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ABSTRACT 

Iris segmentation is a process to isolate the accurate iris region from 
the eye image for iris recognition. Iris segmentation on non-ideal 
and noisy iris images is accurate with active contour. Nevertheless, 
it is currently unclear on how active contour responds to blurry iris 
images or motion blur, which presents a significant obstacle in iris 
segmentation. Investigation on blurry iris images, especially on the 
initial contour position, is rarely published and must be clarified. 
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Moreover, evolution or convergence speed remains a significant 
challenge for active contour as it segments the precise iris boundary. 
Therefore, this study carried out experiments to achieve an efficient 
iris segmentation algorithm in terms of accuracy and fast execution, 
according to the aforementioned concerns. In addition, initial contour 
was explored to clarify its position. In order to accomplish these 
goals, the Wiener filter and morphological closing were used for pre-
processing and reflection removal. Next, the adaptive initial contour 
(AIC), δ, and stopping function were integrated to create the adaptive 
Chan-Vese active contour (ACVAC) algorithm. Finally, the partly-
normalization method for normalization and feature extraction was 
designed by selecting the most prominent iris features. The findings 
revealed that the algorithm outperformed the other active contour-
based approaches in computational time and segmentation accuracy. 
It proved that in blurry iris images, the accurate initial contour position 
could be established. This algorithm is significant to solve inaccurate 
segmentation on blurry iris images. 

Keywords: Iris segmentation, adaptive initial contour, adaptive Chan-
Vese active contour, partly-normalization, segmentation accuracy.

INTRODUCTION

Biometric system sales have been steadily increasing to suit 
worldwide market demands. In comparison to the traditional system, 
the biometric system is chosen since it is non-transferable (Sarier, 
2021), fraud-resistant (Shrivastava & Tcheslavski, 2018), and very 
convenient (Hossain et al., 2021). Biometric systems, both contact 
and contactless, can create adequate identification (Anne et al., 2020) 
and verification (Blasco & Peris-Lopez, 2018). Contact biometrics, 
such as fingerprints, are user-friendly (Amreen et al., 2020) and have 
high accuracy (Alsmirat et al., 2019). Furthermore, the demand for 
contactless biometric systems during the COVID-19 pandemic is 
expected to increase. Iris recognition can be utilized from a distance, 
help maintain personal hygiene, and minimize virus infection (Zhang 
et al., 2019). Moreover, iris recognition offers many benefits, including 
the fact that it is difficult to forge (Cohen et al., 2021), spoof-proof 
(Kaur, 2020), naturally protected from harsh environments (Sujatha & 
Chilambuchelvan, 2018), gives accurate matching (Wang & Kumar, 
2019), and offers high scalability (Shin et al., 2017). This system 
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contains a massive iris database that can be obtained and accessed 
through numerous government entities (Chen et al., 2020).

Iris is an annular object in the human eye. It leads the light into the 
retina (Quintero et al., 2020). It has muscles that control the opening 
and closing of the pupil (Wang et al., 2017). Iris has many important 
features (Khalaf et al., 2018) in its structure, such as the crypt, 
collarette, corona, and freckle. These unique features are different 
for everyone (Pavaloi & Ignat, 2019) and remain stable (Vyas et al., 
2019); thus, they are suitable for biometric recognition. Even cataract 
surgery does not alter iris features (Barpanda et al., 2019). However, 
iris features can minimally change over time (De Marsico et al., 
2018), such as in people suffering from diabetes (Azimi et al., 2019).

Iris segmentation is a part of iris recognition where it separates the 
accurate iris boundary from additional noises (Arsalan et al., 2019). It is 
important and crucial because it can lay a good foundation for efficient 
iris recognition (Zhang et al., 2019). Moreover, iris segmentation can 
limit errors and maintain good accuracy (Wu & Zhao, 2019). The error 
generated in iris segmentation can be propagated to the other parts of 
iris recognition (Arsalan et al., 2018). An accurate iris recognition 
must have an accurate iris segmentation (Rapaka & Kumar, 2018).

There are many iris segmentation methods that have been published in 
recent years. Arsalan et al. (2017) deployed an iris segmentation in a 
noisy environment from the convolutional neural network. On the other 
hand, Proenca and Neves (2018) used the deep learning framework 
for periocular recognition without using any segmentation mask. 
Other than that, deep neural network can be used for iris segmentation 
(Bazrafkan et al., 2018; Zhao & Kumar, 2018). Meanwhile, the non-
ideal iris images with non-uniform illumination and non-circular iris 
boundary can also be segmented (Jan, 2017). Various works achieved 
good performance when using the active contour approaches such as 
those reported in Ouabida et al. (2017), Chen et al. (2015), Jamaludin 
et al. (2018), Akinfende et al. (2020), and Jamaludin et al. (2017). 

