
 595

Journal of ICT, 21, No. 4 (October) 2022, pp: 595–625

https://e-journal.uum.edu.my/index.php/jict

JOURNAL OF INFORMATION AND
COMMUNICATION TECHNOLOGY

How to cite this article:
Oliha, F. (2022). Guaranteeing performance in a fault tolerant architecture solution
using software agent’s coordination. Journal of Information and Communication
Technology, 21(4), 595-625. https://doi.org/10.32890/jict2022.21.4.6

Guaranteeing Performance in a Fault Tolerant Architecture
Solution using Software Agent’s Coordination

Festus Oliha
Department of Computer Science,

University of Benin, Nigeria

oliha_festus@uniben.edu

Received: 17/4/2022 Revised: 26/7/2022 Accepted: 9/8/2022 Published: 20/10/2022

ABSTRACT

Performance is a critical attribute in evaluating the quality and
dependability of service-oriented systems dependent on fault-tolerant
architectures. Fault-tolerant architectures have been implemented
with redundant techniques to ensure fault-tolerant services. However,
replica-related overhead burdens fault-tolerant techniques with
associated performance degradation in service delivery, and this
consequentially discourages service consumers with discredits
for service providers. In this paper, a fault-tolerant approach that
adopts replication and diversity was employed on agent-oriented
coordination toward guaranteeing the performance of the proposed
fault-tolerant architecture solution under a large-scale service request
load. In addition, the resultant architecture solution was simulated
with Apache JMeter for performance evaluation considering the
performability in the absence and presence of a fault load. The
simulation experiments and results revealed the architecture’s

596

Journal of ICT, 21, No. 4 (October) 2022, pp: 595–625

efficiency in fault tolerance via the timely coordination of logical
and replica-related activities by software agents. Noteworthily, the
continued service availability and performance were guaranteed for
the architecture solution with a significant rate of regularity in the
absence and presence of a replica-related fault. Therefore, this study’s
performance evaluation methods and results could serve as a veritable
milestone for building fault-tolerant service systems with appreciable
performability and contribute to the service-oriented fields where
performance is inevitable.

Keywords: Web services, service-oriented systems, fault-tolerant
architecture, fault tolerance, performance, software agents, replication,
diversity, computational intelligence.

INTRODUCTION

A fault is a defect that threatens the dependability of service-oriented
systems. Suitable fault assessments are paramount to assure the
system’s performability in terms of fault tolerance and performance.
Several studies have emphasized fault-tolerant architectures, their
mechanisms, and criticality in ensuring service availability and delivery
in service systems (Garcia & Toledo, 2007; Laranjeiro et al., 2008;
Aghaei et al., 2011; Ahmed & Wu, 2013; Vargas-Santiago et al., 2017;
Li et al., 2018; Pandey et al., 2019; Dahling et al., 2021). Relatively,
existing fault-tolerant architectures have been centered around
redundant mechanisms in terms of replication (active and passive),
diversity, and N-Version Programming (Saha, 2005; Laranjeiro et
al., 2008; Hosseini & Arani, 2015; Kumari & Kaur, 2018; Pandey et
al., 2019; Abdi & Shahoveisi, 2022). Therefore, the effect of fault-
tolerant mechanisms on the overall system’s performance is critical to
the service-oriented system communities and open to research.

Furthermore, redundancy and diversity have been highlighted as
judicious approaches to implementing fault-tolerant architectures
for web service-based systems. In view of the above, the cost of
guaranteeing fault tolerance in these architectures is evaluated by
the rate of regularity in the system’s responsiveness upon service
requests or consumption at a huge scale. Specifically, the architecture
identifies the minimal effect of fault tolerance on the responsiveness
or performance of a fault-tolerant service system under a service

 597

Journal of ICT, 21, No. 4 (October) 2022, pp: 595–625

replica failure or replica-related overheads over an interval of time.
Performance is relatively measured with the attributes of response
time (latency), throughput, and response stability – guaranteed
responsiveness (Dobson & Sommerville, 2005; Garcia & Toledo,
2007; Laranjeiro et al., 2008; Lau et al., 2008; Carzaniga et al., 2009;
Aghaei et al., 2011; Ladan, 2011; Ahmed & Wu, 2013; Hosseini &
Arani, 2015; Sari & Akkaya, 2015; Kumari & Kaur, 2018; Li et al.,
2018; Pandey et al., 2019).

Response time connotes the time it takes to respond to a service
request. Throughput is the unit processing time for service requests,
whereas guaranteed responsiveness is the rate and regularity of
service response on a time interval. A defect in one or more attributes
affects the performability of the service solution (Rickard & Oskar,
2017). Rickard and Oskar (2017) also asserted that approaches to
fault tolerance in service systems may be consequential on their
performance. This assertion connotes that performance overhead is
presumed to have a high correlation with replica-related overheads
due to: the fault-tolerant mechanisms on service replicas selection or
switching in the presence of faults; and their dependencies on web
services technologies – which are unavoidably prone to failure at
invocation or runtime in an unpredictable network on the Internet
(Saha, 2005; Lyu, 2011; Reddy et al., 2017; Pandey et al., 2018).
Relatively, software agents are capable of logical service coordination
at invocation time and have been described as fundamental for
developing fault-tolerant service systems via triplicate redundancy
(Saha, 2009).

It is unbearable to ensure fault tolerance with disorienting performance
in service systems. As a result, this assertion motivated the researcher
to evaluate the behavior of a fault-tolerant architecture solution in
the context of guaranteeing performance over an interval of time.
The researcher further proposed a fault-tolerant architecture and
implemented a service solution using software agents’ coordination
capabilities; evaluated the performance of the resultant architecture
solution via the metrics of response time, throughput, and guaranteed
responsiveness in the presence and absence of a fault; and then reported
the behavioral effects of its fault-tolerance on the performance of the
architecture solution. The rest of the paper is organized as follows:
Section Two describes related studies on building fault-tolerant
service-oriented systems. Section Three projects the proposed

598

Journal of ICT, 21, No. 4 (October) 2022, pp: 595–625

methodology: the architectural design, components, workability, and
fault-tolerant approach. The experiments for performance evaluation
are simulated with a load stressing tool, and the results are reported
with analysis and discussion in Section Four. The paper ends with a
conclusion and future direction.

RELATED STUDIES

A fault-tolerant system continues its functionality toward achieving
a specified goal in the presence of faults. However, the absence
of a fault-tolerant capability is a consequential loss, particularly
to critical service systems dependent on web services for service
provisions (Laranjeiro et al., 2008; Peng & Huang, 2014; Chimmanee
& Jantavongso, 2016; Dahling et al., 2021). Succinctly, related
studies on fault-tolerant approaches and mechanisms, performance
of fault-tolerant mechanisms, and their reports were explored to
guide the study’s focus. Aghdaie and Tamir (2002) were motivated
by the limitations of web services for fault tolerance and developed
a client-transparent architecture with a replication approach. Their
proposal was a modification of the Apache webserver to handle client
requests in the presence of server failure. Their evaluation of latency,
throughput, and processing cycles was reported with significant
overheads via the replication schemes for supporting request failure.
Therefore, the overhead could be associated with a significant loss in
the system’s performance under fault loads.

In view of the replication issues related to the developments of fault-
tolerant web systems, Hong et al. (2005) proposed a replication (active
and passive) approach for fault tolerance in distributed web systems.
Performance was evaluated via request generator and LoadCube using
the response time metric in the absence and presence of a fault. Their
evaluation reported a better performance in the active scenarios than
in the passive approach. The parameter of throughput and regularity
rate in response time for service requests for an interval of time was
a limitation in their study. The Universal Description, Discovery, and
Integration (UDDI) failures were bridged in Oliveira et al. (2014) via a
set of selection algorithms for new services when a component failure
occurs. Their proposal depended on a novel selection mechanism
employed in module logging and data mining to ensure the efficient
selection of guaranteed web services. In the current study, a similar

 599

Journal of ICT, 21, No. 4 (October) 2022, pp: 595–625

concept was adopted in the selection of replica service solutions to
ensure service availability for requests during service replica crashes.

Fault-tolerant designs were considered by Peng and Huang (2014) for
the reliability of service-oriented architecture (SOA). Common fault-
tolerant strategies were introduced to a reliability model for evaluating
the overall reliability of service-oriented systems. A sensitivity
analysis was employed to describe the results on the behavioral
effect of the SOA-based systems. It was observed in their study
that design faults could be propagated across service replicas due to
replication and cause the system to perform unreliably. Furthermore,
Rickard and Oskar (2017) evaluated the performance of a fault-
tolerant system. Their study proposed a fault-tolerant architecture
solution on replication and load balancing techniques for service
availability against a fail-stop fault. The performance was evaluated
under the fault load via response time. Their experiments monitored
the replication effect on response time with the system’s consistency.
Nevertheless, the result revealed a performance overhead in terms of
slower response time under different network loads and requests. The
fault tolerance mechanism of replication and load balancing traded off
performance for reliability.

The need for reliability and robustness was stressed in Pandey et al.
(2019). They proposed a reliable mechanism for fault-tolerant web
services via a novel framework using a replication manager approach.
An algorithm was designed for fault prevention, and a pseudo-
procedure (restart, retry, or reboot) was implemented for faulty
service replacements. Fault loads included business faults, entry point
failures, and network faults to evaluate the reliability of the proposed
architecture. The evaluation showed a higher failure rate without the
redundancy (retry or restart) mechanism, but reliability was improved
under the resource fault load using temporal redundancy mechanisms.
However, the performability of the architecture solution was
associated with overheads in service response even though reliability
was achieved with fault tolerance. The rate of regularity or stability
of service responses tended to drop over an interval of time under a
large-scale request.

