method was a superior algorithm, which outperformed other compared 
methods. Subsequently, Uthayakumar et al. (2020b) expanded the 
scope by employing an ACO-based Ant-Miner algorithm to perform 
bankruptcy prediction and credit risk analysis qualitatively and 
quantitatively. The study concurrently developed an effective swarm 
intelligence-based classification rule induction (CRI) framework. The 
proposed approach demonstrated more accurate results in multiple 
performance analysis factors compared to other classifiers, such as the 
radial basis function (RBF), random forest (RF), logistic regression 
(LR), and multilayer perceptron (MLP).

Hashemi et al. (2022) introduced an alternative technique, wherein 
the ACO algorithm is based on the collection of heuristics through 
the multi-criteria decision-making (MCDM) method by propounding 
that multiple heuristics would perform more optimally than a single 
heuristic. Specifically, the movement of the ants follows multiple 
criteria instead of a single criterion. Meanwhile, an alternative 
ACO variant, namely focused ACO (FACO), was introduced by 
Skinderowicz (2022) to limit the number of differences between 
a newly constructed and a selected prior solution. The findings 
discovered that FACO outperformed ACO when resolving large 
travelling salesperson problem (TSP) instances with reduced 
required time. Furthermore, a hybrid of ML and ACO (ML-ACO) 
was proposed to enhance meta-heuristics to resolve combinatorial 
optimisation challenges (Sun et al., 2022). They tested the ML-ACO 
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algorithm on various classification algorithms, including support 
vector machines, logistic regression, and graph neural networks. 
The results demonstrated that the proposed algorithm consistently 
improved ACO performance.

METHODOLOGY

This study improved the work of Parpinelli et al. (2002) by 
implementing the Hellinger distance as the heuristic of ants. The 
following section outlines the method of the proposed algorithm in 
this study.

Hellinger Distance-AntMiner (HD-AntMiner)

The if-then rule expresses the discovered classification knowledge as 
follows:

IF < conditions > THEN < class >

The IF component comprises a set of conditions generally connected 
by a logical operator (AND). The THEN component specifies the class 
predicted for cases with predictor attributes satisfying all terms in 
the IF component. Each term presents a <attribute, operator, value> 
triplet, as illustrated in the following example of the rule structure:

IF Sector = Construction AND Gross Margin = (0.045, ∞), 
THEN Status = Bankrupt.

 
Sector and Gross Margin are the attributes employed to classify 
whether the corporations went bankrupt. The algorithm classifies the 
class as bankrupt when all conditions are fulfilled. 

1) Construction representation

The construction graph of the HD-AntMiner algorithm is identical 
to the ACO algorithm, with all nodes fully connected throughout the 
path (see Figure 1). Figure 1 depicts the selected path with solid lines 
and the potential path to be employed by ants with dashed lines. The 
rule structure is expressed as follows:

IF Attribute 1 =         AND Attribute 2 =         AND Attribute n =                  
                                       THEN Class = Class 1.

1 
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IF Attribute 1 = 𝑣𝑣1,2 AND Attribute 2 = 𝑣𝑣2,3 AND Attribute n = 𝑣𝑣𝑛𝑛,2 THEN Class = Class 1. 

 

 

 

 
𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖.  

 

 𝑃𝑃( 𝑌𝑌 = 𝑦𝑦 ∣∣ 𝑋𝑋 = 𝑥𝑥 ),  

𝑦𝑦  

+ and −, and 𝑥𝑥  

 {𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦, 𝑜𝑜𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑠𝑠𝑜𝑜, 𝑜𝑜𝑜𝑜𝑟𝑟𝑠𝑠}

𝐻𝐻𝐻𝐻(𝑃𝑃(𝑌𝑌+), 𝑃𝑃(𝑌𝑌−)) = 1
√2
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2
 (1) 
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Figure 1

Rule Construction Representation of HD-AntMiner

Figure 2

The Process of Generating One Rule

 
 

3) Heuristic function 
 
The HD-AntMiner algorithm computed the value 𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖 of a heuristic 
function for each 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 and add it to the current rule. The heuristic 
function estimates the quality of the term, which concerns the ability 
to improve the prediction accuracy of the rule. The Hellinger distance 
employed in the HD-AntMiner algorithm is an enhancement of the 
Hellinger distance by Cieslak et al. (2012) and serves as the heuristic 

 
IF Attribute 1 = 𝑣𝑣1,2 AND Attribute 2 = 𝑣𝑣2,3 AND Attribute n = 𝑣𝑣𝑛𝑛,2 
THEN Class = Class 1. 
 
