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ABSTRACT 

Performance is a critical attribute in evaluating the quality and 
dependability of service-oriented systems dependent on fault-tolerant 
architectures. Fault-tolerant architectures have been implemented 
with redundant techniques to ensure fault-tolerant services. However, 
replica-related overhead burdens fault-tolerant techniques with 
associated performance degradation in service delivery, and this 
consequentially discourages service consumers with discredits 
for service providers. In this paper, a fault-tolerant approach that 
adopts replication and diversity was employed on agent-oriented 
coordination toward guaranteeing the performance of the proposed 
fault-tolerant architecture solution under a large-scale service request 
load. In addition, the resultant architecture solution was simulated 
with Apache JMeter for performance evaluation considering the 
performability in the absence and presence of a fault load. The 
simulation experiments and results revealed the architecture’s 
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efficiency in fault tolerance via the timely coordination of logical 
and replica-related activities by software agents. Noteworthily, the 
continued service availability and performance were guaranteed for 
the architecture solution with a significant rate of regularity in the 
absence and presence of a replica-related fault. Therefore, this study’s 
performance evaluation methods and results could serve as a veritable 
milestone for building fault-tolerant service systems with appreciable 
performability and contribute to the service-oriented fields where 
performance is inevitable.

Keywords: Web services, service-oriented systems, fault-tolerant 
architecture, fault tolerance, performance, software agents, replication, 
diversity, computational intelligence.

INTRODUCTION

A fault is a defect that threatens the dependability of service-oriented 
systems. Suitable fault assessments are paramount to assure the 
system’s performability in terms of fault tolerance and performance. 
Several studies have emphasized fault-tolerant architectures, their 
mechanisms, and criticality in ensuring service availability and delivery 
in service systems (Garcia & Toledo, 2007; Laranjeiro et al., 2008; 
Aghaei et al., 2011; Ahmed & Wu, 2013; Vargas-Santiago et al., 2017; 
Li et al., 2018; Pandey et al., 2019; Dahling et al., 2021). Relatively, 
existing fault-tolerant architectures have been centered around 
redundant mechanisms in terms of replication (active and passive), 
diversity, and N-Version Programming (Saha, 2005; Laranjeiro et 
al., 2008; Hosseini & Arani, 2015; Kumari & Kaur, 2018; Pandey et 
al., 2019; Abdi & Shahoveisi, 2022). Therefore, the effect of fault-
tolerant mechanisms on the overall system’s performance is critical to 
the service-oriented system communities and open to research. 

Furthermore, redundancy and diversity have been highlighted as 
judicious approaches to implementing fault-tolerant architectures 
for web service-based systems. In view of the above, the cost of 
guaranteeing fault tolerance in these architectures is evaluated by 
the rate of regularity in the system’s responsiveness upon service 
requests or consumption at a huge scale. Specifically, the architecture 
identifies the minimal effect of fault tolerance on the responsiveness 
or performance of a fault-tolerant service system under a service 
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replica failure or replica-related overheads over an interval of time. 
Performance is relatively measured with the attributes of response 
time (latency), throughput, and response stability – guaranteed 
responsiveness (Dobson & Sommerville, 2005; Garcia & Toledo, 
2007; Laranjeiro et al., 2008; Lau et al., 2008; Carzaniga et al., 2009; 
Aghaei et al., 2011; Ladan, 2011; Ahmed & Wu, 2013; Hosseini & 
Arani, 2015; Sari & Akkaya, 2015; Kumari & Kaur, 2018; Li et al., 
2018; Pandey et al., 2019). 

Response time connotes the time it takes to respond to a service 
request. Throughput is the unit processing time for service requests, 
whereas guaranteed responsiveness is the rate and regularity of 
service response on a time interval. A defect in one or more attributes 
affects the performability of the service solution (Rickard & Oskar, 
2017). Rickard and Oskar (2017) also asserted that approaches to 
fault tolerance in service systems may be consequential on their 
performance. This assertion connotes that performance overhead is 
presumed to have a high correlation with replica-related overheads 
due to: the fault-tolerant mechanisms on service replicas selection or 
switching in the presence of faults; and their dependencies on web 
services technologies – which are unavoidably prone to failure at 
invocation or runtime in an unpredictable network on the Internet 
(Saha, 2005; Lyu, 2011; Reddy et al., 2017; Pandey et al., 2018). 
Relatively, software agents are capable of logical service coordination 
at invocation time and have been described as fundamental for 
developing fault-tolerant service systems via triplicate redundancy 
(Saha, 2009).

It is unbearable to ensure fault tolerance with disorienting performance 
in service systems. As a result, this assertion motivated the researcher 
to evaluate the behavior of a fault-tolerant architecture solution in 
the context of guaranteeing performance over an interval of time. 
The researcher further proposed a fault-tolerant architecture and 
implemented a service solution using software agents’ coordination 
capabilities; evaluated the performance of the resultant architecture 
solution via the metrics of response time, throughput, and guaranteed 
responsiveness in the presence and absence of a fault; and then reported 
the behavioral effects of its fault-tolerance on the performance of the 
architecture solution. The rest of the paper is organized as follows: 
Section Two describes related studies on building fault-tolerant 
service-oriented systems. Section Three projects the proposed 



598        

Journal of ICT, 21, No. 4 (October) 2022, pp: 595–625

methodology: the architectural design, components, workability, and 
fault-tolerant approach. The experiments for performance evaluation 
are simulated with a load stressing tool, and the results are reported 
with analysis and discussion in Section Four. The paper ends with a 
conclusion and future direction.