In a non-ideal environment, the iris boundary is normally oval and 
unsymmetrical. Still, the active contour can segment the precise iris 
region and obtain acceptable segmentation accuracy and recognition 
accuracy in this environment. Additionally, the iris region obstructed 
by reflection, eyelash, and eyelid can be located. Nevertheless, it is 
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currently unclear how active contour responds to blurry iris images 
or motion blur instead of various noises, which presents a significant 
obstacle in iris segmentation. The investigation of blurry iris images 
for initial contour is rarely published and must be clarified. Moreover, 
the evolution or convergence speed remains a significant challenge 
for active contour as it segments the precise iris boundary.

Experiments have been implemented in this study to achieve an 
efficient iris segmentation algorithm in terms of accuracy and fast 
execution, according to the aforementioned concerns. In addition, 
initial contour has been explored to define its position. To accomplish 
these goals, the morphological closing and Wiener filter have been 
deployed for pre-processing and reflection removal. Next, the adaptive 
initial contour (AIC), δ, and stopping function have been integrated 
to create the adaptive Chan-Vese active contour (ACVAC) algorithm. 
Finally, the partly-normalization method for normalization and feature 
extraction has been designed by selecting the most prominent features 
in the iris region. The limitation of this study is that the blurry iris 
images are simulated to produce the motion blur effect.

ACTIVE CONTOUR

Segmentation without Edges Model

Active contour models, namely snake, gradient vector flow (GVF), 
balloon, and geodesic active contour (GAC) can be used for image 
segmentation. These active contour models depend on edge detection 
for the segmentation process. Following this, Chan and Vese (2001) 
introduced a new active contour model to reduce dependency on edge 
detection. This model uses a two-phase constant model energy function 
to detect boundaries in images, instead of gradient information. It can 
segment various shapes of boundaries in noisy images that are not 
necessarily defined by edge or gradient. This method is also called 
segmentation without edges since it ignores edges in images.

The Chan-Vese (CV) active contour model is an approximation of the 
segmentation method with the level set method by Mumford and Shah 
(1989). The energy function F(c1,c2,C) was minimized by segmenting 
an image into two elements, i.e., background and foreground. Then, 



    415      

Journal of ICT, 21, No. 3 (July) 2022, pp: 411–435

the curve evolved to reach the expected boundary. The energy function 
(Mumford & Shah, 1989) is shown in Equation 1:

                                         .                 
                                                     .
                                                (1)

where c1 is a constant of average µ0 inside curve C, c2 is a constant of 
average µ0 outside curve C, µ is a length parameter or scaling role, µ0 
is an image, and constants λ1, λ2, and υ. The first term of the formula 
represents the regularity of curve C. The second term controls the area 
of C. The third and fourth terms represent the discrepancy between c1 
and c2. 

Unfortunately, this active contour was susceptible to initialization. 
Since the energy function was non-convex, the initialization 
overloaded local minima (Chan & Vese, 2001). Moreover, the CV 
active contour showed good segmentation performance as in Ma et al. 
(2018) and Yu et al. (2018), whereby the medical images had stable and 
less complex textures. In spite of this, the iris has many rich features 
and complex structures such as furrows, crypts, and collarette. Crypts 
may be unusually dark with thick radial fibers (Chen et al., 2015; Shah 
& Ross, 2009). These factors can lead to active contour to activate the 
stopping function, thus not converging to the correct boundary.
 
Recent Models

Many active contour approaches for iris segmentation have recently 
been created to solve previous concerns. Chang et al. (2020) used 
the GAC model for iris region segmentation. To achieve the correct 
pupil center and radius, the GAC model was used to segment the 
pupil area. Then, the iris circle calculation was used for precise iris 
region segmentation. This method obtained a good performance of 
initial contour position and segmentation accuracy. The formula for 
iris circle detection (Chang et al., 2020) is shown in Equation 2:

                                     (2)
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where I(x,y) is an iris image, G(x,y) is an initial contour image, and α and k are constants. 
 
However, this method used many pre-processing algorithms such as Gaussian filter, Hough transform 
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speed. Furthermore, in non-ideal and blurry images, the initial contour was not adequate for the 
correct iris region segmentation. 
 
