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ABSTRACT 

In any metaheuristic, the parameter values strongly affect the efficiency 
of an algorithm’s search. This research aims to find the optimal 
parameter values for the Pareto Ant Colony System (PACS) algorithm, 
which is used to obtain solutions for the generator maintenance 
scheduling problem. For optimal maintenance scheduling with low 
cost, high reliability, and low violation, the parameter values of the 
PACS algorithm were tuned using the Taguchi and Grey Relational 
Analysis (Taguchi-GRA) method through search-based approach. 
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The new parameter values were tested on two systems. i.e., 26- and 
36-unit systems for window with operational hours [3000-5000]. The 
grey relational grade (GRG) performance metric and the Friedman 
test were used to evaluate the algorithm’s performance. The Taguchi-
GRA method that produced the new values for the algorithm’s 
parameters was shown to be able to provide a better multi-objective 
generator maintenance scheduling (GMS) solution. These values can 
be benchmarked in solving multi-objective GMS problems using the 
multi-objective PACS algorithm and its variants. 

Keywords: Optimization, Scheduling, Taguchi method, Grey 
Relational Analysis, Generator maintenance.

INTRODUCTION

Parameter tuning enhances an algorithm’s flexibility and robustness 
because parameters strongly affect efficient and effective search 
for solutions (Negulescu, 2017; Talbi, 2009). However, careful 
initialization is required (Sagban, 2016; Talbi, 2009). Optimal values 
for the parameters mainly depend on the problem and the instance it 
deals with, which also depends on the search time needed to solve the 
problem (Talbi, 2009). Two different strategies exist for parameter 
tuning, comprising offline and online parameter tunings (Negulescu, 
2017; Sagban, 2016; Talbi, 2009). 

Under offline parameter tuning, different parameter values are fixed 
ahead of the metaheuristic execution (Talbi, 2009). Traditionally, 
“trial and error” is applied mostly in the execution of offline tuning. 
In addition, under the offline parameter tuning strategy, the Taguchi 
method is widely used in engineering analysis. The greater advantages 
of this method are saving efforts in conducting experiments, saving 
experimental time, and discovering significant factors quickly 
(Manikandan et al., 2015). Recently, increasing effort has been made 
to allow the tuning of algorithm parameters to be through a search-
based approach (Negulescu, 2017). Under online tuning, in the 
process of metaheuristic execution, the control of parameters involves 
an updated dynamic or adaptive approach (Talbi, 2009). Under the 
dynamic update approach, parameter value changes are executed 
without consideration of the search progress, and parameter value 
update is carried out in a random or deterministic order. However, 
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in the adaptive approach, values are changed in accordance with the 
search progress, which is mostly through memory of the search (Talbi, 
2009). 

Conventionally, “trial and error” is applied primarily in the execution 
of offline tuning. Nevertheless, this method is effortful and time-
consuming without guaranteeing optimal values (Negulescu, 
2017). The tuning parameters with the Taguchi method, which is 
an offline method, has shown to produce a robust design with less 
experimentation (Kolahan & Azadi Moghaddam, 2015). As for online 
parameter tuning methods, these methods generally use feedback from 
the optimization process to continuously update their parameters. For 
instance, when increasing the size of the dataset, the algorithm may 
not be able to improve its solutions. 

In this research, the Taguchi and Grey Relational Analysis (Taguchi-
GRA) method is used for tuning parameter values in a Pareto Ant 
Colony System (PACS) algorithm (Muthana & Ku-Mahamud, 2021; 
2022). This algorithm is used to solve the multi-objective generator 
maintenance scheduling (GMS) problem. A review of previous tuning 
methods on variants of Ant Colony Optimization (ACO) algorithms 
is presented in the second section, followed by the description of the 
Taguchi-GRA method. The experimental results and discussion are 
then presented, followed by the conclusion and future research in the 
last section. 

RELATED LITERATURE

The ACO algorithms’ behaviors largely depend on the values 
associated with the parameters (López-Ibáñez et al., 2015; Negulescu, 
2017; Yasear & Ku-Mahamud, 2021). Several studies have been 
carried out for developing parameterization strategies to ensure that 
the metaheuristics trade-off is achieved between exploration and 
exploitation. The aim is to discover global optimal solutions in the 
quickest time possible (Zheng et al., 2017). Two different strategies 
exist for parameter tuning, namely offline and online parameter 
tunings (Negulescu, 2017; Sagban, 2016).  

Under offline parameter tuning, different parameter values are fixed 
ahead of the metaheuristic execution (Talbi, 2009). The “trial and 
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error” method is applied mostly in the execution of offline tuning. 
This process is considered to be human-intensive, time-consuming, 
and error-prone and, in most instances, results in the uneven tuning 
of different algorithms (Negulescu, 2017). Negulescu (2017) used the 
normalization method to regulate the parameter values of the Elitist 
Ant System algorithm. The advantage of this method is that it spares 
computational time for otherwise running empirical test runs for 
determining a good set of parameter values, and the determination of 
parameter values can be extrapolated for other similar maps. 

The Taguchi method, which is used for parameter design, is based 
on the theory that the experimental designs use orthogonal matrices, 
making it possible to easily determine the effects of the variables 
(Sihem & Benmansour, 2018). The Taguchi method is an important 
tool for robust design in which the best setting of the control factors 
(parameters) is determined. The two major tools used in the Taguchi 
methodology are: (1) orthogonal array and (2) signal-to-noise ratio 
(S/N) analysis (Vinay & Sridharan, 2013). Orthogonal arrays are used 
to analyze design parameters, and the S/N ratio measures production 
quality (Yuan-Kang et al., 2013). However, the Taguchi method does 
not consider the search-based approach. Instead, it uses feedback 
from the optimization process by analyzing the results of the objective 
functions, which allows it to obtain optimal or near optimal parameter 
values even in big system sizes.