RELATED STUDIES

A fault-tolerant system continues its functionality toward achieving 
a specified goal in the presence of faults. However, the absence 
of a fault-tolerant capability is a consequential loss, particularly 
to critical service systems dependent on web services for service 
provisions (Laranjeiro et al., 2008; Peng & Huang, 2014; Chimmanee 
& Jantavongso, 2016; Dahling et al., 2021). Succinctly, related 
studies on fault-tolerant approaches and mechanisms, performance 
of fault-tolerant mechanisms, and their reports were explored to 
guide the study’s focus. Aghdaie and Tamir (2002) were motivated 
by the limitations of web services for fault tolerance and developed 
a client-transparent architecture with a replication approach. Their 
proposal was a modification of the Apache webserver to handle client 
requests in the presence of server failure. Their evaluation of latency, 
throughput, and processing cycles was reported with significant 
overheads via the replication schemes for supporting request failure. 
Therefore, the overhead could be associated with a significant loss in 
the system’s performance under fault loads. 

In view of the replication issues related to the developments of fault-
tolerant web systems, Hong et al. (2005) proposed a replication (active 
and passive) approach for fault tolerance in distributed web systems. 
Performance was evaluated via request generator and LoadCube using 
the response time metric in the absence and presence of a fault. Their 
evaluation reported a better performance in the active scenarios than 
in the passive approach. The parameter of throughput and regularity 
rate in response time for service requests for an interval of time was 
a limitation in their study. The Universal Description, Discovery, and 
Integration (UDDI) failures were bridged in Oliveira et al. (2014) via a 
set of selection algorithms for new services when a component failure 
occurs. Their proposal depended on a novel selection mechanism 
employed in module logging and data mining to ensure the efficient 
selection of guaranteed web services. In the current study, a similar 
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concept was adopted in the selection of replica service solutions to 
ensure service availability for requests during service replica crashes.

Fault-tolerant designs were considered by Peng and Huang (2014) for 
the reliability of service-oriented architecture (SOA). Common fault-
tolerant strategies were introduced to a reliability model for evaluating 
the overall reliability of service-oriented systems. A sensitivity 
analysis was employed to describe the results on the behavioral 
effect of the SOA-based systems. It was observed in their study 
that design faults could be propagated across service replicas due to 
replication and cause the system to perform unreliably. Furthermore, 
Rickard and Oskar (2017) evaluated the performance of a fault-
tolerant system. Their study proposed a fault-tolerant architecture 
solution on replication and load balancing techniques for service 
availability against a fail-stop fault. The performance was evaluated 
under the fault load via response time. Their experiments monitored 
the replication effect on response time with the system’s consistency. 
Nevertheless, the result revealed a performance overhead in terms of 
slower response time under different network loads and requests. The 
fault tolerance mechanism of replication and load balancing traded off 
performance for reliability. 

The need for reliability and robustness was stressed in Pandey et al. 
(2019). They proposed a reliable mechanism for fault-tolerant web 
services via a novel framework using a replication manager approach. 
An algorithm was designed for fault prevention, and a pseudo-
procedure (restart, retry, or reboot) was implemented for faulty 
service replacements. Fault loads included business faults, entry point 
failures, and network faults to evaluate the reliability of the proposed 
architecture. The evaluation showed a higher failure rate without the 
redundancy (retry or restart) mechanism, but reliability was improved 
under the resource fault load using temporal redundancy mechanisms. 
However, the performability of the architecture solution was 
associated with overheads in service response even though reliability 
was achieved with fault tolerance. The rate of regularity or stability 
of service responses tended to drop over an interval of time under a 
large-scale request. 

Emphasizing replication across several nodes, Zhao (2007) rendered 
fault-tolerant web services by designing a fault-tolerant framework 
that is lightly weighted to ensure a consensus-based algorithm for 
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total ordering and consistency in replica membership. The study 
results revealed that the architecture incurred overhead in runtime, 
which moderately degraded the performability of the architecture 
solution. In summary, the review of related studies has been steered 
with motivations in fault-tolerant approaches, evaluation metrics, 
results, and limitations to garner insights on how to proffer tangible 
solutions to the performance overheads associated with fault-tolerant 
architecture for service systems. Previous literary works concisely 
exposed the challenges and opportunities to bridge the divides 
between fault tolerance and performance in service systems. In other 
words, the relevance in making service systems adequate on fault-
tolerant capability with efficient service delivery demands features 
such as transparent self-healing, scalability, and guaranteed service 
responses. These attributes are not peculiar to software agents since 
fault tolerance is fundamental for building agent-based applications 
(Saha, 2009).

Software Agent Technologies in Fault-Tolerant Computing

Literary works revealed trends of software agents in fault tolerance 
and their adoption for computational intelligence as a result of their 
autonomous, proactive, adaptable nature, and inherent coordination 
capabilities for logical computations (Alhosban, 2013; Oliha, 2018; 
Alvi et al., 2019). Moreover, the popularity over the years has been 
impactful in distributed systems’ implementation, and details of 
their approaches were documented in correlated literature (Saha, 
2009; Alvi et al., 2019). However, Saha (2005) expressed that the 
use of triplicate redundancy has been prevalent for fault tolerance 
by software agents regardless of their minimal support for design 
diversity during execution time for interactive applications. Another 
study added that their humanlike nature makes them autonomous and 
suitable for handling fault tolerance in critical systems (Dahling et al., 
2021). 