On the other hand, Abdullah et al. (2016) deployed the GVF model for iris segmentation. In order to 
produce a fusion of shrinking and expanding active contours, a novel force was introduced to the GVF 
model. The failure detection of a non-convex object and initial curve sensitivity could be minimized 
by preventing the target contour from shrinking and disappearing if it lay inside of the curve. Based 
on the results, this method obtained good accuracy for non-ideal segmentation. Moreover, the initial 
contour position managed to segment the precise boundary. The formula for the GVF model 
(Abdullah et al., 2016) is shown in Equation 3: 
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where vx, vy, ux and uy are the partial derivatives of v(x,y) and u(x,y) in the x and y directions. 
 
Nevertheless, this method also used the circular HT and CED for pupil segmentation and 
initialization. It utilized two active contours for the segmentation of the iris and pupil, which could 
further reduce its speed. In addition, the developed initial contour segmented the non-ideal iris images 
only. 
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to stop the energy function in an appropriate boundary. The formula 
for CV active contour (Chen et al., 2015) is shown in Equation 4:

                                    (4)

This method used the Gaussian filter and CED for pupil segmentation 
and initialization, which could increase its computational speed. 
Similar to Abdullah et al. (2016), Chen et al.’s (2015) method applied 
two active contours for iris and pupil segmentations, which could 
affect its speed. The developed initial contour position could segment 
the precise iris region with various noises, but the effect of motion blur 
was mentioned. Furthermore, the stopping function was not adequate 
for the blurry iris images, causing the curve to evolute and expand to 
the eyelash and eyelid.

THE PROPOSED ALGORITHM

Overview

The proposed adaptive Chan-Vese active contour (ACVAC) algorithm 
is based on the CV active contour model, as the original model is less 
reliant on edge detection. The algorithm will be deployed in the blurry 
iris images to locate the precise iris region. This work is divided into 
pre-processing, adaptive initial contour (AIC), partly-normalization, 
and performance analysis. 

Pre-Processing

Blurry images occur due to image capturing disturbances such as 
object or camera movement, insufficient capture time, poor focus, and 
scattered light. Furthermore, this occurs regularly in an uncontrolled 
environment. As a result, pre-processing is required to enhance the 
quality of the image.

In this study, the Wiener filter approach was employed to increase 
the quality of iris images, as described in Jamaludin et al. (2021) and 
Baselice et al. (2018). For image deblurring, this method outperforms 
the Lucy-Richardson and blind deconvolution algorithms. The point 
spread function was set up by determining the blurry pixel width 
using the optical system light. Then, the Gaussian low-pass filter was 
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employed for applying the constraint of the point spread function 
(PSF). The Wiener filter mechanism can adapt to the motion blur 
environment described by the PSF; thus, it will be able to produce 
better iris textures. In addition, the image’s key features can be 
preserved. The formula for the Wiener filter W(f1,f2) is shown in 
Equation 5:

                               (5)

where H(f1,f2) is the blurring filter, Sx(f1,f2) is the original power 
spectra, and Sn(f1,f2) is the noise power spectra (Baselice et al., 2018). 
The pre-processing example is shown in Figure 1.

Figure 1

Pre-Processing on Blurry Iris Image where a) Iris Image before Pre-
Processing b) Iris Image after Pre-Processing

a)                                        b)

AIC

Pre-processing can only minimally improve the blurry iris textures. 
As a result, AIC is developed in blurry iris images for precise iris 
region segmentation.

Firstly, in the discontiguous and contiguous regions, all pixel values 
were calculated to segment the pupil region. The specific pupil threshold 
was computed from the pre-test on 100 iris images. The information 
of the adaptable radius variable and convergence threshold was also 
investigated during the pre-test. Next, the connected components in 
the image were analyzed from the acquired data. Then, the connected 
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where H(f1,f2) is the blurring filter, Sx(f1,f2) is the original power spectra, and Sn(f1,f2) is the noise 
power spectra (Baselice et al., 2018). The pre-processing example is shown in Figure 1. 
 
Figure 1 
 
Pre-Processing on Blurry Iris Image where a) Iris Image before Pre-Processing b) Iris Image after 
Pre-Processing 
 

 
a)                                        b) 

 
AIC 

 
Pre-processing can only minimally improve the blurry iris textures. As a result, AIC is developed in 
blurry iris images for precise iris region segmentation. 
 
