t.uum.edu.my/

/ljic

http

Journal of ICT, 1 (1), pp: 19-31

COMPACT STRUCTURE REPRESENTATION IN
DISCOVERING FREQUENT PATTERNS FOR
ASSOCIATION RULES

N. Mustapha, M. N. Sulaiman, M. Othman and M. H. Selamat

Faculty of Computer Science and Information Technology,
Universiti Putra Malaysia, 43400 Serdang, Selangor
{norwati, nasir, mothman, hasan}@fsktm.upm.edu.my

ABSTRACT

Frequent pattern mining is a key problem in important data
mining applications, such as the discovery of association rules,
strong rules and episodes. Structure used in typical algorithms
for solving this problem operate in several database scans and a
large number of candidate generation. This paper presents a
compact structure representation called Flex-tree in discovering
frequent patterns for association rules. Flex-tree structure is a
lexicographic tree which finds frequent patterns by using depth
first search strategy. Efficiency of mining is achieved with one
scan of database instead of repeated database passes done in
other methods and avoid the costly generation of large numbers
of candidate sets, which dramatically reduces the search space.

Key words: Frequent patterns, Candidate sets, Association rules, Lexicographic
tree, Itemsets.

1.0 INTRODUCTION

databases has far outpaced human ability to interpret and digest this data.
Data mining therefore appears as a tool to address the need for sifting
useful information such as hidden patterns from databases.

F | Vhe explosive growth of many business, government and scientific

Frequent pattern mining is one of the active research themes in data mining, It
covers a broad spectrum of data mining tasks including mining various kinds of

19

t.uum.edu.my/

/ljic

http

Journal of ICT, 1 (1), pp: 19-31

association rules, strong rules, and episodes. Most algorithms for solving
problem in mining frequent pattern require multiple database scans and produce
a large number of candidates (Agrawal et al., 1993; Agrawal, R. and Srikant, R.
1994; Park et al., 1997; Brin et al., 1997a; 1997b). A structure representation
called Flex-tree is proposed in order to generate candidates free and improve the
I/O costs by reducing the number of passes over the transaction database. It is a
lexicographic tree which finds frequent patterns by using depth first search
strategy. The basic concepts of frequent patterns and association rules are
briefly reviewed in Section 2. Motivation of this work is present in Section 3.
Section 4 will present the proposed algorithm for mining frequent patterns using
Flex-tree. Experimental results and conclusions are presented in Section 5 and 6
respectively.

2.0 BASIC CONCEPTS

The task of association rules mining, first introduced in Agrawal et al,, (1993)
can be stated as follows:

Let 7= {i;, i, ..., i} be a set of items. Let D be a set of transactions where each
transaction 7" has a unique identifier (#id) and contains a set of items such that
T c 7. A transaction containing X is set to some items in rand X < T. Patterns
are essentially a set of items and are also referred to as itemsets. In our later
discussion, we may use the two terms — “itemsets™ and “patterns” alternatively.
An itemset that contains k& items is a k-itemset. The support of an itemset X,
denoted o(X), is the number of transactions in which it occurs as a subset. In
other words, support is the measure used to evaluate the level of presence of an
itemset in the database. An itemset is frequent if its support is more than a user-
specified minimum support (min_sup) value.

An association rule is an implication of the form X = ¥, where X and Y are
itemsets and X N Y =¢. The support of the rule is given as o(X U ¥) (i.e. the
joint probability that a transaction containing both X and ¥) and the confidence
as (X Y)/ o(X) (i.e., the conditional probability that a transaction contains ¥,
given that it contains X). The rule is strong if its confidence is more than a user-
specified minimum confidence (min_conf). The idea of an association rule is to
develop a systematic method by which a user can figure out how to infer the
presence of some items, given the presence of other items in a transaction. Such
information can extend the application of association rules to finding useful
patterns in consumer behavior, target marketing, and electronic commerce.

20

t.uum.edu.my/

lljic

http

Journal of ICT, 1 (1), pp: 19-31

I e e ———————)

The problem of mining association rules is to generate all association rules in
the database that have certain user-specified min_sup and min_conf. This can be
decomposed into two steps (Agrawal and Srikant, 1994):

(i) find all frequent pattern.
(ii) generate strong association rules from frequent
patterns.