Unarguably, software agents are highly capable of coordinating 
service solutions because of their self-healing attributes. Besides self-
healing capability, they are efficient in activities involving execution 
before and at runtime – logical activities (Saha, 2005; Alhosban, 
2013; Erlank & Bridges, 2018) and managing byzantine or arbitrary 
faults (Alvi et al., 2019). With such intelligent nature, a collection of 
two or more agents collaborating to achieve a common task comprises 
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a Multi-Agent System (MAS). However, service systems depend on 
web services that must be synchronized as agent services to enable 
seamless integration via web services integration gateway (WSIG). 
WSIG facilitates software agents to communicate with web services 
by synchronizing Simple Object Access Protocol (SOAP) messages 
as Agent Communication Language (ACL) messages (Bellifemine 
& Greenwood, 2007; Calisti et al., 2010). The tools and platforms 
supporting seamless integration and communication between both 
technologies have been described in Bellifemine and Greenwood 
(2007).

According to Saha (2009), the fundamental for developing an agent-
based service system is highly dependent on fault tolerance. Their 
capabilities included efficiently coordinating logical activities 
associated with replication at runtime for web services executed as 
agent services to avoid failure at invocation time (Lyu, 2011; Kumar, 
2015; Li et al., 2018). Therefore, a feasible panacea to replica-related 
overheads is the adoption of software agents for redundant logical 
activities due to their support for fault tolerance through triplicate 
replication.

THE PROPOSED METHOD

The Proposed Architecture

The theoretical framework in this study was initiated with an 
introduction of a fault-tolerant architecture that adopted an agent-
oriented approach for implementing fault-tolerant mechanisms. 
Figure 1 shows the proposed architecture with software agents as the 
major component for integrating existing time-based fault-tolerant 
techniques for logical activities. The architecture was component-
based, where each component had unique services to attain a common 
goal of guaranteeing efficiency in service availability, reliability, and 
delivery. The architecture was implemented on a series of activities that 
were activated with a service request (and response) component via 
an interface for the client system to consume a targeted computational 
service. This request was originally sent as a SOAP message, parsed 
in an extensible markup language (XML) format for web services. 
A conversion was executed via the WSIG gateway to exchange this 
message format with the service provider. WSIG converted SOAP 
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messages to ACL messages to enable software agents to consume web 
services as agent services and vice versa.
 
Figure 1

The Proposed Fault-Tolerant Architecture with Agent Coordination 
Services

Software agents were hosted in the Java Agent DEvelopment (JADE) 
environment and their lifecycles were under the agency of Agent 
Management Services (AMS) coordination. JADE was one of the most 
suitable platforms for multi-agent systems (Leitao et al., 2016; Dahling 
et al., 2021). The service replica solutions were components with 
N-Versioned solutions built by different service vendors transparent 
to each other while providing computational services. Each replica 
solution was a collection of at least four N-Version sets of replica 
groups with n-1 of them that were active and running concurrently for 
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Software agents were hosted in the Java Agent DEvelopment (JADE) environment and their lifecycles 
were under the agency of Agent Management Services (AMS) coordination. JADE was one of the most 
suitable platforms for multi-agent systems (Leitao et al., 2016; Dahling et al., 2021). The service replica 
solutions were components with N-Versioned solutions built by different service vendors transparent 
to each other while providing computational services. Each replica solution was a collection of at least 
four N-Version sets of replica groups with n-1 of them that were active and running concurrently for 
each group alongside a passive standby. The proposed architecture was anticipated with the capability 
of checking design and code level faults, byzantine (incoherent result), and crash faults under large-
scale user requests. The replica-crash fault was uniquely emphasized to test the fault-tolerant 
mechanism via a fault injection scheme. The impact of the fault was communicated to the replica 
manager, and appropriate action was initiated for continuity. 
 
It is important to note that AMS was the major strength and heart of the architecture because it was a 
component highly responsible for multi-agent services, including creation, registration, behavior, 
communication, deletion, and agency under the guidelines of the Foundations for Intelligent Physical 
Agents specification. It is also saddled with the coordination of all logical activities, as depicted in 
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each group alongside a passive standby. The proposed architecture 
was anticipated with the capability of checking design and code level 
faults, byzantine (incoherent result), and crash faults under large-
scale user requests. The replica-crash fault was uniquely emphasized 
to test the fault-tolerant mechanism via a fault injection scheme. The 
impact of the fault was communicated to the replica manager, and 
appropriate action was initiated for continuity.

It is important to note that AMS was the major strength and heart 
of the architecture because it was a component highly responsible 
for multi-agent services, including creation, registration, behavior, 
communication, deletion, and agency under the guidelines of the 
Foundations for Intelligent Physical Agents specification. It is also 
saddled with the coordination of all logical activities, as depicted in 
Figure 2 via the replica manager involving replica group creation, 
replica addition, and replica process management for every replica 
solution. In this way, service requests, service response selection, 
fault management, service replicas, and service response were all 
managed by MAS, which was unique to the proposed architecture 
for guaranteeing performance in service delivery. As considered 
in literary works (Shafiq et al., 2006; Zhao, 2007), a lightweight 
client-transparent service known as a grade point average (GPA) 
solution was emphasized to test the fault tolerance mechanism and 
examine the solution’s behavior under large-scale simultaneous 
requests. Consequently, latency was increased on service responses 
intentionally to crash the system or degrade its performance.

The drawback of this architecture was capped at its capability to only 
tolerate replica crash faults at the application layer. Replica crash 
faults at the network layer may yield varying outcomes for fault 
tolerance and performance. However, application layer fault (replica 
crash) is a threat to the availability of services in fault-tolerant systems 
(Qian et al., 2018; Pandey et al., 2019) and threatens the survivability, 
performability, and dependability of service systems dependent on 
web services in general.