Under online tuning, in the process of metaheuristic execution, 
the control of parameters involves updated dynamic or adaptive 
approaches (Talbi, 2009). Under the dynamic update approach, 
parameter value changes are executed without consideration of the 
search progress, and a random or deterministic update of the parameter 
values is performed. Differently, in the adaptive approach, the values 
are changed according to the search progress, mostly through memory 
of the search. The most generic strategies of the online approach are 
pre-scheduled strategy, adaptive strategy, and self-adaptive strategy, 
which include pure self-adaptive strategy and search-adaptive strategy. 
The pre-scheduled strategy involves observation of the problem 
from an offline perspective. The substitution of static parameters 
is achieved through either deterministic or randomized functions. 
The functions depend on the volumes of algorithm iterations, or 
computational in which the change of parameter values is achieved in 
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the optimization process, based on some programmed rules, while any 
feedback is ignored during the search (Sagban, 2016). An adaptive 
strategy approach uses feedback from the optimization process for 
the continuous update of parameters (Drozdik et al., 2015). In this 
strategy, ACO algorithm changes are made to parameters based on 
specific rules that consider the importance of ACO algorithm search 
behavior (Sagban, 2016). 

With the self-adaptive strategy, a further possibility is to have 
parameter modification by the algorithm itself during the run time, this 
approach is called self-adaptation (Sagban, 2016). Many strategies for 
adaptive ACO are classified within the components of self-adaptive 
strategies. The algorithm utilizes itself instead of using other search 
methods for adapting its parameters. This strategy is classified as the 
“pure self-adaptive strategy”, which is a way of implicitly adapting 
the ACO parameters where the algorithm utilizes itself for adapting 
its parameters (Sagban, 2016). Meanwhile, the “search-adaptive 
strategy” implicitly adapts the ACO algorithm’s parameters in 
which the algorithm utilizes alternative search methods to adapt its 
parameters (Sagban, 2016). 

Table 1 presents the summary of several studies for different application 
domains that include the offline and online tuning strategies in ACO 
algorithm variants from 2017 to 2022. The variants of ACO include 
the Ant System (AS), Elitist Ant System (EAS), Rank-based Ant 
System (ASrank), Ant Colony System (ACS), and Max-Min Ant 
System (MMAS). This research focuses on parameter tuning for the 
Pareto Ant Colony System (PACS) algorithm, which is a variant of 
the ACS algorithm. The parameters that are used in ACO variants are: 
i) (α) and (β) to control the relative importance of pheromone trails 
and heuristic information on the decision probabilities, respectively; 
ii) uniform distributed variable (q); iii) evaporation parameters  
(ρ and ξ); iv) number of iterations (S); v) parameter (m) representing 
number of ants and neighbors, respectively; vi) (δ) effectiveness 
factor of pheromone deviation from the upper bound of pheromone 
trail; vii) (Δτxy) represents deposited pheromone amount; viii) (P0) 
represents the threshold probability, which is selected out of the 
calculated probability values; ix) (ptries) is the number of attempts of 
the randomized packing heuristic; x) (localsearch) controls whether 
and what local search procedure to apply; and finally, xi) (P) is the 
transfer probability parameter.
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Table 1

Parameter Tuning Strategies in ACO

Authors Type of Strategy ACO 
Variant

Parameter Type of 
Problem

Sihem and 
Benmansour 
(2018)

Offline strategy/ 
Taguchi

AS α, β, ρ, q Electric 
power system 
reliability

Tirkolaee al. 
(2019)

Offline strategy/ 
Taguchi

MMAS α, β, ρ, m, 
S, δ

Multi-trip 
capacitated 
arc routing

Ragmani al. 
(2019)

Offline strategy/ 
Taguchi

AS α, β, ρ, m, S Identification 
of the optimal 
configuration 
of virtual 
machine 
placement 

Lyu et al. 
(2020)

Offline strategy/ 
Taguchi

ACS P, ρ, m, S Tilt quad rotor 
problem

Ragmani et al. 
(2020)

Offline strategy/ 
Taguchi 

ACS α, β, ρ, m, S Scheduling/ 
Virtual 
machine

Lezama et al. 
(2020)

Offline strategy/
Trial and error

ACS α, β, ρ, m, S Local 
electricity 
markets

Ankita and 
Sahana (2019)

Online strategy/
Pre-scheduled

ACS Δτxy, P0 Scheduling/ 
Grid 
environment

Mavrovouniotis
 et al. (2017)

Online strategy/ 
Pre-scheduled

MMAS m Dynamic 
traveling 
salesman 
problem

Zheng et al. 
(2017)

Online strategy/
Adaptive

ASrank α Water 
distribution 
system design 
problems

Chagas and 
Wagner (2020)

Online strategy/ 
Pure self-
adaptive

AS m, α, β, ρ, 
ptries

Thief 
orienteering 
problem

(continued)
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Authors Type of Strategy ACO 
Variant

Parameter Type of 
Problem

Chagas and 
Wagner (2022)

Online strategy/
Search-adaptive

MMAS m, α, β, ρ, 
localsearch, 
ptries

Thief 
orienteering 
problem

Wang and Han 
(2021)

Online strategy/
Search-
adaptive 

ACS α, β Traveling 
salesman 
problem

Han et al. 
(2021)

Online strategy/
Search-adaptive

ACS α, β, ρ, ξ Assembly 
sequence 
planning 

Ariyaratne 
and Fernando 
(2018)

Online strategy/
Search-adaptive

ACS Specific 
parameters

Traveling 
salesman 
problem

In summary, most of the studies used online parameter tuning 
strategies because this type of method has shown its efficiency in 
obtaining better results with less computational time although it is 
not always the best for some problems. Most of the tuned parameters 
are the standard parameters for ACO and its variants, while the 
parameters that are not usually tuned are δ, localsearch, ptries, P0, 
and P, which are used in the ACO algorithms for a special purpose. 
The Taguchi method proved its proficiency to calibrate parameters 
for ACS by optimizing solutions for single objective GMS (Fattahi 
et al., 2014). In this research, the Taguchi-GRA method is adopted 
to enhance the work of Muthana and Ku-Mahamud (2021; 2022) in 
finding the optimal parameter values for the proposed PACS algorithm 
to optimize solutions for multi-objective GMS. 

TAGUCHI-GREY RELATIONAL ANALYSIS METHOD 
FOR DETERMINING OPTIMAL PARAMETERS

The PACS algorithm proposed by Muthana and Ku-Mahamud (2021; 
2022) was used to obtain solutions for the multi-objective GMS 
problem in electrical power systems. In this section, the Taguchi-
GRA method was employed to determine the optimal value for each 
parameter in PACS for optimal maintenance scheduling. The Taguchi 
method was used to configure the design of parameter values for the 
PACS algorithm, while GRA analyzed the output from Taguchi to 
obtain the grey relational grade (GRG) values. GRG converted the 
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multi-objective PACS solution to a single solution to be evaluated by 
the signal-to-noise ratio (S/N) approach. 