Emphasizing replication across several nodes, Zhao (2007) rendered
fault-tolerant web services by designing a fault-tolerant framework
that is lightly weighted to ensure a consensus-based algorithm for

600

Journal of ICT, 21, No. 4 (October) 2022, pp: 595–625

total ordering and consistency in replica membership. The study
results revealed that the architecture incurred overhead in runtime,
which moderately degraded the performability of the architecture
solution. In summary, the review of related studies has been steered
with motivations in fault-tolerant approaches, evaluation metrics,
results, and limitations to garner insights on how to proffer tangible
solutions to the performance overheads associated with fault-tolerant
architecture for service systems. Previous literary works concisely
exposed the challenges and opportunities to bridge the divides
between fault tolerance and performance in service systems. In other
words, the relevance in making service systems adequate on fault-
tolerant capability with efficient service delivery demands features
such as transparent self-healing, scalability, and guaranteed service
responses. These attributes are not peculiar to software agents since
fault tolerance is fundamental for building agent-based applications
(Saha, 2009).

Software Agent Technologies in Fault-Tolerant Computing

Literary works revealed trends of software agents in fault tolerance
and their adoption for computational intelligence as a result of their
autonomous, proactive, adaptable nature, and inherent coordination
capabilities for logical computations (Alhosban, 2013; Oliha, 2018;
Alvi et al., 2019). Moreover, the popularity over the years has been
impactful in distributed systems’ implementation, and details of
their approaches were documented in correlated literature (Saha,
2009; Alvi et al., 2019). However, Saha (2005) expressed that the
use of triplicate redundancy has been prevalent for fault tolerance
by software agents regardless of their minimal support for design
diversity during execution time for interactive applications. Another
study added that their humanlike nature makes them autonomous and
suitable for handling fault tolerance in critical systems (Dahling et al.,
2021).

Unarguably, software agents are highly capable of coordinating
service solutions because of their self-healing attributes. Besides self-
healing capability, they are efficient in activities involving execution
before and at runtime – logical activities (Saha, 2005; Alhosban,
2013; Erlank & Bridges, 2018) and managing byzantine or arbitrary
faults (Alvi et al., 2019). With such intelligent nature, a collection of
two or more agents collaborating to achieve a common task comprises

 601

Journal of ICT, 21, No. 4 (October) 2022, pp: 595–625

a Multi-Agent System (MAS). However, service systems depend on
web services that must be synchronized as agent services to enable
seamless integration via web services integration gateway (WSIG).
WSIG facilitates software agents to communicate with web services
by synchronizing Simple Object Access Protocol (SOAP) messages
as Agent Communication Language (ACL) messages (Bellifemine
& Greenwood, 2007; Calisti et al., 2010). The tools and platforms
supporting seamless integration and communication between both
technologies have been described in Bellifemine and Greenwood
(2007).

According to Saha (2009), the fundamental for developing an agent-
based service system is highly dependent on fault tolerance. Their
capabilities included efficiently coordinating logical activities
associated with replication at runtime for web services executed as
agent services to avoid failure at invocation time (Lyu, 2011; Kumar,
2015; Li et al., 2018). Therefore, a feasible panacea to replica-related
overheads is the adoption of software agents for redundant logical
activities due to their support for fault tolerance through triplicate
replication.

THE PROPOSED METHOD

The Proposed Architecture

The theoretical framework in this study was initiated with an
introduction of a fault-tolerant architecture that adopted an agent-
oriented approach for implementing fault-tolerant mechanisms.
Figure 1 shows the proposed architecture with software agents as the
major component for integrating existing time-based fault-tolerant
techniques for logical activities. The architecture was component-
based, where each component had unique services to attain a common
goal of guaranteeing efficiency in service availability, reliability, and
delivery. The architecture was implemented on a series of activities that
were activated with a service request (and response) component via
an interface for the client system to consume a targeted computational
service. This request was originally sent as a SOAP message, parsed
in an extensible markup language (XML) format for web services.
A conversion was executed via the WSIG gateway to exchange this
message format with the service provider. WSIG converted SOAP

602

Journal of ICT, 21, No. 4 (October) 2022, pp: 595–625

messages to ACL messages to enable software agents to consume web
services as agent services and vice versa.

Figure 1

The Proposed Fault-Tolerant Architecture with Agent Coordination
Services

Software agents were hosted in the Java Agent DEvelopment (JADE)
environment and their lifecycles were under the agency of Agent
Management Services (AMS) coordination. JADE was one of the most
suitable platforms for multi-agent systems (Leitao et al., 2016; Dahling
et al., 2021). The service replica solutions were components with
N-Versioned solutions built by different service vendors transparent
to each other while providing computational services. Each replica
solution was a collection of at least four N-Version sets of replica
groups with n-1 of them that were active and running concurrently for

6

Service Group S

Service Integration Gateway (WSIG)

ACL MessagesSOAP Messages

Agent Services

ACL_service_request

Web Services
WSIG Agent

JA
D
E PlatformACL_service_response

Requst_Interface Response_Interface

Agent Management Service - AMS

Replica Service Manager - MAS

Message Communication Bus

Replica Service
Solution s Scheme

Fault
Injection

Fault
Management

Scheme

Fault Manager
solution_Result

service_Requet

initiate_FT_Scheme

send_error_Log

Error or Failure Messages Message Bus

Service Group A Service Group B Service Group N

RS1 RSNRS2 RS1 RSNRS2 RS1 RSNRS2 RS1 RSNRS2

fault/error/failure fault/error/failure fault/error/failure fault/error/failure

no
ti
fy

_f
au

lt
_M

an
ag

er

Software agents were hosted in the Java Agent DEvelopment (JADE) environment and their lifecycles
were under the agency of Agent Management Services (AMS) coordination. JADE was one of the most
suitable platforms for multi-agent systems (Leitao et al., 2016; Dahling et al., 2021). The service replica
solutions were components with N-Versioned solutions built by different service vendors transparent
to each other while providing computational services. Each replica solution was a collection of at least
four N-Version sets of replica groups with n-1 of them that were active and running concurrently for
each group alongside a passive standby. The proposed architecture was anticipated with the capability
of checking design and code level faults, byzantine (incoherent result), and crash faults under large-
scale user requests. The replica-crash fault was uniquely emphasized to test the fault-tolerant
mechanism via a fault injection scheme. The impact of the fault was communicated to the replica
manager, and appropriate action was initiated for continuity.

It is important to note that AMS was the major strength and heart of the architecture because it was a
component highly responsible for multi-agent services, including creation, registration, behavior,
communication, deletion, and agency under the guidelines of the Foundations for Intelligent Physical
Agents specification. It is also saddled with the coordination of all logical activities, as depicted in

 603

Journal of ICT, 21, No. 4 (October) 2022, pp: 595–625

each group alongside a passive standby. The proposed architecture
was anticipated with the capability of checking design and code level
faults, byzantine (incoherent result), and crash faults under large-
scale user requests. The replica-crash fault was uniquely emphasized
to test the fault-tolerant mechanism via a fault injection scheme. The
impact of the fault was communicated to the replica manager, and
appropriate action was initiated for continuity.

It is important to note that AMS was the major strength and heart
of the architecture because it was a component highly responsible
for multi-agent services, including creation, registration, behavior,
communication, deletion, and agency under the guidelines of the
Foundations for Intelligent Physical Agents specification. It is also
saddled with the coordination of all logical activities, as depicted in
Figure 2 via the replica manager involving replica group creation,
replica addition, and replica process management for every replica
solution. In this way, service requests, service response selection,
fault management, service replicas, and service response were all
managed by MAS, which was unique to the proposed architecture
for guaranteeing performance in service delivery. As considered
in literary works (Shafiq et al., 2006; Zhao, 2007), a lightweight
client-transparent service known as a grade point average (GPA)
solution was emphasized to test the fault tolerance mechanism and
examine the solution’s behavior under large-scale simultaneous
requests. Consequently, latency was increased on service responses
intentionally to crash the system or degrade its performance.

The drawback of this architecture was capped at its capability to only
tolerate replica crash faults at the application layer. Replica crash
faults at the network layer may yield varying outcomes for fault
tolerance and performance. However, application layer fault (replica
crash) is a threat to the availability of services in fault-tolerant systems
(Qian et al., 2018; Pandey et al., 2019) and threatens the survivability,
performability, and dependability of service systems dependent on
web services in general.

The Fault Tolerant Approach and Replica Management

The fault-tolerant approach adopted in the current study subsumed
replication and diversity, considering software agents’ capability
of fault tolerance by triplicate replication (Saha, 2009), though
not in design diversity. Replication was adopted to ensure service

604

Journal of ICT, 21, No. 4 (October) 2022, pp: 595–625

availability by building service replicas. Diversity ensured that each
service replica group was built by different service vendors with exact
functionalities, involving at least four N-Version sets of replica groups
with n-1 of them that were active and running concurrently for each
group and a passive standby, as captured in Figure 1. The coordination
of all replica-related logical activities was governed by software
agents – MAS as seen in Figure 2. However, fault propagation is a
defect of the replication approach (Aghaei et al., 2011). A design and
code diversity approach was implemented to handle service defects
and faults propagation associated with the replication approach. For
this reason, faults could not be propagated to other replicas since these
replicas were of different service vendors.

Figure 2

Service Replica Coordination

At the occurrence of a replica fault, a transparent service provision
was continued, while a retry or restart protocol was initiated for
the failed replica by the fault manager under the coordination of
MAS. Nevertheless, the fault-tolerant mechanism process of replica
switching in some studies revealed overhead in latency with downtime
in service response – performance. The current study implemented
a selection algorithm for solution activities associated with service

8

Figure 2

Service Replica Coordination

At the occurrence of a replica fault, a transparent service provision was continued, while a retry or
restart protocol was initiated for the failed replica by the fault manager under the coordination of MAS.
Nevertheless, the fault-tolerant mechanism process of replica switching in some studies revealed
overhead in latency with downtime in service response – performance. The current study implemented
a selection algorithm for solution activities associated with service replicas, where selection was done
to avoid delay in response time. Selection algorithms have been noted in similar concepts in literary
works (Zhao, 2007; Oliveira et al., 2014; Pandey et al., 2019; Santish et al., 2022), though in fault-
tolerant mechanism selection or primary available service selection and not in replica result selection.
Consequently, replica result selection was handled with the pseudocodes in Algorithm 1, with subsets
in Algorithms 1a and 1b to ensure the optimal selection of appropriate service replica responses.

