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ABSTRACT 

This paper developed a multi-criteria decision-making approach using 
the Technique for Order of Preference by Similarity to Ideal Solution 
(TOPSIS) to benchmark the regression alternatives. Regression is 
used in diverse fields to predict consumer behavior, analyze business 
profitability, assess risk, analyze automobile engine performance, 
predict biological system behavior, and analyze weather data. Each 
of these applications has its own set of concerns, resulting in various 
metrics utilizations or those of similar measures but with diverse 
preferences. Multi-criteria decision-making analyzes, compares, 
and ranks a set of alternatives utilizing mathematical and logical 
processes with a complicated and contradictory set of criteria. The 
developed approach established the weights, which were the core 
of the evaluation process, to various values to mimic and address 
the regression’s utilization in multiple applications with different 
concerns and using distinct datasets. The alternative judgment 
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identified positive and negative ideal alternatives in the alternative 
space. The compared regression alternatives were scored and ranked 
based on their distance from these alternatives. The results showed 
that different preferences led to varying algorithm rankings, but 
top-ranked algorithms were distinguished using a specific dataset. 
Following that, using three datasets, namely Combined Cycle Power 
Plant, Real Estate, and Concrete, Voting using multiple classifiers 
(k-means-based classifiers) was the top-ranked in the Combined 
Cycle Power Plant and Real Estate datasets. In contrast, Decision 
Stump was the top-ranked in the Concrete dataset.

Keywords: Multi-criteria decision making, Regression, TOPSIS.

INTRODUCTION 

Data mining applications are fast-growing with the increase in big 
data and the emergence of the so-called data science field (Provost & 
Fawcett, 2013). Data mining is implemented using one of the many 
available algorithms chosen based on the input data and the desired 
output. Data regression is a well-known and commonly used data 
mining application (Draper & Smith, 1998). Regression is a prediction 
task with continuous outputs trained using sample data. Statistical 
and logical methods are used to model and estimate the relationships 
between the dependent variable(s) and the independent variable(s). 
Although there are different regression analysis tasks, such as linear, 
nonlinear, and multiple, the regression algorithms all have the same 
fundamental concept and input and output formats (Fox & Weisberg, 
2018). The existing regression algorithms can be classified into linear 
regression, Support Vector Machine (SVM), Nearest Neighbor, 
Decision Tree, Ensemble methods, and Neural Network (Draper & 
Smith, 1998).

Regression is used in various fields to predict consumer behavior, 
analyze business profitability, assess risk, analyze automobile engine 
performance, predict biological system behavior, and analyze weather 
data (Bates & Watts, 1988). Each of these applications has its own 
set of concerns, resulting in numerous metrics utilizations or those of 
similar measures but with diverse preferences (Baumann et al., 2019). 
Engineers and biologists, for example, are interested in convergence; 
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however, economists are more concerned with the accuracy of 
expected outputs (Pandey & Nguyen, 1999). Furthermore, different 
measurements attempt regression performance from different 
perspectives. Subsequently, benchmarking the regression algorithms 
in various fields, or even in a single field, is not trivial given the 
previously mentioned variations in concerns and measurements 
(Zorlu, 2012). 

Multi-Criteria Decision Analysis/Making (MCDA/MCDM) analyzes, 
compares, and ranks a set of alternatives utilizing mathematical and 
logical processes with a complicated and contradictory set of criteria 
(Skilodimou et al., 2019). The components of the MCDM task are a 
problem with multiple alternatives with conflicting preferences and 
a ranking goal (Malczewski, 1999; Petrovic-Lazarevic & Abraham, 
2004). As illustrated in Figure 1, MCDM takes a set of alternatives 
as input, each identified using values for the specified criteria. The 
criteria should be wisely selected to characterize the alternatives 
and reflect the desired goal. Performance benchmarking should 
consider, as an example, the error, model variance, and bias criteria. 
Furthermore, the set of utilized criteria should be well differentiated 
(Hwang & Yoon, 2012). The criteria are weighted based on the 
preferences. The alternatives are then standardized based on the 
weighted criteria. Finally, the alternatives are evaluated and ranked 
(Srisawat & Payakpate, 2016). As a result, MCDM can be used to 
rank the regression algorithms with different performance criteria. 
Moreover, the analysis can be used with multiple prospective 
evaluations from many evaluators, characterizing the regression 
algorithms’ performance in various fields with countless concerns 
(Oliveira et al., 2014). 