There were five main steps for implementing the Taguchi-GRA 
method as shown in Figure 1. The first step was to identify the factors 
(parameters) and levels (values) for each parameter. In this research, 
six parameters with five levels of values for each parameter were 
tested. The second step was to select an appropriate orthogonal array 
and assign the parameters to the array. The third step was to assign 
the parameters to the columns of the orthogonal array and conduct 
the experiments. The fourth step was to analyze the output from the 
experiments in the previous step using the GRA method. The fifth step 
determined the best levels for parameters using responses of the S/N 
analysis that determined the best levels for parameters.

Figure 1 

Taguchi-GRA Method

The initial values (or candidate values) that were used in the 
experiments for testing the PACS parameters are displayed in Table 
2. These parameters and values were constantly being used when 
scheduling the maintenance of generating units in electrical power 
systems using the ACS algorithm and multi-objective scheduling 
using the PACS algorithm (Berrichi et al., 2010; Fattahi et al., 2014). 
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experiments for testing the PACS parameters are displayed in Table 2. 
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Table 2 

Test Parameter Values

Parameters Candidate Values
Pheromone power (α) {0.005, 0.500, 1.000, 1.500, 2.000}

Heuristic power (β) {0.005, 0.500, 1.000, 1.500, 2.000}

Initial pheromone (τ0) {0.01, 0.10, 0.20, 0.50, 1.50}

Local rate (ξ) {0.005, 0.050, 0.100, 0.200, 0.250}

Global rate (ρ) {0.005, 0.050, 0.100, 0.200, 0.250}

Exploration probability {0.1, 0.6, 0.7, 0.8, 0.9}

Experimental Design for Taguchi
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Experimental Design for Taguchi 

Tables 3 and 4 show the results of using the Taguchi design on the 
initial values of the PACS algorithm for the 26-unit and 36-unit 
systems, respectively. These results were obtained from ten runs. The 
[3,000–5,000] maintenance window were used because the results for 
this window had been previously obtained in all the unit systems. 
There were 25 rows in the tables as the results of the Taguchi method 
that used six parameters in the proposed PACS and five levels of 
values for each parameter as proposed by Berrichi et al. (2010) in their 
research on multi-objective scheduling. The experimental design for 
six controllable parameters with five levels was organized by Taguchi 
in an orthogonal array of 25 rows (i.e., 𝐿𝐿25(56)). However, in this 
research, an additional combination was added, giving the final 
orthogonal array of 26 rows (𝐿𝐿26). The additional combination was to 
provide an extra alternative solution (Fattahi et al., 2014).  
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The results of cost, reliability, and violation were converted to a single 
value (i.e., GRG) using the GRA method. This process involved data 
normalization, deviation sequences, and grey relational coefficient 
(GRC). The obtained GRG values were used in the S/N analysis 
to produce the new parameter values for the PACS algorithm. The 
following sections describe the steps in implementing GRA, followed 
by the S/N analysis.

Grey Relational Analysis Method and Signal-to-Noise Ratio 
Analysis for Optimal Parameters Values

In this section, the use of the GRA method and S/N analysis in 
determining the optimal parameters to be used in the PACS algorithm 
for GMS are discussed. The grey relational grade (GRG) of the 
objective functions of the PACS solution algorithm was considered 
as the response variable of the design. In contrary to Fattahi et al. 
(2014), the operation cost objective function of the solution algorithm 
was considered as the response variable of the design. The design of 
ACS parameter values proposed by Fattahi et al. (2014) considered 
the S/N analysis to determine the best set of parameter levels based 
on a single objective only. Here, the problem under consideration had 
three distinctive conflicting objectives. In many practical cases, it is 
desirable to make a balance among these objectives. To overcome 
this shortcoming of S/N, this research employed GRA to turn all three 
objectives into a single criterion called GRGs (Kolahan & Azadi 
Moghaddam, 2015). The following subsections represent the steps in 
implementing GRA and S/N ratio analysis.

Data Normalization 

Data normalization was performed on the values obtained from the 
Taguchi design (i.e., Tables 3 and 4). Numerical data were normalized 
between zero and one. In this research, the normalized values (xij) for 
cost and convenience (violation) objective functions were calculated 
based on Equation 1 (Jozić et al., 2015):

(1)

where yij is the value for cost and convenience, and max (yij) and min 
(yij) are the maximum and minimum values for cost and convenience, 
respectively. This equation was used because a smaller value of cost or 
violation indicated a better result for the objective function. However, 
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The gray relational grade (GRG) of the objective functions of the PACS 
solution algorithm was considered as the response variable of the design. In 
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objective only. Here, the problem under consideration had three distinctive 
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among these objectives. To overcome this shortcoming of S/N, this research 
employed GRA to turn all three objectives into a single criterion called GRGs 
(Kolahan & Azadi Moghaddam, 2015). The following subsections represent 
the steps in implementing GRA and S/N ratio analysis.

Data Normalization 

Data normalization was performed on the values obtained from the Taguchi 
design (i.e., Tables 3 and 4). Numerical data were normalized between zero and 
one. In this research, the normalized values (xij) for cost and convenience 
(violation) objective functions were calculated based on  Equation 1 (Jozić et 
al., 2015):

𝒙𝒙𝒊𝒊𝒊𝒊 =
𝐦𝐦𝐦𝐦𝐦𝐦(𝒚𝒚𝒊𝒊𝒊𝒊) − 𝒚𝒚𝒊𝒊𝒊𝒊

𝒎𝒎𝒎𝒎𝒙𝒙(𝒚𝒚𝒊𝒊𝒊𝒊) − 𝒎𝒎𝒊𝒊𝒎𝒎(𝒚𝒚𝒊𝒊𝒊𝒊 ) 

where yij is the value for cost and convenience, and max (yij) and min (yij) are 
the maximum and minimum values for cost and convenience, respectively. This 
equation was used because a smaller value of cost or violation indicated a better 
result for the objective function. However, in the case of reliability, a larger 
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in the case of reliability, a larger value specified a better result for the 
objective function. Therefore, the normalization calculation reliability 
is based on Equation 2 (Jozić et al., 2015):

(2)

where yij is the value for reliability, and max (yij) and min (yij) are the 
maximum and minimum values for reliability. The normalized values 
of cost, reliability, and violation are demonstrated in Tables 5 and 6.

