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ABSTRACT

Epilepsy is one of the most severe non-communicable brain disorders 
associated with sudden attacks. Electroencephalography (EEG), a 
non-invasive technique, records brain activities, and these recordings 
are routinely used for the clinical evaluation of epilepsy. EEG signal 
analysis for seizure identification relies on expert manual examination, 
which is labour-intensive, time-consuming, and prone to human error. 
To overcome these limitations, researchers have proposed machine 
learning and deep learning approaches. Long Short-Term Memory 
(LSTM) and Gated Recurrent Unit (GRU) have shown significant 
results in automating seizure prediction, but due to complex gated 
mechanisms and the storage of excessive redundant information, 
these approaches face slow convergence and a low learning rate. 
The proposed modified GRU approach includes an improved update 
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gate unit that adjusts the update gate based on the output of the reset 
gate. By decreasing the amount of superfluous data in the reset gate, 
convergence is speeded, which improves both learning efficiency and 
the accuracy of epilepsy seizure prediction. The performance of the 
proposed approach is verified on a publicly available epileptic EEG 
dataset collected from the University of California, Irvine machine 
learning repository (UCI) in terms of performance metrics such as 
accuracy, precision, recall, and F1 score when it comes to diagnosing 
epileptic seizures. The proposed modified GRU has obtained 98.84% 
accuracy, 96.9% precision, 97.1 recall, and 97% F1 score. The 
performance results are significant because they could enhance the 
diagnosis and treatment of neurological disorders, leading to better 
patient outcomes.

Keywords: Epileptic seizure detection, recurrent neural network, 
long short-term memory, modified-gated recurrent unit.

INTRODUCTION

Epilepsy is a chronic neurological disorder that affects more than 50 
million people worldwide (World Health Organization, n.d.). The 
neurons in the brain fire the message using electrical pulses in a normal 
state. Still, in an epileptic condition, the sudden extensive discharge 
of neurons leads to life-threatening consequences such as involuntary 
movement, unconsciousness, and even death (Sajobi et al., 2021). 
The brain’s electrical activity is recorded by electrodes placed on the 
scalp to record electroencephalography (EEG) signals, which are used 
to diagnose epilepsy. Epilepsy is a neurological disorder that causes 
unpredictable seizures, which can lead to social difficulties and an 
increased risk of mortality (Fisher et al., 2014). Figure 1 presents 
a comprehensive depiction of EEG signals associated with both 
normal, pre-state and epileptic seizure states (Alotaiby et al., 2014). 
The epileptic seizure varies from person to person; sometimes, the 
patient rarely experiences the attack, but in other cases, a patient 
may have hundreds of seizures per day. Not every seizure can be an 
epileptic seizure, as correctly identifying the signals is required to 
diagnose it as an epileptic seizure. Without EEG, it is often impossible 
to obtain a solid diagnosis of a brain-related disease. However, for 
detecting epileptic seizures and spikes, the traditional method of 
visual inspection of the EEG is a time-consuming and error-prone 
procedure.
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Figure 1

An Example of Normal, Pre-state and Seizure EEG Recordings

Therefore, an automated epileptic seizure detection system can enable 
doctors to diagnose patients with epileptic seizures. Various machine 
learning (ML) and deep learning (DL) techniques have been developed 
to detect epileptic seizures using frequency, time, time-frequency 
domain, and other parameters (Alickovic et al., 2018). DL techniques 
are used to overcome the limitations of automated epilepsy detection 
systems (Orosco et al., 2013). Researchers have evolved and analysed 
many convolutional models to see how effective they are in automatic 
epilepsy detection structures (Gotman, 1982; Siuly et al., 2016).

DL models such as the Convolutional Neural Network (CNN), 
Recurrent Neural Network (RNN), Long-short term memory (LSTM), 
Gated Recurrent Unit (GRU), and Autoencoders (AEs) are widely 
used for the automatic detection of an epileptic seizure (Natu et al., 
2022). Chen et al. (2016) reviewed the LSTM model as a distinguished 
technique with the best performance measures (Ismail & Yusof, 2022). 
RNNs with a gated mechanism have emerged as useful for modelling 
sequential inputs such as speech or EEG. 

The amount of data that needs to be manually assessed by trained 
neurologists has created a workflow bottleneck; neurologists are 
overwhelmed by the volume of data (Fisher et al., 2014). Combining 
DL with EEG and Magnetic Resonance Imaging (MRI) modalities to 
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effectively detect automated epileptic episodes is discussed. Figure 2 
depicts the framework of an automatic epileptic detection system with 
EEG to classify seizures as normal or epileptic. The proposed work 
aims to address the slow convergence of GRU by using a modified 
GRU architecture that has fewer gating mechanisms.