Figure 1 
 
Rule Construction Representation of HD-AntMiner 
 

 
2) Rule generation 
 
The algorithm employed the sequential covering approach to discover 
the list of classification rules. Initially, the number of discovered rules 
was zero in the training set. Each iteration will discover one rule for 
inclusion in the classification rule list and remove the related rows 
from the training set. The process of generating one rule is illustrated 
in Figure 2. The rule generation process terminates upon fulfilling one 
of the stopping criteria:  

i. A rule encompassing several cases under a pre-defined 
number identified as minimum_cases_per_rule.  

ii. The ant utilised all attributes. 
 
Figure 2 
 
The Process of Generating One Rule 
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2) Rule generation

The algorithm employed the sequential covering approach to discover 
the list of classification rules. Initially, the number of discovered rules 
was zero in the training set. Each iteration will discover one rule for 
inclusion in the classification rule list and remove the related rows 
from the training set. The process of generating one rule is illustrated 
in Figure 2. The rule generation process terminates upon fulfilling one 
of the stopping criteria: 

i. A rule encompassing several cases under a pre-defined number 
identified as minimum_cases_per_rule. 

ii. The ant utilised all attributes.

3) Heuristic function

(1)

where,

The squared Hellinger distance is the lower bound of the Kullback-
Leibler divergence (Nguyen et al., 2007). 

4) Rule pruning

Rule pruning removes unnecessary terms to improve predictive 
capability and simplicity, as a more concise rule is less complicated to 
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where,
=  the value of a heuristic function for 
=  the amount of pheromone associated with          at 

time 
=  the total number of attributes,
=  the number of values in the domain of the       attribute,
=  set to one if the attribute     was not yet utilised by the 

current ant; otherwise, it was zero.

Dataset Description

The present study conducted two experiments. The first experiment 
tested the HD-AntMiner algorithm on a publicly available Waikato 
Environment for Knowledge Analysis (WEKA) dataset. The dataset 
contained various IRs, from 29.72 percent to 44.49 percent. The 
Breast-w data have the highest instances at 699 while the Breast-
cancer data have the lowest instances at 286 (see Table 1). The second 
experiment involved 759 Shariah-compliant securities companies in 
Malaysia, which were recorded from 2000 until 2021. The Shariah-
compliant securities company dataset is obtained from the Bursa 
Malaysia website and the Eikon database. The dataset comprised 13 
Malaysian sector types with 34 attributes. The highest number in the 
dataset was from the industrial products and services sector, with 237 
companies. Meanwhile, the lowest number was from the real estate 
investment trusts sector, which had only four companies. Table 2 
depicts the number of bankrupt and non-bankrupt companies for each 
sector, while Table 3 shows the dataset’s attributes list. 

Table 1

Descriptions of the Employed Public Datasets

Data Majority Class Minority Class Size Imbalanced Ratio (%)
Breast-cancer 201 85 286 29.72

Breast-w 458 241 699 34.48

Colic 232 136 358 37.99

Credit-a 383 307 690 44.49

Credit-g 700 300 1000 30
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Table 2

Descriptions of the Shariah-compliant Securities Company Dataset

Sector Bankrupt 
Companies

Non-
bankrupt 

Companies

Number of 
Companies

Construction 11 50 61
Consumer Products and Services 28 128 156
Energy 8 22 30
Healthcare 1 13 14
Industrial Products and Services 55 182 237
Plantation 2 34 36
Property 12 87 99
Technology 5 39 44
Telecommunications and Media 3 13 16
Trading and Services 25 0 25
Transportation and Logistics 3 24 27
Real Estate Investment Trusts 0 4 4

 
Table 3

The List of the Attributes in the Shariah-compliant Securities 
Company Dataset

Attribute Name
A1 Sector
A2 Gross Margin
A3 EBITDA Margin
A4 Operating Margin
A5 Pretax Margin
A6 Effective Tax Rate
A7 Net Margin
A8 Asset Turnover
A9 Pretax Margin
A10 Pretax Return On Assets
A11 Leverage (Assets To Equity)

(continued)
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Attribute Name
A12 Pretax Return on Equity (ROE)
A13 Tax Complement
A14 ROE
A15 Earnings Retention
A16 Reinvestment Rate
A17 Quick Ratio
A18 Current Ratio
A19 Times Interest Earned
A20 Cash Cycle (Days)

A21 Assets/Equity
A22 Capital Structure
A23 Leverage (Long-Term Debt to Total Capital)

A24 (Total Debt – Cash) / EBITDA
A25 Account Receivable Turnover
A26 Average Account Receivable Days
A27 Inventory Turnover
A28 Average Inventory Days
A29 Average Accounts Payable Days
A30 Fixed Asset Turnover
A31 Working Capital Turnover
A32 Bad Debt Allowance
A33 Return On Invested Capital
A34 Status

*EBITDA stand for Earnings Before Interest, Taxes, Depreciation, and Amortisation.

