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ABSTRACT

Speech Emotion Detection (SER) is a field of identifying human 
emotions from human speech utterances. Human speech utterances 
are a combination of linguistic and non-linguistic information. Non-
linguistic SER provides a generalized solution in human–computer 
interaction applications as it overcomes the language barrier. Machine 
learning and deep learning techniques were previously proposed 
for classifying emotions using handpicked features. To achieve 
effective and generalized SER, feature extraction can be performed 
using deep neural networks and ensemble learning for classification. 
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The proposed model employed a time-distributed attention-layered 
convolution neural network (TDACNN) for extracting spatiotemporal 
features at the first stage and a random forest (RF) classifier, which 
is an ensemble classifier for efficient and generalized classification of 
emotions, at the second stage. The proposed model was implemented 
on the RAVDESS and IEMOCAP data corpora and compared with the 
CNN-SVM and CNN-RF models for SER. The TDACNN-RF model 
exhibited test classification accuracies of 92.19 percent and 90.27 
percent on the RAVDESS and IEMOCAP data corpora, respectively. 
The experimental results proved that the proposed model is efficient 
in extracting spatiotemporal features from time-series speech signals 
and can classify emotions with good accuracy. The class confusion 
among the emotions was reduced for both data corpora, proving that 
the model achieved generalization. 

Keywords: Speech emotion recognition, ensemble classifiers, random 
forest, time-distributed layers, spatiotemporal features. 

INTRODUCTION

Speech Emotion Recognition (SER) is one of the trending and 
attention-seeking research areas in the era of interactive voice 
command devices, robots, driverless cars, etc. (Zehra et al., 2021). The 
voice commands are converted to text effectively with the existing 
state-of-the-art technology, but Human-Computer Interaction (HCI) 
is successful if the human emotions are properly understood and an 
appropriate response is provided (Gudmalwar et al., 2019). Use of 
speech beyond facial expressions, body language, and biosignals is 
more advised as it carries truthful and deeper emotions and also, less 
equipment is required to capture in real-time applications. SER has 
applications in the field of security, clinical diagnosis, call centers, 
psychological/mental health applications, driver assistant systems, 
e-learning, etc. 

SER has the major challenges in the extraction of appropriate 
features, classifying cross-corpus data, overcoming overfitting of the 
classifier, and handling spatial and temporal features of time-series 
nature (Mustaqeem & Kwon, 2020; Zehra et al., 2021; Zvarevashe 
& Olugbara, 2020b). These challenges can be addressed by properly 
designing two major stages; suitable feature extraction and selection, 
and a classifier that can provide a generalized solution to work with 
a multilingual corpus for different age groups and genders (Chen et 
al., 2020b). 
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The first stage of feature extraction and selection can be performed 
by handpicking features or using neural networks. Previous studies 
have used prosodic, spectral data, Mel Frequency Cepstral Coefficient 
(MFCC), Linear prediction cepstral coefficients (LPCC) and formant 
features (Gudmalwar et al., 2019; Kuchibhotla et al., 2014; Lalitha 
et al., 2019; Pawar & Kokate, 2021). Training neural networks to 
extract appropriate features rather than handpicking will solve most 
of the issues related to spatial-temporal features (Fayek et al., 2017). 
Extracting high-level features from a data set using deep convolution 
neural networks has shown good performance in several previous 
studies (Jiang et al., 2019; Mustaqeem et al., 2020). 

When time-distributed layers are added to deep networks, temporal 
features are identified and extracted (Wei et al., 2020). Further, 
the attention layers added to this network can enhance the spatial 
features (Zhao et al., 2019). The Mel spectrogram, which is an image 
representation of speech, has been used by several researchers with the 
wide implementation of neural networks for SER applications (Lech 
et al., 2020). The use of Mel spectrograms in deep learning models 
for SER has been proven effective by several researchers (Atila & 
Şengür, 2021; Chen et al., 2018; Issa et al., 2020; Yao et al., 2020)

Speech emotion data, which are time-series information, contain 
important temporal features in every speech frame. The spectrogram, 
which is considered as the input to the proposed model, is split into 
five frames through a Hamming window and is handled to capture the 
features. Temporal knowledge from each frame can be handled by the 
time distribution of wrappers with equal weights (Lieskovská et al., 
2021). The time-distributed structure learns the short and long-term 
features of time-series data. Attention layers added to the Convolution 
Neural Networks (CNNs) apply heavy weights to specific regions 
of the spectrogram to extract useful spatial features. Attention 
mechanisms were widely and effectively used in SER (Li et al., 2018; 
Mirsamadi & Barsoum, 2017; Neumann & Vu, 2017).

