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ABSTRACT

Over the years, numerous studies have been conducted on the 
integration of computer vision and machine learning in plant disease 
detection. However, these conventional machine learning methods 
often require the contour segmentation of the infected region from the 
entire leaf region and the manual extraction of different discriminative 
features before the classification models can be developed. In this 
study, deep learning models, specifically, the AlexNet convolutional 
neural network (CNN) and the combination of AlexNet and support 
vector machine (AlexNet-SVM), which overcome the limitation 
of handcrafting of feature representation were implemented for oil 
palm leaf disease identification. The images of healthy and infected 
leaf samples were collected, resized, and renamed before the model 
training. These images were directly used to fit the classification 
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models, without the need for segmentation and feature extraction as in 
the conventional machine learning methods. The optimal architecture 
of AlexNet CNN and AlexNet-SVM models were then determined 
and subsequently applied for the oil palm leaf disease identification. 
Comparative studies showed that the overall performance of the 
AlexNet CNN model outperformed AlexNet-SVM-based classifier. 

Keywords: AlexNet, convolutional neural network, leaf disease, oil 
palm, support vector machine.

INTRODUCTION

Oil palm (Elaeis Guineensis), a West African agricultural plant, 
was brought into Malaysia by the British in the early 1870s. It is an 
important economic crop for Malaysia, contributing 2.7 percent to 
the gross domestic product in 2020. The environmental conditions in 
Malaysia with adequate sunlight and rain supply throughout the year 
provide a suitable cultivation environment for oil palms. However, 
such high ambient humidity promotes the growth of many plant 
diseases, especially those fungal diseases that spread rapidly under 
high humidity.

The oil palm diseases can be categorized into three different types 
based on the region of symptoms, i.e., root, basal stem, and leaf. 
The detection of oil palm leaf disease is chosen as the main focus of 
this work instead of root or basal stem because the disease mainly 
occurs on leaves (Septiarini et al., 2021). Oil palm leaf diseases can 
be characterized into three classes: leaf rot, leaf spot, and leaf speckle. 
Similar to basal stem rot disease, leaf disease is infected by fungus 
type parasites (Curvularia spp.), which can widely spread throughout 
the whole farming area. The formation of brownish or yellowing dots 
on leaves is the basic symptom of leave diseases, which is visible to 
the naked eye. Devastating damage to crop health and reduced fruit 
quantity and quality occur if the disease is left untreated (Sunpapao 
et al., 2018). It has been pointed out that the area infected by oil 
palm disease in Malaysia will reach almost 450,000 hectares by 2020 
(Roslan & Idris, 2012) and thus, monitoring of oil palm disease needs 
more work. 

Conventionally, the health condition monitoring of oil palm is 
conducted manually by observation through the naked eye. When 
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disease infection is confirmed, the tree-felling method is applied 
to delay the disease front. The commonly practiced manual plant 
disease identification is a laborious process, requiring expertise in 
plant pathology and continuous monitoring. This visual inspection 
is time-consuming and thus not feasible for large areas of oil palm 
plantations (Alaa et al., 2020). Moreover, since the analysis of oil 
palm disease often requires trained expertise, which is usually lacking 
in remote areas and small farms, the detection results are prone to 
human misjudgment (Masazhar & Kamal, 2017). Therefore, the daily 
crop health monitoring with conventional methods is less efficient 
for small and medium plantation farms. Moreover, due to workforce 
shortage, massive import of foreign labor into commercial oil palm 
plantation sectors causes difficulty for farm holders to provide job-
related technical training, not to mention plant disease detection that 
requires years of experience. Intrinsically, an automated solution for 
plant disease identification may be helpful for crop health monitoring.