Consider an example customer database shown in Fig. 1. There are five
different items (name of the items the supermarket carries), i.e., 7= {a, b, ¢, d,
e}, and the database consists of six customers who bought items from the
supermarket. Fig. 2 shows all the frequent patterns that are contained in at least
three customer transactions, i.e., min_sup = 50%. Fig. 3 shows the set of all
association rules with min_conf= 100%.

ITEMS
Bread a
Butter b
Milk c
Cheese d
Coke e
DATABASE
Transaction ID | Items Bought
(tid)
1 abde
2 bce
3 abde
4 abce
5 abcde
6 bed

Fig. 1: A Customer Database

21

/fjict.uum.edu.my/

http

Journal of ICT, 1 (1), pp: 19-31

FREQUENT PATTERNS
(min_sup=50%)

Itemsets Support
B 100% (6)
e be 83% (5)
a cd ab ae bc bd abe 64% (4)
ad ce de abd ade bce 50% (3)
bde abde

Fig. 2: The Frequent Patterns With min_sup = 50%

ASSOCIATION RULES
(min_conf=100%)
a=b(4/4) ae = b (4/4)
a= e (4/4) ce = b (3/3)
a = be (4/4) de = a(3/3)
c= b(4/4) de= b(3/3)
d= b (4/4) ad = be (3/3)
e= b(5/5) de= ab3/3)
ab = e (4/4) abd = e (3/3)
ad = b (3/3) ade = ¢ (3/3)
ad e (3/3) bde a(3/3)

Fig. 3: The Association Rules with min_conf= 100%

3.0 MOTIVATION

Most of the previous studies such as Agrawal and Srikant (1994), Klemettinen
et al. (1994), Park et al. (1995), Savasere et al. (1995) adopt the approach called
Apriori-like approach. This approach is based on an anti-monotone heuristic
which is any length & -pattemns is not frequent in the database, its length (k+1)
super-patterns can never be frequent (Agrawal and Srikant, 1994). This heuristic
achieves good performance gain by (possible significantly) reducing the size of
candidate sets but it may still suffer from the following nontrivial costs:

(a) It is costly to handle a huge number of candidate sets. For example, if
there are 10° frequent 1-itemsets, the Apriori algorithm will need to

22

t.uum.edu.my/

/ljic

http

Journal of ICT, 1 (1), pp: 19-31

generate more than 10’ length-2 candidates and accumulate and test their
occurrence frequencies. Moreover, to discover a frequent pattern of size
100, such as {a;, ..., @i}, it must generate more than 2190 ~ 10%
candidates in total. This is the inherent cost of candidate generation, no
matter what implementation technique is applied.

(b) It is tedious to repeatedly scan the database and check a large set of
candidates by pattern matching to count their support, which is especially
true for mining long patterns.

The bottleneck of the Apriori-like method is at the candidate set generation and
test. If one can avoid generating a huge set of candidates to test, the mining
performance can substantially improve.

Is there any other way that one may reduce these costs in frequent patterns
mining? Could some novel data structure or algorithm help? Flex-tree is
introduced in the next section to explore these posibilities.

4.0 MINING FREQUENT PATTERNS USING FLEX-TREE

A compact data structure for efficient frequent pattern mining can be designed
based on the following observations:

i. Since only the frequent items will play a role in frequent pattern mining, it is
necessary to perform a single scan of database to identify the list of all
transactions containing the item.

ii. If we store the list of items together with the list of its transaction identifier,
we may avoid repeated scanning of database, with frequency count obtained by
intersecting the list of #ids. In addition, support of potential branch of particular
node can be checked before it is completely generated if its support is greater
than minimum support.

iii. The nodes generated are certainly frequent by restricted test-and-generation

operation, therefore any pruning procedure to remove infrequent branches are
not necessary.