Decision trees (DT) are one of the most prominent classification 
methods. DTs create new decision-making structures after each 
iteration and split data into two subsets (Kumar et al., 2021). Several 
algorithms have been developed that construct more than one DT and 
are referred to as ensemble classifiers. A few ensemble classifiers are 
bootstrap aggregating trees (Lee et al., 2019), rotation forests (Alonso 
et al., 2006) and random forests (Breiman, 2001). 
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Random forests (RFs) are bagging ensemble models that consist 
of multiple DTs built on bootstrap samples. RF classifiers perform 
bagging of the unpruned DTs. In addition to the bagging process, RF 
classifiers perform randomized selection of features at every split. RF 
classifiers predict the emotion class of the test samples using a large 
set of tree classifiers. Therefore, RF classifiers are more efficient than 
regular-bagging ensemble classifiers (Zhou et al., 2002). The success 
of RF lies in the construction and splitting of DTs. To split a node, 
the best features are selected among the set of ‘M’ randomly chosen 
features from the ‘N’ number of features in the feature vector, where 
M < N. 

Bagging methods use deterministic DTs, where the evaluation is based 
on all features, whereas RF classifiers evaluate a subset of features 
(Noroozi et al., 2017). RF classifiers work on multiple randomly 
generated DTs and have the advantages of ensembled methods, 
bagged trees, and decision trees. RF classifiers can interconnect the 
classes because the decision is based on majority voting throughout 
the iterations, which is not the case in non-ensemble models and deep 
neural networks. The features of this classifier improve the probability 
of achieving higher recognition rates. RF is used in multiple 
classification sectors such as SER, biomedical, health monitoring, 
image processing, and the Internet of Things (Agajanian et al., 2019; 
Albornoz & Milone, 2015; Huihui Qiao & Wang, 2018; Kong & Yu, 
2018; Lucky & Suhartono, 2022; Sun et al., 2020). Related studies in 
the field of SER using ensemble learning algorithms are detailed in 
Table 1.

Table 1

Existing Models in the Field of SER

Title Author Model Accuracy
CLSTM: Deep 
feature-based 
speech emotion 
recognition using 
the hierarchical 
convLSTM 
network.

Mustaqeem and 
Kwon (2020)
deep learning, and 
machine learning are 
dominant sources to 
use in order to make 
a system smarter. 
Nowadays, the smart 
speech emotion 
recognition (SER

Hierarchical 
ConvLSTM 
Network

IEMOCAP-75%
RAVDESS-80%

(continued) 
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Title Author Model Accuracy
Ensemble 
Learning of 
Hybrid Acoustic 
Features for 
Speech Emotion 
Recognition

Zvarevashe and  
Olugbara (2020a)

Random 
decision forest

RAVDESS-99.5%

An ensemble 
model for 
multi-level 
speech emotion 
recognition

Zheng, Chunjun 
Wang, Chunli Jia, 
and Ning (2020)

Convolution 
recurrent 
neural network 
for feature 
extraction 
and ensemble 
model for 
classification

IEMOCAP-75%

This study explored the integration of Time-Distributed Attention-
Layered CNN (TDACNN) and RF for SER. The major contributions 
of the proposed TDACNN-RF model are: extracting the desired 
features for emotion recognition from speech signals instead of 
handpicking limited features by implementing the TDACNN; RF 
was used as an ensemble classifier to classify emotions to achieve 
more generalization and avoid overfitting; and Mel spectrogram was 
used as the input to TDACNN to better handle the spatiotemporal 
information of time series speech.
 
The remainder of the study is organized as follows. The background 
for the proposed work is given in Section 2. The proposed TDACNN 
methodology with RF is presented in Section 3. The details of the 
experimental results and a comparison of the performance of the 
proposed method with various metrics are discussed in Section 4. 
Conclusions and future work are provided in Section 5. 

Background

SER is a highly active research field with various generalization 
challenges, and state-of-the-art models are required for efficient 
emotion classification. Several studies in the field of SER have been 
conducted using deep learning algorithms and have achieved good 
accuracy (Wang et al., 2019; Zehra et al., 2021). Recently, with the use 
of deep neural networks for SER, Mel frequency spectrograms have 
been widely used as input features. Deep spectrum representations 
have been extracted from spectrogram images by several researchers 
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for most speech and audio applications (Amiriparian et al., 2017; 
Cummins et al., 2017). The use of a deep spectrum instead of 
handpicked spectral and prosody features in SER has resulted in 
improved performance in several studies (Mao et al., 2014). 