The Fault Tolerant Approach and Replica Management

The fault-tolerant approach adopted in the current study subsumed 
replication and diversity, considering software agents’ capability 
of fault tolerance by triplicate replication (Saha, 2009), though 
not in design diversity. Replication was adopted to ensure service 



604        

Journal of ICT, 21, No. 4 (October) 2022, pp: 595–625

availability by building service replicas. Diversity ensured that each 
service replica group was built by different service vendors with exact 
functionalities, involving at least four N-Version sets of replica groups 
with n-1 of them that were active and running concurrently for each 
group and a passive standby, as captured in Figure 1. The coordination 
of all replica-related logical activities was governed by software 
agents – MAS as seen in Figure 2. However, fault propagation is a 
defect of the replication approach (Aghaei et al., 2011). A design and 
code diversity approach was implemented to handle service defects 
and faults propagation associated with the replication approach. For 
this reason, faults could not be propagated to other replicas since these 
replicas were of different service vendors. 

Figure 2

Service Replica Coordination

At the occurrence of a replica fault, a transparent service provision 
was continued, while a retry or restart protocol was initiated for 
the failed replica by the fault manager under the coordination of 
MAS. Nevertheless, the fault-tolerant mechanism process of replica 
switching in some studies revealed overhead in latency with downtime 
in service response – performance. The current study implemented 
a selection algorithm for solution activities associated with service 
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At the occurrence of a replica fault, a transparent service provision was continued, while a retry or 
restart protocol was initiated for the failed replica by the fault manager under the coordination of MAS. 
Nevertheless, the fault-tolerant mechanism process of replica switching in some studies revealed 
overhead in latency with downtime in service response – performance. The current study implemented 
a selection algorithm for solution activities associated with service replicas, where selection was done 
to avoid delay in response time. Selection algorithms have been noted in similar concepts in literary 
works (Zhao, 2007; Oliveira et al., 2014; Pandey et al., 2019; Santish et al., 2022), though in fault-
tolerant mechanism selection or primary available service selection and not in replica result selection. 
Consequently, replica result selection was handled with the pseudocodes in Algorithm 1, with subsets 
in Algorithms 1a and 1b to ensure the optimal selection of appropriate service replica responses.  
 
 
Algorithm 1: Selection Algorithm 
Replica Result Selection Algorithm 
Output: S – coherent replicas’ solution result 
Inputs:  Array of replica solution results  
Initialization:  Let S be a set of replica solutions; 
  Let n be the size of the adjacency matrix for S solutions; 
  Import ArrayList properties; 
Begin   
1.  public class selectionAlgorithm { 
2.  private final String[] solutions; //solution set 
3.  private int [ ] [ ] SolMatrix; //matrix solution 
4.  private int n  0; 
5.  private ArrayList<integer> finalSol  new 
ArrayList<>( ); 
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replicas, where selection was done to avoid delay in response time. 
Selection algorithms have been noted in similar concepts in literary 
works (Zhao, 2007; Oliveira et al., 2014; Pandey et al., 2019; 
Santish et al., 2022), though in fault-tolerant mechanism selection 
or primary available service selection and not in replica result 
selection. Consequently, replica result selection was handled with the 
pseudocodes in Algorithm 1, with subsets in Algorithms 1a and 1b to 
ensure the optimal selection of appropriate service replica responses. 

Algorithm 1: Selection Algorithm
 
Replica Result Selection Algorithm
Output: S – coherent replicas’ solution result
Inputs: 	Array of replica solution results 
Initialization: 	 Let S be a set of replica solutions;
		  Let n be the size of the adjacency matrix for S solutions;
		  Import ArrayList properties;
Begin 	
1. 	 public class selectionAlgorithm {
2.		  private final String[] solutions; //solution set
3.		  private int [ ] [ ] SolMatrix; //matrix solution
4.		  private int n  0;
5.		  private ArrayList<integer> finalSol  new ArrayList<>( );
6. 		  public SelectionAlgorithm (String[ ] set) {
7.			   this.solutions  set;
8.			   n solutions.length;
9.		  //call selection process phases
10.		  phase0( ); //form matrix from n by n replica set of solutions
11.		  phase1( ); //scanning phase - rows and columns
12.		  finalSol  phase3(phase2());
13.		  } 
14.		  public ArrayList<Integer> getFinalSol() {
15.	         	 return finalSol;
16.	    	 }
17.	 } //end selectionAlgorithm
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Algorithm 1a: Selection Process Phases

//phase0 – matric formation 	
1. 	private void phase0( ) {
2.	        SolMatrix  new int[n][n];
3.	        //initialize all to -1 and and where i=j to -2
4.	        for(int i  0;i<n;i++)
5.	            for(int j  0;j<n;j++)
6.	                if(ij)
7.	                    SolMatrix[i][j]  -2;
8.	                else 
9.	                    SolMatrix[i][j]  -1;     }
    // phase 1: scanning phase
10.	private void phase1( ){ 
11.	        for (int i  0;i<n;i++)
12.	           for(int j  i+1; j<n;j++)
13.	               if(SolMatrix[i][j]  -1) 
14.	                   if(solutions[i].equals(solutions[j])){
15.	                       SolMatrix[i][j]1; SolMatrix[j][i]  1;
16.	                   }else{
17.	                        SolMatrix[i][j]0; SolMatrix[j][i]  0;
18.	                   }
19.	    }
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Algorithm 1b: Selection Process Phases Cont’d
//phase 2: row counts
20.	     private int[] phase2(){ 
21.	         int[] C  new int[n];
22.	         ArrayList<Integer> S_stack  new ArrayList<>();        
23.	         for(int i  0;i<n;i++){
24.	             C[i]  0;
25.	             if(!S_stack.contains(i))
26.	                for(int j  i+1;j<n;j++){
27.	                    C[i] + SolMatrix[i][j];
28.	                    if(SolMatrix[i][j]1) //push to S_stack
29.	                        S_stack.add(j);   
30.	                }   
31.	     }
32.	 return C;  
33.	     }
    //phase 3: row selection for most correct result
34.	     private  ArrayList<Integer> phase3(int[] C){ 
35.	         int p 0;//p for position
36.	         int max  C[p];        
37.	         for(int i  1;i<n;i++) 
38.	             if(C[i] > max){
39.	                 max  C[i];
40.	                 p  i;
41.	             }     
42.	    ArrayList<Integer> F_stack  new ArrayList<>();
43.	       for(int i0;i<n;i++)
44.	             if(C[i]max) //push to F_stack - result with same 
Max count
45.	                 F_stack.add(i);  
46.	         return F_stack;
47.	     } //end of phases

