Journal of ICT, 21, No. 3 (July) 2022, pp: 437—464

JOURNAL OF INFORMATION AND

COMMUNICATION TECHNOLOGY
http://e-journal. uum.edu.my/index.php/jict

How to cite this article:
Okwonu, F. Z., Ahad, N. A., Ogini, N. O., Okoloko, I. E., & Wan Husin, W. Z. (2022).
Comparative performance evaluation of efficiency for high dimensional classification

methods. Journal of Information and Communication Technology, 21(3), 437-464.
https://doi.org/10.32890/jict2022.21.3.6

Comparative Performance Evaluation of Efficiency
for High Dimensional Classification Methods

'Friday Zinzendoff Okwonu,

*2Nor Aishah Ahad, 3Nicholas Oluwole Ogini,
4Innocent Ejiro Okoloko & SWan Zakiyatussariroh Wan Husin
Department of Mathematics,

Faculty of Science, Delta State University, Nigeria
2School of Quantitative Sciences, College of Arts and Sciences,
Universiti Utara Malaysia, Malaysia
3Department of Computer Science, Delta State University, Nigeria
“Faculty of Computing, Dennis Osadebay University, Nigeria
SFaculty of Computer and Mathematical Science,
Universiti Teknologi MARA, Kelantan Branch, Malaysia

okwonufz@delsu.edu.ng,
*aishah@uum.edu.my, ogini@delsu.edu.ng,
okoloko@ieee.org, wanzh@uitm.edu.my
*Corresponding author

Received: 15/3/2022 Revised: 12/5/2022  Accepted: 25/5/2022  Published: 17/7/2022

ABSTRACT

This paper aimed to determine the efficiency of classifiers for high-
dimensional classification methods. It also investigated whether
an extreme minimum misclassification rate translates into robust
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efficiency. To ensure an acceptable procedure, a benchmark evaluation
threshold (BETH) was proposed as a metric to analyze the comparative
performance for high-dimensional classification methods. A simplified
performance metric (w) was derived to show the efficiency of different
classification methods. To achieve the objectives, the existing
probability of correct classification (PCC) or classification accuracy
reported in five different articles was used to generate the BETH value.
Then, a comparative analysis was performed between the application
of BETH value (@)and the well-established PCC value () ,derived
from the confusion matrix. The analysis indicated that the BETH
procedure had a minimum misclassification rate, unlike the Optimal
method. The results also revealed that as the PCC inclined toward unity
value, the misclassification rate between the two methods (BETH and
PCC) became extremely irrelevant. The study revealed that the BETH
method was invariant to the performance established by the classifiers
using the PCC criterion but demonstrated more relevant aspects of
robustness and minimum misclassification rate as compared to the
PCC method. In addition, the comparative analysis affirmed that the
BETH method exhibited more robust efficiency than the Optimal
method. The study concluded that a minimum misclassification rate
yields robust performance efficiency.

Keywords: Classification, confusion matrix, efficiency, high-
dimensional data, robustness.

INTRODUCTION

Recent studies have reported a rapid evolution in high-dimensional
data acquisition due to advancements in technology and the outbreak
of the Covid-19 pandemic. As a result, new classification techniques
have evolved (Vidaurre, 2020; Saadati & Benner, 2014; Ferraty, 2010;
Johnstone & Titterington, 2009). The huge acquisition and availability
of high-dimensional data have rendered many conventional
classification methods impracticable to apply due to dimensionality
problems (Casanova et al., 2011). This development has invalidated

the concept of g > 5 (Hamilton, 1970), which has metamorphized

to % < 5. This has given rise to alternative procedures for evaluating

p > n classification methods. Some of the shortfalls of the alternative
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procedures have been discussed (Johnstone & Titterington, 2009)
without much emphasis on robustness and efficiency.

The conventional technique to evaluate the performance of a large
sample of small dimensional (n > p) classification methods is the
optimal probability of correct classification (OPC) as derived in
Equation 1 (Blagus & Lusa, 2013; Johnson & Wichern, 1992):

0OPC = ® (?) (1)

where mq = /(X; — X,)TS;1(X; — X,), X;(i = 1,2) is the sample
meanand S; ! denotes the inverse pooled covariance matrix. Thereafter,
the corresponding OPC value is obtained by checking the standard
normal cumulative probability distribution table (¢ (.)).On the other
hand, the confusion matrix technique compares the classification score
(w) for each group with the classifier’s benchmark (2).The classifier’s
benchmark for several n > p classification problems (Okwonu &
Othman, 2013a) is derived from Equation 2:

0= X1 =%,)TSp (X +X,) 2)
2

where X;(i = 1,2) is the sample meanand Sp! denotes the inverse
pooled covariance matrix.