Figure 2

The Framework of Automatic Epileptic Seizure Detection System

The content of this paper is organised into different sections. The 
related work section provides a literature review of various epileptic 
detection models currently employed. The following section, i.e., 
preliminary concepts, provides an overview of DL models such as 
RNN, LSTM, and GRU. The proposed method is described in the 
Proposed Modified GRU Approach section. Further, the experimental 
study section illustrates the implementation details of the proposed 
model having experimental setup, UCI EEG dataset description, 
and training and implementation of the proposed modified GRU 
(M-GRU) model. The Results and Discussion section evaluates the 
results obtained from the proposed model in terms of performance 
measures and their comparison with existing neural network models. 
The conclusion section summarises the proposed research and 
provides recommendations for future research endeavours.

RELATED WORKS

Deep learning techniques enable early-stage epilepsy detection 
using EEG signals and exhibit great potential in accurate treatment 
and expedient medical decisions for individuals. Nigam and Graupe 
(2004) proposed a method for the automatic detection of epileptic 
seizures using the neural network large memory storage and retrieval 
(LAMSTAR). The method resolves the limitations by pre-processing 
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long-term EEG data using the spike’s relative spike amplitude and 
rhythmicity attributes to train the LAMSTAR ANN. The proposed 
method obtained a significant classification accuracy of 97% in a 
specific dataset. Güler and Übeyli (2005) investigated how wavelet 
coefficients can be used to classify EEG information. An adaptive 
neuro-fuzzy inference system (ANFIS) is applied to classify EEG 
signals. The proposed model takes wavelet transformation coefficients 
as input. The model obtains an accuracy of 98.68%. 

Golmohammadi et al. (2018) proposed two LSTM architectures 
with a combination of 3 and 4 layers with a softmax classifier and 
obtained satisfactory results with an accuracy of 96.82%. Kannathal 
et al. (2005) provide correlation metrics for EEG indicators and actual 
data. Various entropy estimators have been used for the EEG alerts 
of epileptic seizure signals. The proposed entropy-based method 
achieved 95% classification accuracy. Further, Srinivasan et al. (2007) 
proposed a neural network (NN)-based automatic epileptic seizure 
detection system with approximate entropy (ApEn) as an input feature. 
Two types of classifiers, Elman Network (EN) and Probabilistic 
Neural Network (PNN), are implemented, and using the EN classifier, 
an overall accuracy of 95.45% is obtained. Güler and Übeyli (2007) 
created an eigenvector feature withdrawal method for EEG sign 
detection primarily based on pattern recognition, and Polat and Güneş 
(2008) proposed a unique hybrid automatic identity mechanism based 
on Artificial Immune Recognition System (AIRS). The proposed 
method has three stages: first, Welch Fast Fourier Transformation 
(WFFT) for feature extraction, then Principal Component Analysis 
(PCA) for dimensionality reduction of features. Finally, AIRS is 
implemented as a classifier. The proposed method obtained 100% 
accuracy with 10-fold cross-validation with two classes (A and E). 

Orhan et al. (2011) proposed a multilayer perceptron neural network-
based classification model to diagnose epileptic seizures using 
Discrete Wavelet Transformation (DWT) and the K-means algorithm 
for each frequency sub-set. Wang et al. (2017) provided a multi-
domain characteristic withdrawal technique for seizure detection. 
Gajic et al. (2015) presented a new method for detecting epileptiform 
activity in EEG signals using time, frequency, and non-linear analysis 
and achieved an overall accuracy of 98.7% when tested on three sets 
of EEG signals. Wang et al. (2011) demonstrated entropies from 
Wavelet Packet Decomposition (WPD) to have a powerful ability to 
represent the intrinsic characteristics of electroencephalogram (EEG) 
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signals for the seizure detection method. Fergus et al. (2015) adopted 
an advanced AI approach to picking out automatic epileptic seizures 
using EEG signals. 

Hsu and Yu (2010) proposed sub-band non-linear parameters for 
seizure detection using EEGs. In recent times, Sharmila et al. (2018) 
suggested DWT with the adequate-NN classifier to discover epilepsy. 
Alickovic et al. (2018) hired the discrete wavelet to redecorate and 
wavelet packet fragmentation to conduct automated epileptic seizure 
diagnosis and prognosis. At the same time, Satapathy et al. (2016) 
reviewed different techniques for categorising EEG indicators to 
find epileptic seizures. Subasi et al. (2019) introduced hybrid device 
learning strategies for detecting epileptic seizures, whereas Hussain 
(2018) presented a study approach with a linear kernel support 
vector machine and K-Nearest Neighbour that showed an accuracy 
of 99.5%. Rosas-Romero et al. (2019) proposed CNN for epileptic 
seizure prediction. 