Algorithm 1: Selection Algorithm
Replica Result Selection Algorithm
Output: S – coherent replicas’ solution result
Inputs: Array of replica solution results
Initialization: Let S be a set of replica solutions;
 Let n be the size of the adjacency matrix for S solutions;
 Import ArrayList properties;
Begin
1. public class selectionAlgorithm {
2. private final String[] solutions; //solution set
3. private int [] [] SolMatrix; //matrix solution
4. private int n  0;
5. private ArrayList<integer> finalSol  new
ArrayList<>();

 605

Journal of ICT, 21, No. 4 (October) 2022, pp: 595–625

replicas, where selection was done to avoid delay in response time.
Selection algorithms have been noted in similar concepts in literary
works (Zhao, 2007; Oliveira et al., 2014; Pandey et al., 2019;
Santish et al., 2022), though in fault-tolerant mechanism selection
or primary available service selection and not in replica result
selection. Consequently, replica result selection was handled with the
pseudocodes in Algorithm 1, with subsets in Algorithms 1a and 1b to
ensure the optimal selection of appropriate service replica responses.

Algorithm 1: Selection Algorithm

Replica Result Selection Algorithm
Output: S – coherent replicas’ solution result
Inputs: 	Array of replica solution results
Initialization: 	 Let S be a set of replica solutions;
		 Let n be the size of the adjacency matrix for S solutions;
		 Import ArrayList properties;
Begin 	
1. 	 public class selectionAlgorithm {
2.		 private final String[] solutions; //solution set
3.		 private int [] [] SolMatrix; //matrix solution
4.		 private int n  0;
5.		 private ArrayList<integer> finalSol  new ArrayList<>();
6. 		 public SelectionAlgorithm (String[] set) {
7.			 this.solutions  set;
8.			 n solutions.length;
9.		 //call selection process phases
10.		 phase0(); //form matrix from n by n replica set of solutions
11.		 phase1(); //scanning phase - rows and columns
12.		 finalSol  phase3(phase2());
13.		 }
14.		 public ArrayList<Integer> getFinalSol() {
15.	 	 return finalSol;
16.	 	 }
17.	 } //end selectionAlgorithm

606

Journal of ICT, 21, No. 4 (October) 2022, pp: 595–625

Algorithm 1a: Selection Process Phases

//phase0 – matric formation 	
1. 	private void phase0() {
2.	 SolMatrix  new int[n][n];
3.	 //initialize all to -1 and and where i=j to -2
4.	 for(int i  0;i<n;i++)
5.	 for(int j  0;j<n;j++)
6.	 if(ij)
7.	 SolMatrix[i][j]  -2;
8.	 else
9.	 SolMatrix[i][j]  -1; }
 // phase 1: scanning phase
10.	private void phase1(){
11.	 for (int i  0;i<n;i++)
12.	 for(int j  i+1; j<n;j++)
13.	 if(SolMatrix[i][j]  -1)
14.	 if(solutions[i].equals(solutions[j])){
15.	 SolMatrix[i][j]1; SolMatrix[j][i]  1;
16.	 }else{
17.	 SolMatrix[i][j]0; SolMatrix[j][i]  0;
18.	 }
19.	 }

 607

Journal of ICT, 21, No. 4 (October) 2022, pp: 595–625

Algorithm 1b: Selection Process Phases Cont’d
//phase 2: row counts
20.	 private int[] phase2(){
21.	 int[] C  new int[n];
22.	 ArrayList<Integer> S_stack  new ArrayList<>();
23.	 for(int i  0;i<n;i++){
24.	 C[i]  0;
25.	 if(!S_stack.contains(i))
26.	 for(int j  i+1;j<n;j++){
27.	 C[i] + SolMatrix[i][j];
28.	 if(SolMatrix[i][j]1) //push to S_stack
29.	 S_stack.add(j);
30.	 }
31.	 }
32.	 return C;
33.	 }
 //phase 3: row selection for most correct result
34.	 private ArrayList<Integer> phase3(int[] C){
35.	 int p 0;//p for position
36.	 int max  C[p];
37.	 for(int i  1;i<n;i++)
38.	 if(C[i] > max){
39.	 max  C[i];
40.	 p  i;
41.	 }
42.	 ArrayList<Integer> F_stack  new ArrayList<>();
43.	 for(int i0;i<n;i++)
44.	 if(C[i]max) //push to F_stack - result with same
Max count
45.	 F_stack.add(i);
46.	 return F_stack;
47.	 } //end of phases

For phase0(), consider the sub-computations for the algorithm:
Let R = result set for solution S, where Ri = n, i = {2.0, 2.2, 3.0,
3.5, 2.0, 3.08} and n = 6
The following n x n matrix is created for the set of solution results
R,
The matrix is generated using the loop from lines 4 to 9, where the
intersection is replaced by -2 and others with -1 values.
Thus, the matrix generated is represented in Table 1.

608

Journal of ICT, 21, No. 4 (October) 2022, pp: 595–625

Table 1

Generated Matrix

Since n = 6, the loop will require 36 iterations for an n x n matrix.
To optimize these iterations, phase1() scans through the matrix to
check if Ri = Rj and replaces the content with 1’s else 0’s if and only
if Ri ≠ Rj for all -1.
In this phase, the rows Ri are checked against the columns Rj for all
-1 entries given that:

n = set of replica results Ri for all -1;

Thus, the number of iterations can be optimized with Equation 1:
 						 (1)

Where Rij is the number of iterations for n number of replica
solutions.
 then Ri = R1 and R1 is checked against all columns
of all Rj except for the intersection of the row against the column.
Therefore, the optimization occurs from the row-wise comparison
for the 1’s and the following pair of computations creates a new
matrix via the reduction in Equation 2:

Following this, Equation 1 becomes Equation 2:
Rij = [(n2 – n)/2]						 (2)

Equation 2 represents the optimized iteration of n set of replica solution
results, R. The number of iterations is reduced to 15 as a result of the

10

27. C[i] + SolMatrix[i][j];
28. if(SolMatrix[i][j]1) //push to S_stack
29. S_stack.add(j);
30. }
31. }
32. return C;
33. }
 //phase 3: row selection for most correct result
34. private ArrayList<Integer> phase3(int[] C){
35. int p 0;//p for position
36. int max  C[p];
37. for(int i  1;i<n;i++)
38. if(C[i] > max){
39. max  C[i];
40. p  i;
41. }
42. ArrayList<Integer> F_stack  new ArrayList<>();
43. for(int i0;i<n;i++)
44. if(C[i]max) //push to F_stack - result with same Max
count
45. F_stack.add(i);
46. return F_stack;
47. } //end of phases

For phase0(), consider the sub-computations for the algorithm:

Let R = result set for solution S, where Ri = n, i = {2.0, 2.2, 3.0, 3.5, 2.0, 3.08} and n = 6
The following n x n matrix is created for the set of solution results R,
The matrix is generated using the loop from lines 4 to 9, where the intersection is replaced by -2
and others with -1 values.
Thus, the matrix generated is represented in Table 1.

Table 1

Generated Matrix

 R1 R2 R3 R4 R5 R6
R1 -2 -1 -1 -1 -1 -1
R2 -1 -2 -1 -1 -1 -1
R3 -1 -1 -2 -1 -1 -1
R4 -1 -1 -1 -2 -1 -1
R5 -1 -1 -1 -1 -2 -1
R6 -1 -1 -1 -1 -1 -2

Since n = 6, the loop will require 36 iterations for an n x n matrix.
To optimize these iterations, phase1() scans through the matrix to check if Ri = Rj and replaces the
content with 1’s else 0’s if and only if Ri ≠ Rj for all -1.

4

Rj
n = set of replica results Ri for all -1;

Ri = {R1 = 2.0, R2 = 2.2, R3 = 3.0, R4 = 3.5, R5 = 2.0, R6 = 3.08}; Ri=Rj=1; and Ri ≠ Rj.

𝑅𝑅𝑖𝑖𝑖𝑖 = ∑ (𝑛𝑛 − 1)𝑛𝑛

𝑖𝑖=1 (1)

Rij

∀ 𝑅𝑅𝑅𝑅 = −1; if i = 1 then Ri = R1 and R1

Rj

for i = 1, j = i+1, and Ri ≠ R1, then R1 = {R1:R2, R1:R3, R1:R4, R1:R5, R1:R6} … 5 iterations
for i = 2, j = i+1, and Ri ≠ R1, then R2 = {R2:R3, R2:R4, R2:R5, R2:R6} R2 = R5=1 … 4 iterations
for i = 3, j = i+1, and Ri ≠ R1, then R3 = {R3:R4, R3:R5, R3:R6} … … 3 iterations
for i = 4, j = i+1, and Ri ≠ R1, then R4 = {R4:R5, R4:R6} … … 2 iterations
for i = 5, j = i+1, and Ri ≠ R1, then R5 = {R5:R6} R5=R2=1 … … 1 iteration
for i = 6, j = i+1, and Ri ≠ R1, then R6 = {ignored}
Following this, Equation 1 becomes Equation 2:
Rij = [(n2 – n)/2] (2)

 (n - 1)

{R2:R5} = 1.

 ()

[(n2-n)/2]

(where n must be ≥ 3)

phase2()

phase3().

4

Rj
n = set of replica results Ri for all -1;

Ri = {R1 = 2.0, R2 = 2.2, R3 = 3.0, R4 = 3.5, R5 = 2.0, R6 = 3.08}; Ri=Rj=1; and Ri ≠ Rj.

𝑅𝑅𝑖𝑖𝑖𝑖 = ∑ (𝑛𝑛 − 1)𝑛𝑛

𝑖𝑖=1 (1)

Rij

∀ 𝑅𝑅𝑅𝑅 = −1; if i = 1 then Ri = R1 and R1

Rj

for i = 1, j = i+1, and Ri ≠ R1, then R1 = {R1:R2, R1:R3, R1:R4, R1:R5, R1:R6} … 5 iterations
for i = 2, j = i+1, and Ri ≠ R1, then R2 = {R2:R3, R2:R4, R2:R5, R2:R6} R2 = R5=1 … 4 iterations
for i = 3, j = i+1, and Ri ≠ R1, then R3 = {R3:R4, R3:R5, R3:R6} … … 3 iterations
for i = 4, j = i+1, and Ri ≠ R1, then R4 = {R4:R5, R4:R6} … … 2 iterations
for i = 5, j = i+1, and Ri ≠ R1, then R5 = {R5:R6} R5=R2=1 … … 1 iteration
for i = 6, j = i+1, and Ri ≠ R1, then R6 = {ignored}
Following this, Equation 1 becomes Equation 2:
Rij = [(n2 – n)/2] (2)

 (n - 1)

{R2:R5} = 1.