The numerical value obtained from the confusion matrix is compared
with the OPC value to determine classification accuracy, which is a
standard practice in the classification domain (Ghosh et al., 2021;
Yan et al., 2021; Kranenburg et al., 2020; Penenberg, 2016; Bickel
& Doksum, 2015; Okwonu & Othman, 2013b; Croux et al., 2008,
2011; Kim & Kittler, 2005). A drawback of this method is that it
overestimates the misclassification rate, possibly because the testing
sample is drawn from different distributions from the training sample.
It also underestimates the misclassification rate if the training set
is used to validate the model. This is a two-way problem in the
classification literature (Okwonu, 2013; Johnson & Wichern, 1992).

The benchmark probability method, which is based on the squared
Mabhalanobis distance, relies heavily on the sample covariance, which
makes it unsuitable for high-dimensional problems due to the curse
of singularity or dimensionality (Ghosh, 2012; Biihlmann & Geer,
2011).For p > n classification problems, the classification performance
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depends strictly on the classifier with the highest probability of
correct classification obtained via the confusion matrix. For this
type of problem, the effect of data redundancy and correlation on the
classifier may not appear noticeable to the analyst (Wang et al., 2018;
Guo et al., 2008; Yu & Liu, 2003). Several studies on the application
of classification accuracy to determine classifiers’ robustness or
performance have been criticized. Some researchers have suggested
the use of the receiver operating characteristic curve (Lin & Chen,
2013; Provost et al., 1998) to determine the performance of classifiers.
Other studies considered the area under the receiver operating
characteristic curve to determine the robustness of high-dimensional
classification algorithms (Bradley, 1997).

LITERATURE REVIEW

Previous studies have shown that classification accuracy is often
applied to determine the robustness of any classifier (Lin & Chen,
2013). This approach has received criticisms from the classification
literature such that precision, sensitivity, geometric mean, and -score
have been suggested as better alternatives.

Various performance evaluation procedures for high-dimensional
unequal class sample size problems have been discussed extensively
(Gil-Begue et al., 2021; Bielza et al., 2011). An alternative measure
to determine classifiers’ performance was formulated by Gibaja
(2013). Zhu et al. (2005) also developed a rigid method to compute
classification accuracy based on a zero-one subset. The evaluation
methods enumerated so far are based on the final output from the
various classification models. The macro and micro concepts have
been extended to the receiver operating characteristic curve based
on the area under the curve to determine robustness. Most of these
evaluation methods, such as pairwise techniques (Fiirnkranz et al.,
2008; Hiillermeier et al., 2008), are not universally applied to other
aspects of high-dimensional classification problems (Gil-Begue et
al., 2021). Bielza et al. (2011) proposed another evaluation metric
called joint and mean accuracy to evaluate the performance of high-
dimensional classification methods. The Brier score was also coined
as a metric to measure the robustness of classifiers. This concept
was popularized to high-dimensional classification by Fernandes et

440



Journal of ICT, 21, No. 3 (July) 2022, pp: 437—464

al. (2013). The aforementioned metric has an optimal performance
benchmark as one excluding the Brier score (Gil-Begue et al., 2021).
Chuang et al. (2008) and Hu et al. (2018) advanced a method that
was a reformulation and the equivalent of the confusion matrix
approach in which weights were assigned based on selected relevant
variables. The problem with the method is that it depended on the
number of selected variables and the total number of variables in
the data set. This restricts its application to other high-dimensional
classification problems that may apply data point elimination, equal
class sample sizes, or direct classification analyses. Another weakness
of this method is that it would overshoot the misclassification rate
when the testing data was derived from different distributions from
the training sample. The third weakness is that it underestimated the
misclassification rate when the training sample was used to test the
model.

Based on the aforementioned weaknesses, the present study proposes
a unifying benchmark evaluation threshold (BETH) that depends
strictly on the output of any high-dimensional classifier to generate
the BETH value, which is used as an optimal value for the classifier.
The objectives of this study are: i) to utilize the probability of correct
classification (PCC) to develop the optimal BETH; ii) to compare the
extreme minimum misclassification rate between the BETH method
and the existing method; and iii) to determine the performance
efficiency and robustness of the classification methods such as variants
of Fisher linear classification methods, random forest, support vector
machine, K-nearest neighbor, etc.

The next part of this paper describes the optimal value method for
high-dimensional classification methods. This section also presents
some of the notable evaluation methods and the BETH method. Data
presentation, results, and discussions are reported in the subsequent
section, followed by conclusions in the last section.