Recent studies have used Deep Neural Networks (DNN) for feature 
extraction to capture the required features to solve relevant problems. 
CNNs have been used for extracting features from speech spectrograms 
in earlier studies (Ren et al., 2017). Further, RNNs and LSTM-
RNNs are frequently used to extract deep spectrum features from 
the spectrum, particularly for SER tasks (Tzirakis et al., 2017). CNN 
and RNN, with a combination of LSTM models, have been proposed 
for extracting features from the Mel spectrogram instead of using 
manually handpicked features (Sainath et al., 2015). These models 
have proven their efficiency in effectively handling time-series data. 
Moreover, attention-based CNNs are used to extract salient spatial 
features from spectrograms for SER (Atila & Şengür, 2021). Time-
distributed layers are added to CNNs with time wrappers to support 
deep neural networks to capture temporal features (Lieskovská et al., 
2021). To summarize, there are several studies in the literature on 
using spectrograms as the input to networks such as CNNs, RNNs, 
and LSTMs, and their combinations for feature extraction. Time 
series applications, such as SER, should work with features that have 
both temporal and spatial features.

The selection of classifiers for SER applications plays a vital role 
in achieving generalization when classifying emotions in relation 
to age, gender, and language. Several researchers have used hidden 
Markov models (HMMs) (Tuncel & Baydogan, 2018), support 
vector machines (SVMs) (Sun et al., 2019), Gaussian mixture 
models (GMMs) (Bhavan et al., 2019), and artificial neural networks 
(ANNs) (Fayek et al., 2017). Recent studies have proposed models 
for never-seen languages to obtain a solution for generalized SER 
that can address multiple language problems (Chen et al., 2020b). 
Ensemble learning is implemented for SER using machine learning 
methods, such as SVM, RF, and Adaboost (Bhavan et al., 2019). 
Random decision forests and ensemble methods using hybrid acoustic 
features by agglutination of prosodic and spectral features have been 
proposed for more efficient SER (Zvarevashe & Olugbara, 2020a; 
Zvarevashe & Olugbara, 2020b). Cross-corpus multilingual emotion 
identification has been developed using an ensemble of SVMs, 
RFs, and DTs (Zehra et al., 2021). The RF algorithm is a bagging 



    55      

Journal of ICT, 22, No. 1 (January) 2023, pp: 49–76

ensemble method based on classification trees that can handle a large 
number of features and has been proposed by previous researchers 
(Breiman, 2001). Compared to ANN, SVM, and logistic regression, 
RF performs well in speech applications (Kondo & Taira, 2018). RF, 
in combination with a two-layer fuzzy model, has been suggested for 
emotion classification in human-robot interaction (Chen et al., 2020a). 
In summary, a combination of deep learning techniques for proper 
feature extraction and the use of ensemble or hierarchical classifiers 
for generalized classification is crucial for achieving efficient SER 
applications. 

Proposed Methodology

The proposed model for SER combined a deep learning network 
for feature extraction and an ensemble learning algorithm for 
classification. The TDACNN for spatial-temporal feature extraction 
and the bagging ensemble classifier RF for effective classification 
of emotions were implemented in this study. The proposed model is 
illustrated in Figure 1.

Figure 1

Time-distributed Attention Convolution Neural Network with Random 
Forest (TDACNN-RF)
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of the frequency scale based on pitch perception. Mel filter banks were 
applied for conversion to Mel scale, and logarithmic scale was applied 
to finally produce a log-Mel spectrogram as given in Equation 1. The 
log-Mel spectrograms were split into five frames with overlapping 
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𝑚𝑚 = 2595 log10 (1 + 𝑓𝑓
700) .  

 
where, 𝑚𝑚 is the log Mel frequency and 𝑓𝑓 is the frequency. 
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The time details of the signal were projected on the horizontal axis 
and the frequencies on the vertical axis. The amplitude or energy was 
represented by the intensity or color distribution of the spectrum. 
Spectrograms were produced by the application of the short-time 
Fourier transform (STFT). The speech samples were framed to a 
window length of 256 with a hop length of 128. A sample rate of 
16 KHZ with the fast Fourier transform set to 512 was chosen, and 
a Hamming window was applied to avoid spectral leakage. The 
resulting signal was converted to Mel scale, which is a nonlinear 
transformation of the frequency scale based on pitch perception. Mel 
filter banks were applied for conversion to Mel scale, and logarithmic 
scale was applied to finally produce a log-Mel spectrogram as given 
in Equation 1. The log-Mel spectrograms were split into five frames 
with overlapping hops to fetch the model. 

where,      is the log Mel frequency and     is the frequency.