This paper develops a Technique for Order of Preference by Similarity 
to Ideal Solution (TOPSIS)-based multi-criteria decision-making 
approach to evaluate various regression alternatives. The developed 
approach establishes the weights, which are the core of the evaluation 
process, to various values to mimic and address the regression’s 
utilization in multiple applications with different concerns and using 
distinct datasets. The alternative judgment identifies positive and 
negative ideal alternatives in the alternative space. The compared 
regression alternatives are scored and ranked based on their distance 
from these alternatives. 
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Figure 1

MCDM’s Processes and Components

RELATED WORKS

MCDM has been used to evaluate alternative algorithms in various 
fields, especially in data mining (i.e., classification and clustering). 
The widespread use of MCDM techniques can be traced back to 
several factors: 1) the number of data mining applications is rapidly 
increasing; 2) the outcomes of these applications are evaluated based 
on a group of preferences that is characterized by a set of criteria, 
which are mostly conflicted and overlapped (Kasim et al., 2011); and 
3) the preferences differ from an application to another, which makes 
the alternatives evaluation complicated (Govindan & Jepsen, 2016). 

MCDM Techniques

Various MCDM techniques have been developed, such as Multi-
Attribute Utility Theory (MUAT) (Winterfeldt & Fischer, 1975), 
Simple Multi-Attribute Rating Technique (SMART) (Edwards, 1971), 
Analytical Hierarchy Process (AHP) (Wind & Saaty, 1980), Analytic 
Network Process (ANP) (Saaty, 2005), Case-Based Reasoning (CBR) 
(Li & Sun, 2008), Data Envelopment Analysis (DEA) (Belton & 
Vickers, 1993), TOPSIS (Shih et al., 2007), Elimination and Choice 
Translating Reality (ELECTRE) (Roy, 1968), Preference Ranking 
Organization Method for Enrichment of Evaluation (PROMETHEE) 
(De Keyser & Peeters, 1996), Weighted Sum Method (WSM) 
(MacCrimmon, 1968), and Grey Relational Analysis (GRA) (Julong, 
1989) as summarized in Table 1.
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The MCDM techniques are implemented using different mechanisms: 
pairwise comparison as implemented by AHP and ANP, individual 
alternative evaluation, such as SMART and WSM, or distance 
to some ideal solutions, such as TOPSIS. The characteristics of 
existing MCDM techniques include: 1) scalability; 2) applied in non-
strict preferences with uncertainty; and 3) applied in limited data. 
Major disadvantages of the MCDM techniques are the inability to 
be implemented with multiple preferences in uncertain or diverse 
environments like the environment under which the regression is 
executed and the non-scalability (Gao & Xuan, 2019). Among the 
existing techniques, TOPSIS overcomes such problems by evaluating 
the alternatives based on their distance from positive and negative 
ideal alternatives. 

Table 1

Multi-Criteria Decision-Making Techniques

Technique Characteristics
MUAT A scalable early approach for alternative ranking assigns 

a utility value for every alternative. The disadvantage 
of MUAT is that it is sensitive to strict preference 
identification.

SMART Assigns a score to each alternative. It is scalable, yet it is 
also sensitive to strict preference identification.

AHP Implements pairwise comparison of the alternatives, 
which allows for multiple preferences, but is non-scalable.

ANP Similar to AHP, it allows for multiple preferences but is 
non-scalable.

CBR Calculates the similarity between alternatives; it is 
applied for strict preference identification only and is 
non-scalable.

DEA Compares alternatives to each other, and it is similar 
to CBR in that it is applied for strict preference 
identification only and is non-scalable.

TOPSIS Scalable technique works with multiple preferences as it 
evaluates the alternatives based on their distances from 
ideal solutions, requiring extra data to produce accurate 
output.

ELECTRE Similar to AHP and ANP, it implements pairwise 
comparison and allows for multiple preferences but is 
non-scalable.

(continued)
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Technique Characteristics
PROMETHEE Calculate the similarity between alternatives; it is applied 

for strict preference identification only and is non-scalable.
WSM Applied for simple problems with strict preference 

identification only.
GRA Assigns a score to each alternative. It is scalable, yet it is 

also sensitive to strict preference identification.

Literature Review on MCDM in Data Mining 

MCDM techniques have been used to evaluate options in various 
domains in the literature. Nakhaeizadeh and Schnabl (1997) proposed 
an approach for ranking 22 binary-classification algorithms using 
the DEA technique. The implemented approach aimed to ease 
the classification algorithms’ evaluation and extend the previous 
evaluation, which was only based on accuracy. DEA was implemented 
with storage, training and testing times, and the training and testing 
error rate criteria. Osei-Bryson (2004) proposed an approach 
for ranking ten Decision Tree classification algorithms using the 
AHP MCDM method. The implemented approach evaluated these 
algorithms based on their accuracy, discrimination abilities, stability, 
number of leaves, and number of rules. 