METHODOLOGY

The data set used in this study was obtained from several classification
results reported in five different articles. Based on the axiom of
probability and the binomial probability distribution, the sum of the
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probability of correct classification and misclassification is equal to
one as shown in Equation 3:

P=p+q =1 3)

where p; denotes the probability of correct classification and ¢; is the
probability of misclassification associated to each group of the object
of investigation. The optimal value method was formulated based on
the axiom of probability and the binomial probability distribution.
Accordingly, the sum of the probability of the correct classification
and misclassification of the classifiers is equal to one. Therefore,
P = p; + q; = 1 was generalized as the optimal probability benchmark
value in classification domain. On the other hand, the BETH method
derived its probability benchmark value from the classification
accuracy of the classifiers. This section also describes several
evaluation methods for high-dimensional data sets.

The Optimal Value For n > p

This method simply computed the optimal value based on the given
data set. This criterion of Equation 4 is described in detail in Johnson
and Wichern (1992) as:

=02 @

where @ denotes the standard normal cumulative probability distribution,
and A is the Mahalanobis distance, as defined in Equation 5:

A= \/(X1 —X2)'Sp (X1 — X,) )
The sample mean and pooled sample variance are defined as follows:
X, ==X g9 (6)
ng
_ (ny-1)S3+(ny—-1)S, 7
Sp - (n1+n2)—2 ( )

Z;'lfl(xj_)?k)z

where k = 1,2 and S = . Equation (4) gives the optimal

probability of correct classification for n > p problems. This optimal
procedure cannot be applied to P > 1 problems due to the curse of
dimensionality resulting from the computation of the Mahalanobis
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distance. Therefore, several other methods such as performance
evaluation function, classification accuracy, precision, sensitivity,
macro, micro, and geometric mean have been applied to determine
the classifier’s performance.

High-Dimensional Evaluation Methods (HDEM)
Performance Evaluation Function (PEF) of HDEM

The performance evaluation function (PEF) is designed such that exact
classification results are derived from selected variables for high-
dimensional data. The classification accuracy measure of PEF (Hu et
al., 2018; Blagus & Lusa, 2010; Chuang et al., 2008) is described in
Equations 8—10 as follows:

d=0,*V+0,[1-qlg=2<1, (8)
_C__C __

_;_(:.,._19"[_(:-'_19 )

e=N—0d =N —V,(n= 1) (10)

where 0 is the classification accuracy, [, B2] =[0.999,0.001]are
the assigned weights, Mis the total number of variables in the data
set, mis the number of selected variables, C is the proportion of
correct classification from the different collections of classifiers,
9 = (1 — () is the proportion of misclassification from the different
collections of classifiers, and gis the optimal misclassification error.
If M = mythe rightmost part of Equation 8 reduces to zero, thus the
classification accuracy is determined by Equation 11:

=0,*V (11)

This is a special weakness of this method, where V> 0 because the
weight @, would reduce the value of V.On the other hand, if M > m,
then V= 0.

Therefore, PEF cannot be applied as a metric for an equal sample
size problem. Otherwise, it would underestimate the classification
accuracy. Equation 9 is generally applicable, but may overshoot the
misclassification rate because of the benchmark of N= 1.
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Evaluation Procedures for HDEM

In multi-classification problems, the concept of macro and micro-
precision, macro and micro recall, and macro and micro-F1 have been
advanced to evaluate the performance of high-dimensional unequal
class sample sizes (Zhang et al., 2019; Luo & Li, 2014; Lin & Chen,
2013; Michiels et al., 2005). These methods are described with the aid
of the following equations, and the confusion matrix shown in Table 1.

Table 1

Confusion Matrix

Classified as
A B
Actual groups A TP FpP
FN ™
25":1 Ry
Macro-recall: MAC — R = =—— (12)

K

MAC—PXMAC—RX2
Macro—Fl: MAC — Fl = m (13)

. . _ TaTey 14
Micro-precision: MIC — P = cp————— (14)
K TP+FP,

K
Micro-recall: MIC — R = ,(Zl:# (15)
21=1 TP]+FN]
MIC—PXMIC—RX2 (16)

MinO-Fl: MIC — Fl = MIC—-P+MIC—R

Classification accuracy: CA = L — (17)
TP+FP+FN+TN
g—mean=\/ Micro — precision X Micro — recall (18)

The g-mean (Equation 18) simply balances micro-recall and micro-
precision (Lin & Chen, 2013). A recent study revealed that the
application of macro or micro to determine performance is based on
the rule of thumb (Jimoh et al., 2022; Gil-Begue et al., 2021; Gibaja,
2013).
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The aforementioned evaluation criteria are useful for unequal
sample sizes based on class categorization. The following subsection
considers the BETH criterion that is indifferent to class sample size
but relies on the classification accuracy to determine the optimal
value of classification. The study further applies it to demonstrate the
robustness and efficiency of any classifier. This method addresses the
shortfall of Equation 8, and it is assumed to give the exact performance
benchmark and enhance the robust analysis for high-dimensional
classification problems.