For phase0(), consider the sub-computations for the algorithm:
Let R = result set for solution S, where Ri = n, i = {2.0, 2.2, 3.0, 
3.5, 2.0, 3.08} and n = 6
The following n x n matrix is created for the set of solution results 
R,
The matrix is generated using the loop from lines 4 to 9, where the 
intersection is replaced by -2 and others with -1 values.
Thus, the matrix generated is represented in Table 1.
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Table 1

Generated Matrix

Since n = 6, the loop will require 36 iterations for an n x n matrix. 
To optimize these iterations, phase1() scans through the matrix to 
check if Ri = Rj and replaces the content with 1’s else 0’s if and only 
if Ri ≠ Rj for all -1.
In this phase, the rows Ri are checked against the columns Rj for all 
-1 entries given that:

n = set of replica results Ri for all -1; 

Thus, the number of iterations can be optimized with Equation 1:
 						      (1)
 
Where Rij is the number of iterations for n number of replica 
solutions.
                                         then Ri = R1 and R1 is checked against all columns 
of all Rj except for the intersection of the row against the column. 
Therefore, the optimization occurs from the row-wise comparison 
for the 1’s and the following pair of computations creates a new 
matrix via the reduction in Equation 2:

Following this, Equation 1 becomes Equation 2:
Rij = [(n2 – n)/2]						       (2) 

Equation 2 represents the optimized iteration of n set of replica solution 
results, R. The number of iterations is reduced to 15 as a result of the 
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The following n x n matrix is created for the set of solution results R, 
The matrix is generated using the loop from lines 4 to 9, where the intersection is replaced by -2 
and others with -1 values. 
Thus, the matrix generated is represented in Table 1. 

 
Table 1 
 
Generated Matrix 
 

 R1 R2 R3 R4 R5 R6 
R1 -2 -1 -1 -1 -1 -1 
R2 -1 -2 -1 -1 -1 -1 
R3 -1 -1 -2 -1 -1 -1 
R4 -1 -1 -1 -2 -1 -1 
R5 -1 -1 -1 -1 -2 -1 
R6 -1 -1 -1 -1 -1 -2 

 
Since n = 6, the loop will require 36 iterations for an n x n matrix.  
To optimize these iterations, phase1() scans through the matrix to check if Ri = Rj and replaces the 
content with 1’s else 0’s if and only if Ri ≠ Rj for all -1. 
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(where n must be ≥ 3)  
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stepwise decrement by (n - 1) in Equation 1. The matrix pairs are 
represented in Table 2 with 0’s except for the pair of {R2:R5} = 1.

Table 2

Matrix Pair

The vitality of this algorithm was to ensure rapid and optimal response 
of solution results to service requests irrespective of failed replicas, 
and this optimization was noticeable in phase1() in Algorithm 1a. n 
x n matrix of size 6 gave 36 iterations, but the algorithm executed it 
in [(n2-n)/2] iterations (where n must be ≥ 3) and stored the outcome 
unto a stack in phase2() while popping the highest occurrence in 
phase3(). Algorithm 1 implemented the different phases to achieve 
the desired objective for n set of replica solutions via the capability 
of software agents, ensuring service availability, regularity, and 
stability in the presence of a failed replica service(s). This not only 
ensured fault tolerance but also guaranteed the availability of services 
and reliability of the results. With these alignments, the architecture 
solution would be unburdened by the replica result selection issues. 
Furthermore, the efficiency of service responsiveness over an interval 
of time could be guaranteed for a fault-tolerant service system during 
a failed replica or switching among services for a response.

Fault Scenarios and Performance Measurement

Faults were injected into the architecture solution to assess fault 
tolerance and its solution behavior in different scenarios or conditions. 
The fault types and scenarios involved the following:

1.	 Propagation faults: this is a replica type of fault that is 
propagated via replication of service functionalities to other 

11 

 

In this phase, the rows Ri are checked against the columns Rj for all -1 entries given that: 
n = set of replica results Ri for all -1;  
Ri = {R1 = 2.0, R2 = 2.2, R3 = 3.0, R4 = 3.5, R5 = 2.0, R6 = 3.08}; Ri=Rj=1; and Ri ≠ Rj. 
Thus, the number of iterations can be optimized with Equation 1: 
𝑅𝑅𝑖𝑖𝑖𝑖 = ∑ (𝑛𝑛 − 1)𝑛𝑛

𝑖𝑖=1         (1) 
Where Rij is the number of iterations for n number of replica solutions. 
∀ 𝑅𝑅𝑅𝑅 =  −1; if i = 1 then Ri = R1 and R1 is checked against all columns of all Rj except for the 
intersection of the row against the column. Therefore, the optimization occurs from the row-wise 
comparison for the 1’s and the following pair of computations creates a new matrix via the reduction 
in Equation 2: 
for i = 1, j = i+1, and Ri ≠ R1, then R1 = {R1:R2, R1:R3, R1:R4, R1:R5, R1:R6} …  5 iterations 
for i = 2, j = i+1, and Ri ≠ R1, then R2 = {R2:R3, R2:R4, R2:R5, R2:R6} R2 = R5=1 …  4 iterations 
for i = 3, j = i+1, and Ri ≠ R1, then R3 = {R3:R4, R3:R5, R3:R6} … …  3 iterations 
for i = 4, j = i+1, and Ri ≠ R1, then R4 = {R4:R5, R4:R6}  … …  2 iterations 
for i = 5, j = i+1, and Ri ≠ R1, then R5 = {R5:R6} R5=R2=1 … …  1 iteration 
for i = 6, j = i+1, and Ri ≠ R1, then R6 = {ignored} 
Following this, Equation 1 becomes Equation 2: 
Rij = [(n2 – n)/2]       (2)  