Feature Extraction by TDACNN

The time-series information of the log-Mel spectrograms was 
segmented into five frames using the sliding window and was fed 
to the subsequent time-distributed layers of the 2D convolution 
neural layers. The time-distributed wrappers of the 2D convolution 
layers were assigned the same weights. The features observed in 
each frame were treated equally by applying the same weights. All 
frames were provided with similar transformations, and the essential 
temporal features were extracted from each frame. Three layers of 
time-distributed 2D convolutional neural layers were stacked, and the 
individual features were extracted from each frame. These extracted 
features were concatenated using concatenation layers. The attention 
layer was stacked on top of the time-distributed layers to extract 
spatial features (Sun et al., 2020). The proposed TDACNN model 
is illustrated in Figure 2. The fully connected layer, along with the 
flattened layer, were used at the end of the network. The required 
spatiotemporal features for efficient SER were extracted using 
successive time-distributed and attention layers. The time-distributed 
layers turned the raw input time-series signal into shorter and easier 
chunks to learn the long temporal dependencies, and the attention 
layers focused on extracting the spatial features from the input. 
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CNNs are efficient in the extraction of spatial features, but they are 
not completely efficient in extracting temporal features. The time-
distributed 2D convolution layers were concatenated to the CNN 
for efficient time-series compatibility. Moreover, to select salient 
emotional features from sections of speech input, the attention 
mechanism was incorporated with time-distributed 2D convolution 
layers (Mirsamadi & Barsoum, 2017; Chorowski & Bahdanau, 2015). 
The attention layers generate a weight vector that merges the frame-
level features from each time step to an utterance-level feature vector. 
The attention weights αi were determined using each vector entry xi 
from the TD CNN layers, as expressed in Equation 2.

                                              
          

where            denotes the scoring function and is defined in Equation 3.

where W denotes the trainable parameters as linear scoring. 
The output of the attention layer is the weighted sum of the input 
sequences, as shown in Equation 4.

Figure 2
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Bagging Ensemble Classifier—Random Forest Algorithm

RF classifiers are ensemble models based on the bagging principle. 
RF classifiers combine several binary DTs using bootstrap samples 
from the sample feature vector ‘c’. They randomly select a subset of 
explanatory variables at every node. RF is a highly efficient algorithm 
based on the model aggregation concept for classification problems. 
Generalization is one of the prime features that suit SER applications 
(Noroozi et al., 2018). As RF utilizes multiple randomly generated 
DTs, it includes the advantages of ensemble methods, bagging 
approach, and DTs. RF classifiers predict the class through majority 
voting based on predictions made through multiple DTs. Unlike 
bagging, the features are randomly selected at each split, which 
makes the RF algorithm more efficient and results in less overfitting 
(Breiman, 2001). The procedure for generating RF classifiers includes 
the following steps:

1. The original training data for a count of DTs ‘k’, where ‘k’ is a 
random subset of samples considered without replacements from 
the original data using the bootstrap method. Each subset is used 
to train the growing tree.

2. From ‘N’ features, ‘n’ random features (n << N) are selected. The 
nodes of the trees are split on these ‘n’ variables using an optimized 
splitting criterion. The value of ‘n’ is unchanged during the growth. 
This process is repeated until a complete tree is obtained.

3. Each tree grows to its maximum and does not undergo any cutting. 
Figure 3 shows the framework of RF classifier, and Algorithm 1 
presents the pseudocode for the proposed algorithm.
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Figure 3

Framework of Random Forest Classifier for Classifying Emotions 
Using Feature Vector ‘C’

Algorithm 1: Random Forest 
Algorithm 1: Random Forest
Input: C: Feature vector
S: Speech Signals of data set
K: Subset samples for training
N: No. of features in feature vector C
n: Randomly selected features 
i: 1 to N
t: test signal
Output: Y: Predicted emotion
For i=1 to k, do

Select training feature vector samples of S to make ith training of 
Si randomly and by replacement.
Prepare the root node of Si to compare feature values.
Prepare a decision tree based on Si and find the root node.
Choose a feature vector for ith decision tree by splitting.
Select features fi with a high probability.
While testing signal t, do Prepare child node of the ith decision 
tree for the feature vector
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For i=1 to m,
Compare content of the nodes of ith decision tree with contents of 
feature vector
Build tree to generate complete tree 

end for loop
 end while loop

Find emotion labels from every decision tree
Perform majority voting from all the emotion labels to find Y

end for loop

The output of the RF classifier is an ensemble of the results provided 
by all the DTs, and the most accurate prediction is considered for the 
final output as given in Equation 6: 

where,       denotes the output of the RF ensemble,       denotes 
an indicatory function,  denotes a single DT model, and  denotes the 
target emotion.