Benchmark Evaluation Threshold (BETH)

The BETH method is described as follows: let m be the BETH
proportion of correct classification from different classifiers defined
in Equation 19:

ni 4 ny +

m= (e (19)
ni+n,

where A; are the unit objects correctly assigned in each group. From

Equation 19, Equation 20 is derived as:

€ )) 20
p= [ x| X 20)
Equation 20 describes the optimal misclassification rate (p)based on
Equation 19, and BETH (@) is defined in Equation 21:

0=n—p @)

For different classifiers on p > n data set, the average BETH value (1),
as shown in Equation 22, could be used to analyze the performance.
However, this process has some drawbacks such as overfitting and
underfitting associated with Equation 22:

k

= Zizkl 9 (22)
Equation 22 has a unique drawback that may not be recommended
for all time performance analyses. Another drawback is that if the
numerical values of 7 fluctuate with a large positive deviation, thus
resulting in 7 > 1, this value exceeds the optimal performance
benchmark (§ = 1). If the following occurs, ¢ = § — t = —0,where
6 < —0.1, then Equation 22 is not suitable for the analysis, in which case
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an alternative procedure should be considered. Therefore, it is expected
that a perfect model performance is attained when ¢ =6 — 7 = 0.

Based on the BETH method, the following formulas can also be
applied to determine the performance and efficiency of any classifier.
Equation 23 denotes the deviation between the average BETH value
for any method and the probability of exact classification (Equation
8). The misclassification due to BETH (Equations 19, 21) is defined
in Equation 24, which indicates the minimum misclassification error
as compared to Equation 10. The proportion of misclassification error
associated with BETH and the conventional method is defined in
Equation 25:

B=1-0; (23)
e=0—-m (24)
A= Z (25)

The performance efficiency of BETH and Optimal methods are
described in Equations 2627 as follows:

T

© =2 x100% (26)

t= % x 100% (27)

The following summary shows that both methods satisfy the axiomatic
definition of probability, which implies that the sum of the probability
of correct classification and misclassification is one as shown in
Equations 28 and 29, respectively:

y=0+e=1 (28)
c=0+¢=1 (29)

From the above analysis, it is established that the sum of the probability
of correct classification and misclassification satisfies Equation 3.

Data Set Description

In this subsection, the different data sets and classifiers are discussed
as follows. The results reported in Table 8 are based on the data sets
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in Tables 2 and 3. The three data sets for this study were culled from
Table 4 in Zhang and Cao (2019). Table 2 contains detailed information
from the original data source. The data sets were reported on disease
diagnosis for high-dimensional biomedical studies.

Table 2

Biomedical Data Sets (Zhang & Cao, 2019)

Data Set Name Dimension Sample Class Reference
Size
A: Arcene 10,000 200 2 Dua and Graff (2019)
CT: Colon Tumor 2,000 62 2 Li and Liu (2004)
NS: Nervous System 7,129 60 2 Li and Liu (2004)

Table 3 contains the algorithm names used in Zhang and Cao (2019) to
enhance the classification performance of random forest (RF), support
vector machine (SVM), and K-nearest neighbor (KNN). For ease of
discussion, B, C, D, E, and F were used to represent the names of the
algorithms reported in Table 3 of this paper.

Table 3

Algorithm Names (Zhang & Cao, 2019)

Algorithms Full Set FSBRR  Relief mRmR GA
New names B C D E F

The algorithms in Table 3 were feature selection algorithms applied to
the methods to perform classifications. ‘Full set’ refers to conventional
classifiers such as RF, SVM, and KNN. The results in Table 9 were
based on the data sets derived from Dua and Graff (2019), and the
biomedical data sets as depicted in Table 2 (Zhang et al., 2019), which
consisted of six data sets denoted by A to F, as replicated in Table 4.
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Table 4

Different Data Sets (Zhang et al., 2019, Dua & Graff, 2019)

Name of Data Set Sample Size Dimension
Detect Malicious Executable 373 513
Anti-Virus Data Set

SECOM 1,567 591
Heart Disease 267 44
Musk 6,598 168
Urban Land Cover 675 147
Multiple Features 1,608 649

The results in Table 10 consisted of different data sets reported in
Table 5, which comprised nine real biomedical data sets described in
Table 2 based on Hu et al.’s (2018) study.