 ()

[(n2-n)/2]

(where n must be ≥ 3)

phase2()

phase3().

4

Rj
n = set of replica results Ri for all -1;

Ri = {R1 = 2.0, R2 = 2.2, R3 = 3.0, R4 = 3.5, R5 = 2.0, R6 = 3.08}; Ri=Rj=1; and Ri ≠ Rj.

𝑅𝑅𝑖𝑖𝑖𝑖 = ∑ (𝑛𝑛 − 1)𝑛𝑛

𝑖𝑖=1 (1)

Rij

∀ 𝑅𝑅𝑅𝑅 = −1; if i = 1 then Ri = R1 and R1

Rj

for i = 1, j = i+1, and Ri ≠ R1, then R1 = {R1:R2, R1:R3, R1:R4, R1:R5, R1:R6} … 5 iterations
for i = 2, j = i+1, and Ri ≠ R1, then R2 = {R2:R3, R2:R4, R2:R5, R2:R6} R2 = R5=1 … 4 iterations
for i = 3, j = i+1, and Ri ≠ R1, then R3 = {R3:R4, R3:R5, R3:R6} … … 3 iterations
for i = 4, j = i+1, and Ri ≠ R1, then R4 = {R4:R5, R4:R6} … … 2 iterations
for i = 5, j = i+1, and Ri ≠ R1, then R5 = {R5:R6} R5=R2=1 … … 1 iteration
for i = 6, j = i+1, and Ri ≠ R1, then R6 = {ignored}
Following this, Equation 1 becomes Equation 2:
Rij = [(n2 – n)/2] (2)

 (n - 1)

{R2:R5} = 1.

 ()

[(n2-n)/2]

(where n must be ≥ 3)

phase2()

phase3().

4

Rj
n = set of replica results Ri for all -1;

Ri = {R1 = 2.0, R2 = 2.2, R3 = 3.0, R4 = 3.5, R5 = 2.0, R6 = 3.08}; Ri=Rj=1; and Ri ≠ Rj.

𝑅𝑅𝑖𝑖𝑖𝑖 = ∑ (𝑛𝑛 − 1)𝑛𝑛

𝑖𝑖=1 (1)

Rij

∀ 𝑅𝑅𝑅𝑅 = −1; if i = 1 then Ri = R1 and R1

Rj

for i = 1, j = i+1, and Ri ≠ R1, then R1 = {R1:R2, R1:R3, R1:R4, R1:R5, R1:R6} … 5 iterations
for i = 2, j = i+1, and Ri ≠ R1, then R2 = {R2:R3, R2:R4, R2:R5, R2:R6} R2 = R5=1 … 4 iterations
for i = 3, j = i+1, and Ri ≠ R1, then R3 = {R3:R4, R3:R5, R3:R6} … … 3 iterations
for i = 4, j = i+1, and Ri ≠ R1, then R4 = {R4:R5, R4:R6} … … 2 iterations
for i = 5, j = i+1, and Ri ≠ R1, then R5 = {R5:R6} R5=R2=1 … … 1 iteration
for i = 6, j = i+1, and Ri ≠ R1, then R6 = {ignored}
Following this, Equation 1 becomes Equation 2:
Rij = [(n2 – n)/2] (2)

 (n - 1)

{R2:R5} = 1.

 ()

[(n2-n)/2]

(where n must be ≥ 3)

phase2()

phase3().

 609

Journal of ICT, 21, No. 4 (October) 2022, pp: 595–625

stepwise decrement by (n - 1) in Equation 1. The matrix pairs are
represented in Table 2 with 0’s except for the pair of {R2:R5} = 1.

Table 2

Matrix Pair

The vitality of this algorithm was to ensure rapid and optimal response
of solution results to service requests irrespective of failed replicas,
and this optimization was noticeable in phase1() in Algorithm 1a. n
x n matrix of size 6 gave 36 iterations, but the algorithm executed it
in [(n2-n)/2] iterations (where n must be ≥ 3) and stored the outcome
unto a stack in phase2() while popping the highest occurrence in
phase3(). Algorithm 1 implemented the different phases to achieve
the desired objective for n set of replica solutions via the capability
of software agents, ensuring service availability, regularity, and
stability in the presence of a failed replica service(s). This not only
ensured fault tolerance but also guaranteed the availability of services
and reliability of the results. With these alignments, the architecture
solution would be unburdened by the replica result selection issues.
Furthermore, the efficiency of service responsiveness over an interval
of time could be guaranteed for a fault-tolerant service system during
a failed replica or switching among services for a response.

Fault Scenarios and Performance Measurement

Faults were injected into the architecture solution to assess fault
tolerance and its solution behavior in different scenarios or conditions.
The fault types and scenarios involved the following:

1.	 Propagation faults: this is a replica type of fault that is
propagated via replication of service functionalities to other

11

In this phase, the rows Ri are checked against the columns Rj for all -1 entries given that:
n = set of replica results Ri for all -1;
Ri = {R1 = 2.0, R2 = 2.2, R3 = 3.0, R4 = 3.5, R5 = 2.0, R6 = 3.08}; Ri=Rj=1; and Ri ≠ Rj.
Thus, the number of iterations can be optimized with Equation 1:
𝑅𝑅𝑖𝑖𝑖𝑖 = ∑ (𝑛𝑛 − 1)𝑛𝑛

𝑖𝑖=1 (1)
Where Rij is the number of iterations for n number of replica solutions.
∀ 𝑅𝑅𝑅𝑅 = −1; if i = 1 then Ri = R1 and R1 is checked against all columns of all Rj except for the
intersection of the row against the column. Therefore, the optimization occurs from the row-wise
comparison for the 1’s and the following pair of computations creates a new matrix via the reduction
in Equation 2:
for i = 1, j = i+1, and Ri ≠ R1, then R1 = {R1:R2, R1:R3, R1:R4, R1:R5, R1:R6} … 5 iterations
for i = 2, j = i+1, and Ri ≠ R1, then R2 = {R2:R3, R2:R4, R2:R5, R2:R6} R2 = R5=1 … 4 iterations
for i = 3, j = i+1, and Ri ≠ R1, then R3 = {R3:R4, R3:R5, R3:R6} … … 3 iterations
for i = 4, j = i+1, and Ri ≠ R1, then R4 = {R4:R5, R4:R6} … … 2 iterations
for i = 5, j = i+1, and Ri ≠ R1, then R5 = {R5:R6} R5=R2=1 … … 1 iteration
for i = 6, j = i+1, and Ri ≠ R1, then R6 = {ignored}
Following this, Equation 1 becomes Equation 2:
Rij = [(n2 – n)/2] (2)

Equation 2 represents the optimized iteration of n set of replica solution results, R. The number of
iterations is reduced to 15 as a result of the stepwise decrement by (n - 1) in Equation 1. The matrix
pairs are represented in Table 2 with 0’s except for the pair of {R2:R5} = 1.

Table 2

Matrix Pair

 R1 R2 R3 R4 R5 R6
R1 -2 0 0 0 0 0
R2 0 -2 0 0 1 0
R3 0 0 -2 0 0 0
R4 0 0 0 -2 0 0
R5 0 1 0 0 -2 0
R6 0 0 0 0 0 -2

The vitality of this algorithm was to ensure rapid and optimal response of solution results to service
requests irrespective of failed replicas, and this optimization was noticeable in phase1() in Algorithm
1a. n x n matrix of size 6 gave 36 iterations, but the algorithm executed it in [(n2-n)/2] iterations (where
n must be ≥ 3) and stored the outcome unto a stack in phase2() while popping the highest occurrence in
phase3(). Algorithm 1 implemented the different phases to achieve the desired objective for n set of
replica solutions via the capability of software agents, ensuring service availability, regularity, and
stability in the presence of a failed replica service(s). This not only ensured fault tolerance but also
guaranteed the availability of services and reliability of the results. With these alignments, the
architecture solution would be unburdened by the replica result selection issues. Furthermore, the
efficiency of service responsiveness over an interval of time could be guaranteed for a fault-tolerant
service system during a failed replica or switching among services for a response.

610

Journal of ICT, 21, No. 4 (October) 2022, pp: 595–625

replicas. In this scenario, a replica solution code is mutated
to see if it affects the replica results during the replication of
services by the replica manager.

2.	 Replica crash fault: a scenario where a replica service is
killed from an N-Versioned set of the same replica group. The
computational solution of such a replica is never returned, but
service responses are returned for others.

3.	 Group crash fault: another similar scenario where the entire
replica group of N-Versioned set is crashed, and computational
service response is denied from that group.

Furthermore, the given fault conditions were expectant of performance
overheads over time – that is, replica-related faults were injected
to cause some service replica overheads. However, the impact on
performance was evaluated during runtime via the metrics of response
time and throughput by the service agents. Therefore, evaluating
the architecture solution over an interval of time was paramount to
examining the rate of responsiveness or solution behavior under the
fault conditions.

EXPERIMENTS AND RESULTS

Experiment Setup and Configurations

Apposite configurations were vital to assess the fault-tolerant
approach’s impact on the performance of the architecture solution
over time. Necessary files, addons, and plugins were extracted into
relevant directories and the multi-agent systems were configured using
the JADE platform as the agency for housing running agent services.
The experimental setup involved configuring parameters, directories,
libraries, system environment, and user variables in preparation for the
evaluation. The simulation environment was mimicked with Apache
JMeter for virtual service requests users, web services consumption,
and report generations for each user group on a Lenovo G470 system
with 4GB RAM and a Processor of Intel(R) Core(TM) i5-3230M
CPU @ 2.60GHz (4 CPUs), ~2.6Ghz. Apache JMeter was selected
as the evaluation tool in this study. It was feasible for load-stressing
web applications in simulating their behavior using corresponding
performance indicators, such as response time, throughput, error
percentage of response to request rate, and standard deviation, for the
rate of regularity or deviation in response time.