The data pre-processing process commenced by importing the dataset 
to the WEKA. Subsequently, the dataset underwent data cleaning to 
remove the error, namely, “Not Applicable (N/A)” responses. The 
proposed algorithm could handle only nominal attributes, similar 
to the ACO algorithm. The minimum description length (MDL) 
algorithm discretised all numerical attributes in the dataset (Fayyad 
& Irani, 1993). Supervised and unsupervised discretised filters are 
available in the WEKA. In this study, we applied the discretised 
supervised approach due to the optimal organisation among the 
distribution of classes for each attribute. Figure 3 depicts the entire 
data pre-processing flow.
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Figure 3

The Pre-processing of Public Datasets
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2016), which is suitable for multiple comparisons between algorithms 
to rank the highest performer to the lowest performer (Trawinski et 
al., 2012). The current study conducted the Friedman test through 
the Knowledge Extraction based on Evolutionary Learning (KEEL) 
software (Triguero et al. 2017).

Meanwhile, F-scores employ the harmonic mean to combine two 
classification algorithm performance characteristics: recall and 
precision (Hand et al., 2021). The F-score ranges from 0 to 1, with 1 
as the highest value. The current calculation for precision, recall, and 
F-scores utilised values from the confusion matrix of the test set (see 
Table 4).

The total number of test set cases was a combination of the True 
Positive (TP), False Negative (FN), False Positive (FP), and True 
Negative (TN). The formulas of precision, recall, and F-scores are 
represented in Equations 6, 7, and 8, respectively. Moreover, a t-test 
was employed to compare the means between the two groups. No 
significant difference would be discovered between the means of 
the two groups when the p-value exceeds 0.05 unless the p-value 
is under 0.05. This study conducted the t-test using the Konstanz 
Information Miner (KNIME) software (Berthold et al., 2008). In 
both experiments, this study ran Ant-Miner and HD-AntMiner with 
the default parameter values, setting the number of ants to five, the 
minimum cases per rule to five, the maximum uncovered cases to 10, 
and the convergence rules to 10. The following subsections explain 
both sets of experimental results.

Table 4

Confusion Matrix

Predicted

Actual

Positive (+) Negative (-)

Positive (+) TP FN

Negative (-) FP TN

(6)
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(7)

(8)

Experiment 1

This study compared the performance of the proposed algorithm 
with existing algorithms, namely PART, J48, and Ant-Miner. Table 
5 depicts the prediction accuracy result on the public dataset, where 
the highest accuracy for each dataset is bolded. Mainly, this study 
identified HD-AntMiner as a competent algorithm with the highest 
accuracy for Breast-cancer, Colic, Credit-a, and Credit-g datasets. 
The accuracy of HD-AntMiner on Breast-w data was not the highest, 
as J48 achieved accuracy slightly higher than HD-AntMiner at 94.99 
percent. Subsequently, this study appraised the accuracy results for 
significant differences using the Friedman test. Table 6 depicts the 
result of the average rank for all algorithms. Specifically, the HD-
AntMiner algorithm achieved an average rank of 1.3 on the public 
dataset. HD-AntMiner comprised the highest number of minority class 
predictions, which suggested that the algorithms perform optimally 
in predicting imbalanced datasets compared to the PART, J48, and 
Ant-Miner. Table 7 shows the F-scores for predictive accuracy, where 
the highest F-score for each dataset is bolded. The HD-AntMiner 
algorithm achieved the highest F-score on Breast-cancer and Credit-g 
data at 0.726 and 0.831, respectively. Comparatively, J48 obtained 
the highest F-score on Breast-w, Colic, and Credit-a datasets at 0.950, 
0.847, and 0.872 respectively. 

Table 5

Public Dataset Accuracy

Data PART (%) J48 (%) Ant-Miner (%) HD-AntMiner (%)
Breast-cancer 71.33 75.52 73.81 75.64

Breast-w 94.71 94.99 94.85 94.85

Colic 83.97 85.05 81.44 85.31

Credit-a 86.38 87.25 85.51 87.83

Credit-g 71.90 72.10 71.30 72.80
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Table 6

The Average Rank from the Friedman Test

Algorithm Average Rank
PART 3.4

J48 1.8

Ant-Miner 3.5

HD-AntMiner 1.3

Table 7

Public Dataset F-scores

Data PART J48 Ant-Miner HD-AntMiner
Breast-cancer 0.680 0.713 0.701 0.726
Breast-w 0.947 0.950 0.849 0.844
Colic 0.836 0.847 0.780 0.802
Credit-a 0.864 0.872 0.748 0.748
Credit-g 0.712 0.710 0.804 0.831