In recent years, various DL methods (Roy et al., 2018) have been 
developed that significantly increase the performance of epileptic 
seizure detection from EEG datasets. CNN is a popular DL model 
that allows extracting numerous features by implementing filters in 
different convolutional layers (Radenović et al., 2019). The result 
from these layers improves the performance significantly. Yet, CNN is 
unable to retain the memory of previous time stamps, which leads to 
a downscaled performance in time series data patterns such as EEG. 
Therefore, a specific type of neural network, the recurrent neural 
network (RNN), uses previous outputs as inputs and is able to retain 
the previous time stamp information (Choi et al., 2017). Bhanusree 
et al. (2023) demonstrate the efficiency of the proposed time-
distributed attention-layered CNN (TDACNN) model in extracting 
spatiotemporal features from time-series speech signals, enabling 
accurate classification of emotions. Due to the vanishing gradient 
problem, RNN faces a short-term memory problem. 

An alternate gating mechanism with a mechanised GRU to resolve 
this issue was proposed (Chung et al., 2014), incorporating two 
gate operating mechanisms, the Update and Reset gates. The update 
gate eliminates the risk of vanishing gradient problems, whereas the 
reset gate allows for the continuous discarding of stored redundant 
information. It is frequently impossible to eliminate enough redundant 
state information in a single screening due to GRU’s ongoing issues 
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with a sluggish convergence rate, limited learning efficiency, and 
the complicated state of time series data (Wang et al., 2019). Table 1 
summarises some prominent DL epilepsy detection approaches in the 
available literature.

Table 1

Some of the Prominent Deep Learning Epilepsy Detection Approaches

Reference/ 
Year

Pre-Processing/ 
Feature 
Extraction 
Methods 

Dataset Epilepsy 
Detection 
Approach

Performance 
Matrices

Nigam and 
Graupe 
(2004)

Multistage non-
linear filter

Real-time 
EEG data

LAMSTAR-
ANN

Accuracy-97.2%

Güler and 
Übeyli 
(2005)

Wavelet 
transform

UCI epileptic 
dataset

ANFIS Accuracy-98.68%

Srinivasan 
et al. (2007)

Approximate 
entropy (ApEn)

UCI epileptic 
dataset

Elman 
Network,
Probabilistic 
NN (PNN)

Accuracy-99.6%

Orhan et al. 
(2011)

DWT and 
K-Means 
algorithm

UCI epileptic 
dataset

MPNN Accuracy-95.6%

Chung et al. 
(2014)

Not defined Ubisoft-
Polyphonic 
music dataset

LSTM-RNN 
GRU-RNN

Learning rate 
validation

Gajic et al. 
(2015)

DWT,
dimensionally 
reduction

University 
Hospital Bonn

Quadratic 
classifiers

Accuracy-98.7%

Satapathy 
et al. (2016)

DWT UCI epileptic 
dataset

MLPNN, 
SVM, RNN

Average 
accuracy-98.3%

Talathi 
(2017)

Auto-correlation Bonn 
University

GRU-RNN Accuracy-98%

Choi et al. 
(2017)

Time series 
analysis

Sutter-PAMF 
data

RNN Area under curve 
(AUC)-0.777

Chen et al. 
(2018)

Not defined University 
Hospital Bonn

Double-DNN Accuracy-97.28%

Alickovic 
et al. (2018)

EMD, DWT Freiburg and 
CHB-MIT

Multiscale 
Principal 
Component 
Analysis 
(PCA)

Accuracy-99.70%

(continued)
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Reference/ 
Year

Pre-Processing/ 
Feature 
Extraction 
Methods 

Dataset Epilepsy 
Detection 
Approach

Performance 
Matrices

Yao et al. 
(2019)

Not defined CHB-MIT Independently 
RNN 
(IndRNN)

Avg. Acc -87%
Avg. Sens-87.3%

Gramacki 
and 
Gramacki 
(2022)

Not defined Helsinki 
University 
Hospital

CNN Accuracy-97%
(window_size-5)

Li et al. 
(2023)

Short-time 
Fourier 
Transformation 
(STFT)

Kunming 
Children’s 
Hospital

Bi-GRU Accuracy-92%

Bhanusree 
et al. (2023)