 611

Journal of ICT, 21, No. 4 (October) 2022, pp: 595–625

The performance experiment was configured for two versions of the
architecture solution, i.e., the absence and presence of fault with a
configuration of 25,000 requests per unit time at a large scale from
ten random service request channels. Software testing and quality
assurance revealed that the requests were processed, and responses
were delivered successfully within a stable state. The behavior of the
architecture solution in the presence of faults needed to be assessed to
determine its guaranteed performability.

Fault Injection

This study adopted the compile-time technique, whereby the replica
crash fault was injected into the architecture solution to ascertain its
fault-tolerant capability and performance in the presence of faults.
This fault injection technique has been used in literary works to test
the dependability of software systems (Looker et al., 2004; Zaide et al.,
2004; Hossain, 2006; Rychly & Zouzelka, 2012; Ramakrishnan et al.,
2014; Umadevi & Rajakumari, 2015). The fault injection mechanism
employs code mutation, which modifies or refactors (Almogahed &
Omar, 2021) a subsection of the architecture solution code at compile
time to activate replica-related faults conditions at runtime such that:

1.	 a fault propagated to service replica solution produces arbitrary
and incoherent responses (byzantine);

2.	 if it crashes some replica solution processes, then an error
of request timeout, connection lost, or service unavailable is
returned from the affected group processes;

3.	 if it crashes the entire group of service replicas, then delay
or latency overheads are experienced, causing inconsistent
regularity in service delivery.

Subsequently, the experiment results for the architecture solution
were extracted, as represented in Figure 3.

612

Journal of ICT, 21, No. 4 (October) 2022, pp: 595–625

Figure 3

Evaluation Summary Report for the Architecture Solution in the
Presence and Absence of Fault

The extracted result data contained a sample request size of 25,000 on
ten different service channels, response time with average intervals,
etc. The experiments in the absence (ASol_af) and presence (ASol_pf)
of a replica fault revealed the architecture solution’s performability
with an error response rate of 0.00 percent (100% error-free) to
all service requests from the designated channels. On average, the
architecture solution in the absence of a replica fault responded with
about 4,072 ms to a sample request of 25,000 being processed at 2.4
s for every 2.19 Kbytes of requests. Moreover, 2.19 Kbytes were
processed with a throughput of 8.5 s for 25,000 sample requests at
an average response time of 1,173 ms for ASol_pf. The deviation
from the regularity of expected response time was capped at 655.6
for the architecture solution in the absence of a fault and 165.8 in the
presence of a fault.

The graphical implications were represented to visualize the
behavior of the architecture solution for both scenarios. Based on the
experimental result data, the response time and the responsiveness
rate were indicated by standard deviation from the summary reports
(guaranteed responsiveness), which were graphically represented for
both architecture solutions in Figures 4–7. ASol_af represented the
architecture solution in the absence of replica fault with the legend – X,
and Asol_pf signified the architecture solution in the presence of fault
with the legend – Y. The average throughput for both scenarios was
greater than 5 s for processing requests/responses for the experiments.
The higher the throughput, the better the outcome (Ladan, 2011).

13

This study adopted the compile-time technique, whereby the replica crash fault was injected into the
architecture solution to ascertain its fault-tolerant capability and performance in the presence of faults.
This fault injection technique has been used in literary works to test the dependability of software
systems (Looker et al., 2004; Zaide et al., 2004; Hossain, 2006; Rychly & Zouzelka, 2012;
Ramakrishnan et al., 2014; Umadevi & Rajakumari, 2015). The fault injection mechanism employs
code mutation, which modifies or refactors (Almogahed & Omar, 2021) a subsection of the architecture
solution code at compile time to activate replica-related faults conditions at runtime such that:

1. a fault propagated to service replica solution produces arbitrary and incoherent responses
(byzantine);

2. if it crashes some replica solution processes, then an error of request timeout, connection lost,
or service unavailable is returned from the affected group processes;

3. if it crashes the entire group of service replicas, then delay or latency overheads are experienced,
causing inconsistent regularity in service delivery.

Subsequently, the experiment results for the architecture solution were extracted, as represented in
Figure 3.

Figure 3

Evaluation Summary Report for the Architecture Solution in the Presence and Absence of Fault

The extracted result data contained a sample request size of 25,000 on ten different service channels,
response time with average intervals, etc. The experiments in the absence (ASol_af) and presence
(ASol_pf) of a replica fault revealed the architecture solution’s performability with an error response
rate of 0.00 percent (100% error-free) to all service requests from the designated channels. On average,
the architecture solution in the absence of a replica fault responded with about 4,072 ms to a sample
request of 25,000 being processed at 2.4 s for every 2.19 Kbytes of requests. Moreover, 2.19 Kbytes
were processed with a throughput of 8.5 s for 25,000 sample requests at an average response time of
1,173 ms for ASol_pf. The deviation from the regularity of expected response time was capped at 655.6
for the architecture solution in the absence of a fault and 165.8 in the presence of a fault.

The graphical implications were represented to visualize the behavior of the architecture solution for
both scenarios. Based on the experimental result data, the response time and the responsiveness rate

ASol_af Asol_pf ASol_af Asol_pf ASol_af Asol_pf ASol_af Asol_pf ASol_af Asol_pf ASol_af Asol_pf ASol_af Asol_pf
1 2492 2491 4070 1174 653.08 169.52 0.2 0.8 7615 2565 0.00% 0.00% 2241.2 2247.4
2 2462 2434 4046 1180 679.04 173.83 0.2 0.8 7258 2343 0.00% 0.00% 2243.1 2247.5
3 2455 2443 4088 1163 651.07 165.89 0.2 0.8 7071 2257 0.00% 0.00% 2243 2153.7
4 2536 2545 4073 1174 666.68 164.5 0.2 0.9 10885 2270 0.00% 0.00% 2150.2 2248
5 2493 2534 4049 1176 633.67 166.83 0.2 0.9 6690 2330 0.00% 0.00% 2150.6 2430.1
6 2506 2555 4064 1172 656.22 168.58 0.2 0.9 6864 2469 0.00% 0.00% 2242.3 2336
7 2495 2509 4086 1175 672.33 166.85 0.2 0.9 7414 2178 0.00% 0.00% 2243.8 2247.7
8 2514 2524 4077 1170 630.02 160.77 0.2 0.9 7347 2111 0.00% 0.00% 2334.2 2154.3
9 2551 2500 4071 1167 648.29 160.65 0.2 0.8 7001 2114 0.00% 0.00% 2151 2246.5
10 2496 2465 4093 1177 657.26 159.49 0.2 0.8 6937 2410 0.00% 0.00% 2425 2155.1

Total 25000 25000 4072 1173 655.06 165.8 2.4 8.5 10885 2565 0.00% 0.00% 2242.1 2247.3

Sample Size Response Time AVG Error% Average BytesGuaranteed Resp Throughput Response Time MaxService
Channels

Data Capture of Summary Reports for both Versions of the Experiments: ASol_af (X) & Asol_pf (Y)

 613

Journal of ICT, 21, No. 4 (October) 2022, pp: 595–625

Figure 4

Line Graph for Response Time – Asol_af (X)

The average response time for Asol_af from the ten different request
channels was 4,072 ms. This finding depicted the average number of
responses processed per unit time from each service response channel
for ASol_af. Similarly, the highest and lowest points for ASol_pf
were 1,180 ms and 1,163 ms response per millisecond. Meanwhile,
the average response time was capped at 1,173 ms for the ASol_pf
architecture solution.

Figure 5

Line Graph for Response Time – Asol_pf (Y)

14

were indicated by standard deviation from the summary reports (guaranteed responsiveness), which
were graphically represented for both architecture solutions in Figures 4–7. ASol_af represented the
architecture solution in the absence of replica fault with the legend – X, and Asol_pf signified the
architecture solution in the presence of fault with the legend – Y. The average throughput for both
scenarios was greater than 5 s for processing requests/responses for the experiments. The higher the
throughput, the better the outcome (Ladan, 2011).

Figure 4

Line Graph for Response Time – Asol_af (X)

The average response time for Asol_af from the ten different request channels was 4,072 ms. This
finding depicted the average number of responses processed per unit time from each service response
channel for ASol_af. Similarly, the highest and lowest points for ASol_pf were 1,180 ms and 1,163 ms
response per millisecond. Meanwhile, the average response time was capped at 1,173 ms for the
ASol_pf architecture solution.

Figure 5

Line Graph for Response Time – Asol_pf (Y)

4070

4046

4088

4073

4049

4064

4086
4077

4071

4093

4020
4030
4040
4050
4060
4070
4080
4090
4100

1 2 3 4 5 6 7 8 9 10

M
ill

ise
co

nd
s

Service Request Channels

Response Time

ASol_af (x)

15

From the graphs in Figures 4 and 5, the average difference in response time for ASol_af was summated
as 47 ms from the peak and lowest response times. This result signified the range at which the service
responses were guaranteed or slightly distorted for service provision upon requests. Furthermore, the
average difference in response time for ASol_pf was summed as 17 ms, indicating a better time frame
for guaranteeing service responses to requests. The line graphs in Figures 6 and 7 captured the graphical
representations for the performance attribute of guaranteed responsiveness for the architecture solution.
Guaranteed responsiveness is a product of the standard deviation result data, denoting the rate of
regularity at which service responses are guaranteed over an interval of time with or without a fault
presence. This regularity depicted the fault tolerance ability and responsiveness of service systems.