Lavesson and Davidsson (2007) used MCDM to evaluate the 
classification algorithms easily. DEA was used for ranking 18 
classification algorithms. The classification algorithms were assessed 
based on training and testing accuracy, complexity, and true positive 
versus false positive criteria. Generally, for early utilization of the 
MCDM technique, as discussed earlier, the data mining algorithms 
are evaluated based on a single preference. 

Peng et al. (2011) ranked seven multi-class classification algorithms 
using multiple MCDM techniques. The classification algorithms 
were evaluated using customized cost and benefit measures, which 
indicated a single preference in evaluating these algorithms. The 
criteria were weighted proportions of the misclassification samples, 
which depended on the dataset used. For example, misclassifying 
class-1 as class-2 might have a higher cost than misclassifying class-2 
as class-1. The Multi-Criteria Optimization and Compromise Solution 
(VIKOR), WSM, PROMETHEE, and TOPSIS MCDM techniques 
were used for benchmarking and evaluation. As a result, each MCDM 
technique produced various ranks of the output. The disagreement 
problem among the utilized MCDM techniques was resolved by 
assigning a weight value to each of them.
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Peng et al. (2012) ranked 38 binary-classification algorithms using 
multiple MCDM techniques. The proposed evaluation aimed to 
evaluate the classification algorithm for software defect prediction 
using 13 criteria, including various true positive, false positive, 
true negative, and false negative combinations, such as precision, 
recall, and accuracy. Area under receiver operative characteristic 
(AUC), mean square error (MSE), and training and testing times 
were also used as criteria for the evaluation. The benchmarking and 
evaluation techniques were DEA, ELECTRE, PROMETHEE, and 
TOPSIS MCDM. The disagreement in alternative rankings among 
these techniques was left unresolved. Similarly, Kou et al. (2012) 
used GRA, VIKOR, ELECTRE, PROMETHEE, and TOPSIS 
MCDM techniques to rank 17 classification algorithms in the risk 
analysis field. There were 11 criteria used, including accuracy, time, 
knowledge, attitudes, and practices (KAPs), and other measures based 
on true and false positive and negative portions. Spearman’s rank 
correlation coefficient was used to adjust the pre-determined criteria 
weights and resolve the disagreement between the output of different 
MCDM techniques.

Kou et al. (2014) employed TOPSIS to rank five binary-classification 
algorithms in conjunction with three feature selection techniques: 
Principal Component Analysis (PCA), Independent Component 
Analysis (ICA), and Synthetic Minority Oversampling Technique 
(SMOTE). The proposed evaluation used accuracy, sensitivity, 
specificity, type I error, type II error, and AUC criteria to assess the 
classification algorithm for the bank loan classification problem. 
K-Nearest Neighbor (KNN) was ranked first for bank loan classification 
among Naive Bayesian, Logistic, C4.5, and Classification and 
Regression Trees (CART).

Peteiro-Barral et al. (2017) used GRA, VIKOR, and TOPSIS to rank 
five binary-classification algorithms in conjunction with a feature 
selection technique. The proposed evaluation applied accuracy, true 
positive, true negative, precision, F-measure, and AUC criteria to 
assess the classification algorithm for detecting evaporative dry eye 
from eye images. Spearman’s rank correlation coefficient was used 
to resolve the disagreement. Song and Peng (2019) utilized TOPSIS 
to rank four binary-classification algorithms in conjunction with five 
oversampling techniques, including SMOTE. The proposed evaluation 
used false positive, true false negative, F-measure, G-mean, AUC, 
and time criteria to assess the classification algorithm for imbalanced 
financial risk assessment problems with a single preference setting.
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Kou et al. (2020) used GRA, VIKOR, WSM, PROMETHEE, and 
TOPSIS to rank the SVM classifier in conjunction with ten different 
feature selection methods, information gain, Gini index, document 
frequency, distinguishing feature, expected cross-entropy, class 
discriminating measure, mutual information, odds ratio, Chi-square, 
and weighted log-likelihood. The proposed evaluation applied 
running, training and testing times, stability, true positive, true 
negative, accuracy, MAE, and AUC criteria to assess the output for 
text classification problems with a single preference setting. 