Not defined RAVDESS 
and 
IEMOCAP 
data corpora

TDACNN Accuracy-92.19%

PRELIMINARY CONCEPTS

Recurrent Neural Network

An RNN is a form of neural network with a traditional design that 
can handle variable-length inputs. In a conventional feed-forward 
network, the output is based on the current input data, whereas in 
an RNN, the output at time-step t depends on the previous time-step 
t-1. Because of the limitations of learning information from past data 
sequences, RNNs provide solutions having two input sources: the 
current and recent past input. Instead of the unidirectional connection 
of neurons in the traditional feed-forward network, RNNs have a flow 
of information that is directed as cycles within connected neurons. 
Figure 3 illustrates the architecture of the RNN, where the RNN layer 
comprises a single layer and unfolds according to the number of steps 
or time stamps. In RNN, each node has a function to produce current 
hidden state St and output yt  with current input xt and previous hidden 
state ht-1 (Murad & Pyun, 2017). The conventional RNN model is 
depicted in Equations 1 to 3 (Pascanu et al., 2014):
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where W, U and V are the weight matrix for hidden, input and output 
units. Non-linear activation functions such as hyperbolic tangent for 
hidden state and logistic sigmoid for output state are used. 
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A Structural Representation of a Recurrent Neural Network (Li et al., 
2019)
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problems (Hochreiter & Schmidhuber, 1997), which lead to the failure 
of learning long-range dependencies due to this gradient becoming too 
small or too large (Rosas-Romero et al., 2019). Gated recurrent 
network topologies such as the LSTM unit (Gao & Wang, 2019) and 
Gavvala et al. (2014) proposed GRU to circumvent the vanishing 
gradient problem.

Long Short-term Memory (LSTM)
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superfluous information. In Figure 4, instead of a single gate block in 
the RNN, an LSTM memory block contains three gates: an input gate, 
an output gate, and a forget gate. The forget gate helps to remember 
or forget the information that is not necessary to retain. The detailed 
architecture of LSTM is shown in Figure 5.

Figure 4

The Representation of Single LSTM Unit 

Input gate: This gate calculates the amount of input that passes 
through it. Equation 4 represents the input gate.

(4)

Forget gate: The gate analyses what and how much information may 
be retained from the previous level to pass to the next level. If the 
information is not required for the next level, the previously stored 
data is multiplied by a zero vector. In Equation 5, the sigmoid function 
is applied to the current and previous states of the weighted input of 
the forget gate with bias. 

(5)

Output gate: Equation 6 defines the output at each level.
 			 

(6)

Cell state: This is a memory of LSTM, which provides the output to 
the next level. In Equation 7, content of memory cell is updated as a 
product of internal memory.
 	 			    (7)
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where       represents elementwise multiplication and new content of 
memory cell state is obtained in Equation 8. 

			   (8)

Hidden state: This state is obtained by element-wise multiplication 
of the sigmoid layer and the tanh layer as per Equation 9.
 				             

  (9)
	
Figure 5

The Detailed Architecture of an LSTM Cell (Bengio et al., 1994)

Gated Recurrent Unit (GRU)

The GRU is a simplified structure of LSTM without explicit memory 
cell states. Introduced by Chung et al. (2014), GRU provides the 
solution for the vanishing gradient problem with a standardised RNN. 
The GRU uses the update and reset gates. It does not have separate 
internal memory. How much of the hidden state information to carry 
over to the next timestamp from previous timestamps is decided by 
the initial reset gate, while the update gate determines which data is 
supplied to the output (Laureys et al., 2015). Different gate-variants 
of GRU are also discussed with changes in gate mechanisms (Dey & 
Salem, 2017).
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Reset gate: The reset gate rt determines the quantity of past information 
to forget. The equation is as same as the update gate, but the difference 
lies in the weights and implementation of the gate. For example, in 
Equation 10, two inputs xt and ht−1 are multiplied by their weights, 
and after point-to-point addition, the information is forwarded to the 
sigmoid function (Chung et al., 2014):
 			 

(10)

Update gate: This gate is responsible for determining how much 
information is required to supply the next state (Wang et al., 2019). In 
Equation 11, update gate zt, where the current input xt and output from 
the previous level/unit ht−1 are multiplied by the weight Wz, and after 
the addition, the output lies between 0 and 1 by using the sigmoid 
function. Figure 6 explains the detailed structure of the GRU.
 	    			 