Figure 6

Guaranteed Responsiveness Line Graph for ASol_af (X)

1174

1180

1163

1174
1176

1172
1175

1170
1167

1177

1150

1155

1160

1165

1170

1175

1180

1185

1 2 3 4 5 6 7 8 9 10

M
ill

ise
co

nd
s

Service Request Channels

Response Time

Asol_pf (y)

653.08

679.04

651.07

666.68

633.67

656.22

672.33

630.02

648.29
657.26

600
610
620
630
640
650
660
670
680
690

1 2 3 4 5 6 7 8 9 10

M
ill

ise
co

nd
s

Service Request/Response Channels

Guaranteed Responsiveness

ASol_af (x)

614

Journal of ICT, 21, No. 4 (October) 2022, pp: 595–625

From the graphs in Figures 4 and 5, the average difference in response
time for ASol_af was summated as 47 ms from the peak and lowest
response times. This result signified the range at which the service
responses were guaranteed or slightly distorted for service provision
upon requests. Furthermore, the average difference in response time
for ASol_pf was summed as 17 ms, indicating a better time frame for
guaranteeing service responses to requests. The line graphs in Figures
6 and 7 captured the graphical representations for the performance
attribute of guaranteed responsiveness for the architecture solution.
Guaranteed responsiveness is a product of the standard deviation result
data, denoting the rate of regularity at which service responses are
guaranteed over an interval of time with or without a fault presence.
This regularity depicted the fault tolerance ability and responsiveness
of service systems.

Figure 6

Guaranteed Responsiveness Line Graph for ASol_af (X)

The line graph for ASol_af in Figure 6 concerning regularity in
responses displayed a zigzag outcome. It is hard to tell which service
response channel maintained regularity as the peak was capped
at channel 2 and the lowest at channel 8. This result indicated that
service responses were guaranteed within a time frame of 630.02 ms
and 679.04 ms as the lowest and peak times.

15

From the graphs in Figures 4 and 5, the average difference in response time for ASol_af was summated
as 47 ms from the peak and lowest response times. This result signified the range at which the service
responses were guaranteed or slightly distorted for service provision upon requests. Furthermore, the
average difference in response time for ASol_pf was summed as 17 ms, indicating a better time frame
for guaranteeing service responses to requests. The line graphs in Figures 6 and 7 captured the graphical
representations for the performance attribute of guaranteed responsiveness for the architecture solution.
Guaranteed responsiveness is a product of the standard deviation result data, denoting the rate of
regularity at which service responses are guaranteed over an interval of time with or without a fault
presence. This regularity depicted the fault tolerance ability and responsiveness of service systems.

Figure 6

Guaranteed Responsiveness Line Graph for ASol_af (X)

1174

1180

1163

1174
1176

1172
1175

1170
1167

1177

1150

1155

1160

1165

1170

1175

1180

1185

1 2 3 4 5 6 7 8 9 10

M
ill

ise
co

nd
s

Service Request Channels

Response Time

Asol_pf (y)

653.08

679.04

651.07

666.68

633.67

656.22

672.33

630.02

648.29
657.26

600
610
620
630
640
650
660
670
680
690

1 2 3 4 5 6 7 8 9 10

M
ill

ise
co

nd
s

Service Request/Response Channels

Guaranteed Responsiveness

ASol_af (x)

 615

Journal of ICT, 21, No. 4 (October) 2022, pp: 595–625

Figure 7

Guaranteed Responsiveness Line Graph for ASol_pf (Y)

The line graph of ASol_pf in Figure 7 showed a maintained regularity
from the service response channel for client 6, from which elevation
was decreased below the point of initiation at channel 1. The peak
guaranteed response time was capped at an interval within 173.83 ms,
with a low response time of 159.49 ms at channel 10. This finding
indicated that the response time rate was more guaranteed for ASol_
pf than ASol_af. From Figures 4–7, ASol_pf projected better in both
response time and guaranteed responsiveness than ASol_af. The
ASol_pf vs ASol_af line graphs were plotted against each other for
response time and guaranteed responsiveness, respectively, in Figures
8 and 9.

16

The line graph for ASol_af in Figure 6 concerning regularity in responses displayed a zigzag outcome.
It is hard to tell which service response channel maintained regularity as the peak was capped at channel
2 and the lowest at channel 8. This result indicated that service responses were guaranteed within a time
frame of 630.02 ms and 679.04 ms as the lowest and peak times.

Figure 7

Guaranteed Responsiveness Line Graph for ASol_pf (Y)

The line graph of ASol_pf in Figure 7 showed a maintained regularity from the service response channel
for client 6, from which elevation was decreased below the point of initiation at channel 1. The peak
guaranteed response time was capped at an interval within 173.83 ms, with a low response time of
159.49 ms at channel 10. This finding indicated that the response time rate was more guaranteed for
ASol_pf than ASol_af. From Figures 4–7, ASol_pf projected better in both response time and
guaranteed responsiveness than ASol_af. The ASol_pf vs ASol_af line graphs were plotted against each
other for response time and guaranteed responsiveness, respectively, in Figures 8 and 9.

Figure 8

ASol_af (X) vs ASol_pf (Y) Line Graph for Response Time

169.52

173.83

165.89
164.5

166.83
168.58

166.85

160.77 160.65 159.49

150

155

160

165

170

175

1 2 3 4 5 6 7 8 9 10

M
ill

ise
co

nd
s

Service Request/Response Channels

Guaranteed Responsiveness

Asol_pf (y)

616

Journal of ICT, 21, No. 4 (October) 2022, pp: 595–625

Figure 8

ASol_af (X) vs ASol_pf (Y) Line Graph for Response Time

Figure 9

ASol_af (X) vs ASol_pf (Y) Line Graph for Guaranteed Responsiveness

Figures 8 and 9 showed that the performance difference was parallel
for both attributes, i.e., there was a huge performability difference
for both architecture solutions. Nevertheless, ASol_pf’s performance
was more appreciated as it reflected regularity in guaranteeing service

17

Figure 9

ASol_af (X) vs ASol_pf (Y) Line Graph for Guaranteed Responsiveness

Figures 8 and 9 showed that the performance difference was parallel for both attributes, i.e., there was
a huge performability difference for both architecture solutions. Nevertheless, ASol_pf’s performance
was more appreciated as it reflected regularity in guaranteeing service response even under a replica
fault. Bar graphs were also plotted in Figures 10 and11 to confirm and buttress the architecture’s
strength in guaranteeing performance in service systems.

Figure 10

Average Performance Bar Graph for Response Time – ASol_af (X) vs ASol_pf (Y)

4070 4046 4088 4073 4049 4064 4086 4077 4071 4093

1174 1180 1163 1174 1176 1172 1175 1170 1167 1177

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10

M
ill

ise
co

nd
s

Service Request Channels

Response Time

ASol_af (x) Asol_pf (y)

653.08 679.04 651.07 666.68 633.67 656.22 672.33
630.02 648.29 657.26

169.52 173.83 165.89 164.5 166.83 168.58 166.85 160.77 160.65 159.49

0
100
200
300
400
500
600
700
800

1 2 3 4 5 6 7 8 9 10

M
ill

ise
co

nd
s

Service Request/Response Channels

Guaranteed Responsiveness

ASol_af (x) Asol_pf (y)

17

Figure 9

ASol_af (X) vs ASol_pf (Y) Line Graph for Guaranteed Responsiveness

Figures 8 and 9 showed that the performance difference was parallel for both attributes, i.e., there was
a huge performability difference for both architecture solutions. Nevertheless, ASol_pf’s performance
was more appreciated as it reflected regularity in guaranteeing service response even under a replica
fault. Bar graphs were also plotted in Figures 10 and11 to confirm and buttress the architecture’s
strength in guaranteeing performance in service systems.

Figure 10

Average Performance Bar Graph for Response Time – ASol_af (X) vs ASol_pf (Y)

4070 4046 4088 4073 4049 4064 4086 4077 4071 4093

1174 1180 1163 1174 1176 1172 1175 1170 1167 1177

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10

M
ill

ise
co

nd
s

Service Request Channels

Response Time

ASol_af (x) Asol_pf (y)

653.08 679.04 651.07 666.68 633.67 656.22 672.33
630.02 648.29 657.26

169.52 173.83 165.89 164.5 166.83 168.58 166.85 160.77 160.65 159.49

0
100
200
300
400
500
600
700
800

1 2 3 4 5 6 7 8 9 10

M
ill

ise
co

nd
s

Service Request/Response Channels

Guaranteed Responsiveness

ASol_af (x) Asol_pf (y)

 617

Journal of ICT, 21, No. 4 (October) 2022, pp: 595–625

response even under a replica fault. Bar graphs were also plotted in
Figures 10 and11 to confirm and buttress the architecture’s strength in
guaranteeing performance in service systems.

Figure 10

Average Performance Bar Graph for Response Time – ASol_af (X) vs
ASol_pf (Y)

Figure 11

Average Performance Bar Graph for Guaranteed Responsiveness –
ASol_af (X) vs ASol_pf (Y)

18

Figure 11

Average Performance Bar Graph for Guaranteed Responsiveness – ASol_af (X) vs ASol_pf (Y)

For clarity, the rate of regularity in response time was better comprehended in Figures 10 and 11. The
average performance bar graph for response time and guaranteed responsiveness depicted the range of
regularities. The service response for ASol_af was only possible for an insignificant deviation range of
49.02 ms for the targeted request size but with consistency in the regularity range. Moreover, ASol_pf
recorded a service consistency response regularity with a deviation range of about 14.34 ms per request
size. Better service responsiveness with an insignificant variation in service delivery was noted in
ASol_pf. The performability of the architecture solution was good for both versions; however, better
performance was guaranteed for the ASol_pf version of the deployed architecture solution for service
delivery. The resultant efficient service delivery credited the performability of the architecture solution
with an insignificant variation in guaranteeing the system’s behavior – performance. The result findings
were also synonymous with literary works in performance computing (Hong et al., 2005; Peng &
Huang, 2014; Pandey et al., 2019).