Table 5

Data Sets in Table 2 (Hu et al., 2018)

Data name Sample size Dimension
Colon Tumur 62 2,000
DLBCL Harvard 58 7,129
Nervous System 60 71,29
Lung Cancer Harvard 1 203 12,600
All-AML-Leukemia 106 7,130
Lung Cancer Ontario 39 2,880
DLBCL Standford 47 4,026
DLBCL NIH 160 7,400
Lung Cancer 181 12,534

The data sets in Table 6 were culled from the report in Table 5 in Lin
and Chen (2013) with different classifiers, namely the diagonal linear
discriminant analysis (DLDA), RF, and SVM classifiers, and distinct
modifications applied to enhance the classical classifiers. The outputs
are reported in Table 11.

448



Journal of ICT, 21, No. 3 (July) 2022, pp: 437—464

Table 6

Names of Data Sets Reported in Table 5 in Lin and Chen (2013)

Name of data set Sample size Dimension
Lymphoma 58 6,817
Colon Cancer 40 2,000
Breast Cancer 65 7,650
Gene Imprint 88 1,446
Lung Cancer 58 6,817

The data sets reported in Table 7 consisted of Emotions, Yeast, and
Scene, as reported in Table 3 in Bielza et al. (2011). Eight different
types of algorithms were used to perform classification as reported
in Table 4 in Bielza et al. (2011). In this presentation, the algorithm
names were abbreviated as TT: Tree Tree, PP: polytree—polytree, PF:
pure filter, PW: pure wrapper, HYB: hybrid, WBN: wrapper bn, K2-
BN and ML-KMM, respectively. The outputs are reported in Table 13.

Table 7

Data Sets in Table 3 in Bielza et al. (2011)

Name of Sample size  Dimension Reference
Data Set
Scene 2,407 6 Elisseeff and Beston, (2002)
Yeast 2,417 14 Boutell et al. (2004)
Emotions 593 6 Trohidis et al. (2008)
RESULTS AND DISCUSSION

The results (3)reported in Table 8 were generated from the classification
output for three high-dimensional data sets on three classifiers (RF,
SVM, and KNN) and five algorithms as reported in Table 4 (Zhang &
Cao,2019). From Table 8, the BETH method had a general performance
remark with the results reported in the original paper. Based on
Equation 11, the BETH method had a comparative misclassification
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rate of 50 percent over the conventional Optimal method. It is
observed that the classifier with a minimum misclassification rate had
a correspondingly higher efficiency value. The analysis in Figure 1
clearly indicated how the classifiers performed on the data sets.

Table 8

Comparative Misclassification Rate between Optimal and BETH

Classifiers Data Algorithms 9 1 @ € B e A o
set

Random A B 0.73 0.90 0.87 0.13 0.16 0.27 0.5 0.84
Forest C 0.86 0.93 0.07 0.04 0.14 0.5 0.92
D 0.81 091 0.09 0.09 0.19 0.5 0.90

E 0.79 0.89 0.11 0.11 0.21 0.5 0.88

F 0.77 0.89 0.11 0.13 0.23 0.5 0.87

CT B 0.78 0.93 0.89 0.11 0.15 0.22 0.5 0.88
C 0.92 0.96 0.04 0.01 0.08 0.5 0.96

D 0.86 0.93 0.07 0.08 0.15 0.5 0.92

E 0.87 0.93 0.07 0.07 0.13 0.5 0.93

F 0.89 0.95 0.05 0.04 0.11 0.5 0.94

NS B 0.61 0.86 0.81 0.19 0.25 0.39 0.5 0.76
C 0.80 0.90 0.09 0.06 0.19 0.5 0.89

D 0.72 0.89 0.14 0.15 0.28 0.5 0.83

E 0.72 0.86 0.14 0.14 0.28 0.5 0.84

F 0.76 0.88 0.12 0.10 0.24 0.5 0.86

SVM A B 0.71 0.87 0.85 0.15 0.17 0.29 0.5 0.83
C 0.81 0.90 0.09 0.07 0.19 0.5 0.89

D 0.77 0.88 0.12 0.11 0.23 0.5 0.87

E 0.75 0.87 0.13 0.13 0.25 0.5 0.86

F 0.71 0.86 0.14 0.16 0.29 0.5 0.83

CT B 0.74 091 0.87 0.13 0.17 0.26 0.5 0.85
C 0.88 0.94 0.06 0.03 0.12 0.5 0.93

D 0.81 0.90 0.09 0.10 0.19 0.5 0.89

E 0.82 091 0.09 0.09 0.18 0.5 0.89

F 0.84 0.92 0.08 0.07 0.16 0.5 0.91

NS B 0.53 0.83 0.77 0.23 0.29 0.47 0.5 0.70
C 0.73 0.87 0.13 0.09 0.27 0.5 0.85

D 0.69 0.84 0.16 0.14 031 0.5 0.81

E 0.66 0.83 0.17 0.17 034 0.5 0.79

F 0.68 0.84 0.16 0.15 032 0.5 0.81
(continued)