(11)

Figure 6

An Illustration of GRU’s Detailed Architecture

ht’ is a new memory content that uses the reset gate to store the past 
relevant information. This can be seen in Equation 12, where xt is 
multiplied by weight W and rt is multiplied by ht−1 element-wise 
Hadamard product. An activation function, tanh, is applied to the 
summation. ht is the memory unit in GRU, which stores the final 
information to pass down to the network.
 				    (12)
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Figure 6

An Illustration of GRU’s Detailed Architecture

 

ht’ is a new memory content that uses the reset gate to store the past 
relevant information. This can be seen in Equation 12, where xt is 
multiplied by weight W and rt is multiplied by ht−1 element-wise 
Hadamard product. An activation function, tanh, is applied to the 
summation. ht is the memory unit in GRU, which stores the final 
information to pass down to the network.

ℎ𝑡𝑡𝑗𝑗 = tanh [𝑊𝑊(𝑟𝑟𝑡𝑡 ⨀ ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡)]     

ht is the hidden-layer vector that stores the information for the current 
unit and passes this to the network. The update gate decides how much 
information is needed to collect from the current htj and the previous 
memory content, ht−1.In Equation 13, the element-wise multiplication 
of the update gate zt and ht−1 is performed. Then, the element-wise 
multiplication of (1- zt) and htj and the summation of both provides ht.

ℎ𝑡𝑡 = (𝑧𝑧𝑡𝑡 ⨀ ℎ𝑡𝑡−1) + [(1 − 𝑧𝑧𝑡𝑡) ⨀ ℎ𝑡𝑡𝑗𝑗]                                            

In Equation 14, 𝑦𝑦𝑡𝑡 is the predicted output of GRU at time t, where W 
and b represent weight and bias. 
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ht is the hidden-layer vector that stores the information for the current 
unit and passes this to the network. The update gate decides how much 
information is needed to collect from the current htj and the previous 
memory content, ht−1.In Equation 13, the element-wise multiplication 
of the update gate zt and ht−1 is performed. Then, the element-wise 
multiplication of (1- zt) and htj and the summation of both provides ht.
      	                                            

 (13)

In Equation 14,  is the predicted output of GRU at time t, where W 
and b represent weight and bias.
  				     

(14)

Algorithm 1 outlines the steps involved in the GRU process.

Algorithm 1

The Pseudo-Code of a Gated Recurrent Unit 

Bidirectional LSTM (BLSTM)

BLSTM is used to learn the internal relationship of the whole sequence 
of data. While the LSTM neural network can only process historical 
information for forward propagation to get a future prediction, the 
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Algorithm 1 outlines the steps involved in the GRU process. 

Algorithm 1 

The Pseudo-Code of a Gated Recurrent Unit  

Algorithm 1: Gated Recurrent Unit 
Input: EEG Data Set 
Output: Class Label: (1) Epileptic Seizure or (2) Normal Seizure. 
      
    Begin 
 
     For each (EEG signal) input x at time t: 
 Do 

Reset gate 𝑟𝑟𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑟𝑟. [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡])# Determines how much of the past 
information needs to forget.  
Update gate 𝑧𝑧𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑧𝑧. [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡])# How much information is 
required to supply for the next level. 
Current memory ℎ𝑡𝑡′ =𝑡𝑡𝑡𝑡𝑡𝑡ℎ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑊𝑊. [𝑟𝑟𝑡𝑡 ⊙ ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡]) # Stores the 
past information. 
Hidden-layer vector ℎ𝑡𝑡 = 𝑧𝑧𝑡𝑡 ⊙ ℎ𝑡𝑡−1 + (1 − 𝑧𝑧𝑡𝑡) ⊙ ℎ𝑡𝑡′ # Stores the 
information for the current unit. 
Output  𝑦𝑦𝑡𝑡 = 𝜎𝜎(𝑊𝑊0 ⊙ ℎ𝑡𝑡) 
End for 
  
Output: Apply SoftMax function on yt to find the label for the class. 

 
 

Bidirectional LSTM (BLSTM) 
 
BLSTM is used to learn the internal relationship of the whole sequence 
of data. While the LSTM neural network can only process historical 
information for forward propagation to get a future prediction, the 
BLSTM network can extract the relationship of the whole data 
sequence from both directions (Mousa & Schuller, 2016). The author 
utilises Gaussian filtering, downsampling, and Fourier transform to 
remove redundant information, extracting high-dimensional features, 
and combining sequence information with a Gate Recurrent Unit 
(GRU) for improved model detection accuracy (Li et al., 2023). Figure 
7 explains BLSTM, where the input layer is connected with both the 
backward and forward LSTM layers, and to obtain the final output, 
both layers’ outputs are combined. Through this, historical and future 
information are integrated (Mousa & Schuller, 2016). 