Bootstrapping of the training subsets is performed randomly using the 
Gini coefficient as given in Equation 7. The smaller the Gini coefficient, 
the better the selection characteristics of the RF algorithm. 
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where, 𝑘𝑘 denotes the subset samples in set 𝐷𝐷, and 𝑃𝑃𝑖𝑖 denotes the 
probability of class i. 
 
For a two-category node, assuming that the first sample probability is 
P, the Gini coefficient is as given in Equation 8. 
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Dyadic Motion Capture (IEMOCAP) (Busso et al., 2007). The 
RAVDESS data corpus consists of emotional speech and songs from 
24 actors (12 males and 12 females) with North American English 
accents. This data set is a class-balanced corpus with seven distinct 
classes: calm, happy, sad, angry, fearful, surprised, and disgusted. The 
IEMOCAP data set is a multimodal corpus of data generated by 
multiple speakers. This data corpus includes dyadic sessions, where 
improvisations and scripted scenarios in the English language are 
performed by actors. IEMOCAP is a class-imbalanced dataset with 
emotions—Neutral, Anger, Happiness, Sadness, Excitement, Disgust, 
Frustration, Fear, and Surprise. Among these 9 emotion samples, only 
4 emotion samples (Neutral, Anger, Happy and Excitement, Sadness) 
that are balanced are considered here. These annotated emotions 
overlap each other, which is a challenge in the field of SER. The details 
of the data corpus are listed in Table 2. 
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RAVDESS data corpus consists of emotional speech and songs from 
24 actors (12 males and 12 females) with North American English 
accents. This data set is a class-balanced corpus with seven distinct 
classes: calm, happy, sad, angry, fearful, surprised, and disgusted. 
The IEMOCAP data set is a multimodal corpus of data generated by 
multiple speakers. This data corpus includes dyadic sessions, where 
improvisations and scripted scenarios in the English language are 
performed by actors. IEMOCAP is a class-imbalanced dataset with 
emotions—Neutral, Anger, Happiness, Sadness, Excitement, Disgust, 
Frustration, Fear, and Surprise. Among these 9 emotion samples, only 
4 emotion samples (Neutral, Anger, Happy and Excitement, Sadness) 
that are balanced are considered here. These annotated emotions 
overlap each other, which is a challenge in the field of SER. The 
details of the data corpus are listed in Table 2.

Table 2

Details of the Data Corpus Used for Verifying the Performance of 
the Proposed Model

Data 
Corpus

Speech files 
considered

Train 
set

Test 
set

Emotions 
considered

Language

IEMOCAP 5531 4424 1107 4 English
RAVDESS 1344 1078 266 7

The model was tested on an NVIDIA GeForce® GTX 1650 Ti 
(dedicated 4 GB GDDR6) GPU, Windows 10 machine with an Intel 8 
core processor and 16 GB RAM. The process was performed on Keras 
using TensorFlow as the backend for the DNN and scikit-learn for the 
RF and SVM algorithms. Training and testing were performed on the 
data sets using 10-fold cross-validation. Speech samples of both the 
data corpora were split into training and test sets in the ratio of 80:20. 
The log-Mel spectrograms were extracted from speech samples by 
applying SFFT, Mel filter bank, and logarithmic operations. A sample 
log-Mel spectrogram of speech samples for disgust, sadness, and 
happiness in the RAVDESS data corpora is shown in Figure 4.
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Figure 4

Sample Speech Signal and Corresponding Log-Mel Spectrogram for 
Disgusted, Sad and Happy Emotions from RAVDESS Data Corpora

To achieve the optimal model, hyperparameters, such as kernel size, 
pooling size, stride on the convolution layer, number of neurons, 
type of activation function, and number of convolution layers, were 
optimized. The log-Mel spectrogram was generated with a 40 Mel band 
to input into the TDACNN-RF. Three time-distributed 2D convolution 
layers with a kernel size of  and a RELU activation function were 
used. Batch normalization was performed at each convolution layer 
to stabilize the learning process. An attention layer with a stride 
of (1,4) followed by the convolution layers, dropout layer, batch 
normalization, and RELU activation were used to prevent overfitting 
in feature extraction. The model was trained with a maximum epoch 
of 100 and an early stopping criterion. After the flattening layer, the 
feature vector ‘C’ was fed to an RF classifier with labels. The RF 
classifier consisted of 150 estimators with a bootstrap sample size 
equal to the training sample sizes of IEMOCAP and RAVDESS.
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Performance Measurements and Experiment Results 

The performance of the proposed TDACNN-RF model on the two 
datasets, IEMOCAP and RAVDESS was compared with CNN-SVM 
and CNN-RF models. Performance metrics, such as classification 
accuracy, precision, recall, F1-score, and confusion matrix, were used 
for analyzing automatic classification applications.