Table 5

Normalization Experimental Results for 26 Units

Runs Cost Reliability Violation
1 0.072706431 0.867187581 -
2 0.448748694 0.730166172 -
3 0.402297342 0.88002292 -
4 0.561214914 0.381559619 -
5 0.558303255 0.208657603 -
6 0.207638495 0.899744752 -
7 0.190312039 0.855341981 -
8 0.676018218 0.462655623 -
9 0.312009526 0.911507006 -
10 0.601710253 0.164577799 -
11 0.115641375 0.966328072 -
12 0.131218144 0.954649164 -
13 0.266678747 0.812043548 -
14 0.318311027 0.864916393 -
15 0.272872551 0.843235922 -
16 0.39804113 0.770547481 -
17 0.081348066 0.996655727 -
18 1 0 -
19 0.280437213 0.761806532 -
20 0 0.859842684 -
21 0.415491692 0.838380997 -
22 0.9617838 0.272761369 -
23 0.242375823 1 -
24 0.449677809 0.872011252 -
25 0.259744637 0.802656665 -
26 0.534877004 0.963567224 -

Max 1 1 - 14 
 

value specified a better result for the objective function. Therefore, the 
normalization calculation reliability is  based on Equation  2 (Jozić et al., 
2015): 
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Runs Cost Reliability Violation 

1 0.072706431 0.867187581 - 
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4 0.561214914 0.381559619 - 
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Table 6

Normalization Experimental Results for 36 Units

Runs Cost Reliability Violation
1 0.806659467 0.955622677 -
2 0.123507715 0.392832249 -
3 0.589150411 0.734549257 -
4 0.718656399 0.477375697 -
5 0.544546437 0.969505112 -
6 0.203554256 0 -
7 0.835546179 0.654158922 -
8 0.754032586 1 -
9 0.700512962 0.636355716 -
10 0.270038405 0.479234433 -
11 0.543570407 0.74018355 -
12 0.120652021 0.765741171 -
13 0.21074714 0.325627323 -
14 0.885680843 0.841049024 -
15 0.984033191 0.676579926 -
16 0.744013001 0.492768355 -
17 0.777012835 0.206145446 -
18 0.837953521 0.794057853 -
19 0.898214659 0.742652184 -
20 0 0.526399861 -
21 0.55966564 0.699378485 -
22 0.642033997 0.687732342 -
23 0.284407175 0.207888011 -
24 1 0.444731645 -
25 0.51857709 0.296061803 -
26 0.861636639 0.484142658 -

Max 1 1 -

Deviation Sequences
 
The normalized data for cost, reliability, and violation were then used 
to calculate the deviation sequence (dij) using Equation 3 (Jozić et al., 
2015):

(3)

where xij is the normalization value. Tables 7 and 8 display the 
deviation sequence for cost, reliability, and violation.  
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Deviation Sequences

The normalized data for cost, reliability, and violation were then used to 
calculate the deviation sequence (dij) using Equation  3 (Jozić et al., 2015):

𝒅𝒅𝒊𝒊𝒊𝒊 = 𝒎𝒎𝒎𝒎𝒎𝒎(𝒎𝒎𝒊𝒊𝒊𝒊) − 𝒎𝒎𝒊𝒊𝒊𝒊

where xij is the normalization value. Tables 7 and 8 display the deviation 
sequence for cost, reliability, and violation. 
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Table 7

Deviation Sequences (dij) for 26 Units

Runs Cost Reliability Violation
1 0.927293569 0.132812419 -
2 0.551251306 0.269833828 -
3 0.597702658 0.11997708 -
4 0.438785086 0.618440381 -
5 0.441696745 0.791342397 -
6 0.792361505 0.100255248 -
7 0.809687961 0.144658019 -
8 0.323981782 0.537344377 -
9 0.687990474 0.088492994 -
10 0.398289747 0.835422201 -
11 0.884358625 0.033671928 -
12 0.868781856 0.045350836 -
13 0.733321253 0.187956452 -
14 0.681688973 0.135083607 -
15 0.727127449 0.156764078 -
16 0.60195887 0.229452519 -
17 0.918651934 0.003344273 -
18 0 1 -
19 0.719562787 0.238193468 -
20 1 0.140157316 -
21 0.584508308 0.161619003 -
22 0.0382162 0.727238631 -
23 0.757624177 0 -
24 0.550322191 0.127988748 -
25 0.740255363 0.197343335 -
26 0.465122996 0.036432776 -

Min 0 0 -
Max 1 1 -
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Table 8

Deviation Sequences (dij) for 36 Units

Runs Cost Reliability Violation
1 0.193340533 0.044377323 -
2 0.876492285 0.607167751 -
3 0.410849589 0.265450743 -
4 0.281343601 0.522624303 -
5 0.455453563 0.030494888 -
6 0.796445744 1 -
7 0.164453821 0.345841078 -
8 0.245967414 0 -
9 0.299487038 0.363644284 -
10 0.729961595 0.520765567 -
11 0.456429593 0.25981645 -
12 0.879347979 0.234258829 -
13 0.78925286 0.674372677 -
14 0.114319157 0.158950976 -
15 0.015966809 0.323420074 -
16 0.255986999 0.507231645 -
17 0.222987165 0.793854554 -
18 0.162046479 0.205942147 -
19 0.101785341 0.257347816 -
20 1 0.473600139 -
21 0.44033436 0.300621515 -
22 0.357966003 0.312267658 -
23 0.715592825 0.792111989 -
24 0 0.555268355 -
25 0.48142291 0.703938197 -
26 0.138363361 0.515857342 -

Min 0 0 -
Max 1 1 -

Grey Relational Coefficients and Grey Relational Grade 

The grey relational coefficient (GRC) can be expressed as in Equation 
4 (Jozić et al., 2015):

(4)

where Δij is the deviation sequence, Δmin and Δmax are the minimum and 
maximum values of the deviation sequence, and ξ is the distinguishing 
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Gray Relational Coefficients and Gray Relational Grade
 