450



Journal of ICT, 21, No. 3 (July) 2022, pp: 437—464

Classifiers Data Algorithms g T 0 € B s A w
set

KNN A B 0.68 0.89 0.84 0.16 022 0.32 0.5 0.81

C 0.87 0.93 0.07 0.03 0.13 0.5 0.93

D 0.82 091 0.09 0.07 0.18 0.5 0.90

E 0.79 0.89 0.11 0.11 0.21 0.5 0.88

F 0.79 0.89 0.10 0.10 0.21 0.5 0.88

CT B 0.76 0.89 0.88 0.12 0.14 0.24 0.5 0.86

C 0.92 0.96 0.04 -0.02 0.08 0.5 0.96

D 0.83 0.92 0.08 0.07 0.17 0.5 0091

E 0.85 0.92 0.08 0.05 0.15 0.5 0.92

F 0.87 0.93 0.07 0.03 0.13 0.5 0.93

NS B 0.57 0.84 0.78 0.22 027 043 0.5 0.73

C 0.74 0.87 0.13 0.09 0.26 0.5 0.85

D 0.66 0.83 0.17 0.18 0.34 0.5 0.79

E 0.66 0.83 0.17 0.18 0.34 0.5 0.79

F 0.74 0.87 0.13 0.10 0.26 0.5 0.85

Figure 1

Comparative Misclassification Rate and Performance Efficiency

Z 03

BDFCEBDFBDFCEBDFBDFCEBDF

MISCLASSIFICATION R

RF sV™M KNN
METHODS

«=@==BETH «=@==OPT

PERFORMANCE EFFICIENCY

1.2

0.4
0.2
0

BDFCEBDFBDFCEBDFBDFCEBDF

«=@==OPT EFFICIENCY «=@==BETH EFFICIENCY

RF

SVM
METHODS

a) Comparative misclassification rate b) Comparative performance efficiency

KNN

The classifiers in Table 9 consisted of different algorithms applied
to robustify the performance of SVM. Therefore, Table 9 contained
variants of algorithm such as synthetic minority oversampling, feature
selection, and data over sampling techniques. The result reported in
Table 9 was based on the data sets reported in Table 4 and the output
of the classifiers in Table 5 in Zhang et al. (2019) for four different
classification methods denoted by the upper-case letters of each

451



Journal of ICT, 21, No. 3 (July) 2022, pp: 437—464

word. This study replicated the results to generate the BETH value
in determining the best classifier with the minimum misclassification
rate and performance efficiency.

Table 9

Comparative Misclassification Rate between Optimal and BETH

Classifier Dataset 0 T 0] € B e A 1)
RSSVM A 091 095 096 0.05 0.04 0.09 0.5 0.95
B 0.82 091 0.09 0.13 0.18 0.5 0091
C 0.95 0.98 0.03 0.01 0.05 0.5 0.97
D 0.85 093 0.08 0.10 0.15 0.5 0.92
E 0.94 0.97 0.03 001 0.06 0.5 0.97
F 0.94 0.97 0.03 0.01 0.06 0.5 0.97
RPSVM A 095 0.95 098 0.03 0.01 0.05 0.5 0.97
B 0.84 092 0.08 0.11 0.16 0.5 0.91
C 0.96 0.98 0.02 -0.01 0.04 0.5 0.98
D 0.82 091 0.09 0.13 0.18 0.5 0.90
E 0.94 0.97 0.03 0.01 0.06 0.5 0.97
F 0.94 0.97 0.03 001 0.06 0.5 0.97
BSSVM A 098 0.96 0.99 0.01 -0.02 0.02 0.5 0.99
B 0.84 092 0.08 0.12 0.16 0.5 091
C 0.95 0.98 0.03 0.01 0.05 0.5 0.97
D 0.87 094 0.07 0.09 0.13 0.5 0.93
E 0.95 0.98 0.03 0.01 0.05 0.5 0.97
F 0.94 0.97 0.03 002 0.06 0.5 0.97
BPSVM A 0.97 096 0.99 0.02 -0.01 0.03 0.5 0.98
B 0.85 093 0.08 0.11 0.15 05 0.92
C 0.97 0.99 0.02 -0.01 0.03 0.5 0.98
D 0.89 095 0.06 007 0.11 0.5 0.94
E 0.87 0.94 0.07 0.09 0.13 0.5 093
F 0.94 097 0.03 002 0.06 0.5 0.97

From Figure 2, itis observed that the comparative misclassification rate
and the comparative performance efficiency were the direct opposite
of each other. This indicated that a minimum misclassification rate
gave better performance efficiency.
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Figure 2

Comparative Misclassification Rate and Performance Efficiency
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The result in Table 10 was based on the nine real biomedical data set
description in Table 5 and the classification output reported in Table 2
in Hu et al. (2018). The results reported in Table 2 in Hu et al. (2018)
were centered on the KNN(1-NN) classifier. The results indicated that
the BETH method had a minimum misclassification rate as compared
to the Optimal method. The analysis in Figure 3 revealed that the
BETH method reduced the misclassification rate by 50 percent when
compared to the unique Optimal method.