 
Equation 2 represents the optimized iteration of n set of replica solution results, R. The number of 
iterations is reduced to 15 as a result of the stepwise decrement by (n - 1) in Equation 1. The matrix 
pairs are represented in Table 2 with 0’s except for the pair of {R2:R5} = 1. 
 
Table 2 
 
Matrix Pair 
 

 R1 R2 R3 R4 R5 R6 
R1 -2 0 0 0 0 0 
R2 0 -2 0 0 1 0 
R3 0 0 -2 0 0 0 
R4 0 0 0 -2 0 0 
R5 0 1 0 0 -2 0 
R6 0 0 0 0 0 -2 

 
The vitality of this algorithm was to ensure rapid and optimal response of solution results to service 
requests irrespective of failed replicas, and this optimization was noticeable in phase1() in Algorithm 
1a. n x n matrix of size 6 gave 36 iterations, but the algorithm executed it in [(n2-n)/2] iterations (where 
n must be ≥ 3) and stored the outcome unto a stack in phase2() while popping the highest occurrence in 
phase3(). Algorithm 1 implemented the different phases to achieve the desired objective for n set of 
replica solutions via the capability of software agents, ensuring service availability, regularity, and 
stability in the presence of a failed replica service(s). This not only ensured fault tolerance but also 
guaranteed the availability of services and reliability of the results. With these alignments, the 
architecture solution would be unburdened by the replica result selection issues. Furthermore, the 
efficiency of service responsiveness over an interval of time could be guaranteed for a fault-tolerant 
service system during a failed replica or switching among services for a response. 
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replicas. In this scenario, a replica solution code is mutated 
to see if it affects the replica results during the replication of 
services by the replica manager.

2.	 Replica crash fault: a scenario where a replica service is 
killed from an N-Versioned set of the same replica group. The 
computational solution of such a replica is never returned, but 
service responses are returned for others.

3.	 Group crash fault: another similar scenario where the entire 
replica group of N-Versioned set is crashed, and computational 
service response is denied from that group.

Furthermore, the given fault conditions were expectant of performance 
overheads over time – that is, replica-related faults were injected 
to cause some service replica overheads. However, the impact on 
performance was evaluated during runtime via the metrics of response 
time and throughput by the service agents. Therefore, evaluating 
the architecture solution over an interval of time was paramount to 
examining the rate of responsiveness or solution behavior under the 
fault conditions.

EXPERIMENTS AND RESULTS

Experiment Setup and Configurations

Apposite configurations were vital to assess the fault-tolerant 
approach’s impact on the performance of the architecture solution 
over time. Necessary files, addons, and plugins were extracted into 
relevant directories and the multi-agent systems were configured using 
the JADE platform as the agency for housing running agent services. 
The experimental setup involved configuring parameters, directories, 
libraries, system environment, and user variables in preparation for the 
evaluation. The simulation environment was mimicked with Apache 
JMeter for virtual service requests users, web services consumption, 
and report generations for each user group on a Lenovo G470 system 
with 4GB RAM and a Processor of Intel(R) Core(TM) i5-3230M 
CPU @ 2.60GHz (4 CPUs), ~2.6Ghz. Apache JMeter was selected 
as the evaluation tool in this study. It was feasible for load-stressing 
web applications in simulating their behavior using corresponding 
performance indicators, such as response time, throughput, error 
percentage of response to request rate, and standard deviation, for the 
rate of regularity or deviation in response time. 
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The performance experiment was configured for two versions of the 
architecture solution, i.e., the absence and presence of fault with a 
configuration of 25,000 requests per unit time at a large scale from 
ten random service request channels. Software testing and quality 
assurance revealed that the requests were processed, and responses 
were delivered successfully within a stable state. The behavior of the 
architecture solution in the presence of faults needed to be assessed to 
determine its guaranteed performability. 

Fault Injection
 
This study adopted the compile-time technique, whereby the replica 
crash fault was injected into the architecture solution to ascertain its 
fault-tolerant capability and performance in the presence of faults. 
This fault injection technique has been used in literary works to test 
the dependability of software systems (Looker et al., 2004; Zaide et al., 
2004; Hossain, 2006; Rychly & Zouzelka, 2012; Ramakrishnan et al., 
2014; Umadevi & Rajakumari, 2015). The fault injection mechanism 
employs code mutation, which modifies or refactors (Almogahed & 
Omar, 2021) a subsection of the architecture solution code at compile 
time to activate replica-related faults conditions at runtime such that:

1.	 a fault propagated to service replica solution produces arbitrary 
and incoherent responses (byzantine);

2.	 if it crashes some replica solution processes, then an error 
of request timeout, connection lost, or service unavailable is 
returned from the affected group processes;

3.	 if it crashes the entire group of service replicas, then delay 
or latency overheads are experienced, causing inconsistent 
regularity in service delivery.