The gray relational coefficient (GRC) can be expressed as in Equation  4
(Jozić et al., 2015):

where Δij is the deviation sequence, Δmin and Δmax are the minimum and 
maximum values of the deviation sequence, and ξ is the distinguishing 
coefficient. In this research, the value of ξ was assumed to be 0.5 as in Jozić et 
al. (2015). The GRG values were calculated after obtaining the GRC values, 
which can be expressed as in Equation  5 (Jozić et al., 2015):

In this research, the number of objectives was three. Tables 9 and 10 show the 
GRC and GRG values for the three systems. In particular, the GRG values in 
Tables 9 and 10 were obtained by dividing the sum of GRC by 2 because there 
was no GRC value for violation. The higher values of GRG were preferred 
(Kolahan & Azadi Moghaddam, 2015).
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coefficient. In this research, the value of ξ was assumed to be 0.5 as 
in Jozić et al. (2015). The GRG values were calculated after obtaining 
the GRC values, which can be expressed as in Equation 5 (Jozić et 
al., 2015):

(5)

In this research, the number of objectives was three. Tables 9 and 10 
show  the GRC and GRG values for  the two systems. In particular, 
the GRG values in Tables 9 and 10 were obtained by dividing the 
sum of GRC by 2 because there was no GRC value for violation. The 
higher values of GRG were preferred (Kolahan & Azadi Moghaddam, 
2015).

Table 9

Grey Relational Coefficients and Grey Relational Grade for 26 Units

Runs GRC (Cost) GRC (Reliability) GRC (Violation) GRG
1 0.350313356 0.790123558 - 0.570218457
2 0.475623666 0.649490814 - 0.56255724
3 0.455496756 0.806481427 - 0.630989092
4 0.532603263 0.447051098 - 0.48982718
5 0.530956492 0.387193978 - 0.459075235
6 0.386888652 0.832978973 - 0.609933812
7 0.381770326 0.775605026 - 0.578687676
8 0.606809532 0.48200001 - 0.544404771
9 0.420878796 0.849627787 - 0.635253291
10 0.556613277 0.374413425 - 0.465513351
11 0.361178087 0.936905192 - 0.649041639
12 0.365288302 0.916840989 - 0.641064646
13 0.405409376 0.72679019 - 0.566099783
14 0.423123183 0.787297916 - 0.60521055
15 0.40745564 0.761308386 - 0.584382013
16 0.453737443 0.685445574 - 0.569591508
17 0.352447269 0.993355894 - 0.672901582
18 1 0.333333333 - 0.666666667
19 0.409982992 0.677329212 - 0.543656102
20 0.333333333 0.781058011 - 0.557195672
21 0.461038423 0.755721945 - 0.608380184
22 0.928994706 0.407418726 - 0.668206716

19 
 

0.162046479 0.205942147 -

0.101785341 0.257347816 -

1 0.473600139 -

0.44033436 0.300621515 -

0.357966003 0.312267658 -

0.715592825 0.792111989 -

0 0.555268355 -

0.48142291 0.703938197 -

0.138363361 0.515857342 -

Min 0 0 - 

Max 1 1 - 

 

Gray Relational Coefficients and Gray Relational Grade
 
The gray relational coefficient (GRC) can be expressed as in Equation  4
(Jozić et al., 2015):

where Δij is the deviation sequence, Δmin and Δmax are the minimum and 
maximum values of the deviation sequence, and ξ is the distinguishing 
coefficient. In this research, the value of ξ was assumed to be 0.5 as in Jozić et 
al. (2015). The GRG values were calculated after obtaining the GRC values, 
which can be expressed as in Equation  5 (Jozić et al., 2015):

In this research, the number of objectives was three. Tables 9 and 10 show the 
GRC and GRG values for the three systems. In particular, the GRG values in 
Tables 9 and 10 were obtained by dividing the sum of GRC by 2 because there 
was no GRC value for violation. The higher values of GRG were preferred 
(Kolahan & Azadi Moghaddam, 2015).

(continued)
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Runs GRC (Cost) GRC (Reliability) GRC (Violation) GRG
23 0.397575054 1 - 0.698787527
24 0.476044402 0.796192609 - 0.636118506
25 0.403142784 0.717006925 - 0.560074854
26 0.518068684 0.93208324 - 0.725075962

Table 10

Grey Relational Coefficients and Grey Relational Grade for 36 Units

Runs GRC (Cost) GRC (Reliability) GRC 
(Violation)

GRG

1 0.721146358 0.91848058 - 0.819813469
2 0.363242138 0.451602749 - 0.407422443
3 0.548938053 0.653209895 - 0.601073974
4 0.639923331 0.488938116 - 0.564430724
5 0.523311671 0.94251615 - 0.73291391
6 0.385669822 0.333333333 - 0.359501578
7 0.752497742 0.591127592 - 0.671812667
8 0.670270565 1 - 0.835135283
9 0.625401009 0.578942059 - 0.602171534
10 0.406516758 0.489828435 - 0.448172596
11 0.522777634 0.658053666 - 0.59041565
12 0.362490109 0.680958785 - 0.521724447
13 0.387821517 0.425759224 - 0.406790371
14 0.813909178 0.758781789 - 0.786345483
15 0.969054581 0.607223476 - 0.788139028
16 0.661387035 0.496410138 - 0.578898587
17 0.691575209 0.3864422 - 0.539008705
18 0.755233985 0.708273337 - 0.731753661
19 0.83086105 0.660198642 - 0.745529846
20 0.333333333 0.513557856 - 0.423445595
21 0.531725758 0.624514818 - 0.578120288
22 0.582773675 0.615560641 - 0.599167158
23 0.411321941 0.386963363 - 0.399142652
24 1 0.473813128 - 0.736906564
25 0.509464365 0.41530371 - 0.462384038
26 0.783252972 0.492195094 - 0.637724033

Signal-to-Noise Ratio Analysis 

The GRA method was employed to transform all three objectives into 
a single criterion called GRG. The S/N analysis was then applied to 
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the GRG results to determine the new values for the parameters of 
the PACS algorithm. The S/N ratio was calculated using Equation 6 
(Kolahan & Azadi Moghaddam, 2015):

(6)

where m is the number of runs in a trial and GRG is the value obtained 
as the result of the GRA process. In this research, m is equal to 1 as 
considered by Kolahan and Azadi Moghaddam (2015). Tables 11 and 
12 display the results of S/N for the two systems.