Firstly, in the discontiguous and contiguous regions, all pixel values were calculated to segment the 
pupil region. The specific pupil threshold was computed from the pre-test on 100 iris images. The 
information of the adaptable radius variable and convergence threshold was also investigated during 
the pre-test. Next, the connected components in the image were analyzed from the acquired data. 
Then, the connected components were sorted to determine the specific location of the pupil region in 
the iris image. The biggest connected component in the image was the desired pupil region. The 
radius and centroid of the pupil region were also recorded. Sometimes, the eyelash region can be 
detected as an accurate pupil region. However, inaccurate detection can be prevented by the assigned 
pupil threshold.  
 
The abovementioned method was also used to detect reflections in iris images. Furthermore, 
morphological closing was applied to remove the detected reflections. Firstly, complementation was 
employed to the iris image. The dark regions indicated reflections. All bright regions were enlarged 
and connected with morphological closing. The closest neighbors’ pixels were filled into the dark 
regions, thus eliminating reflections. 
 
Active contour for iris and pupil segmentations, which has been used by recent active contour-based 
algorithms (Chen et al., 2015; Chang et al., 2020; Abdullah et al., 2016), is a computational-hungry 
method. For this reason, the proposed algorithm created an initial contour from the previously 
obtained centroid and radius information. On the other hand, the prominent edges in an image can 
create inaccurate segmentation if approached by the evolution curve. The prominent edges with rich 
textures are typically observed at the upper eyelash, thus the curve expands to the eyelash and end 
abruptly. As a result, the initial contour should not be based exclusively on the pupil region centroid, 
as it may intercept with the eyelash (Jamaludin et al., 2018). In this study, the evolution curve could 
steer clear from the prominent edges, as the AIC was developed with the pupil centroid, and was 
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components were sorted to determine the specific location of the 
pupil region in the iris image. The biggest connected component in 
the image was the desired pupil region. The radius and centroid of the 
pupil region were also recorded. Sometimes, the eyelash region can 
be detected as an accurate pupil region. However, inaccurate detection 
can be prevented by the assigned pupil threshold. 

The abovementioned method was also used to detect reflections in iris 
images. Furthermore, morphological closing was applied to remove 
the detected reflections. Firstly, complementation was employed 
to the iris image. The dark regions indicated reflections. All bright 
regions were enlarged and connected with morphological closing. 
The closest neighbors’ pixels were filled into the dark regions, thus 
eliminating reflections.

Active contour for iris and pupil segmentations, which has been used 
by recent active contour-based algorithms (Chen et al., 2015; Chang 
et al., 2020; Abdullah et al., 2016), is a computational-hungry method. 
For this reason, the proposed algorithm created an initial contour 
from the previously obtained centroid and radius information. On the 
other hand, the prominent edges in an image can create inaccurate 
segmentation if approached by the evolution curve. The prominent 
edges with rich textures are typically observed at the upper eyelash, 
thus the curve expands to the eyelash and end abruptly. As a result, 
the initial contour should not be based exclusively on the pupil region 
centroid, as it may intercept with the eyelash (Jamaludin et al., 2018). 
In this study, the evolution curve could steer clear from the prominent 
edges, as the AIC was developed with the pupil centroid, and was 
relocated away from the upper eyelash. The proposed AIC is shown 
in Equation 6:

                                       (6)

where ɛ is an adaptable radius variable, rp is the pupil radius, xp and yp 
are the pupil centroid coordinates, and k is the relocated y-axis from 
the upper eyelash. ɛrp creates a region-of-interest (ROI) from the AIC 
centroid, thus minimizing the search area.

The length parameter µ is a significant scaling factor that influences 
the length of the evolution curve. In order to avoid incorrect iris 
segmentation, this parameter must be adjusted appropriately. µ can 
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If the defined convergence threshold is bigger than Length (C), then the curve will stop evolving 
because of the stopping function. The previous pre-test determined the value of the convergence 
threshold. 
 
Finally, the proposed AIC, δ, and stopping function were integrated into the ACVAC algorithm. The 
ACVAC algorithm FACVAC is shown in Equation 10: 
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integrate the searched iris region when the evolution curve length 
is restrained. Previously in Chen et al. (2015), the interference 
evaluation factor was employed: large µ for large object segmentation 
such as pupil and iris, and small µ for small object segmentation such 
as eyelash. In this study, δ was developed from the upper eyelash to 
restrain the length of the evolution curve, where µ evolved toward the 
large object. The formula of δ is shown in Equation 7:

                                                      

 (7)

where ɷ is the count number of pixel 0 in the upper eyelash region, 
and NAIC is a square ROI based on AIC at the upper eyelash region. 
ɛrp ensures interceptions between ROI and AIC, thus the length of 
evolution curve is restrained.