Classification accuracy is defined as the percentage of correct 
predictions over the total predictions as given in Equation 9. Precision 
is defined as the fraction of relevant predictions over all retrieved 
predictions, as given in Equation 10. Recall/sensitivity is defined as 
the fraction of relevant predictions over all relevant predictions, as 
given in Equation 11. Although difficult to achieve, an ideal model 
has a precision and recall equal to 1. The F1-score provides a balance 
between precision and recall, as given in Equation 12. It is the harmonic 
mean between the precision and recall for every class. The confusion 
matrix is a consolidated representation of the class predictions.

where TP, TN, FP, and FN denote True Positive, True Negative, False 
Positive, and False Negative.

The classification accuracies achieved by the proposed TDACNN-RF, 
CNN-SVM, and CNN-RF models on both data corpora are shown in 
Figure 5. To compare the efficacy of the proposed model, CNN-RF and 
CNN-SVM were implemented with both the data corpora and log-Mel 
spectrograms as inputs. The CNN-RF and CNN-SVM models were 
implemented using a three-layer CNN with RELU activation function 
for feature extraction. Except for the time distribution wrappers and 
the attention model, the feature extraction process was similarly 
implemented in all three models. The CNN model was chosen for 
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sample size equal to the training sample sizes of IEMOCAP and 
RAVDESS. 
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𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 ,  

𝐹𝐹1 = 2 × 𝑇𝑇𝐴𝐴𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 × 𝑅𝑅𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑇𝑇𝐴𝐴𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑅𝑅𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ,  

 

(9)

(10)

(11)

(12)
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performance comparison to verify the efficiency of time-distributed 
wrappers and attention layers in extracting features from time-series 
data. 

The RF algorithm in the CNN-RF model selected log2(n)+1 features 
at each node, and the number of estimators was set to 180. The radial 
basis function (RBF) was used as the kernel function for the SVM 
algorithm in the CNN-SVM model. SVM was chosen along with CNN, 
as it is an efficient machine learning algorithm and can be compared 
with RF classifier performance. A comparison of the training and test 
accuracies of the three models is presented in Figure 5.

Figure 5

Performance Comparison of the Proposed TDACNN-RF Model with 
the CNN-SVM and CNN-RF Models

The test classification accuracies of the CNN-SVM, CNN-RF, and 
TDACNN-RF models were 79.55 percent, 82.16 percent, and 92.19 
percent, respectively, on the RAVDESS data. Similarly, for the 
IEMOCAP data, the test accuracy of the proposed model was 90.27 
percent, which was comparatively higher than the 66.57 percent 
and 76.6 percent test accuracies of the CNN-SVM and CNN-RF 
models, respectively. The CNN network used in the latter models for 
extracting features was not effectively equipped to extract spatial and 
temporal features when compared to TDACNN. The time-distributed 
wrappers and attention layers added to the CNN in the proposed 
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model efficiently extracted the temporal and spatial features of the 
time-series emotional speech compared to the CNN alone. 

The RF classifier in the proposed model can identify indistinguishable 
emotions compared to SVM. The RF is a bagged ensemble classifier of 
a group of DTs, and each DT classifier votes to determine the optimal 
emotion at the end. This feature outperforms a well-performing SVM 
algorithm for classifying emotions. The class confusion in RF was 
also reduced, and the generalization property was proven.

The train and test accuracies of the proposed model, as shown in 
Figure 5, depicts strong evidence that the RF classifier is capable of 
classifying indistinguishable emotions when compared to SVM. RF 
being a bagged ensemble classifier, is a group of decision trees where 
each decision tree classifier votes to determine the optimal emotion. 
The features of the RF classifier, CNN-RF and TDACNN-RF, have 
overcome the performance of the SVM algorithm in classifying 
emotions. The class confusion in RF is also reduced and supports the 
generalization property.

All three models were trained to classify four emotions in the 
IEMOCAP data corpus and seven emotions in the RAVDESS data 
corpus. The confusion matrices for the three models with respect to 
the RAVDESS data corpus are listed in Tables 3 to 5. The CNN-SVM 
classifier exhibited good performance in classifying the sadness and 
surprise emotions of the RAVDESS data corpus. CNN-RF performed 
well in classifying disgust and surprise emotions. The proposed 
TDACNN-RF model showed consistency in classifying all six 
emotions of RAVDESS except happy emotions. The time-distributed 
wrappers and attention layers, along with the CNN model, can capture 
the required feature sets for training the RF classifier.