600        

Journal of ICT, 22, No. 4 (Oct) 2023, pp: 587-617

BLSTM network can extract the relationship of the whole data 
sequence from both directions (Mousa & Schuller, 2016). The author 
utilises Gaussian filtering, downsampling, and Fourier transform to 
remove redundant information, extracting high-dimensional features, 
and combining sequence information with a Gate Recurrent Unit 
(GRU) for improved model detection accuracy (Li et al., 2023). Figure 
7 explains BLSTM, where the input layer is connected with both the 
backward and forward LSTM layers, and to obtain the final output, 
both layers’ outputs are combined. Through this, historical and future 
information are integrated (Mousa & Schuller, 2016).

Figure 7

The Basic Architecture of BLSTM 

Bidirectional GRU (Bi-GRU)

Unidirectional GRU allows learning only from past information 
supplied through the input layer. It only preserves the information 
obtained from previous time steps. In some cases, to better understand 
the context and eliminate the ambiguity that occurred due to learning 
only one-way future context information is also required. BGRU 
provides information from two directions: from previous time steps to 
future time steps and from future time steps to last time steps. Using 
this, BGRU can preserve information from the past and future and 
help to understand the context in a better way (Tran et al., 2019). 
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The paper presents a modified GRU-based strategy for dealing with 
multivariate time-series imaging records that address slow convergence 
and occasional knowledge of performance. The improved update gate 
zt of the GRU neural network is implemented in the proposed model. 
The output of the reset gate is utilised to adjust the update gate. Due to 
this, the irrelevant information contained in the reset gate is decreased, 
resulting in a larger volume and faster convergence. At time t, update 
the gates, reset them, and compute the output through the proposed 
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The proposed modified-GRU approach is explained in Algorithm 2.

Algorithm 2

The Pseudo-Code of a Modified Gated Recurrent Unit for Seizure 
Classification
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Step 2. Create Modified GRU model

i. Add hidden layers (Modified GRU layers) in the 
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(continued)
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EXPERIMENTAL STUDY

This section examines the features of the dataset used to implement 
the suggested Modified GRU approach and evaluates the model’s 
performance in comparison to other existing approaches on the UCI 
EEG dataset.

Dataset Description

The experiments are conducted on an epileptic seizure recognition 
dataset that has been retrieved from a publicly available database of 
the UCI machine learning repository, and its description is detailed 
by Andrzejak et al. (2001). The dataset is a pre-processed and re-
structured version featuring epileptic seizure detection. Five target 
classes of patients are shown in Table 2. Each subset class includes 
100 single-channel EEG segments with a duration of 23.6 seconds. 
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Table 2

The EEG UCI Epileptic Dataset Class Description

Classes Class description Patient state No of cases
5 Eyes opened Healthy 2,300
4 Eyes closed Healthy 2,300
3 EEG data recorded from a 

healthy brain area
Partial Epilepsy 2,300

2 EEG data from identified a 
tumour-located area

Partial Epilepsy 2,300

1 EEG data during Seizure 
activity

Epilepsy with seizure 2,300

The data set is divided into five classes. Class 1 represents seizure 
activity, whereas class 2 helps in identifying the tumour in the brain. 
Class 3 denotes the healthy brain area except for the tumour region, 
while class 4 denotes the closed eye and class 5 denotes the open 
eyes. All the subjects falling in classes 2, 3, 4, and 5 are non-epileptic, 
whereas the subjects in class 1 are epileptic.

The EEG dataset was recorded by a 128-channel amplifier system 
having an average common reference. The whole dataset comprises 
11,500 instances with 179 feature attributes, of which 178 variables 
are called the explanatory variables as explained in Table 3, whereas 
the last column indicates the target class variable labelled as y = {0,1}, 
where

0- No seizure activity is recorded
1- Seizure activity is recorded

Table 3

The Features Description of the UCI Dataset

Attributes Description
X1 to X178 Explanatory variables that contain 

the features of patient data with 
ranging values from -1415 to 2047.

X179 It is the response variable y having 
values 0 and 1. 0 indicates no 
seizure activity, whereas 1 indicates 
the presence of seizure activity. 
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Experimental Setup 

The results are compared with existing neural network models to 
determine the proposed model’s accuracy. The experiment was 
conducted on a computer powered by an 11th Gen Intel(R) Core 
(TM) i7-11370H @ 3.30 GHz with 16 GB RAM for data processing. 
An open-source machine learning library, SciKit-learn, in the Python 
programming language is used. Jupyter Notebook, an open-source 
web application, is utilised to develop and share results for coding, 
visualisation of results, and narrated text. 