The evolution curve continues to expand until it reaches the correct iris 
boundary. False segmentation can happen if the eyelash interferes and 
stops the evolution curve at the inaccurate iris boundary. Therefore, 
the stopping function is developed, whereby the curve will stop if it 
approaches the iris boundary. Previously, two stopping functions were 
employed in Chen et al. (2015). In this study, one active contour was 
deployed by the modified stopping function. The modified stopping 
function is shown in Equations 8 and 9, where the evolution of curve 
starts from ɛrp:
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where constants λ1 = λ2 = 1, υ ≥ 0, and iteration threshold = 25. 

Partly-Normalization

Normalization is a process to convert iris features to the rectangular 
coordinate from the circular boundary. The same iris region can be 
referred to by the commonly used rubber sheet model, regardless 
of iris dilation or constriction (Jamaludin et al., 2018). Despite that, 
this method will collect all iris features including those that are not 
prominent enough for recognition, such as near the outer iris boundary 
(Abdullah et al., 2016). Therefore, this method is not efficient since 
the less important features are also included for feature extraction and 
normalization.

In this study, partly-normalization was created from the existing 
rubber sheet model. This model was refined where normalization 
was employed on the selected 70 percent iris region near the inner 
iris boundary (r = 0.7). Subsequently, the mapped iris feature points 
were reduced from normalization. The inner iris boundary had more 
prominent iris features than the outer iris boundary. Furthermore, iris 
features near the outer iris boundary could be obstructed by the upper 
eyelash. The proposed partly-normalization model is illustrated in 
Figure 2, where r = 0 – 1 represents the outer radius of the circular 
iris region, and θ = 0 – 360 represents the angular value of the circular 
iris region. Meanwhile, Figure 3 shows the iris features extracted by 
partly-normalization. 
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regardless of iris dilation or constriction (Jamaludin et al., 2018). Despite that, this method will collect 
all iris features including those that are not prominent enough for recognition, such as near the outer 
iris boundary (Abdullah et al., 2016). Therefore, this method is not efficient since the less important 
features are also included for feature extraction and normalization. 
 
In this study, partly-normalization was created from the existing rubber sheet model. This model was 
refined where normalization was employed on the selected 70 percent iris region near the inner iris 
boundary (r = 0.7). Subsequently, the mapped iris feature points were reduced from normalization. 
The inner iris boundary had more prominent iris features than the outer iris boundary. Furthermore, 
iris features near the outer iris boundary could be obstructed by the upper eyelash. The proposed 
partly-normalization model is illustrated in Figure 2, where r = 0 – 1 represents the outer radius of the 
circular iris region, and θ = 0 – 360 represents the angular value of the circular iris region. Meanwhile, 
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Figure 2 
 
Partly-Normalization. The Red Box Represents 70 Percent of Iris Region Near to the Inner Iris 
Boundary. The Yellow Line Represents the Most Prominent Iris Features in Iris Region 
 

 
 
Figure 3 
 
Iris Features Extracted by Partly-Normalization 
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Figure 2

Partly-Normalization. The Red Box Represents 70 Percent of Iris 
Region Near to the Inner Iris Boundary. The Yellow Line Represents 
the Most Prominent Iris Features in Iris Region

Figure 3

Iris Features Extracted by Partly-Normalization

Finally, 1D Log-Gabor filter was employed for feature extraction as 
in Abdullah et al. (2016). The complete ACVAC algorithm is shown in 
Algorithm 1.

Algorithm 1: ACVAC
1: % Pre-processing
2: PSF = fspecial(‘motion’);
3: A = image;
4: Idouble = im2double(A);

8 

 

 
)(

2
202 ),(

coutside

dxdycyx
                                              (10) 

 
where constants λ1 = λ2 = 1, υ ≥ 0, and iteration threshold = 25.  
 
Partly-Normalization 

 
Normalization is a process to convert iris features to the rectangular coordinate from the circular 
boundary. The same iris region can be referred to by the commonly used rubber sheet model, 
regardless of iris dilation or constriction (Jamaludin et al., 2018). Despite that, this method will collect 
all iris features including those that are not prominent enough for recognition, such as near the outer 
iris boundary (Abdullah et al., 2016). Therefore, this method is not efficient since the less important 
features are also included for feature extraction and normalization. 
 