Table 3

Confusion Matrix for CNN-SVM Classifier Model on RAVDESS Data 
Set

Emotion Ang (%) Dis (%) Fear (%) Hap (%) Calm (%) Sad (%) Sur (%)
Ang (%) 76.47 11.76      0   5.88       0     0 5.88
Dis (%)    11.9 71.43      0   7.14       0 2.38 7.14

(continued) 
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Emotion Ang (%) Dis (%) Fear (%) Hap (%) Calm (%) Sad (%) Sur (%)
Fear (%)      0     0 78.05   7.32       0 7.32 7.32
Hap (%)   2.94  2.94  2.94 76.47   5.88 2.94 5.88
Calm (%)      0     0     0   9.52 76.19 7.14 7.14
Sad (%)      0  2.56  2.56   2.56   2.56 84.62 5.13
Sur (%)      0  2.70    0      0      0 2.70 94.59

* Ang=Angry, Dis= Disgust, Fear= Fearful, Hap=Happy, Sur=Surprise

Table 4

Confusion Matrix for CNN-RF Classifier Model on RAVDESS Data 
Set

Emotion Ang (%) Dis (%) Fear (%) Hap (%) Calm (%) Sad (%) Sur (%)
Ang (%) 85.29 8.82 0 2.94  0  0 2.94
Dis (%) 4.76  88.1  0  0  0 7.14  0
Fear (%)  0  0 75.61   14.63  0 7.32 2.44
Hap (%) 2.94 5.88 8.82   67.65 2.94   0 11.76
Calm (%)  0  0  0 4.76    83.33 9.52 2.38
Sad (%)  0 7.69  0 2.56 5.13   84.62  0
Sur (%)  0 2.7  0 5.41  0    2.7 89.19

* Ang=Angry, Dis= Disgust, Fear= Fearful, Hap=Happy, Sur=Surprise

Table 5

Confusion Matrix for TDACNN-RF Classifier Model on RAVDESS 
Data Set

Emotion Ang (%) Dis (%) Fear (%) Hap (%) Calm (%) Sad (%) Sur (%)
Ang (%)   94.12 2.94     0      0        0  0 2.94

Dis (%) 2.38  92.86     0      0        0 4.76     0

Fear (%) 0 0   95.12 2.44        0 2.44     0

Hap (%) 0 0 5.88 85.29 2.94 0 5.88

Calm (%) 0 0     0      0 92.86 7.14     0

Sad (%)  0 2.56 2.56      0 2.56   92.31     0

Sur (%) 2.70 0 2.70      0       0 0 94.59

* Ang=Angry, Dis= Disgust, Fear= Fearful, Hap=Happy, Sur=Surprise

The confusion matrices for the three models with respect to the 
IEMOCAP data corpus are listed in Tables 6–8. The CNN-SVM and 
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CNN-RF showed poor accuracies in classifying the happy and neutral 
emotions of the IEMOCAP dataset. The CNN layers used for feature 
extraction do not efficiently extract these features. The proposed 
TDACNN-RF model exhibited good performance in classifying 
all emotions. The TDACNN successfully extracted spatiotemporal 
features, and the RF classifier efficiently classified the emotions.

The proposed TDACNN-RF model exhibited good performance in 
classifying the anger and sadness emotions but performed poorly 
in happy and neutral emotion classification. However, the proposed 
model performed better than the other two models.

Table 6

Confusion Matrix for CNN-SVM Classifier Model on IEMOCAP 
Data Set

Emotion Anger (%) Happy (%) Neutral (%) Sadness (%)
Anger (%) 75.5 17.7            0 6.6

Happy (%) 23.4 55.3   3.19   18

Neutral (%)          9         9 63.63 18.18

Sadness (%) 8.9 9.9 10.89 70.29

Table 7

Confusion Matrix for CNN-RF Classifier Model on IEMOCAP Data Set

Emotion Anger (%) Happy (%) Neutral (%) Sadness (%)
Anger (%) 86.66 11.11              0 2.22

Happy (%)   9.57 72.34   1.06 17.02

Neutral (%)         0 4.54 63.63 31.81

Sadness (%) 2.97 16.83   2.97 77.22
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Table 8

Confusion Matrix for TDACNN-RF Classifier Model on IEMOCAP 
Data Set

Emotion Anger (%) Happy (%) Neutral (%) Sadness (%)
Anger (%) 92.22 6.66 0 1.11
Happy (%) 4.2 88.29 0 7.44
Neutral (%) 2.27 4.54 86.36 6.81
Sadness (%)           1 5.9 1 92