RELATED WORKS

Plant Disease Detection using Conventional Machine Learning 
Techniques

In recent years, numerous studies have been conducted on the 
integration of computer vision and conventional machine learning 
techniques in plant disease detection, including the detection of target 
spots in tomatoes using multilayer neural network (Abdulridha et al., 
2020), potato plant leaf disease detection with K-nearest neighbor 
(KNN), Naïve Bayes (NB) classifier and support vector machine 
(SVM) (Abdu et al., 2020), identification of wheat yellow rust using 
SVM (Guo et al., 2020), rice disease detection by radial basis function 
neural network (Rath & Meher, 2019) and decision tree (Yang et al., 
2019), detection of foliar disease in tea plants using clustering method 
(Yuan et al., 2019), orange fungal decay detection using Fisher’s linear 
discriminant analysis (Ghanei Ghooshkhaneh et al., 2018), detection 
of brinjal leaf disease using artificial neural network (ANN) (Veni 
et al., 2017), and identification of wheat yellow rust disease using 
Gaussian process regression (Ashourloo et al., 2016), to name a few. 

Various works have been reported on the detection of oil palm leaf 
diseases using the integration of computer vision and conventional 
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machine learning techniques as well. Aji et al. (2013) applied the 
features of RGB values, average brightness, standard deviation, and 
shape obtained from the leaf images to develop an ANN classifier 
for the detection of oil palm leaf diseases. The average classification 
accuracy of 87.75 percent was reported when the number of hidden 
nodes was assigned as 6. The performances of six different classifiers, 
namely KNN, NB, C4.5, decision tree, ANN, and SVM, in identifying 
healthy and infected oil palm leaves were studied by Hamdani et al. 
(2021). They concluded that applying the principal component analysis 
to extract the input features for ANN by splitting the histogram of 
RGB, L*a*b, HIS, and HSV color spaces into eight bins provided the 
highest accuracy. Masazhar and Kamal (2017) developed a multi-class 
SVM to classify the oil palm leaf images of Anthracnose and Chimaera 
diseases. The K-means clustering algorithm was used to separate the 
region with the disease symptom from the entire image. Subsequently, 
the texture features extracted from the infected leaf region using the 
gray level co-occurrence matrix were applied as the input to SVM. The 
classification accuracies of 97 percent and 95 percent were attained 
for the Chimaera and Anthracnose diseases, respectively. Septiarini 
et al. (2021) applied four different classifiers, namely KNN, NB, 
decision tree, and SVM, to classify the oil palm leaf images into two 
categories (healthy and unhealthy). The Otsu thresholding method 
was applied to detect the infected region from the oil palm leaf 
images, followed by the correction-based feature selection to generate 
a set of features to be used by the classifiers. The highest classification 
of 99 percent was reported by the KNN classifier. Despite the good 
results achieved by classical machine learning techniques, they often 
require segmentation of plant disease regions and manual extraction 
of different features and are therefore time-consuming and labor-
intensive. Improperly selecting the discriminative features from the 
data may jeopardize the generalization performance of the machine 
learning models.

Plant Disease Detection using Convolutional Neural Network

To overcome the limitations of conventional machine learning 
techniques, the utilization of deep neural networks, in particular, the 
convolutional neural network (CNN), has seen a rise in plant disease 
detection in recent years. The prominent advantage of CNN is that its 
feature extraction is learned automatically from raw data through a 
cascade of multiple layers instead of handcrafting the optimum feature 
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representation of data within the domain knowledge. In this regard, 
Ferentinos et al. (2018) developed a multi-plant species disease 
detection system with the accuracies of 99.45 percent and 99.53 
percent achieved for the AlexNet and VGG models, respectively. 
Pantazi et al. (2019) applied ANN and deep neural network in paddy 
leaf disease classification using the Jaya optimization algorithm, 
with the accuracies of 90 percent and 97 percent attained. Coulibaly 
et al. (2019) developed a crop disease detection system based on 
CNN for pearl millet, in which the detection rate of 95 percent was 
achieved. By utilizing AlexNet and VGG as the pre-trained models, 
Han and Gao (2019) developed a hyperspectral imaging system for 
Aflatoxin detection in peanuts based on CNN. The hyperspectral 
images were used for model training, where a high recognition 
success rate that exceeded 90 percent was attained. Liu and Wang 
(2020) exploited Yolo V3 to detect the location and type of tomato 
diseases and pests, and the results showed a detection accuracy of 
92.39 percent, which outperformed Faster R-CNN. Chen et al. (2020) 
studied plant leaf disease identification of rice and maize using the 
VGG pre-trained model and Inception module. The proposed method 
achieved a detection accuracy greater than 91.83 percent. Darwish et 
al. (2020) combined VGG16 and VGG19 to conduct the detection of 
plant disease on maize leaves. The results showed that the ensemble 
model outperformed or was comparable with the optimized VGG16, 
VGG19, Inception V3, and Xception. Picon et al. (2019) developed a 
real smartphone application based on CNN to identify three different 
diseases on wheat images. It achieved an average balanced accuracy 
of 0.87 for both early and late diseases. Alaa et al. (2020) applied 
VGG16 CNN to detect the oil palm leaf diseases of leaf spot and 
blight spot. They concluded that the CNN model could successfully 
identify the oil palm leaf diseases even if the images were taken at 
nighttime. 