In conclusion, a single preference is reflected when single or multiple 
MCDM methods are used, as presented in the literature. The weights 
of the criteria must be adjusted to achieve a consistent output using 
multiple MCDM techniques. On the other hand, adjusting the 
weights of the criteria alters preferences. The previously conducted 
benchmarking revealed that adjusting preference is implemented to 
achieve agreement across multiple techniques, resulting in inconsistent 
output, which necessitates changing preferences. Maintaining the 
original preferences and comprising multiple preferences in a single 
alternative ranking have not been investigated yet. Accordingly, 
TOPSIS is used in this paper, which allows for unifying the output and 
compromise ranking of the alternatives based on multiple preferences 
(e.g., criteria weighting). This paper evaluates and benchmarks 
regression algorithms in various applications via numerous datasets 
using TOPSIS and weight settings reflecting multiple preferences. 

TOPSIS MCDM Technique

TOPSIS is characterized by its ability to compromise the ranking of the 
alternatives with internal and external decision grouping, allowing for 
negotiation among multiple decision-makers to reach a compromise 
solution and a combination of various preferences (Shih et al., 2007). 
TOPSIS is scalable; thus, new alternatives and decision-makers can 
be added at any stage of the decision-making process. Technically, 
positive and negative alternatives are identified in the alternative 
space, and the compared alternatives are ranked according to their 
distance from these alternatives. The top-ranked alternative has the 
shortest distance to the ideal positive alternative and the longest 
distance to the ideal negative alternative. Compared to other methods, 
the results can always be compromised (Adepoju et al., 2020). 

TOPSIS has been used in various fields to evaluate algorithms and 
choices. Yap et al. (2019) reviewed MCDM techniques used to solve 
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the common site selection problem in public services, logistics, 
energy generation, and retail facilities. The review found that AHP, 
ELECTRE, PROMTHEE, and TOPSIS were frequently used for site 
selection. TOPSIS’s advantages, as stated in the review, are scalability 
and ease of use. Regardless of the number of alternatives and criteria, 
the method’s implementation remains the same.

Song and Peng (2019) chose TOPSIS for ranking algorithms to assess 
financial risk imbalances. Compared to other techniques, this election 
was justified by its simplicity and widespread use. TOPSIS was used 
by Siregar et al. (2021) to select the most prominent class students 
based on scores, personality, and attitude. Although the selection 
was not contested, it was demonstrated that using TOPSIS simplified 
the selection of prominent class students. Chodha et al. (2022) used 
TOPSIS to find the best industrial robot for arc welding among the 
available options. TOPSIS was chosen because it allows for trade-
offs between criteria and has a flexible weighting system. TOPSIS 
has been preferred in various alternative selection problems across 
multiple domains. Overall, TOPSIS stands out from other MCDM 
techniques because of its scalability and insensitivity.

PROPOSED WORK

A TOPSIS-based framework with weighted and structured criteria 
was proposed to solve the regression algorithms’ evaluation, 
benchmarking, and ranking under multiple preferences. As illustrated 
in Figure 2, the proposed framework took the following inputs for 
evaluation and ranking: alternatives, datasets for the experiments, and 
preferences. The criteria were identified, structured, and weighted 
after formulating the problem. The scores of the alternatives that 
corresponded to the identified criteria were then collected (data 
collection). The alternatives were evaluated and ranked based on 
the scores and weights of the criteria. Multiple preferences were 
considered in the proposed framework; thus, multiple weight settings 
for the identified criteria were used. Internal and external aggregations 
were employed to resolve conflicts and unify the output results of 
multiple preferences. Within the TOPSIS ranking process, internal 
aggregation was linked to the distance calculation step. On the other 
hand, external aggregation was applied to the obtained ranks after the 
TOPSIS ranking had been applied. The results were finally validated 
using correlation testing. 
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Figure 2

The Proposed Framework

For multiple preferences, various settings for criteria weighting were 
considered. Each setting was formulated based on specific grouping 
and structuring of the criteria and assigning values in the form of a 
series. Therefore, the obtained output formed k-dimensional results, 
where k was the number of the underlying criteria. Accordingly, 
different applications with varied preferences could be projected over 
the k-dimensional preferences. Multiple weight settings do not require 
additional processing because TOPSIS allows for the late injection 
of decision-making preferences. The proposed approach obtained 
the optimized ranking of the alternatives in many applications 
characterized by applying flexible structuring of the weighting 
process’s criteria and sequences. 