Table 11 

Response of S/N for 26 Units

Runs Alpha Beta Initial 
Pheromone

Global 
Rate

Local 
Rate

Exploration 
Probability

S/N

1 0.005 0.005 0.01 0.005 0.005 0.1 -4.87917
2 0.005 0.500 0.10 0.050 0.050 0.6 -4.99667
3 0.005 1.000 0.20 0.100 0.100 0.7 -3.99956
4 0.005 1.500 0.50 0.200 0.200 0.8 -6.19914
5 0.005 2.000 1.50 0.250 0.250 0.9 -6.76232
6 0.500 0.005 0.10 0.100 0.200 0.9 -4.29435
7 0.500 0.500 0.20 0.200 0.250 0.1 -4.75112
8 0.500 1.000 0.50 0.250 0.005 0.6 -5.28156
9 0.500 1.500 1.50 0.005 0.050 0.7 -3.94106
10 0.500 2.000 0.01 0.050 0.100 0.8 -6.64136
11 1.000 0.005 0.20 0.250 0.050 0.8 -3.75455
12 1.000 0.500 0.50 0.005 0.100 0.9 -3.86196
13 1.000 1.000 1.50 0.050 0.200 0.1 -4.94214
14 1.000 1.500 0.01 0.100 0.250 0.6 -4.36187
15 1.000 2.000 0.10 0.200 0.005 0.7 -4.66606
16 1.500 0.005 0.50 0.050 0.250 0.7 -4.88873
17 1.500 0.500 1.50 0.100 0.005 0.8 -3.44097
18 1.500 1.000 0.01 0.200 0.050 0.9 -3.52183
19 1.500 1.500 0.10 0.250 0.100 0.1 -5.29351
20 1.500 2.000 0.20 0.005 0.200 0.6 -5.07985
21 2.000 0.005 1.50 0.200 0.100 0.6 -4.31650
22 2.000 0.500 0.01 0.250 0.200 0.7 -3.50178
23 2.000 1.000 0.10 0.005 0.250 0.8 -3.11310
24 2.000 1.500 0.20 0.050 0.005 0.9 -3.92924
25 2.000 2.000 0.50 0.100 0.050 0.1 -5.03508
26 1.000 0.005 0.01 0.100 0.005 0.1 -2.79233

22 
 

0.83086105 0.660198642 - 0.745529846

0.333333333 0.513557856 - 0.423445595

0.531725758 0.624514818 - 0.578120288

0.582773675 0.615560641 - 0.599167158

0.411321941 0.386963363 - 0.399142652

1 0.473813128 - 0.736906564

0.509464365 0.41530371 - 0.462384038

0.783252972 0.492195094 - 0.637724033

Signal-to-Noise Ratio Analysis 

The GRA method was employed to transform all three objectives into a single 
criterion called GRG. The S/N analysis was then applied to the GRG results to 
determine the new values for the parameters of the PACS algorithm. The S/N 
ratio was calculated using  Equation  6 (Kolahan & Azadi Moghaddam, 2015):

where m is the number of runs in a trial and GRG is the value obtained as the 
result of the GRA process. In this research, m is equal to 1 as considered by 
Kolahan and Azadi Moghaddam (2015). Tables 11 and 12 display the results 
of S/N for the three systems.

Table 11 

Response of S/N for 26 Units

Runs Alpha Beta Initial 
Pheromone 

Global 
Rate 

Local 
Rate 

Exploration 
Probability 

S/N 

0.005 0.005 0.01 0.005 0.005 0.1 -4.87917

0.005 0.500 0.10 0.050 0.050 0.6 -4.99667

0.005 1.000 0.20 0.100 0.100 0.7 -3.99956
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Table 12

Response of S/N for 36 Units

Runs Alpha Beta Initial 
pheromone

Global 
rate

Local 
rate

Exploration 
probability

S/N

1 0.005 0.005 0.01 0.005 0.005 0.1 -1.72570
2 0.005 0.500 0.10 0.050 0.050 0.6 -7.79910
3 0.005 1.000 0.20 0.100 0.100 0.7 -4.42144
4 0.005 1.500 0.50 0.200 0.200 0.8 -4.96779
5 0.005 2.000 1.50 0.250 0.250 0.9 -2.69894
6 0.500 0.005 0.10 0.100 0.200 0.9 -8.88598
7 0.500 0.500 0.20 0.200 0.250 0.1 -3.45504
8 0.500 1.000 0.50 0.250 0.005 0.6 -1.56486
9 0.500 1.500 1.50 0.005 0.050 0.7 -4.40560
10 0.500 2.000 0.01 0.050 0.100 0.8 -6.97109
11 1.000 0.005 0.20 0.250 0.050 0.8 -4.57684
12 1.000 0.500 0.50 0.005 0.100 0.9 -5.65118
13 1.000 1.000 1.50 0.050 0.200 0.1 -7.81259
14 1.000 1.500 0.01 0.100 0.250 0.6 -2.08773
15 1.000 2.000 0.10 0.200 0.005 0.7 -2.06794
16 1.500 0.005 0.50 0.050 0.250 0.7 -4.74795
17 1.500 0.500 1.50 0.100 0.005 0.8 -5.36808
18 1.500 1.000 0.01 0.200 0.050 0.9 -2.71270
19 1.500 1.500 0.10 0.250 0.100 0.1 -2.55070
20 1.500 2.000 0.20 0.005 0.200 0.6 -7.46405
21 2.000 0.005 1.50 0.200 0.100 0.6 -4.75964
22 2.000 0.500 0.01 0.250 0.200 0.7 -4.44904
23 2.000 1.000 0.10 0.005 0.250 0.8 -7.97744
24 2.000 1.500 0.20 0.050 0.005 0.9 -2.65175
25 2.000 2.000 0.50 0.100 0.050 0.1 -6.69994
26 1.000 0.005 0.01 0.100 0.005 0.1 -3.90734

Based on the S/N values, the analysis of means was conducted to 
determine a new combination of parameter values produced from the 
two systems (i.e., 26- and 36-unit systems). The means of the S/N 
values at different levels are calculated for each design parameter. 
A greater S/N corresponds to a better performance (Kolahan & 
Azadi Moghaddam, 2015). The mean S/N values for the parameters 
at each level are presented in Tables 13 and 14 for the 26- and 36-
unit systems, respectively. The optimal mean S/N values for each 
parameter were highlighted. The optimal S/N values were used to 
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determine the new parameter values. This can be done by plotting a 
graph of candidate values against mean S/N values for each parameter 
as shown in Figures 2 and 3. The new candidate values were those that 
corresponded to the highest mean of S/N values.