In this study, partly-normalization was created from the existing rubber sheet model. This model was 
refined where normalization was employed on the selected 70 percent iris region near the inner iris 
boundary (r = 0.7). Subsequently, the mapped iris feature points were reduced from normalization. 
The inner iris boundary had more prominent iris features than the outer iris boundary. Furthermore, 
iris features near the outer iris boundary could be obstructed by the upper eyelash. The proposed 
partly-normalization model is illustrated in Figure 2, where r = 0 – 1 represents the outer radius of the 
circular iris region, and θ = 0 – 360 represents the angular value of the circular iris region. Meanwhile, 
Figure 3 shows the iris features extracted by partly-normalization.  
 
Figure 2 
 
Partly-Normalization. The Red Box Represents 70 Percent of Iris Region Near to the Inner Iris 
Boundary. The Yellow Line Represents the Most Prominent Iris Features in Iris Region 
 

 
 
Figure 3 
 
Iris Features Extracted by Partly-Normalization 
 

9 

 

 
 
Finally, 1D Log-Gabor filter was employed for feature extraction as in Abdullah et al. (2016). The 
complete ACVAC algorithm is shown in Algorithm 1. 
 

Algorithm 1: ACVAC 
1: % Pre-processing 
2: PSF = fspecial('motion'); 
3: A = image; 
4: Idouble = im2double(A); 
5: blurred = imfilter(Idouble,PSF,'conv','circular'); 
6: noise_mean = 0; noise_var = 0.0001; 
7: blurred_noisy = imnoise(blurred, 'gaussian', noise_mean, noise_var);  
8: estimated_nsr = noise_var / var(Idouble(:)); 
9: wnr1 = deconvwnr(blurred,PSF,estimated_nsr); % Wiener filter 
10:  
11: % AIC 
12: s=regionprops(A<threshold,'Area','PixelList'); 
13: areas=[s.Area].'; 
14: findAr=find(areas==max(areas)); 
15: ind=find(areas==areas(findAr)); 
16: pix=s(ind).PixelList; 
17: full=sum(areas); 
18: mask=logical(full(sparse(pix(:,2), pix(:,1), 1, size(A,1), size(A,2)))); 
19:  
20:  % Active contour 
21: ss=regionprops(mask,'Centroid','MajorAxisLength','MinorAxisLength'); 
22: diameters = mean([ss.MajorAxisLength ss.MinorAxisLength],2); 
23: radii = diameters/2; 
24: bww = activecontour(A, d,ItNu, 'chan-vese','SmoothFactor',SF,'ContractionBias',CB); 
25:  
26: % Feature extraction 
27: nscales=1;minWaveLength=18;mult=1; 
28: sigmaOnf=0.5; 
29: [template,mask] = encode2(image, noise, nscales, minWaveLength, mult, sigmaOnf); 
30:  
31: % Partly-normalization 
32: pn1 = image(1:(n*r),1:round(theta/2)); % iris code 
33: pn2 = noise(1:(n*r),1:round(theta/2)); % noise mask 
34:  
35: % Matching 

(continued)
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Algorithm 1: ACVAC
5: blurred = imfilter(Idouble,PSF,’conv’,’circular’);
6: noise_mean = 0; noise_var = 0.0001;

7: blurred_noisy = imnoise(blurred, ‘gaussian’, noise_mean, noise_
var); 

8: estimated_nsr = noise_var / var(Idouble(:));
9: wnr1 = deconvwnr(blurred,PSF,estimated_nsr); % Wiener filter
10:
11: % AIC
12: s=regionprops(A<threshold,’Area’,’PixelList’);
13: areas=[s.Area].’;
14: findAr=find(areas==max(areas));
15: ind=find(areas==areas(findAr));
16: pix=s(ind).PixelList;
17: full=sum(areas);
18: mask=logical(full(sparse(pix(:,2), pix(:,1), 1, size(A,1), size(A,2))));
19:
20: % Active contour

21: ss=regionprops(mask,’Centroid’,’MajorAxisLength’,’MinorAxisL
ength’);

22: diameters = mean([ss.MajorAxisLength ss.MinorAxisLength],2);
23: radii = diameters/2;

24: bww = activecontour(A, d,ItNu, ‘chan-vese’,’SmoothFactor’,SF,
’ContractionBias’,CB);

25:
26: % Feature extraction
27: nscales=1;minWaveLength=18;mult=1;
28: sigmaOnf=0.5;

29: [template,mask] = encode2
(image, noise, nscales, minWaveLength, mult, sigmaOnf);