The performance of the proposed TDACNN-RF model on each 
emotion in terms of class-wise accuracies on the RAVDESS and 
IEMOCAP data corpus is shown in Figure 6. The model achieved 
good class-wise accuracies for both data corpora. For the IEMOCAP 
data corpus, the proposed model exhibited the least accuracy (92.4 %) 
in classifying happiness emotions and higher accuracies (96.05 % and 
97.87 %) in classifying anger and neutral emotions, respectively. For 
the RAVDESS data corpus, the proposed model exhibited the least 
accuracy (96.65 %) in classifying sad emotions and higher accuracies 
(98.88 %, 98.14 %, and 98.14 %) in classifying anger, calm, and 
surprise, respectively.

Figure 6

Class-wise Accuracies of TDACNN-RF on the Seven Emotions of the 
RAVDESS Data Set and Four Emotions of the IEMOCAP Data Set
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The RF classifier ensemble process reduced confusion between 
emotions, as can be observed from the improvised class-wise 
accuracies. To further verify the efficacy of the proposed model, 
precision, recall and F1-scores of all three models for each emotion 
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The RF classifier ensemble process reduced confusion between 
emotions, as can be observed from the improvised class-wise 
accuracies. To further verify the efficacy of the proposed model, 
precision, recall and F1-scores of all three models for each emotion 
were compared for both data corpora and are summarized in Table 
9. The results obtained by the proposed model are better than those 
obtained by the CNN-SVM, CNN-RF, and base models shown in 
Table 1. From Table 9, it is observed that the F1-scores of each class 
for the TDACNN-RF model show consistent improvement over the 
other two models.

Table 9

Precision, Recall and F1-score on RAVDESS and IEMOCAP Data 
Set for the Three Models

Emotion CNN-SVM CNN-RF TDACNN-RF
Precision Recall F1

-score
Precision Recall F1

-score
Precision Recall F1

-score
RAVDESS

Angry 0.76 0.81 0.79 0.85 0.91 0.88 0.94 0.97 0.95

Disgust 0.71 0.81 0.76 0.88 0.80 0.84 0.93 0.93 0.93

Fear 0.78 0.94 0.85 0.76 0.91 0.83 0.93 0.93 0.93

Happy 0.76 0.67 0.71 0.68 0.66 0.67 0.85 0.91 0.88

Calm 0.76 0.91 0.83 0.83 0.92 0.88 0.93 0.95 0.94

Sad 0.85 0.79 0.81 0.85 0.75 0.80 0.92 0.86 0.89

Surprise 0.95 0.70 0.80 0.89 0.82 0.86 0.95 0.92 0.93

IEMOCAP

Anger 0.76 0.66 0.70 0.87 0.87 0.87 0.92 0.93 0.93

Happy 0.55 0.63 0.59 0.72 0.70 0.71 0.88 0.86 0.87

Neutral 0.64 0.67 0.65 0.64 0.88 0.74 0.86 0.97 0.92

Sadness 0.70 0.70 0.70 0.77 0.71 0.74 0.92 0.89 0.91

The results for both data corpora proved that a deep neural network 
with an appropriate balance for extracting spatial and temporal features 
improves the performance of the well-designed classifier. The time-
distributed attention layers can extract the required spatiotemporal 
features, and the ensemble learner classifier can successfully 
generalize emotion classification from speech.



70        

Journal of ICT, 22, No. 1 (January) 2023, pp: 49–76

CONCLUSION AND FUTURE WORK

A TDACNN-RF model was proposed for an effective SER system. 
The experimental results show that the model is efficient in extracting 
temporal and spatial features. The time-distributed layers with 
wrappers assign equal weights to all features from the log-Mel 
spectrogram frames. The attention layers in the model effectively 
capture spatial features. This combination is better suited to handle 
spatiotemporal information, which is a common hindrance issue 
in time-series problems. The ensemble classifier RF classifies the 
emotions more efficiently without class confusion. The deep neural 
network for feature extraction integrated with the ensemble model 
for emotion recognition exhibits good performance in emotion 
classification on both the RAVDESS and IEMOCAP data corpora. 
The model shows good classification accuracy and performance 
measures (precision, recall, and F1-score) on both the data corpora, 
proving that generalization is achieved to a good extent. The results 
from the experiments are promising and provide a new direction to 
consider for various applications of SER in HCI.

In future work, the proposed model can be enhanced with rotational 
forest classifiers, deep neural network ensemble models, and 
CapsuleNets (Alonso et al., 2006; Ganaie et al., 2021; Patrick et al., 
2022). Further, the proposed model can be applied to other speech-
related applications and to time-series data.
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