Experiment 2

In this study, the proposed HD-AntMiner algorithm compared the 
bankruptcy data among Shariah-compliant securities companies with 
the Ant-Miner algorithm. The comparison results in terms of prediction 
accuracy, namely accuracy, the number of rules, and the number of 
conditions, are presented in Tables 8, 9, and 10, respectively. The 
HD-AntMiner achieved higher accuracy than Ant-Miner, although the 
rules and conditions in both algorithms were equivalent. This study 
compared Ant-Miner and HD-AntMiner for significant differences 
through a t-test, and Table 11 depicts the findings. The results revealed 
that the accuracy p-value was 0.0111, which suggested rejecting the 
null hypothesis.

Meanwhile, the p-value for the number of rules was 0.6885, and the 
p-value for the number of conditions was 0.2752, which suggested 
statistical insignificance and accepted the null hypothesis. The 
performance of the HD-AntMiner algorithm was also compared 
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with Ant-Miner in terms of the F-score (see Table 12). Kumar and 
Kaur (2021) stated that the F-score is a more important performance 
indicator compared to accuracy. The HD-AntMiner achieved a higher 
F-score than Ant-Miner in the dataset’s first, second, third, and fifth 
years with respective scores of 0.8647, 0.8084, 0.8069, and 0.7596. 
Nevertheless, the F-score rate of the HD-AntMiner is slightly lower 
than Ant-Miner in the fourth year. Based on the results, HD-AntMiner 
produced significantly more accurate findings than Ant-Miner. 

Table 8

Comparison of Accuracy 

Data Ant-Miner (%) HD-AntMiner (%)
1st 83.66 84.98
2nd 81.15 82.88
3rd 82.47 85.77
4th 82.48 83.41
5th 81.68 83.40

Table 9

Comparison between the Number of Rules

Data Ant-Miner HD-AntMiner
1st 8.6 8.8
2nd 8.3 8.3
3rd 7.3 7
4th 8.7 8.5
5th 8 8.1

Table 10

Comparison Between the Number of Conditions

Data Ant-Miner HD-AntMiner
1st 11.1 10.7
2nd 11.4 12.3
3rd 10.4 10.7
4th 13.1 12.8
5th 10.6 9.8
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Table 11 

Comparison Between Paired T-tests

Comparison p-value Significance
Accuracy 0.0111
Number of rules 0.6885
Number of Conditions 0.8501

Table 12

Comparison of F-scores

Data Ant-Miner HD-AntMiner
1st 0.8079 0.8647
2nd 0.6933 0.8084
3rd 0.7802 0.8069
4th 0.7960 0.7797
5th 0.7033 0.7596

The empirical findings of this study emphasize the effectiveness of the 
HD-AntMiner algorithm, particularly within the domain of Shariah-
compliant securities bankruptcy prediction. The enhanced predictive 
accuracy and F-score of HD-AntMiner, as demonstrated in both 
public and specialized datasets, can help to improve decision-making 
processes for financial institutions. By successfully addressing the 
challenges posed by imbalanced datasets, this algorithm allows 
for more sensitive and reliable assessments of bankruptcy risk. 
The implications of this study are far-reaching, offering a potential 
for reducing financial missteps due to inaccurate predictions and 
contributing to the stability and integrity of the Islamic financial 
system.

CONCLUSION

This paper proposed an enhanced ACO algorithm by incorporating 
the Hellinger distance as the heuristic of ants to address the 
bankruptcy prediction of Shariah-compliant securities companies 
and the imbalanced dataset issue. This study conducted the first 
experiment, testing five publicly available datasets with an IR range 
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from 29.72 percent to 44.4 percent, and compared the results using 
the Friedman test and F-scores with the PART, J48, and Ant-Miner 
algorithms. Subsequently, the second experiment was conducted on 
a bankruptcy dataset of Shariah-compliant securities companies and 
compared with Ant-Miner using t-test and F-scores. Resultantly, HD-
AntMiner outperformed Ant-Miner in terms of accuracy, although the 
numbers of rules and conditions in both algorithms were equivalent 
to one another. Future academicians could extend the current research 
scope by experimenting with more highly imbalanced datasets and 
a different perimeter setting and applying the proposed algorithms 
to other bankruptcy datasets. In addition, integrating the algorithm 
with other computational intelligence techniques, such as deep, 
could potentially lead to groundbreaking improvements in predictive 
accuracy.
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