30:
31: % Partly-normalization
32: pn1 = image(1:(n*r),1:round(theta/2)); % iris code
33: pn2 = noise(1:(n*r),1:round(theta/2)); % noise mask
34:
35: % Matching
36: hd = gethammingdistance2(pn1, mask1, pn2, mask2, 1);

Performance Analysis

The segmentation result must be evaluated to calculate the accuracy 
of the developed ACVAC algorithm. Segmentation accuracy was 
obtained by calculating the ratio of the segmented region over the 
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ground-truth region. The segmentation accuracy per image Ei is 
shown in Equation 11:

                                              (11)

where m and n are the height and width of iris image i, S(x,y) is the 
segmented iris region, and G(x,y) is the ground-truth iris region. Then, 
the overall segmentation accuracy E was computed by averaging Ei to 
the entire tested iris images N, as shown in Equation 12: 
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al., 2020). The segmentation accuracy and convergence time can be 
affected if its position is inaccurate. Figure 4 illustrates the precise 
initial contour position.

Figure 4

The Selected Results of AIC Where the White-Red Circles are the 
Proposed AIC, the Red Boxes are the Square ROI, the Green Regions 
are the Intercepted Region, and the Plus Signs are the Pupil Centroid

The designed AIC as shown in Figure 4 was created from the centroid 
of the pupil. AIC had a similar value to the x-axis value of the pupil 
region. In addition, the value of the y-axis was designed in a way 
where it would steer away from the upper eyelash region. As a 
result, just a fraction of the prominent edges with rich textures in the 
upper eyelid region was covered by the AIC. Furthermore, the AIC 
centroid was used to create the square ROI. The intercepted region of 
the square ROI and AIC was prohibited from the segmentation. The 
curve evolved and explored the lower eyelid region for the correct iris 
boundary until the intercepted region was reached. Finally, the curve 
stopped abruptly after reaching the upper eyelid and eyelash. As the 
rich energy levels and edges were avoided, the precise initial contour 
was obtained, which was in line with the findings of Jamaludin et al. 
(2018). 

Iris Segmentation on Blurry Iris Images
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the selected blurry iris images with the proposed segmentation 
algorithm.

Figure 5

The Selected ACVAC Segmentation Results

a) Segmentation on blurry and heavy eyelash occlusions

b) Segmentation on blurry and heavy eyelid occlusions

c) Segmentation on double eyelids occlusions
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correctly identify the sclera, pupil, lower, and upper eyelids. As stated 
in the previous section, the position of AIC was accurate in the blurry 
images. Moreover, the search area excluded the pupil region and upper 
eyelash, thus allowing δ to restrain the length of the curve. Meanwhile, 
the search area included the lower eyelid, which had a small amount 
of rich textures. Moreover, when the convergence threshold was 
bigger than Length (C), the stopping function halted the curve after it 
reached the precise iris region. Due to the aforementioned factors, a 
separate eyelid detection was not required. The non-ideal and noisy 
iris segmentation accuracy was increased from the abovementioned 
parameters, which was in line with the study reported in Abdullah et 
al. (2016). Nevertheless, the previous study (Abdullah et al., 2016) 
did not deploy its algorithm on blurry images. 

Furthermore, the proposed algorithm achieved a higher average 
segmentation accuracy than prior active contour-based approaches, as 
presented in Table 1.

Table 1

Average Segmentation Accuracy and Average Computational Time 
Comparison

Method Average Segmentation 
Accuracy (%)

Average Computational 
Time (s)

Chen et al. (2015) 81.2 1.81
Jamaludin et al. (2018) 48.6 0.71
Chang et al. (2020) 76.1 1.90
Abdullah et al. (2016) 77.6 2.31
Proposed method 97.2 0.65

The segmentation accuracy of 97.2 percent was achieved by the 
proposed method. The one that came closest was the method used by 
Chen et al. (2015), which obtained a segmentation accuracy of 81.2 
percent. Several factors were discussed based on the aforementioned 
segmentation accuracy results. Pixel gray information was used 
to design the initial contour in Chen et al. (2015). Satisfactory 
segmentation accuracy was obtained on the noisy and non-ideal iris 
images. Despite that, the less precise position of initial contour for 
the detection of the blurry upper eyelid boundary on the blurry iris 
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images gave an unsatisfactory result. Moreover, the curve expansion 
along the upper eyelash and eyelid was insufficient for the stopping 
function. Meanwhile, the CV active contour was used in Jamaludin et 
al.’s (2018) method for iris segmentation. The iris radius was assumed 
to be three times the size of the pupil radius for the development of 
the initial contour position. It emphasized the lower iris region, thus 
obtaining the lowest segmentation accuracy. Meanwhile, HT, CED, 
and GAC were used in Chang et al. (2020) to create the initial contour 
position. Non-ideal images could be segmented with this approach. 
However, it could mislead the iris circle estimation as it located the 
hidden circles in the images. On the other hand, GVF active contour 
was utilized in Abdullah et al. (2016) for iris segmentation. Here, the 
non-convex object detection failure and initial curve sensitivity were 
used to optimize the position of the initial contour. However, this 
position was only precise for non-ideal iris segmentation.