Y.

http

//jict.uum.edu.my/

Journal of ICT, 1 (1), pp: 19-31

4,1 Structure of Flex-tree

Flex-tree is the abbreviation for frequent lexicographic tree which is
lexicographic tree-based. Assume that a lexicographic ordering exist among the
items in the database. In order to indicate that an item i occurs lexicographically
earlier than j, the notation i < j will be used. Flex-tree is an abstract
representation of the frequent itemsets with respect to this ordering. The Flex-
tree is defined in the following way:

(1) A node exists in the tree corresponding to each frequent itemset.
The root of the tree corresponds to the nuli itemset.

(2) Let 7 = {ij iy ..., in} be a frequent itemset, where i, i; ..., i, are
listed in lexicographic order. The parent of the node 7 is the itemset
{ib i2 seey im—]}-

Flex-tree is rooted at the null node. An example of the Flex-tree is illustrated in
Fig. 4 which is based on customer database shown in Fig.l. A frequent
l-extension of an itemset such that the last item is the contributor to the
extension will be called a frequent lexicographic tree extension. Thus, each
edge in the Flex-tree corresponds to an item which is the frequent lexicographic
tree extension to a node. The set of frequent lexicographic tree extensions of a
node N is denoted by &N). In the example illustrated in Fig. 4, the frequent
lexicographic extensions of node a are b, ¢, d, and e.

| abd fabe Hacd “ ace II ade || bed ” bee H bde “ cde ‘

o
o
o
cu

|nbce | fabdew ‘acde | bede

Fig. 4: The Lexicographic Tree

24

t.uum.edu.my/

/ljic

http

Journal of ICT, 1 (1), pp: 19-31

Let M be the immediate ancestor of the itemset N in the lexicographic tree. The
set of prospective branches of a node N is defined to be those items in &M)
which occur lexicographically after the node N. These are the possible frequent
lexicographic extensions of N and denoted as p(N). Thus, the following
relationship is constructed: e(N) < p(N) < gM). The value of gN) in Fig. 4,
when N = ab is {c, d}. The value of p(N) for N=ab is {c, d, e}, and for N = ge
P(N) is empty.

The node is said to be generated, the first time its existence is discovered by
virtue of the extension of its immediate parent. A node is said to have been
tested, when its frequency has been determined. Thus the process of testing a
node N results in its generation if its support exceeds min_sup, unless the set
&(N) for that node is empty. Obviously a node can be generated only after it has
been tested. This can ensure that the set of branches which occur in Flex-tree
are certainly frequent; therefore it does not need any pruning procedure to prune
the tree.

4.2 The Algorithm

The algorithm shown in Fig. 5 constructs the Flex-tree by starting at the node
null and successively generating nodes until all nodes have been tested and
subsequently generated. Flex-tree shown in Fig. 4 will be used as a running
example in the mining process of frequent patterns.

At the first level of Flex-tree, each node will be examined with all the
transactions in database using level-wise manner. Consider the node q, all
transactions projected at node a would be 1, 3, 4 and 5 are stored as a list of
transaction identifiers together with the node.

At subsequent levels, all the nodes will be examined in depth-first fashion. The
examination of a node is the process of counting the support of the node’s
potential candidates. In other words, the support of all descendant patterns of a
node is determined before determining the extensions of other nodes of the
Flex-tree. Potential candidates are tested in the counting phase to ensure that
they are the ones whose support is the same or greater than min_sup before
inserting a corresponding node in the Flex-tree. Computing support of itemsets
in each node using depth-first manner will be discussed later. Depth-first
strategy would count the extension of nodes in Fig. 4 starting with ab, abc,
abed, abede, abce, abd, abde, abe, ac, acd, acde, ace, ad, ade and so on.

The first step of the Flex-tree algorithm is to create the first level of the tree by
generating all the frequent I-itemsets using breadth-first strategy to get their

25

Journal of ICT, 1 (1), pp: 19-31

support. This is accomplished by calling the procedure getFreqliems
(transactions, min_sup).