Training of Modified-GRU 

The proposed model is trained using default values to assign the 
weights of hidden layers and fully connected layers in stateful mode. 
The internal memory state for each GRU unit is initialised to 0. The 
GRU value is also set to 0, and the model is trained using the Adam 
optimiser. The learning rate of the proposed model is 0.001 with 20 
epochs using k-fold cross-validation. Due to the abundance of features 
in datasets and the presence of some duplicate data, model fitting for 
neural networks will be hindered and take a lot of time. As a result, 
the datasets need to be pre-processed, which includes dimensionality 
reduction, cleaning, and normalisation. Following pre-processing, 
the first 80% of each dataset is used as the training set, while the 
remaining 20% is used as the verification set.

Evaluation Measures 

The results obtained with NN models are compared with each other 
in terms of some performance evaluation metrics such as Precision, 
Accuracy, Recall, and F1 score. These metrics are calculated based on 
the confusion matrix, as explained in Table 4. 

Table 4

A Confusion Matrix

                                          Predicted Class
Seizure Normal

Actual Class Seizure True Positive (TP) False Negative (FN)
Normal False Positive (FP) True Negative (TN)
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In the study, the parameters were extensively used for evaluating the 
performance of the proposed approach. The comparative study of 
performance is evaluated by the following measures in Equations 20 
to 23.
           	                 	

(20)

Accuracy defines the ratio of correctly classified samples to total 
samples. TP and FN represent the number of correctly classified 
and incorrectly classified seizure recognition tasks, respectively. 
TN represents the number of seizure predictions not belonging to a 
given class and not classified in this class, whereas FP represents an 
incorrect classification of seizure recognition.

 			   (21) 
     		   	

(22) 

Precision and recall are both important for information retrieval, with 
positive class mattering more than negative. Precision is the ratio of 
actually positive seizure samples to all predicted positive samples, 
whereas recall or sensitivity is the ratio of predicted positive to total 
positive values.

                      	 (23) 

The F1 score represents the harmonic mean of precision and recall that 
takes into account both false positive and false negative predictions. It 
is more useful as a seizure and normal subject prediction tool in cases 
of uneven class distribution. 

IMPLEMENTATION OF THE PROPOSED 
MODIFIED GRU

 
EEG signals are provided as input to the proposed M-GRU approach 
to detect epileptic seizures. The proposed deep learning-based system 
goes through normalisation (ReLU), a fully connected dropout layer 
that classifies epileptic seizures automatically. The dropout technique 
is used to improve generalisation performance and also resolve the 
overfitting problem. 
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The proposed model has a convolutional layer (CNN) with a feature 
map. Firstly, the normalised EEG signal value is first-level GRU, 
which has a kernel (1*168), recurrent kernel (56*168) and bias 
(2*168) with TanH activation function. Further, at the second level, 
kernel (56*168), recurrent kernel (56*168), and bias (2*168) with 
TanH activation function. Dropout is applied after the first and second 
layers of CNN. Here, two fully connected layers are used: kernel 
(56*20), bias (20), and kernel (20*2), bias (2), respectively. The 
activation function TanH is also applied between both fully connected 
layers. As a result, it is supplied to the output layer in the softmax 
classifier. At the end of the process, the system detects the final result, 
whether the epileptic seizure is present or not. Convolutional and 
FC layers are learnable to learn low to high-level values from EEG 
signals. Figure 8 illustrates the functionality of the modified GRU. 

Figure 8

The Working Model of the Proposed Modified GRU Approach

Results and Discussion

This section provides a comparative analysis of the results obtained 
from different neural network models in terms of performance 
measures. The experiment is performed on a publicly available UCI 
dataset. The training and testing accuracy results of the existing neural 
network model are compared with the proposed modified GRU model, 
as illustrated in Figures 9 and 10. 
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with slight variations. Table 5 illustrates the results of evaluation 
measures on different NN models. The proposed modified GRU 
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The F1 score is more valuable than accuracy based on the harmonic 
mean of parameters. Here, the F1 score shows nearly similar scores 
with slight variations. Table 5 illustrates the results of evaluation 
measures on different NN models. The proposed modified GRU model 
obtained 97%, the highest among other models, whereas CNN 
obtained 78%, the lowest. LSTM and GRU show scores of 95% and 
95.4%, respectively. On the other hand, in the case of BLSTM and 
BGRU, BGRU was 0.7% more than BLSTM, whereas BLSTM was 
93.5%. The recall percentage of the models shows slight variations; all 
the models occupy a percentage above 74%, which is the lowest 
proposed by the CNN model. An increasing trend is observed in the 
graph and the series of models, with 94.1%, 94.2%, 95.8%, 95.9%, and 
97.1% for BGRU, BLSTM, LSTM, GRU, and proposed modified 
GRU, respectively. The graph for the models with different 
percentages explains the accuracy percentile, as shown in Figure 11. 
The maximum percentage is 98.8%, the highest for the modified GRU. 
The LSTM and GRU models are the ones in which the allocation is 
varied by 0.8%, where the LSTM model is 96.8% and the GRU model 
is 97.7%. Therefore, the BGRU model shows 1.4% more than the 
BLSTM model, holding 93%.  
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Table 5