A few factors have been identified that allow the proposed algorithm 
to obtain the highest segmentation accuracy on blurry images. Firstly, 
the proposed ACVAC algorithm was designed from AIC that allowed 
for accurate initialization. The segmentation accuracy increased with 
accurate initialization, which was in line with Ding et al. (2017). 
Secondly, the efficient convergence mechanism was created where 
the designed δ restrained the evolution curve length. This finding was 
consistent with Jin and Weng (2019), whereby the smooth boundary 
could be obtained if the curve length was controlled. Thirdly, the 
curve stopped evolving when it approached the precise iris boundary 
by using the modified stopping function. 

Computational Time

Computational time is the best indicator to evaluate how fast the 
algorithm can be executed. Table 1 demonstrates that the proposed 
method outperformed the other active contour-based methods. The 
method required fewer operations in its design. For iris segmentation, it 
used a Wiener filter, morphological closing, and one active contour. In 
addition, the position of the initial contour aided in the computational 
speed. Iteration for boundary convergence could also be reduced if 
the initial contour position was accurate. This was in line with Fang et 
al. (2019), which stated that the execution time for iris segmentation 
could be reduced if the active contour had a small iteration. 
Furthermore, the partly-normalization method minimized the mapped 
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points from the segmented region, thus reducing computational time 
when processing the blurry iris images. The algorithm’s performance 
could be improved if it had fewer processes for normalization, which 
was in line with Jamaludin et al. (2018).

Furthermore, the circle detection methods, namely HT and integro-
differential operator, are computational-consuming processes 
(Djekoune et al., 2017). The proposed algorithm was faster than the 
other methods since the circle detection algorithm was not used. The 
slow computational time in Chang et al. (2020) could be attributed 
to the Gaussian filter, CED, and HT used for the coarse pupil region. 
Meanwhile, Abdullah et al. (2016) applied CED and circular HT for 
initialization before active contour was implemented. This method 
used two active contours, which further reduced its computational 
speed. Meanwhile, the circle detection algorithm was not utilized in 
Chen et al. (2015). Nevertheless, two active contours required more 
computational time for segmentation. In addition, the previous study 
(Chen et al., 2015) used the Gaussian filter and Canny edge detection 
for initialization. The method in Jamaludin et al. (2018) segmented the 
sub-iris region, thus achieving an almost similar computational time 
as the proposed algorithm. For pre-processing, it used the flood-fill 
and morphological closing operations. Meanwhile, iris segmentation 
used only one active contour. 

CONCLUSION

In this study, the ACVAC algorithm was proposed for blurry iris 
image segmentation. This algorithm was based on AIC and partly-
normalization. The proposed algorithm comprised pre-processing, 
AIC, and partly-normalization methods. For pre-processing, the 
blurry iris images were deblurred and reflections were eliminated with 
the Wiener filter and morphological closing. Then, the segmentation 
accuracy was improved by designing AIC, δ, and stopping function. 
Only a small amount of prominent edges was covered by the designed 
AIC. Furthermore, the curve’s length was restrained by employing δ. 
Finally, the partly-normalization method was employed for feature 
extraction and normalization, where the most prominent iris features 
were selected.

The obtained results showed that the proposed algorithm achieved 
the highest segmentation accuracy and fastest computational time 
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than the other active contour-based methods. The accurate position of 
the initial contour on the blurry iris images was clearly defined. The 
convergence speed was enhanced by employing fewer pre-processing, 
minimum active contour, and partly-normalization. Therefore, this 
study clarified that active contour can segment blurry iris images if 
an accurate initial contour can be produced. This can also increase 
the recognition accuracy for blurry iris image segmentation. For 
future research, the proposed algorithm can be refined with a graphic 
processing unit (GPU) to reduce the high computational cost of active 
contour.
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