Input Datasets 

Three different datasets were used to evaluate and benchmark the 
regression algorithms. The first dataset was the Combined Cycle Power 
Plant (CCPP) dataset (Tufekci, 2014), which represented electricity-
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generating gas turbines (GT), steam turbines (ST), and heat recovery 
steam. The dataset contained 9,568 full load samples collected over 
six years. Temperature (T), ambient pressure (AP), relative humidity 
(RH), and exhaust vacuum (V) were the independent variables, while 
the plant’s net hourly electrical energy output (EP) was the dependent 
variable. The second dataset (Yeh & Hsu, 2018) was a Real Estate 
Market Valuation dataset with 414 samples collected from Sindian 
District, New Taipei City, and Taiwan. House age, distance to the MRT 
station, number of convenience stores nearby, geographic coordinates 
(latitude), and geographic coordinates (longitude) were independent 
variables, while price was the dependent variable. The last dataset was 
the Concrete Compressive Strength dataset, which included 173,370 
samples of various concretes with different ingredients and ages (Yeh, 
1998). Cement, blast furnace slag, fly ash, water, superplasticizer, 
coarse aggregate, fine aggregate (all measured as quantitative in 
kg for each m3 mixture), and age were the independent variables. 
Concrete compressive strength was the dependent variable. Using 
multiple datasets expanded the outcomes to accommodate the ranking 
of alternatives and allowed for multiple preferences benchmarking. 

Input Alternatives 

Although the proposed approach evaluated and ranked a wide range 
of regression algorithms, it did not consider all of them. Any new 
algorithm can be evaluated and compared once the framework is 
established. Table 2 lists the algorithms that were evaluated and 
compared.

Input Preferences and Problem Identification 

The proposed approach addressed the problem of evaluating and 
benchmarking the regression algorithms. Various preferences were 
considered by setting up several weight settings to mimic and address 
the regression’s utilization in multiple applications with different 
concerns and using distinct datasets.

Step 1: Alternative Data Collection

As shown in Figure 3, the collected data were structured into a matrix, 
a decision matrix (DM), or an evaluation matrix (EM). Therefore, 
the alternative ranking process was conducted based on the inputs 
provided in the DM and the weights of the criteria. 
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Table 2

Alternative Sets

# Alternative Category Details
1. Multiple Regression Linear Multiple regression is suitable for 

multiple independent variables.
2. Polynomial SVM

SVM

Different kernels are used in various 
implementations of the SVM 
algorithm. The kernel transfers the 
input space into a higher dimension. 
Therefore, different kernels produce 
different results when used with 
SVM. 

3. Normalized SVM
4. Gaussian SVM
5. RBF-SVM

6. 1-NN

KNN
Various implementations of the 
KNN algorithm consider different 
neighborhood numbers.

7. 3-NN
8. 5-NN
9. 7-NN
10. Decision Stump

Decision 
Tree

Different approaches to tree 
construction result in different 
decision tree algorithms.

11. Random Tree
12. Random Forest
13. M5
14. Bagging Ensemble 

Methods

Using well-known ensemble 
techniques to combine multiple 
classifications.

15. Voting

16. Backpropagation 
1-Layer NN Neural 

Network

Different implementations of 
the NN algorithm with different 
numbers produce different results. 17. Backpropagation 

2-Layers NN

Figure 3

The Decision Matrix Structure
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Step 2: Criteria Identification

All known regression performance metrics were applied to evaluate 
and rank the regression algorithms. Prediction bias, model variance, 
and relative model variance were the three types of metrics applied in 
this study. Table 3 lists all of the metrics that were used.

Table 3

Criteria Sets

# Metric Category Captured Aspect
1. Mean Absolute Error (MAE) 

Prediction 
Bias

These metrics capture 
the differences between 
predicted and actual values 
(average values for MAD).

2. Mean Average Deviation 
(MAD)

3. Mean Square Error (MSE)
Model 

Variance

These metrics capture the 
global model differences 
between predicted and 
actual values.

4. Root Mean Square Error 
(RMSE)

5. Relative Error (RERR)

Relative 
Model 

Variance

These metrics capture the 
global model differences 
between the predicted and 
actual values relative to the 
model’s values. 

6. Normalized Root Mean 
Squared Error (NRMSE)

7. Correlation Coefficient (CC)
8. Signal-to-Noise Ratio (SNR)
9. Efficiency Coefficient (E)

Step 3: Criteria Structuring and Weighting

The criteria are usually structured in a hierarchical representation to 
form groups and identify relative preferences. The proposed approach 
used a flexible structure to cover all possible applications with 
multiple settings. In each setting, one criterion was placed on one side 
of the created hierarchy, and the rest of the criteria were grouped on 
the other side, as illustrated in Figure 4. 
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Figure 4