The review of previous studies using the CNN classifier for plant 
disease detection showed that the classifier gives a high accuracy 
level for leaf disease detection and classification, but requires a large 
amount of image dataset for the model training process. However, 
as compared to the classical machine learning models, the use of 
CNN does not require image pre-processing such as the contour 
segmentation of the infected region from the entire leaf region and 
manual feature extraction. The entire process from feature extraction 
up to disease classification is integrated into the network architecture. 
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The concept of transfer learning has been widely applied when 
training a CNN classifier with the implementation of a pre-trained 
neural network model. The total detection model training time can be 
reduced significantly through this approach. Therefore, in this study, 
the AlexNet pre-trained CNN model is utilized for the detection of 
oil palm leaf disease. Additionally, the use of the AlexNet pre-trained 
CNN model as the feature extractor and its combination with SVM as 
the classifier (AlexNet-SVM) in the detection of oil palm leaf disease 
is examined.

AlexNet Pre-Trained CNN Model

Different from the single-hidden-layer ANN, CNN consists of several 
additional layers that can extract higher-level features from the raw 
images sequentially. AlexNet (Krizhevsky et al., 2017) is one of the 
most widely used CNN models. The basic network architecture of the 
AlexNet CNN model is shown in Figure 1. 

Figure 1

The Basic Architecture Network of AlexNet CNN Model

The AlexNet architecture consists of five convolutional layers. The 
convolutional layer functions as the image feature extractor and feature 
map dimension minimizer. The input images with the dimension of 
227 x 227 pixels will pass through these convolutional layers, before 
moving on to the fully connected layers. The pooling layer acts as 
the dimensional regulator as it resizes the feature map based on the 
subsequent layer size. Before entering the fully connected layer, the 
feature map is reduced from 6 x 6 x 256 to 1 x 1 x 4096. The fully 
connected layer works as the layer activation connector. It links all 
the layers to be in the same layer. The Softmax activation function is 
used in the last dense layer. By default, the pre-trained AlexNet CNN 
model has been designed to classify 1,000 classes of objects. Table 
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1 summarizes the detailed information of all layers in the AlexNet 
architecture.

Table 1

Detailed Information of All Layers in the AlexNet CNN Model

No. of Layer Name of Layer Kernel Size Function
1 Input  227 x 227 x 3 Input image with zero 

normalization
2 Convolution 1 55 x 55 x 96 First feature map conversion 

and dimension reduction3 ReLU 1 55 x 55 x 96
4 Normalization 1 55 x 55 x 96
5 Pooling 1 27 x 27 x 96
6 Convolution 2 27 x 27 x 256 Second feature map conversion 

and dimension reduction7 ReLU 2 27 x 27 x 256
8 Normalization 2 27 x 27 x 256
9 Pooling 2 13 x 13 x 256
10 Convolutional 3 13 x 13 x 384 Third feature map conversion 

and dimension reduction11 ReLU 3 13 x 13 x 384
12 Convolutional 4 13 x 13 x 384 Fourth feature map conversion 