Subsequently, the experiment results for the architecture solution 
were extracted, as represented in Figure 3.
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Figure 3

Evaluation Summary Report for the Architecture Solution in the 
Presence and Absence of Fault

The extracted result data contained a sample request size of 25,000 on 
ten different service channels, response time with average intervals, 
etc. The experiments in the absence (ASol_af) and presence (ASol_pf) 
of a replica fault revealed the architecture solution’s performability 
with an error response rate of 0.00 percent (100% error-free) to 
all service requests from the designated channels. On average, the 
architecture solution in the absence of a replica fault responded with 
about 4,072 ms to a sample request of 25,000 being processed at 2.4 
s for every 2.19 Kbytes of requests. Moreover, 2.19 Kbytes were 
processed with a throughput of 8.5 s for 25,000 sample requests at 
an average response time of 1,173 ms for ASol_pf. The deviation 
from the regularity of expected response time was capped at 655.6 
for the architecture solution in the absence of a fault and 165.8 in the 
presence of a fault. 

The graphical implications were represented to visualize the 
behavior of the architecture solution for both scenarios. Based on the 
experimental result data, the response time and the responsiveness 
rate were indicated by standard deviation from the summary reports 
(guaranteed responsiveness), which were graphically represented for 
both architecture solutions in Figures 4–7. ASol_af represented the 
architecture solution in the absence of replica fault with the legend – X, 
and Asol_pf signified the architecture solution in the presence of fault 
with the legend – Y. The average throughput for both scenarios was 
greater than 5 s for processing requests/responses for the experiments. 
The higher the throughput, the better the outcome (Ladan, 2011).
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ASol_af Asol_pf ASol_af Asol_pf ASol_af Asol_pf ASol_af Asol_pf ASol_af Asol_pf ASol_af Asol_pf ASol_af Asol_pf
1 2492 2491 4070 1174 653.08 169.52 0.2 0.8 7615 2565 0.00% 0.00% 2241.2 2247.4
2 2462 2434 4046 1180 679.04 173.83 0.2 0.8 7258 2343 0.00% 0.00% 2243.1 2247.5
3 2455 2443 4088 1163 651.07 165.89 0.2 0.8 7071 2257 0.00% 0.00% 2243 2153.7
4 2536 2545 4073 1174 666.68 164.5 0.2 0.9 10885 2270 0.00% 0.00% 2150.2 2248
5 2493 2534 4049 1176 633.67 166.83 0.2 0.9 6690 2330 0.00% 0.00% 2150.6 2430.1
6 2506 2555 4064 1172 656.22 168.58 0.2 0.9 6864 2469 0.00% 0.00% 2242.3 2336
7 2495 2509 4086 1175 672.33 166.85 0.2 0.9 7414 2178 0.00% 0.00% 2243.8 2247.7
8 2514 2524 4077 1170 630.02 160.77 0.2 0.9 7347 2111 0.00% 0.00% 2334.2 2154.3
9 2551 2500 4071 1167 648.29 160.65 0.2 0.8 7001 2114 0.00% 0.00% 2151 2246.5
10 2496 2465 4093 1177 657.26 159.49 0.2 0.8 6937 2410 0.00% 0.00% 2425 2155.1

Total 25000 25000 4072 1173 655.06 165.8 2.4 8.5 10885 2565 0.00% 0.00% 2242.1 2247.3

Sample Size Response Time AVG Error% Average BytesGuaranteed Resp Throughput Response Time MaxService 
Channels

Data Capture of Summary Reports for both Versions of the Experiments: ASol_af (X) & Asol_pf (Y)
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Figure 4

Line Graph for Response Time – Asol_af (X)

The average response time for Asol_af from the ten different request 
channels was 4,072 ms. This finding depicted the average number of 
responses processed per unit time from each service response channel 
for ASol_af. Similarly, the highest and lowest points for ASol_pf 
were 1,180 ms and 1,163 ms response per millisecond. Meanwhile, 
the average response time was capped at 1,173 ms for the ASol_pf 
architecture solution.

Figure 5

Line Graph for Response Time – Asol_pf (Y)
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From the graphs in Figures 4 and 5, the average difference in response 
time for ASol_af was summated as 47 ms from the peak and lowest 
response times. This result signified the range at which the service 
responses were guaranteed or slightly distorted for service provision 
upon requests. Furthermore, the average difference in response time 
for ASol_pf was summed as 17 ms, indicating a better time frame for 
guaranteeing service responses to requests. The line graphs in Figures 
6 and 7 captured the graphical representations for the performance 
attribute of guaranteed responsiveness for the architecture solution. 
Guaranteed responsiveness is a product of the standard deviation result 
data, denoting the rate of regularity at which service responses are 
guaranteed over an interval of time with or without a fault presence. 
This regularity depicted the fault tolerance ability and responsiveness 
of service systems.

Figure 6

Guaranteed Responsiveness Line Graph for ASol_af (X)

The line graph for ASol_af in Figure 6 concerning regularity in 
responses displayed a zigzag outcome. It is hard to tell which service 
response channel maintained regularity as the peak was capped 
at channel 2 and the lowest at channel 8. This result indicated that 
service responses were guaranteed within a time frame of 630.02 ms 
and 679.04 ms as the lowest and peak times.
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Figure 7

Guaranteed Responsiveness Line Graph for ASol_pf (Y)

The line graph of ASol_pf in Figure 7 showed a maintained regularity 
from the service response channel for client 6, from which elevation 
was decreased below the point of initiation at channel 1. The peak 
guaranteed response time was capped at an interval within 173.83 ms, 
with a low response time of 159.49 ms at channel 10. This finding 
indicated that the response time rate was more guaranteed for ASol_
pf than ASol_af. From Figures 4–7, ASol_pf projected better in both 
response time and guaranteed responsiveness than ASol_af. The 
ASol_pf vs ASol_af line graphs were plotted against each other for 
response time and guaranteed responsiveness, respectively, in Figures 
8 and 9.
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Figure 8

ASol_af (X) vs ASol_pf (Y) Line Graph for Response Time

Figure 9
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response even under a replica fault. Bar graphs were also plotted in 
Figures 10 and11 to confirm and buttress the architecture’s strength in 
guaranteeing performance in service systems.