0
500

1000
1500
2000
2500
3000
3500
4000
4500

1 2 3 4 5 6 7 8 9 10

M
ili

se
co

nd
s

Service RequestChannels

RReessppoonnssee TTiimmee

ASol_af (x) Asol_pf (y)

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10

M
ili

se
co

nd
s

Service Request Channels

GGuuaarraanntteeeedd RReessppoonnssiivveenneessss

ASol_af (x) Asol_pf (y)

18

Figure 11

Average Performance Bar Graph for Guaranteed Responsiveness – ASol_af (X) vs ASol_pf (Y)

For clarity, the rate of regularity in response time was better comprehended in Figures 10 and 11. The
average performance bar graph for response time and guaranteed responsiveness depicted the range of
regularities. The service response for ASol_af was only possible for an insignificant deviation range of
49.02 ms for the targeted request size but with consistency in the regularity range. Moreover, ASol_pf
recorded a service consistency response regularity with a deviation range of about 14.34 ms per request
size. Better service responsiveness with an insignificant variation in service delivery was noted in
ASol_pf. The performability of the architecture solution was good for both versions; however, better
performance was guaranteed for the ASol_pf version of the deployed architecture solution for service
delivery. The resultant efficient service delivery credited the performability of the architecture solution
with an insignificant variation in guaranteeing the system’s behavior – performance. The result findings
were also synonymous with literary works in performance computing (Hong et al., 2005; Peng &
Huang, 2014; Pandey et al., 2019).

0
500

1000
1500
2000
2500
3000
3500
4000
4500

1 2 3 4 5 6 7 8 9 10

M
ili

se
co

nd
s

Service RequestChannels

RReessppoonnssee TTiimmee

ASol_af (x) Asol_pf (y)

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10

M
ili

se
co

nd
s

Service Request Channels

GGuuaarraanntteeeedd RReessppoonnssiivveenneessss

ASol_af (x) Asol_pf (y)

618

Journal of ICT, 21, No. 4 (October) 2022, pp: 595–625

For clarity, the rate of regularity in response time was better
comprehended in Figures 10 and 11. The average performance bar graph
for response time and guaranteed responsiveness depicted the range
of regularities. The service response for ASol_af was only possible for
an insignificant deviation range of 49.02 ms for the targeted request
size but with consistency in the regularity range. Moreover, ASol_pf
recorded a service consistency response regularity with a deviation
range of about 14.34 ms per request size. Better service responsiveness
with an insignificant variation in service delivery was noted in ASol_
pf. The performability of the architecture solution was good for both
versions; however, better performance was guaranteed for the ASol_pf
version of the deployed architecture solution for service delivery. The
resultant efficient service delivery credited the performability of the
architecture solution with an insignificant variation in guaranteeing
the system’s behavior – performance. The result findings were also
synonymous with literary works in performance computing (Hong et
al., 2005; Peng & Huang, 2014; Pandey et al., 2019).

DISCUSSIONS

Saha (2009) discoursed that “software-based fault tolerance is the
use of technologies to enable the continued delivery of services at
an acceptable level of performance after a design fault becomes
active”. This study realized assertion via the use of software agents’
coordinating capabilities to manage replica-related overheads. A fault-
tolerant architecture solution was implemented, the resultant solution
was simulated with Apache JMeter for performance experiments, and
the evaluation results were documented and analyzed.

From the experiments, the architecture solution demonstrated
capability in handling replica-related crash faults with support for
accurate responses to service requests at a 0.00 percent error return
rate on an average response time of 4,072 ms, and a throughput of
2.4 s captured for ASol_af. At the same time, an improved average
response time of 1,173 ms was capped for ASol_pf. Additionally,
a better processing time of 8.5 s as ramp-up time was captured for
ASol_pf in handling services provision at a large scale of 25,000
sample requests, as depicted in Figure 4. The performance of most
service-related literary works was adjudged with the attributes of
response time and high throughput (Ladan, 2011; Bora & Bezborual,

 619

Journal of ICT, 21, No. 4 (October) 2022, pp: 595–625

2015; Kumar, 2015). A high throughput indicated good performance.
ASol_pf had a throughput of 8.5 s, while ASol_af had 2.4 s. A better
performance was found for the architecture solution when under a
fault load.

The experimental results from the graphs in Figures 4 and 5 showed
that the average difference in response time for ASol_af and ASol_pf
was summated as 47 ms and 17 ms, respectively, indicating a better
time frame for guaranteeing service responses to client requests.
Likewise, the average rate at which the response regularities were
in variation for the architecture solutions was within a time frame
difference of 49.02 ms for ASol_af and 14.34 ms for ASol_pf. It
is indicative that the architecture solution in the presence of fault
guaranteed more performability in response time and guaranteed
responsiveness by about 36.2 percent and 29.3 percent over ASol_af.
The outcomes of the simulated experiments and evaluation were in
harmony with literary works in service-oriented system communities
(Hong et al., 2005; Calisti et al., 2010; Alvi et al., 2019; Pandey et
al., 2019). Convincingly, the architecture solution’s performance
was contrary to the latency and replica-related overheads observed
in some other studies (Aghdaie & Tamir, 2002; Li et al., 2005; Zhao,
2007; Rickard & Oskar, 2017; Li et al., 2018; Dahling et al., 2021).

The study findings are worth noting that:
1.	 The architecture solution demonstrated robustness in fault

tolerance with efficiency in the system’s performance at a very
large-scale service request and response provision.

2.	 The architecture solution’s behavior in the presence and
absence of faults unveiled a matching uniformity of regularity
in service delivery.

3.	 There is a strong indication that the performance of the fault-
tolerant service-oriented architecture solution is guaranteed
and even better in the presence of a replica crash fault because
of the computational intelligence of multi-agent technology in
coordinating the logical-replica-related services.

CONCLUSION

In this study, fault was guaranteed by building service replicas with
replication and a diversified N-Versioned redundancy approach

620

Journal of ICT, 21, No. 4 (October) 2022, pp: 595–625

to ensure service availability and regularity in provision/delivery.
Replica-related overheads were managed via MAS services by
coordinating all logical time-related activities (replica creation,
service registry facilitators, service registration, service request,
binding, distribution and communication, replica solution services,
fault injection, and replica solution results) to ensure efficient
service delivery in the presence and absence of replica faults.
The fault tolerance and performance of the architecture solution
were evaluated with attributes of response time, throughput, and
guaranteed responsiveness. Therefore, the study affirms that the
architecture solution is efficient in guaranteeing regularity in service
delivery for service systems deployed on fault-tolerant architecture.
This efficiency is thereby credited to software agents’ coordination
intelligence. Software agents are emphasized as one of the credible
solutions for implementing logical activities associated with service
replicas for fault-tolerant service systems dependent on web services.

The approach, results, and findings of this study are in no attempt to
condemn service systems but to contribute to fault-tolerant computing
research where guaranteeing performance is inevitable. Nonetheless,
for the advancement of knowledge, the need to further subject the
results to statistical interpretations is vital to assess the confidence rate
at which service responses are guaranteed, particularly in the presence
of faults.

ACKNOWLEDGMENT

This research received no specific grant from any funding agency in
the public, commercial, or not-for-profit sectors.

REFERENCES

Abdi, A., & Shahoveisi, S. (2022). FT-EALU: Fault tolerant arithmetic
and logic unit for critical embedded and real time systems.
Hardware Architecture. 1–15. https://doi.org/10.48550/
arXiv.2-204.01262

Aghaei, S., Khayyambashi, M. R., & Nematbakhsh, M. A. (2011). A
fault-tolerant architecture for web services. In 2011 International
Conference on Invocations in Technology (IIT) (pp. 53–56).
IEEE. https://doi.org/10.1109/INNOVATIONS.2011.5893867

 621

Journal of ICT, 21, No. 4 (October) 2022, pp: 595–625

Aghdaie, N., & Tamir, Y. (2002). Implementation and evaluation
of transparent fault-tolerant web service with kernel-level
support. In Proceedings of the IEEE International Conference
on Computer Communications and Networks, Miami, Florida
(pp. 63–68). https://doi.org/10.1109/ICCCN.2002.1043047

Ahmed, W., & Wu, Y. W. (2013). A survey on reliability in distributed
systems. Journal of Computer and System Sciences, 79, 1243–
1255. https://doi.org/10.1016/j.jcss.2013.02.006

Alhosban, A. A. (2013). Fault management for service-oriented
systems (Doctoral dissertation, Wayne State University,
Detroit, Michigan). https://digitalcommons.wayne.edu/oa_
dissertations/745

Almogahed, A., & Omar, M. (2021). Refactoring techniques for
improving software quality: Practitioners’ perspectives. Journal
of Information and Communication Technology, 20(4), 511–
539. https://doi.org/10.32890/jict2021.20.4.3

Alvi, A. B., Hashmi, M. A., Chuban, Z. H., Atif, M., & Ahmed, I.
(2019). Adaptive byzantine fault tolerance support for agent
oriented systems: The BDARX. International Journal of
Advanced and Applied Sciences, 6(2), 57–64. https://doi.
org/10.21833/ijaas.2019.02.009

Bellifemine, F., Caire, G., & Greenwood, D. (2007). Developing
multi-agent systems with JADE. John Wiley & Sons Ltd: West
Sussex.

Bora, A., & Bezboruah, T. (2015). A comparative investigation on
implementation of restful versus soap-based web services.
International Journal of Database Theory and Application,
8(3), 297–312. https://doi.org/10.14257/IJDTA.2015.8.3.26

Calisti, M., Dignum, F., Kowalczyk, R., Leymann, F., & Unland
R. (2010). Service-oriented architecture and (multi-)agent
systems technology. In Dagstuhl Seminar Proceedings 10021,
2010. Volltexte.

Carzaniga, A., Gorla, A., & Pezze, M. (2009). Handling software
faults with redundancy. In Architecting dependable systems
VI: Lecture notes in Computer Science (5835) (pp. 148–171).
https://doi.org/10.1007/978-3-642-10248-6_7

Chimmanee, S., & Jantavongso, S. (2016). The performance
comparison of third generation (3G) technologies for
internet services in Bangkok. Journal of Information and
Communication Technology, 15(1), 1–31.

Dahling, S., Razik, L., & Monti, A. (2021). Enabling scalable and
fault‑tolerant multi‑agent systems by utilizing cloud‑native

622

Journal of ICT, 21, No. 4 (October) 2022, pp: 595–625

computing. Autonomous Agents and Multi-Agent Systems,
35(10), 1–27. https://doi.org/10.1007/s10458-020-09489-0

Dobson, G., Hall, S., & Sommerville, I. (2005). A container-based
approach to fault tolerance in service-oriented architectures. In
Proceedings of the 27th International Conference of Software
Engineering 2005 (ICSE ’05). Saint Louis, USA.