//jict.uum.edu.my/

http

// 1% level of Flex-tree using BFS together with counting
// support

N = getFreqltems(transactions, min_sup);

// level-n of Flex-tree using DFS together with tid-list
// intersection

FLex-tree(N: ItemsetNode; min_sup)

{
C = PotentialBranch(N);

E = CountExtensions(N, C);
{Let E = {iy, ..., iy}, when expressed in lexicographic order}

InsertFLex-tree(N, C, min_sup);

for (r=1; 1< |E|; r++) {

FLex-Tree(C, min_sup);

InsertFLex-tree(N: ItemsetNode; C:CandidateNode; min_sup)

{
6(C) =6 (N) N 6(N+1);
if (6(C) 2 min_sup)
C=Nu{i}forre{l,..,|E

¥

26

t.uum.edu.my/

/ljic

http

Journal of ICT, 1 (1), pp: 19-31

PotentialBranch(Itemset Node: N)
{
if(N= @)
return all items;
else
return frequent extensions of N which are lexicographically
larger than any item in N;

CountExtensions(N: ItemsetNode; C: CandidateNode)

{
count all the possible frequent extensions of node N
denoted by candidate set C.

Fig. 5: Algorithm Flex-tree

Depth-first creation of the Flex-tree begins after the set of frequent 1-itemset
has been found. Search for potential candidates C must be accomplished by the
procedure call PotentialBranch (N).

Before we insert nodes for the next level, support of each candidate must be
counted to ensure its support is exceeded or greater than min_sup by calling
InsertFlex-tree(N: ItemseiNode;, C:CandidateNode; min_sup). In this
procedure, intersections of fids are performed to compute support of itemsets.

4.3 Computing Support of Itemsets

There are two possible layouts of the database for mining frequent patterns. The
horizontal layout (Agrawal and Srikant, 1994) consists of a list of transactions.
Each transaction has an identifier followed by a list of items as shown in Fig 1.
The vertical layout (Holsheimer et al., 1995) consists of a list of items. Each
item X has a tid-list (the list of all transactions containing the item) denoted as
£(X). For example shown in Fig. 6, £(a) = {1, 3, 4, 5} and ¢ (b) = {1, 2, 3, 4,
5,6}

27

t.uum.edu.my/

/ljic

http

Journal of ICT, 1 (1), pp: 19-31

Transformation from horizontal to vertical format is done in the Flex-tree at the
first level. At subsequent levels of the Flex-tree, the vertical format is used
because it seems more suitable for mining frequent patterns since the support of
a candidate k-itemset can be computed by simple tid-list intersections. The tid-
lists cluster relevant transactions; this avoids scanning the whole database to
compute support, and the larger the itemset, the shorter the tid-lists, resulting in
faster intersections. Each item is associated with its tid-list,

a b ¢ d e
1

1) 2 1)

3 3 4 3 3

4 3 5

s|[4] 16| [6] |4
5 5
6

Fig. 6: The Vertical Database

Since the frequent itemsets and its support will play a role in frequent pattern
mining, designing a compact structure is important in order to find support
count without scanning database repeatedly. One of the key features of our
structure is that it requires only a single database scan which can minimize the
I/O cost. The nodes generated are certainly frequent because our structure is
restricted test-and generation instead of Apriori-like restricted generation-and-
test. Consider a node k-itemset, at which it is potentially a candidate to be
generated if its support count is no less than a predefined min_sup threshold. By
using this structure, the support of any node (k-itemset) can be determined by
simply intersecting the fid-lists of any two of its (k-1) length subsets.

A simple check on the cardinality of the resulting tid-list tells us whether the
new itemset is frequent or not. Fig. 7 shows this process pictorially. Tt shows the
initial tid-list for each item. The intermediate fid-list for ab is obtained by
intersecting the lists of @ and b i.e. £ (ab) = £ (a) N £ (b). Similarly, £ (abc) =
£ (ab) N £ (ac), and so on. Thus, only the lexicographic first two subsets at the
previous level are required to compute the support of itemsets at any level. A
practical and important consequence of this situation is that the cardinality of
intermediate tid-lists shrink as we move down the tree. No pruning technique is
needed on the tree by using restricted test-and generated approach.

28

t.uum.edu.my/

lljic

http

Journal of ICT, 1 (1), pp: 19-31

Table 1; Database Characteristics

connect-4 129 43 67,557
mushroom | 119 23 8,124

o

EECEb
.
mu..:.u]o
a\u-w.—-T
F===3-

7

-
=3

-
iaugm g

X

g mos
3

Fig. 7: Computing Support of Itemsets

50 EXPERIMENTAL RESULTS

All experiments below were performed on a 450MHz Pentium PC with 256MB
of memory. Table 1 shows the characteristics of the real datasets taken from
UCI Irvine Machine Learning Database Repository (Murphy, P.M.).