Table 10

Comparative Misclassification Rate between Optimal and BETH

Classifier Dataset 0 T ] € B e A 13
KNN(K=1) 1 0.76 0.85 0.88 0.12 0.09 024 05 0.86
2 0.47 0.74 0.27 038 0.53 0.5 0.64

3 0.57 0.79 022 028 043 0.5 0.73

4 0.9 0.95 0.05 -0.05 0.10 0.5 0095

5 0.9 095 0.05 -0.05 0.10 0.5 0.95

6 0.56 078 022 029 044 05 0.72

7 0.77 0.89 0.12 0.08 0.23 0.5 0.87

8 0.45 0.73 028 040 0.55 0.5 0.62

9 0.96 0.98 0.02 -0.11 0.04 0.5 0.98
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Figure 3

Comparative Misclassification Rate and Performance Efficiency
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The data sets used to generate the output in Table 11 were obtained
from Table 5 in Lin and Chen (2013) and replicated as in Table 6. From
the output, it is concluded that the results for the different classifiers
measured by the BETH performance metric were very robust with an
extreme minimum misclassification rate as compared to the rate from

the Optimal method.

Table 11

Comparative Misclassification Rate between Optimal and BETH

Classifier Dataset 0 T ) e B e A 13
SVM A 0.84 0946 092 0.08 0.11 0.16 0.5 091
B 0.85 0.93 0.08 0.09 0.15 0.5 0.92

C 0.83 0.92 0.09 0.12 0.17 0.5 0091

D 0.79 0.89 0.11 0.16 0.21 0.5 0.88

E 0.86 0.93 0.07 0.09 0.14 05 0.92

F 0.85 0.93 0.08 0.09 0.15 0.5 0.92

G 0.99 0.99 0.01 -0.04 0.01 0.5 0.99

H 0.98 0.99 0.01 -0.03 0.02 0.5 0.99

I 0.98 0.99 0.01 -0.03 0.02 0.5 0.99

J 0.95 0.98 0.03 -0.01 0.05 0.5 0.97

DLDA A 0.67 0.9245 0.84 0.17 0.25 0.33 0.5 0.80
B 0.85 0.93 0.08 0.07 0.15 0.5 0.92
(continued)
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Classifier Dataset 0 T ) e B ¢ A w
C 0.84 0.92 0.08 0.08 0.16 0.5 091

D 0.75 0.88 0.13 0.17 025 0.5 0.86

E 0.84 0.92 0.08 0.08 0.16 0.5 091

F 0.87 0.94 0.07 0.05 0.13 0.5 093

G 0.98 0.99 0.01 -0.06 0.02 0.5 0.99

H 0.99 0.99 0.01 -0.07 0.01 0.5 0.99

I 0.8 0.90 0.10 0.12 0.2 0.5 0.89

J 0.9 0.95 0.05 0.02 0.1 0.5 095

RF A 0.81 0944 091 0.09 0.13 0.19 0.5 0.90

B 0.84 0.92 0.08 0.10 0.16 0.5 091

C 0.87 0.94 0.07 0.07 0.13 0.5 093

D 0.84 0.92 0.08 0.10 0.16 0.5 0091

E 0.85 0.93 0.08 0.09 0.15 0.5 092

F 0.89 0.95 0.06 0.05 0.11 0.5 094

G 0.98 0.99 0.01 -0.04 0.02 0.5 0.99

H 0.99 0.99 0.01 -0.05 0.01 0.5 0.99

I 0.89 0.95 0.06 0.05 0.11 0.5 094

J 0.92 0.96 0.04 0.02 0.08 0.5 0.96
The analysis in Figure 4 affirmed the robust performance of the

BETH method as a suitable evaluation metric for high-dimensional

classifiers.

Figure 4

Comparative Misclassification Rate and Performance Efficiency
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Table 12 and Figure 5 include the comparative performance analysis
of the evaluation criteria in terms of classification accuracy and
g-mean as reported in Table 6 (Lin & Chen, 2013). From Table 12, as
the classification output leaned toward unity, the misclassification rate
between the two methods became immaterial. Similar results were
shown in Tables 9 to 12 marked in bold. This demonstrated that the
BETH method was suitable to determine the robust performance of
any classifier. From the analysis in Figure 5, it is observed that the
BETH performance was superior to the other two methods based on
the data sets investigated.