Erlank, A. O., & Bridges, C. P. (2018). A hybrid real-time agent
platform for fault-tolerant, embedded applications. Autonomous
Agents and Multi-Agent Systems, 32, 252–274. https://doi.
org/10.1007/s10458-017-9378-4

Gadgil, H., Fox, G., Pallickara, S., & Pierce, M. (2007). Scalable
fault-tolerant management in a service-oriented architecture.
In Proceedings of the 16th International Symposium on High
Performance Distributed Computing, HPDC 2007 (pp. 235–
236). http://dx.doi.org/10.1145/1272366.1272407

Garcia, D. Z. G., & Toledo, M. B. F. D. (2007). An architecture for
fault-tolerant and service-based business processes. In Brazilian
Workshop on Business Process Management, in Conjunction
with IEEE 11th International Conference on Computational
Science and Engineering 2007. Gramado, Brazil. https://doi.
org/10.1.1.126.4098

Hong, Y. S., No, J. H., & Han, I. (2005) Evaluation of fault-tolerant
distributed web systems. In Proceedings of the 10th IEEE
International Workshop on Object-Oriented Real-Time
Dependable Systems (WORDS ‘05) (pp. 148–151). IEEE.
https://doi.org/10.1109/WORDS.2005.35

Hossain, M. S. (2006). Web service-based software implemented fault
injection. Information Technology Journal, 05(01), 138– 43.
https://dx.doi.org/10.3923/itj.2006.138.143

Hosseini, S. M., & Arani, M. G. (2015). Fault-tolerance techniques
in cloud storage: A survey. International Journal of Database
Theory and Application, 8(4), 183–190. http://dx.doi.
org/10.14257/ijdta.2015.8.4.19

Kumar, D., Jaglan, V., & Srinivasan, S. (2013). An efficient and reliable
parametric approach for web service composition. Asian
Journal of Computer Science and Information Technology,
2(7), 226–229.

Kumar, M. (2015). Various factors affecting performances of web
services. International Journal of Sensor and Its Applications
for Control Systems, 3(2), 1–20. http://dx.doi.org/10.14257/
ijsacs.2015.3.2.02

 623

Journal of ICT, 21, No. 4 (October) 2022, pp: 595–625

Kumari, P., & Kaur, P. (2018). A survey of fault tolerance in cloud
computing. Journal of King Saud University – Computer
and Information Sciences, 33(10), 1159–1176. https://doi.
org/10.1016/j.jksuci.2018.09.021

Ladan, M. I. (2011). Web services metrics: A survey and a classification.
In 2011 International Conference on Network and Electronics
Engineering (Vol. 11, pp. 93–98). IACSIT Press, Singapore.
https://doi.org/10.1.1.1038.1043

Laranjeiro, N., & Viera, M. (2008). Deploying fault-tolerant web
service compositions. International Journal of Computer
Systems Science & Engineering, 0, 23–34.

Lau, J., Lung, L. C., Fraga, J. S., & Santos, G. (2008). Designing fault-
tolerant web services using BPEL. In Seventh International
Conference on Computer and Information Science (ICIS) (pp.
618–623). IEEE. http://doi.org/10.1109/ICIS.2008.65

Leitao, P., Karnouskos, S., Ribeiro, L., Lee, J., Strasser, T., &
Colombo, A. W. (2016). Smart agents in industrial cyber-
physical systems. In Proceedings of the IEEE (Vol. 104, No.
5, pp. 1086–1101). https://doi.org/10.1109/JPROC.2016.25219
31.2016

Li, B., Weichbrodt, N., Dehl, J., Aublin, P., Distler, T., & Kapitza.
P. (2018). Troxy: transparent access to byzantine fault-
tolerant systems. In Proceedings of the 48th Annual IEEE/
IFIP International Conference on Dependable Systems
and Networks (DSN) 2018 (pp. 59–70). IEEE. https://doi.
org/10.1109/DSN.2018.00019

Li, C., Cheng, B., Chen, J., Gu, P., Deng, N., & Li, D. (2011). A
web service performance evaluation approach based on
users experience. In 2011 IEEE International Conference on
Web Services. (pp. 734–735). IEEE. https://doi.org/10.1109/
ICWS.2011.29

Liu, L., Meng, Y., Zhou, B., & Wu, Q. (2006). A fault-tolerant
web services architecture. In Advanced Web and Network
Technologies, and Applications (APWeb 2006): Lecture Notes
in Computer Science (pp. 664–671). Springer. https://doi.
org/10.1007/11610496_89

Looker, N., Munro, M., & Xu, J. (2004). Testing web services. In
Proceedings of the 16th IFIP International Conference on
Testing of Communicating Systems (TestCom 2004) (pp. 1–5).
Oxford.

Lyu, M. R. (2011). Service reliability engineering: Performance
evaluation, fault tolerance, and reliability prediction. In

624

Journal of ICT, 21, No. 4 (October) 2022, pp: 595–625

International Symposium on High Confidence Software (ISHCS
2011). https://doi.org/10.1.1.231.4928

Oliha, F. O. (2018). A fault tolerant architecture for web services
solutions (Doctoral dissertation, University of Benin, Nigeria).

Oliveira, E. M., Estrella, J. C., Kuehne, B. T., Filho, D. M. L.,
Adami, L. J., Nunes, L. H., Nakamura, L. H., Libardi, R. M.,
Souza, P. S. L., & Reiff-Marganiec, G. (2014). Design and
implementation of fault tolerance techniques to improve QoS
in SOA. In 10th International Conference on Network and
Service Management (CNSM) and Workshop (pp. 37–45).
IEEE. https://doi.org/10.1109/CNSM.2014.7014139

Pandey, A. K., Kumar, A., & Shukla, S. (2019). A novel framework for
reliable and fault-tolerant web services. International Journal
of Recent Technology and Engineering, 07, 67–73.

Peng, K., & Huang, C. (2014). Reliability evaluation of service-
oriented architecture systems considering fault-tolerance
designs. Journal of Applied Mathematics, 2014, 160608. http://
dx.doi.org/10.1155/2014/160608

Potok, T., Phillips, L., Pollock, R., Loebi, A., & Sheldon, F. (2003).
Suitability of agent-based systems for command and control
in fault-tolerant, safety-critical responsive decision networks.
In Proceedings of the ISCA 16th International Conference on
Parallel and Distributed Computing Systems 2003 (pp. 13–15),
Nevada, USA.

Ramakrishnan, R., Anbarasi, J., & Kavitha, V. (2014). SoapUI and soap
sonar testing tool using vulnerability detection of web service.
International Journal of Innovative Research in Computer and
Communication Engineering, 2(11), 6995–7002.

Reddy, C. R. M., Geetha, D. E., & Kumar, T. V. S. (2017). An appraisal
of web applications vs. web services with respect to performance
engineering using software performance engineering approach.
International Journal of Computer Applications, 158(4), 20–
31. https://doi.org/10.5120/ijca2017912779

Rickard, H., & Oskar, G. (2017). Evaluating performance of a fault-
tolerant system that implements replication and load balancing
(Bachelor’s thesis, Linköping University, Sweden). Diva
Portal. https://www.diva-portal.org/smash/record.jsf?pid=diva
2%3A1107496&dswid=-7462

Rychly, M., & Zouzelka, M. (2012). Fault injection for web services.
In Proceedings of the 14th International Conference on
Enterprise Information Systems 2012 (Vol. 2, pp. 337–383).
SCITEPRESS. https://doi.org/10.5220/0004153003770383

 625

Journal of ICT, 21, No. 4 (October) 2022, pp: 595–625

Saha, G. K. (2005). Approaches to software-based fault tolerance –
A review. Computer Science Journal of Moldova, 13(3), 193–
231.

Saha, G. K. (2005). Transient fault tolerance in mobile agent-based
computing. INFOCOMP Journal of Computer Science, 4(4),
1–11.

Saha, G. K. (2009). Software based fault tolerant computing using
redundancy. International Journal of the Computer, the Internet
and Management, 17(3), 41–46.

Satish, K. T., Madhusudhan, H. S., Syed, S. M. F. D. M., Punit, G.,
& Rajan, P. T. (2022). Intelligent fault-tolerant mechanism for
data centers of cloud infrastructure. Mathematical Problems in
Engineering, 2022, 1–12. https://doi.org/10.1155/2022/2379643

Sari, A., & Akkaya, M. (2015). Fault tolerance mechanisms in
distributed systems. International Journal of Communications,
Network and System Sciences, 08, 471–482. https://doi.
org/10.4236/ijcns.2015.812042

Shafiq, M., Ding, Y., & Fensel, D. (2006). Bridging multi-agent
systems and web services: Towards interoperability between
Software Agents and Semantic Web Services. In Proceedings
of the 10th IEEE International Conference on Enterprise
Distributed Object Computing (EDOC 2006) (pp. 85–96),
IEEE Computer. https://doi.org/10.1109/EDOC.2006.18

Umadevi, K., & Rajakumari, S. B. (2015). A review on software fault
injection methods and tools. International Journal of Innovative
Research in Computer and Communication Engineering, 3(3),
1582–1587. https://doi.org/10.15680/IJIRCCE.2015.0303027

Vargas-Santiago, M., Pomares-Hernandez, S.E., Morales, L. A.
R., & Hadj-Kacem, H. (2017). Survey on web services fault
tolerance approaches based on checkpointing mechanisms.
Journal of Software, 12(7), 507–525. http://doi.org/10.17706/
jsw.12.7.507-525

Zaide, H., Ayoubi, R., & Velazco, R. (2004). A survey on fault injection
techniques. The International Arab Journal of Information
Technology, 01(02), 171–186.

Zhao, W. (2007, October). A lightweight fault tolerance framework
for web services. In IEEE/WIC/ACM International Conference
on Web Intelligence (WI’07), Nov. 2007, Fremont, CA, USA
(pp. 542–548). https://doi.org/10.1109/WI.2007.18