Multiple Criteria Weighting using the Proposed Structuring

There were k different structures in the proposed approach, each 
formed around a single criterion. For each structure, there were n 
settings. The criterion subject matter in each structure was given a 
different value in each setting in the value range [0-1]. Then, at each 
structure, n different weights were assigned to the criteria set out of 
the k structures, leading to k*n different ranking results, where n is 
the number of values in the set and k is the number of the criteria. 
Furthermore, for l datasets, k*n*l rankings were generated. The 
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0.2, 0.3, …1.0} or {0, 0.05, 0.1, 0.15, ….1.0}. A limited set of values, 
{0.2, 0.5, 0.8}, were utilized to reduce the number of the output ranks 
without affecting the results. Moreover, rather than creating structures 
based on individual criteria (i.e., nine criteria), the structure was 
created based on the three criteria groups. This structuring resulted in 
nine different rankings for each dataset.
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Figure 5
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Second, the normalized matrix was weighted with the previously 
determined weights, as given in Equation 2. Each weight set produced 
a one-column matrix, which was then multiplied by the weight matrix 
to produce the weighted matrix. Accordingly, the weighted matrix 
combined the criteria values and the weights.
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Third, the ideal positive and negative alternatives were created by 
selecting each column’s best and worst values as a component of the 
positive and negative alternatives, respectively, from the weighted 
normalized matrix. Accordingly, the maximum value was selected 
as the positive alternative component for the benefit criterion, while 
the minimum value was selected for the ideal negative alternative. 
On the other hand, the minimum value was selected as the positive 
alternative component for the cost criteria, while the maximum value 
was selected for the negative alternative.
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Fourth, the Euclidean distances between each alternative and the 
positive and the negative ideal alternatives were calculated. These 
values were then used to calculate a single closeness value for each 
alternative, as given in Equation 3.

        	        	             
(3)

where Ci is the closeness of the alternative i, Di
- is the distance of the 

alternative i from the ideal negative alternative, and Di
+ is the distance 

of the alternative i from the ideal positive alternative.

Fifth, the ranking process was implemented based on the closeness 
values. The greater the value, the higher the rank of the alternative.

Step 5: Internal and External Aggregations

Internal aggregation was accomplished by averaging each alternative’s 
positive and negative distances. The average negative distance Di

- was 
calculated by averaging the distances of the alternative i from all the 
ideal negative alternatives in various settings, and Di

+ was calculated 
by averaging the distances of the alternative i from all the ideal positive 
alternatives. The external aggregation was achieved by averaging the 
closeness values calculated for each alternative.

Step 6: Validation

The results were validated using Pearson’s correlation, one of the 
most widely used statistical methods for correlation identification. 
The purpose of the validation was to ensure that the obtained results 
were applicable under various settings. Accordingly, if the correlation 
was satisfied, the conclusions about the ranking algorithms could be 
generalized and accepted for regression algorithm ranking. 

EXPERIMENTAL RESULTS 

The experiments were conducted based on the performance of the 
regression algorithms over the selected datasets, i.e., the CCPP, Real 
State, and Concrete datasets, and were based on the pre-determined 
measures. The results of the regression algorithms were used to fill 
in the DMs, as given in Tables 4, 5, and 6. As noted in the DMs, the 
algorithms’ scores varied depending on the utilized datasets, and their 
ranks differed from one criterion to another. 
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As previously mentioned, different settings were used for the criteria 
weighting. Table 7 lists the set of criteria weights that were utilized. 
Although the weight settings were created depending on the criteria 
group, not an individual criterion, it was clear that each criterion was 
given different weights in different settings. Accordingly, the goal of 
evaluating and benchmarking the alternatives using various weights 
was achieved. The criteria’s weights under different settings are 
illustrated in Figure 6.

Table 7

Criteria Weighting Values

# Criteria
MAE MAD MSE RMSE RERR NRMSE CC SNR E Sum

S11 0.1 0.1 0.2 0.2 0.08 0.08 0.08 0.08 0.08 1.0
S12 0.25 0.25 0.125 0.125 0.05 0.05 0.05 0.05 0.05 1.0
S13 0.4 0.4 0.05 0.05 0.02 0.02 0.02 0.02 0.02 1.0
S21 0.2 0.2 0.1 0.1 0.08 0.08 0.08 0.08 0.08 1.0
S22 0.125 0.125 0.25 0.25 0.05 0.05 0.05 0.05 0.05 1.0
S23 0.05 0.05 0.4 0.4 0.02 0.02 0.02 0.02 0.02 1.0
S31 0.2 0.2 0.2 0.2 0.04 0.04 0.04 0.04 0.04 1.0
S32 0.125 0.125 0.125 0.125 0.1 0.1 0.1 0.1 0.1 1.0
S33 0.05 0.05 0.05 0.05 0.16 0.16 0.16 0.16 0.16 1.0

Figure 6

Distribution of the Criteria Weights
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The first three settings, S11, S12, and S13, corresponded to the first structure. The prediction bias, MAE 
and MAD, were combined in one branch of the tree and the rest of the criteria in the other. The second 
set of settings, which included S21, S22, and S23, tallied with the second structure, in which the model 
variances MSE and RMSE were combined into the same branch of the tree. The last set, which 
comprised S31, S32, and S33, and the rest of the criteria in the relative model variance group, were 
combined into one branch. 
  