Table 13 

Mean of S/N for 26-Unit System

Parameters Level 1 Level 2 Level 3 Level 4 Level 5
Alpha -5.367 -4.982 -4.063 -4.445 -3.979
Beta -4.154 -4.110 -4.172 -4.745 -5.637
Initial Pheromone -4.283 -4.473 -4.303 -5.053 -4.681
Global Rate -4.175 -5.080 -3.987 -4.691 -4.919
Local Rate -4.165 -4.250 -4.823 -4.803 -4.775
Exploration Probability -4.616 -4.807 -4.199 -4.630 -4.474

Figure 2

Mean of S/N and Candidate Values for 26-Unit System

26 
 

Figure 2 
 
Mean of S/N and Candidate Values for 26-Unit System 
 

 

 
Table 14 
 
Mean of S/N for 36-Unit System 
 

Parameters Level 1 Level 2 Level 3 Level 4 Level 5 

Alpha -4.323 -5.057 -4.351 -4.569 -5.308 

Beta -4.767 -5.344 -4.898 -3.333 -5.180 

Initial Pheromone -3.642 -5.856 -4.514 -4.726 -5.009 

Global Rate -5.445 -5.996 -5.228 -3.593 -3.168 

Local Rate -2.881 -5.239 -4.871 -6.716 -4.193 

Exploration Probability -4.359 -4.735 -4.018 -5.972 -4.520 
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Table 14

Mean of S/N for 36-Unit System

Parameters Level 1 Level 2 Level 3 Level 4 Level 5
Alpha -4.323 -5.057 -4.351 -4.569 -5.308
Beta -4.767 -5.344 -4.898 -3.333 -5.180
Initial Pheromone -3.642 -5.856 -4.514 -4.726 -5.009
Global Rate -5.445 -5.996 -5.228 -3.593 -3.168
Local Rate -2.881 -5.239 -4.871 -6.716 -4.193
Exploration Probability -4.359 -4.735 -4.018 -5.972 -4.520

Figure 3

Mean of S/N and Candidate Values for 36-Unit System

 

Table 15 presents the summary of the new values of the parameters 
for the two unit systems. For each parameter, only one new value 
was used for all  two systems in  the experiment to test the PACS 
algorithm. For the Alpha parameter, if Alpha>Beta, the pheromone 
would guide the algorithm toward solutions with priority given to the 
objective functions. This also takes into consideration the operation 
hours of units in deciding their maintenance outage. However, 
if Beta>Alpha, the heuristic would guide the algorithm toward a 
solution with priority to the operating hours. This also takes into 
account the objective functions in deciding the maintenance outage 
of units. Therefore, for maintenance scheduling of units based on a 
sequential approach (i.e., operational hours) with priority given to the 
objective functions, i.e., low cost, high reliability, and low violation, 
such as in Muthana and Ku-Mahamud (2021; 2022), Alpha>Beta 
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Table 15 presents the summary of the new values of the parameters for the two 
unit systems. For each parameter, only one new value was used for all three 
systems in the experiment to test the PACS algorithm. For the Alpha parameter, 
if Alpha>Beta, the pheromone would guide the algorithm toward solutions with 
priority given to the objective functions. This also takes into consideration the 
operation hours of units in deciding their maintenance outage. However, if 
Beta>Alpha, the heuristic would guide the algorithm toward a solution with 
priority to the operating hours. This also takes into account the objective 
functions in deciding the maintenance outage of units. Therefore, for 
maintenance scheduling of units based on a sequential approach (i.e., 
operational hours) with priority given to the objective functions, i.e., low cost, 
high reliability, and low violation, such as in Muthana and Ku-Mahamud (2021; 
2022), Alpha>Beta should be chosen. This is supported by the findings in a 
research by Moncayo-Martínez and Zhang (2011), which obtained better multi-
objective optimization results when Alpha>Beta. The finding is also similar to 
Fattahi et al. (2014), which obtained better single objective optimization results 
based on operational hours when Alpha>Beta. For this reason, the value of 
Alpha was set to 2, and the value of Beta was 0.5. Furthermore, the value of 
Beta was the same as suggested by Berrichi et al. (2010). Fattahi et al. (2014) 
also chose a small value for Beta. The values for the initial pheromone and the 
local rate were set to 0.01 and 0.005, respectively since these values were the 
same for all unit systems. Additionally, Fattahi et al. (2014) selected a smaller 



    173      

Journal of ICT, 22, No. 2 (April) 2023, pp: 149–181

should be chosen. This is supported by the findings in a research by 
Moncayo-Martínez and Zhang (2011), which obtained better multi-
objective optimization results when Alpha>Beta. The finding is also 
similar to Fattahi et al. (2014), which obtained better single objective 
optimization results based on operational hours when Alpha>Beta. 
For this reason, the value of Alpha was set to 2, and the value of Beta 
was 0.5. Furthermore, the value of Beta was the same as suggested 
by Berrichi et al. (2010). Fattahi et al. (2014) also chose a small 
value for Beta. The values for the initial pheromone and the local rate 
were set to 0.01 and 0.005, respectively since these values were the 
same for all unit systems. Additionally, Fattahi et al. (2014) selected 
a smaller value for the global rate, whereas in the current research, 
the global rate was set to 0.1. A small value for the global rate would 
always lead to the accumulation of pheromones on the best solution 
(Fattahi et al., 2014). According to Wang et al. (2015), if Exp<0.5, 
the algorithm was fond of exploitation. For Exp=0.5, the algorithm 
had the same probability to perform exploration and exploitation. 
Nevertheless, if Exp>0.5, the algorithm preferred exploration. Higher 
exploration might also lead to improved solution quality (Malisia, 
2008). Therefore, in this research, the value 0.7 was chosen for the 
probability of the exploration. The chosen values for the parameters 
were highlighted.