Performance Metrics Achieved by Existing DL Methods

Model Precision Recall F1 Score Accuracy
CNN 95 74 78 88
LSTM 94.7 95.8 94.9 96.8
GRU 95.5 95.9 95.4 97.6
BLSTM 94.1 94.2 93.5 93.0
BGRU 95.2 94.1 94.2 94.4
Proposed M-GRU 96.9 97.1 97 98.84

In conclusion, the CNN model shows the lowest recall percentage, F1 
score, and accuracy of the other models. However, looking at the other 
models, the LSTM and GRU models show approximately similar 
percentages, nowhere less than 94%. BLSTM and BGRU are similar 
cases; they obtained about the same percentage of not less than 95%. 
However, modified GRU is the only approach that depicts the highest 
percentage in all conditions, whether precision, recall, or F1 score 
percentage. Moreover, its percentage remained the highest throughout 
the data on accuracy. Therefore, it is the most recommended one as it 
does not illustrate a lower percentage than 97%. 

A Comparison of the Proposed Modified GRU Method with State-
of-the-Art Methods

A comparative analysis of the proposed modified GRU model with 
existing models by different authors is provided in Figure 12. The 
proposed method classification results show an accuracy of 98.84%. 
Fukumori et al. (2021) claimed an accuracy of 90.2% with a neural 
network method, RNN. Pisano et al. (2020) achieved 98.84% accuracy 
with CNN. Liu et al. (2019) designed a model with an accuracy of 96% 
by using CNN, LSTM, and GRU. Further, Jaafar and Mohammadi 
(2019) presented an LSTM-based model with 97.75% accuracy. Two 
other models, 1D-CNN, LSTM, and GRU, were proposed by Chen 
et al. (2018) and Acharya et al. (2018) with 96.82% and 88.67% 
accuracy, respectively, in CNN. Talathi (2017) observed an accuracy 
of 98% with the GRU model. 
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Figure 12 

A Comparative Analysis of Existing ML Methods for Seizure 
Classification with Proposed Modified GRU

CONCLUSION AND FUTURE RESEARCH

Epilepsy is the most common neurological illness, accounting for 
millions of deaths yearly. The brain neuron activities are captured 
using EEG, one of the most important tools for detecting epileptic 
seizures before they occur by capturing changes in EEG signals. 
Therefore, DL models for automated seizure detection can provide 
more accurate results in seizure detection and help provide better and 
on-time medical aids to the patient. The proposed M-GRU approach 
outperforms existing DL models in terms of various performance 
measures for predicting epileptic seizures. The effective prediction 
of epileptic seizures ensures patients a healthy and risk-free life. 
The model has achieved 98.84% accuracy, 96.9% precision, 97.1% 
recall, and 97% F1 score on the epileptic seizure dataset collected 
from the UCI ML repository. Earlier in the study, an accuracy 
of 98% was attained by Pisano et al. (2020). The proposed model 
improved accuracy to 98.84% with a reduced gated mechanism. 
The gated approach is much more efficient in terms of architecture 
and computational efforts. Thus, the proposed model has proven its 
competency as an efficient classifier for detecting epileptic seizures. 

Some limitations of the study must be noted when analysing the results. 
In this paper, the proposed experiment has been implemented on the 
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publicly available dataset, i.e., the UCI machine learning repository. 
The quantity of data and the number of patients might both be raised 
to improve the research even more. The classifiers would benefit from 
more data to train on because of the data used in this work. Data from 
more patients could result in a more thorough detection system due 
to the variety and variance surrounding epileptic seizures. Further, 
the experiment can be extended to a real dataset with more attributes 
and a larger size, especially applicable to brain-computer interface 
(BCI) applications. In addition, another important element, such as 
removing artefacts from EEG Epileptic data, could be studied before 
the data is delivered to the model, as the results with artefact-free data 
can make a difference.
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