Results of Alternative Ranking  

 
Tables 8, 9, and 10 show the ranking values for the alternatives obtained using the developed TOPSIS 
approach in various settings for the three datasets. Each alternative’s ranking and indexing values were 
calculated using all settings. Note that all the utilized criteria were cost-based (i.e., as opposed to 
benefit-based). Therefore, the lower the value, the better the result. The ranking scores of the 
alternatives in all settings for the three datasets are shown in Figures 7, 8, and 9. 
 
Table 8 
 
Results of the Alternative Ranking using the CCPP Dataset 
 
 S11 S12 S13 S21 S22 S23 S31 S32 S33 
A1 0.192 10 0.095 9 0.044 4 0.155 10 0.125 9 0.074 4 0.090 9 0.217 10 0.289 10 
A2 0.188 11 0.089 12 0.030 15 0.152 11 0.117 13 0.051 16 0.083 13 0.215 11 0.289 11 
A3 0.211 8 0.106 7 0.051 3 0.172 8 0.138 7 0.084 3 0.101 7 0.239 8 0.320 8 
A4 0.172 17 0.080 17 0.023 17 0.139 17 0.105 17 0.039 17 0.074 17 0.198 17 0.266 17 
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The first three settings, S11, S12, and S13, corresponded to the first 
structure. The prediction bias, MAE and MAD, were combined in 
one branch of the tree and the rest of the criteria in the other. The 
second set of settings, which included S21, S22, and S23, tallied with 
the second structure, in which the model variances MSE and RMSE 
were combined into the same branch of the tree. The last set, which 
comprised S31, S32, and S33, and the rest of the criteria in the relative 
model variance group, were combined into one branch.

Results of Alternative Ranking 

Tables 8, 9, and 10 show the ranking values for the alternatives 
obtained using the developed TOPSIS approach in various settings for 
the three datasets. Each alternative’s ranking and indexing values were 
calculated using all settings. Note that all the utilized criteria were 
cost-based (i.e., as opposed to benefit-based). Therefore, the lower 
the value, the better the result. The ranking scores of the alternatives 
in all settings for the three datasets are shown in Figures 7, 8, and 9.
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Figure 7

Alternative Ranking using the CCPP Dataset

Figure 8

Alternative Ranking using the Real Estate Dataset
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Alternative Ranking using the Concrete Dataset 
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Figure 9

Alternative Ranking using the Concrete Dataset

As given in the results, different preferences led to different rankings. 
Despite these differences, the top-ranked algorithms could be 
identified in each field, more specifically, using a specific dataset. 
The results showed that Bagging was the best algorithm in the 
CCPP dataset. The worst algorithm was SVM for all settings. The 
top-ranked algorithm in the Real Estate dataset was also Bagging, 
and the worst ones varied based on the settings, with Decision Tree 
ranking last in some of the settings and Neural Network ranking last 
in others. For the Concrete dataset, the Bagging algorithm ranked first 
in various settings, especially when the model variance criteria (MSE, 
RMSE) were given the highest weights. In other settings, however, 
Decision Stump, KNN (with K=5), and RBF-SVM were ranked first. 
Surprisingly, the Bagging algorithm ranked last in some of these 
settings when the model variance criteria (MSE, RMSE) were given 
equal or lower weights than the others. 

Results of Internal and External Aggregations

Group aggregations combined the results of the same alternative in 
different settings. The internal and external aggregation results, as 
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shown in Figures 10, 11, and 12, showed that the rankings were similar 
in both cases. It should also be noted that the external aggregation 
always produced higher scores than the internal aggregation using 
the CCPP dataset. For the other datasets, however, there was a match 
between the internal and external aggregation scores. In the Real 
Estate dataset, Bagging was the best algorithm according to the group 
decision using the internal and external approaches. Decision Stump 
was the best algorithm for the Concrete dataset, followed by the RBF-
SVM algorithm according to the group decision-making using the 
internal and external approaches.

According to the results before and after the aggregation using internal 
and external group decision-making, different weight settings affected 
the performance in some datasets but had no effect in others. Despite 
these differences, the performance could be noted and concluded, 
indicating that the proposed approach has established a benchmark 
for regression algorithm ranking that can be applied to any dataset and 
regression algorithm.