The mushroom database contains characteristics of various species of
mushrooms. The connect-4 and chess datasets are derived from their respective
game steps. Typically, these real datasets are very dense, i.e., they produce
many long frequent patterns even for very high values of support.

Table 2 shows the total number of frequent patterns and the total time obtained
by setting minimum support as shown in column 2 using Flex-iree structure.

29

t.uum.edu.my/

/ljic

http

Journal of ICT, 1 (1), pp: 19-31

Table 2: Number of Patterns and Running Time
(Sup=minimum support; Len=longest frequent pattern)

e eq i Runine
Database | Sup | Len | patterns | time(sec)

Chess 90% |7 622 1.92
chess 80% | 10 8225 43.34
chess 70% | 13 48443 392.33
connect-4 97% | 6 487 17.19

connect-4 90% | 10 27127 4062.13
connect-4 85% | 13 142127 20519.18
mushroom 40% |7 565 1.54
mushroom 30% |9 2735 8.62
mushroom 20% | 15 53583 3688.3

No candidate sets were presented in the table because the Flex-tree always make
sure all patterns must be frequent before they can be generated.

This algorithm scans database only once for each of those three databases that
were used in experiments. Database scan is done once during the first level of
building the Flex-tree for support counting purposes. In subsequent levels, it
does not need to refer to original database anymore to get support of each
pattern by intersecting #id-lists which are stored together with corresponding
pattems.

6.0 CONCLUSION

The experimental result shows that by storing the database in Flex-tree structure
and mining it in depth-first fashion, efficiency of mining is achieved with one
scan of database instead of repeated database passes done in other methods. It
also avoids the costly generation of large number of candidate sets which
dramatically reduces the search space. This structure is proved that no matter

‘how big the database is and how long the frequent pattern will be, Flex-tree

always need only one database scan to generate the complete set of frequent
patterns.

Comparison of this structure with others will be implemented in the next

version for a more improved method. Experiments should be done up on more
datasets for testing this structure representation to get more reliable results.

30

/ljict.uum.edu.my/

http

Journal of ICT, 1 (1), pp: 19-31
e ——————————————

REFERENCES

Agrawal, R. L. T., & Swami, A. (1993). Mining Association Rules between Sets
of Items in very Large Databases. Proceedings of the ACM SIGMOD
Conference on Management of Data, 207-216.

Agrawal, R., & Srikant, R. (1994). Fast Algorithms for Mining Association
Rules. Proceedings of the 20" International Conference on Very Large
Databases (VLDB’94), 487-499.

Brin, S. M. R., & Silverstein, C. (1997a). Beyond Market Baskets: Generalizing
Association Rules to Correlation. Proceedings of ACM SIGMOD, 265-
276.

Brin, S. M. R,, Ullman, J.D., & Tsur, S. (1997b). Dynamic Itemset Counting
and Implication Rules for Market Basket Data. Proceedings of
ACM SIGMOD, 255-264.

Holsheimer, M., Kersten, M., Mannila, H., & Toivonen, H. (1995). A
Perspective on Databases and Data Mining. 1¥ KDD Conference.

Klemettinen, M., Manilla, H., Ronkainen, P., Toivonen, H., & Verkamo, A.L
(1994). Finding Interesting Rules from Large Sets of Discovered
Association Rules. Proceedings of CIKM'94, 401-408.

Murphy, P.M. Repository of Machine Learning and Domain Theories.
http://www.ics.uci.edu/~mlearn/ML Repository.hitml.

Park J.S., Chen, M.S & Yu, P.S. (1995). Using a Hash-based Methods with
Transaction Trimming for Mining Association Rules. IEEE Transaction
of Knowledge and Data Engineering, 9(5):813-825.

Savasere, A., Omiecinski, E., & Navathe, S. (1995). An Efficient Algorithm for

Mining Association Rules in Large Databases. Proceedings of the
International Conference on Very Large Databases (VLDB'95), 432-443,

31