Table 12

Comparative Performance Analysis

Accuracy g-mean BETH performance
0.81 0.78 0.90
0.84 0.82 0.91
0.87 0.79 0.93
0.84 0.79 0.91
0.85 0.81 0.92
0.89 0.87 0.94
0.98 0.91 0.99
0.99 0.94 0.99
0.89 0.78 0.94
0.92 0.86 0.96

Figure 5

Comparative Performance Analysis
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Table 13 contains the output from the mean performance measures on
Scene, Yeast, and Emotions data sets with eight classifiers reported in
Table 7 (Table 3 in Bielza et al., 2011). The performance efficiency in
Table 13 shows that the best classifier had 90 percent and the lowest
was 75 percent based on the BETH method, whereas the Optimal
method achieved 83 percent and 61 percent, respectively. In Figure 6,
the performance demonstrated that the BETH method had an extreme
minimum misclassification rate as compared to the Optimal method.

Table 13

Comparative Misclassification Rate between Optimal and BETH

Classifier Data Set d T (0] € B e A )
TT Scene  0.73 0.88 0.87 0.13 0.15 027 0.5 0.84
PP 0.76 0.88 0.12 0.12 024 05 0.86
PF 0.77 0.89 0.12 0.11 023 05 0.7
PW 0.78 0.89 0.11 0.10 022 05 0.88
HYB 0.72 0.86 0.14 0.16 028 0.5 0.84
K2B 0.77 0.89 0.12 0.11 023 0.5 0.87
WBN 0.77 0.89 0.12 0.11 023 0.5 0.87
M-KNN 0.82 091 0.09 0.06 0.18 0.5 0.90
TT Yeast 0.77 087 0.89 0.12 0.10 023 0.5 0.87
PP 0.72 086 0.14 0.15 028 0.5 0.84
PF 0.75 0.88 0.13 0.12 025 0.5 0.86
PW 0.79 0.89 0.12 0.08 021 0.5 0.88
HYB 0.75 0.88 0.13 0.12 025 0.5 0.86
K2B 0.76 0.88 0.12 0.11 024 0.5 0.86
WBN 0.77 0.89 0.13 0.10 023 0.5 0.87
M-KNN 0.65 0.83 0.18 022 035 05 0.79
TT Emotions 0.83 0.89 092 0.09 0.06 0.17 0.5 0091
PP 0.82 091 0.09 0.07 0.18 0.5 0.90
PF 0.75 0.88 0.13 0.14 025 0.5 0.86
PW 0.83 092 0.09 0.06 0.17 05 091
HYB 0.82 091 0.09 0.07 0.18 0.5 0.90
K2B 0.78 0.89 0.11 0.11 022 05 0.88
WBN 0.8 090 0.10 0.09 020 0.5 0.89
M-KNN 0.61 0.81 020 0.28 039 0.5 0.76
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Figure 6

Comparative Misclassification Rate and Performance Analysis
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From the analysis above, it is observed that both methods were
consistent with the general performance of each classifier.
Nevertheless, the BETH performance metric was more robust with an
extreme minimum misclassification rate as compared to the Optimal
method. The outcome of this study demonstrated that if the probability
of correct classification from the classifiers was 100 percent, which
implied zero misclassification, then the misclassification rate from the
BETH method would be 0.00 percent, which corresponded to 100
percent performance efficiency. The study showed that as the Optimal
method’s value inclined toward unity, the performance efficiency
of both methods seemed to be similar. It is revealed that a robust
alternative threshold method has been advanced to achieve the best
classification efficiency.

CONCLUSION

This study has shown that apart from the confusion matrix,
classification accuracy, precision, sensitivity, g-mean, and F-score,
other robust performance metrics, such as the BETH method, could
be applied to determine the performance of different classifiers for
high-dimensional data sets for equal and unequal class sample sizes.
In many instances, the performance of different algorithms varies
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based on the group sample sizes. As such, the group varying sample
sizes play a similar role in classification performance analyses like
robust methods and classical methods. In this case, large sample sizes
tend to have larger sample means as compared to groups with small
sample sizes, which may also likely produce small sample means.
To solve these problems of unequal sample sizes, various procedures
have been proposed to select data sets in large groups to correspond
with the number of sample sizes selected in smaller groups. These
variants of algorithm help to improve the classification performance
for high-dimensional data sets. The analysis revealed that unlike the
Optimal method, the proposed method had an extreme minimum
misclassification rate. This study indicated that as the classifiers’
results from the Optimal method tended to achieve 100 percent
classification accuracy, in which the misclassification rate between
the two methods became extremely irrelevant (zero misclassification).
The analysis affirmed that as the misclassification rate reduces, the
performance efficiency increases. From the aforesaid analysis, it is
concluded that both methods could be applied to analyze performance
efficiency effectively.
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