Figure 10

Average Performance Bar Graph for Response Time – ASol_af (X) vs 
ASol_pf (Y)

Figure 11

Average Performance Bar Graph for Guaranteed Responsiveness – 
ASol_af (X) vs ASol_pf (Y)
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For clarity, the rate of regularity in response time was better 
comprehended in Figures 10 and 11. The average performance bar graph 
for response time and guaranteed responsiveness depicted the range 
of regularities. The service response for ASol_af was only possible for 
an insignificant deviation range of 49.02 ms for the targeted request 
size but with consistency in the regularity range. Moreover, ASol_pf 
recorded a service consistency response regularity with a deviation 
range of about 14.34 ms per request size. Better service responsiveness 
with an insignificant variation in service delivery was noted in ASol_
pf. The performability of the architecture solution was good for both 
versions; however, better performance was guaranteed for the ASol_pf 
version of the deployed architecture solution for service delivery. The 
resultant efficient service delivery credited the performability of the 
architecture solution with an insignificant variation in guaranteeing 
the system’s behavior – performance. The result findings were also 
synonymous with literary works in performance computing (Hong et 
al., 2005; Peng & Huang, 2014; Pandey et al., 2019).

DISCUSSIONS

Saha (2009) discoursed that “software-based fault tolerance is the 
use of technologies to enable the continued delivery of services at 
an acceptable level of performance after a design fault becomes 
active”. This study realized assertion via the use of software agents’ 
coordinating capabilities to manage replica-related overheads. A fault-
tolerant architecture solution was implemented, the resultant solution 
was simulated with Apache JMeter for performance experiments, and 
the evaluation results were documented and analyzed. 

From the experiments, the architecture solution demonstrated 
capability in handling replica-related crash faults with support for 
accurate responses to service requests at a 0.00 percent error return 
rate on an average response time of 4,072 ms, and a throughput of 
2.4 s captured for ASol_af. At the same time, an improved average 
response time of 1,173 ms was capped for ASol_pf. Additionally, 
a better processing time of 8.5 s as ramp-up time was captured for 
ASol_pf in handling services provision at a large scale of 25,000 
sample requests, as depicted in Figure 4. The performance of most 
service-related literary works was adjudged with the attributes of 
response time and high throughput (Ladan, 2011; Bora & Bezborual, 
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2015; Kumar, 2015). A high throughput indicated good performance. 
ASol_pf had a throughput of 8.5 s, while ASol_af had 2.4 s. A better 
performance was found for the architecture solution when under a 
fault load. 

The experimental results from the graphs in Figures 4 and 5 showed 
that the average difference in response time for ASol_af and ASol_pf 
was summated as 47 ms and 17 ms, respectively, indicating a better 
time frame for guaranteeing service responses to client requests. 
Likewise, the average rate at which the response regularities were 
in variation for the architecture solutions was within a time frame 
difference of 49.02 ms for ASol_af and 14.34 ms for ASol_pf. It 
is indicative that the architecture solution in the presence of fault 
guaranteed more performability in response time and guaranteed 
responsiveness by about 36.2 percent and 29.3 percent over ASol_af. 
The outcomes of the simulated experiments and evaluation were in 
harmony with literary works in service-oriented system communities 
(Hong et al., 2005; Calisti et al., 2010; Alvi et al., 2019; Pandey et 
al., 2019). Convincingly, the architecture solution’s performance 
was contrary to the latency and replica-related overheads observed 
in some other studies (Aghdaie & Tamir, 2002; Li et al., 2005; Zhao, 
2007; Rickard & Oskar, 2017; Li et al., 2018; Dahling et al., 2021).

The study findings are worth noting that: 
1.	 The architecture solution demonstrated robustness in fault 

tolerance with efficiency in the system’s performance at a very 
large-scale service request and response provision. 

2.	 The architecture solution’s behavior in the presence and 
absence of faults unveiled a matching uniformity of regularity 
in service delivery. 

3.	 There is a strong indication that the performance of the fault-
tolerant service-oriented architecture solution is guaranteed 
and even better in the presence of a replica crash fault because 
of the computational intelligence of multi-agent technology in 
coordinating the logical-replica-related services.

CONCLUSION

In this study, fault was guaranteed by building service replicas with 
replication and a diversified N-Versioned redundancy approach 
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to ensure service availability and regularity in provision/delivery. 
Replica-related overheads were managed via MAS services by 
coordinating all logical time-related activities (replica creation, 
service registry facilitators, service registration, service request, 
binding, distribution and communication, replica solution services, 
fault injection, and replica solution results) to ensure efficient 
service delivery in the presence and absence of replica faults. 
The fault tolerance and performance of the architecture solution 
were evaluated with attributes of response time, throughput, and 
guaranteed responsiveness. Therefore, the study affirms that the 
architecture solution is efficient in guaranteeing regularity in service 
delivery for service systems deployed on fault-tolerant architecture. 
This efficiency is thereby credited to software agents’ coordination 
intelligence. Software agents are emphasized as one of the credible 
solutions for implementing logical activities associated with service 
replicas for fault-tolerant service systems dependent on web services. 

The approach, results, and findings of this study are in no attempt to 
condemn service systems but to contribute to fault-tolerant computing 
research where guaranteeing performance is inevitable. Nonetheless, 
for the advancement of knowledge, the need to further subject the 
results to statistical interpretations is vital to assess the confidence rate 
at which service responses are guaranteed, particularly in the presence 
of faults.
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