Figure 10

Group Aggregation for Alternative Ranking using the CCPP Dataset
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Figure 11

Group Aggregation for Alternative Ranking using the Real Estate 
Dataset

Figure 12

Group Aggregation for Alternative Ranking using the Concrete 
Dataset
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Results of the Validation  

 
The paired comparative correlation values for the Pearson’s correlation test using the CCPP dataset are 
listed in Table 11. The results showed in most cases, the correlation values were close to 1, indicating 
a true correlation between the measured values. As a result, with a few exceptions, the obtained results 
can be generalized for the utilized dataset, despite the weight variations. Table 12 lists the correlation 
values between the comparative samples using the Real Estate dataset. Although the correlation values 
were generally lower than those in the first dataset, the results can be generalized for the utilized dataset, 
despite the significant weight variations. As given in Table 13, the results under the Concrete dataset 
cannot be generalized because the correlation varied. A low correlation existed between different 
settings obtained in this dataset, which explains why the ranking results varied in different settings. 
Accordingly, the generalization can be made using the aggregation approaches, in which the Decision 
Stump algorithm was proven to be the top-ranked algorithm.  
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Results of the Validation 

The paired comparative correlation values for the Pearson’s correlation 
test using the CCPP dataset are listed in Table 11. The results showed 
in most cases, the correlation values ​​were close to 1, indicating a 
true correlation between the measured values. As a result, with a few 
exceptions, the obtained results can be generalized for the utilized 
dataset, despite the weight variations. Table 12 lists the correlation 
values ​​between the comparative samples using the Real Estate 
dataset. Although the correlation values were generally lower than 
those in the first dataset, the results can be generalized for the utilized 
dataset, despite the significant weight variations. As given in Table 13, 
the results under the Concrete dataset cannot be generalized because 
the correlation varied. A low correlation existed between different 
settings obtained in this dataset, which explains why the ranking 
results varied in different settings. Accordingly, the generalization 
can be made using the aggregation approaches, in which the Decision 
Stump algorithm was proven to be the top-ranked algorithm. 

Table 11

Results of Pair-Correlation of Different Settings using the CCPP 
Dataset

S11 S12 S13 S21 S22 S23 S31 S32 S33

S11

S12 0.961
S13 0.933 0.996
S21 0.988 0.991 0.975
S22 0.984 0.994 0.982 0.998
S23 0.969 0.990 0.984 0.986 0.995
S31 0.964 1.000 0.995 0.992 0.996 0.993
S32 0.996 0.935 0.900 0.973 0.964 0.942 0.938
S33 0.854 0.678 0.610 0.769 0.746 0.706 0.685 0.895
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Table 12

Results of Pair-Correlation of Different Settings using the Real Estate 
Dataset

S11 S12 S13 S21 S22 S23 S31 S32 S33

S11

S12 0.951
S13 0.918 0.993
S21 0.973 0.970 0.937
S22 0.940 0.965 0.968 0.903
S23 0.823 0.868 0.898 0.752 0.961
S31 0.940 0.990 0.993 0.934 0.990 0.929
S32 0.933 0.843 0.780 0.945 0.761 0.567 0.786
S33 0.555 0.363 0.268 0.573 0.242 0.007 0.270 0.804

Table 13

Results of Pair-Correlation of Different Settings using the Concrete 
Dataset

S11 S12 S13 S21 S22 S23 S31 S32 S33

S11

S12 -0.137
S13 -0.446 0.947
S21 0.932 0.227 -0.097
S22 0.450 0.818 0.595 0.734
S23 -0.071 0.985 0.917 0.279 0.856
S31 -0.130 0.999 0.945 0.231 0.825 0.991
S32 0.970 -0.368 -0.646 0.822 0.221 -0.311 -0.363
S33 0.883 -0.568 -0.799 0.665 -0.013 -0.522 -0.566 0.970

CONCLUSION

A TOPSIS-based approach for regression alternative ranking with 
multiple criteria weighting settings was proposed in this paper. 
Accordingly, a flexible criteria structure was utilized with multiple 
criteria weights to enable regression evaluation from multiple 
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preferences, to mimic the varied preferences found in different 
science and engineering fields that employ the regression algorithms 
for different applications. According to the results before and after 
the aggregation using internal and external group decision-making, 
different weight settings affected the performance in some datasets 
but had no effect in other datasets. Despite these differences, the 
performance can be noted and concluded, indicating that the proposed 
approach has established a benchmark for regression algorithm 
ranking that can be applied to any dataset and regression algorithm. 
The concluded results were validated using Pearson’s correlation tests 
on pair-series (pair settings).
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