Table 15

New Parameter Values

Test 
Systems

Alpha Beta Initial
Pheromone

Global 
Rate

Local Rate Exploration
Probability (Exp)

26-unit 
system

2 0.5 0.01 0.1 0.005 0.7

36-unit 
system

0.005 1.5 0.01 0.25 0.005 0.7

RESULTS AND DISCUSSIONS

Experiments were performed to evaluate the proposed Pareto Ant 
Colony System I (PACSI) algorithm, which used new values for the 
parameters. In evaluating the proposed new parameter values, the 
GRG metric was used. This metric was also applied in Jozić et al. 
(2015) and Kolahan and Azadi Moghaddam (2015) for evaluating 



174        

Journal of ICT, 22, No. 2 (April) 2023, pp: 149–181

the new parameter values in their multi-objective studies. The PACS 
benchmark algorithm described in Muthana and Ku-Mahamud 
(2021; 2022) was used for the comparison. A Friedman test was 
utilized to show the significant performance of the new parameter 
values. The experimental results are presented in Table 16 for the 
objective functions cost, reliability, and violation. In Table 16, PACS1 
represented the results of PACS using the new values. In general, it 
can be seen that the results for all the cost and reliability objective 
functions were better with the new parameter values for the 26- and 
36-unit systems. The results for the violation objective function 
showed that in all two unit systems, there was no violation in most of 
the maintenance windows. 

Table 16

Results by PACS I and PACS

Test 
Systems

Algorithms Maintenance 
Window

Cost Reliability Violation

26-unit 
system

PACS I [1000-2000] 201,316,761.00 1,972,341.00 8
[1000-2500] 186,285,879.19 1,967,579.00 0
[1500-2500] 186,977,072.81 1,985,763.00 1
[2000-3000] 182,373,580.90 1,972,386.00 0
[2000-4000] 175,518,540.65 2,007,475.00 0
[3000-5000] 176,293,493.30 2,014,789.00 0

PACS [1000-2000] 204,759,986.79 1,970,092.00 8
[1000-2500] 186,411,157.10 1,957,553.00 0
[1500-2500] 187,008,609.60 1,970,743.00 0
[2000-3000] 182,654,383.30 1,966,301.00 0
[2000-4000] 176,354,393.80 1,987,411.00 0
[3000-5000] 175,125,928.50 2,013,313.00 0

36-unit 
system

PACS I [1500-2500] Infeasible Infeasible Infeasible
[1500-3000] 361,292,184.40 2,400,355.00 0
[2000-3000] 362,144,810.77 2,400,700.00 0
[2000-4000] 343,716,769.27 2,411,797.00 0
[3000-4000] 344,764,139.14 2,415,513.00 0
[3000-5000] 335,912,070.79 2,423,701.00 0

PACS [1500-2500] Infeasible Infeasible Infeasible
[1500-3000] 363,550,376.90 2,397,544.00 0
[2000-3000] 362,531,811.91 2,404,129.00 0
[2000-4000] 345,982,572.00 2,409,526.00 0
[3000-4000] 349,295,226.55 2,399,891.00 0
[3000-5000] 336,980,517.06 2,414,183.00 0
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Table 17 shows the GRG improvement results for the PACS algorithm, 
where the parameters take the benchmark values and the new values. 
Better PACS performances were obtained with the new values for the 
26- and 36-unit systems. In Muthana and Ku-Mahamud (2022), the 
p values of 0.001 and 0.017 were recorded for the 26- and 36-unit 
systems, respectively, which showed that the performance of these 
systems can be improved.

Table 17

Grey Relational Grade of PACS I and PACS

Test Systems Maintenance 
Window

PACS I 
(GRG)

PACS (GRG) GRG Improvement
(PACS I, PACS) 

26-unit system [1000-2000] 1.000 0.333 0.667
[1000-2500] 1.000 0.333 0.667
[1500-2500] 1.000 0.333 0.667
[2000-3000] 1.000 0.333 0.667
[2000-4000] 1.000 0.333 0.667
[3000-5000] 0.667 0.667 0.000

36-unit system [1500-2500] Infeasible Infeasible Infeasible
[1500-3000] 1.000 0.333 0.667
[2000-3000] 0.667 0.667 0.000
[2000-4000] 1.000 0.333 0.667
[3000-4000] 1.000 0.333 0.667
[3000-5000] 1.000 0.333 0.667

To show the comparison statically, Table 18 summarizes the results 
obtained by the Friedman test in which the p value was used to show 
if there was a significant difference in performance. The GRG results 
were also used to calculate the p values for the two unit systems. It can 
be seen that the PACSI algorithm outperformed the PACS algorithm 
in the 26- and 36-unit systems. The computed p values for the 26- 
and 36-unit systems were less than 0.05, indicated that there was a 
significant difference in terms of the GRG values between PACSI and 
PACS. This implied that the PAC algorithm was significantly better 
when the new parameter values were used compared to the benchmark 
values. The 36-unit system had a bigger p value than the 26-unit 
system because of bigger demand and system size, which increased 
the problem’s complexity. Therefore, it was difficult for the algorithm 
to obtain better solutions. 
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Table 18

Results of Friedman Test

Test Systems Algorithms Mean Rank Ranking

26-unit system
PACS I 1.92 1
PACS 1.08 2
P value 0.025

36-unit system
PACS I 1.90 1
PACS 1.10 2
P value 0.046

CONCLUSION

This research proposed the optimal parameter values for the multi-
objective PACS algorithm. The Taguchi-GRA method was used to 
obtain optimal values for the algorithm’s parameters. Performance 
evaluation of the proposed new parameter values for the tested 
systems showed that the multi-objective PACSI algorithm was able 
to obtain better GRG solutions. Therefore, the algorithm was able to 
achieve better maintenance scheduling with low cost, high reliability, 
and low violation. The obtained new values for the parameters can be 
used as benchmark values in solving multi-objective GMS problems 
using the multi-objective PACS algorithm and its variants.

Future research could focus on the weights of the three parameters 
that represent the cost, reliability, and violation. These weights can be 
tested with fixed values to make a comparison between the random and 
fixed values in providing a better maintenance schedule. In addition, 
the proposed research has only used a single value for all the constants 
attached to the three objective functions, i.e., the constant with value 
one was used. The constants were used in deciding the best amount of 
pheromone in the reward to the best solution (solution with low cost, 
high reliability, and low violation) for the global update process in the 
end of every iteration. Other values can be tested to find the best value 
for the constant, which will determine the amount of pheromone to be 
used for the global update. 
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