and dimension reduction13 ReLU 4 13 x 13 x 384
14 Convolutional 5 13 x 13 x 256 Fifth feature map conversion 

and dimension reduction15 ReLU 5 13 x 13 x 256
16 Pooling 5 6 x 6 x 256
17 Fully Connected 6 1 x 1 x 4096 First layer connection and 

modify the layer to 1x1x409618 ReLU 6 1 x 1 x 4096
19 Dropout 6 1 x 1 x 4096
20 Fully Connected 7 1 x 1 x 4096 Second layer connection
21 ReLU 7 1 x 1 x 4096
22 Dropout 8 1 x 1 x 4096 Thrid layer connection and 

reduce the layer size to the 
intended class number

23 Fully Connected 8 1 x 1 x 1000

24 Softmax 1 x 1 x 1000 Feature classification
25 Output - Output classification result

Transfer learning is a popular approach used in deep learning. The 
pre-trained CNN model on large annotated image databases is 
reused to provide domain adaption for a new problem. This allows 
the new problem to be solved with a relatively small amount of data. 
The training of the pre-trained CNN model with transfer learning is 
relatively faster since most layers of the pre-trained model remain 
unchanged. Only a few layers are retrained for the new problem. 
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The implementation of the AlexNet pre-trained CNN model with 
transfer learning in plant disease detection has been widely studied. 
Singh et al. (2022) applied the AlexNet model to detect the leaf-
spot-based and rust-based diseases in maize plants, with an average 
accuracy of 99.16 percent attained. Rashwan and Elteir (2022) 
compared the performances of AlexNet with MobileNetV2 in plant 
leaf disease detection in terms of accuracy and inference performance. 
The results showed that AlexNet achieved higher detection accuracy 
than MobileNetV2, but with slower inference performance on a 
professional class mobile device. Elaraby et al. (2022) used the 
AlexNet and VGG16 models to diagnose citrus leaf diseases. 
Significant improvements in terms of accuracy, precision, sensitivity, 
specificity, and F-score were observed, when both models were trained 
based on the stochastic gradient descent with momentum (SGDM) 
optimizer. Elaraby et al. (2022) applied the AlexNet model to detect 
the plant diseases in corn, cotton, cucumbers, grapes, and wheat. The 
results revealed that the predictive capability of the AlexNet model 
was improved when the hyperparameters of AlexNet were optimized 
using particle swarm optimization. For identifying the diseases in 
soybean leaves, Jadhav et al. (2021) used the pre-trained AlexNet 
and GoogleNet CNN models based on a transfer learning approach. 
The accuracy of AlexNet was 98.75 percent, which outperformed the 
GoogleNet CNN model with an accuracy of 96.25 percent.

AlexNet-SVM Model

SVM is a classifier that separates the samples into different groups 
based on the hyperplane concept. The learning of SVM will generate 
a hyperplane or barrier of separation between two classes based on 
the nature of the data. In the training process, SVM attempts to search 
for the optimum hyperplane gradient. The iterative computation 
increases the margin of its separation plane to the maximum margin. 
Theoretically, a traditional SVM classifier that utilizes a one-against-
one approach can only perform the separation of data into two distinct 
classes at once, which is not compatible with multi-class classification. 
However, this can be solved by the multi-class SVMs with the one-
against-rest approach, involving the combination of more than one 
SVM linear classifier. In this study, the AlexNet pre-trained CNN 
model is also used to extract input image features. The extracted 
features are then applied as the input of SVM for oil palm leaf disease 
detection. It has been suggested that the features selected from the 
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CNN model could be the primary features in most image recognition 
problems (Roy et al., 2018). 

Kawatra et al. (2020) used AlexNet pre-trained CNN with three 
different configurations for the leaf disease detection of 12 crop 
species. The first configuration was the original AlexNet model. The 
second configuration was the combination of AlexNet with the global 
average pooling layer. The third configuration used the extracted 
features from AlexNet as the input of SVM. The combination of 
AlexNet with SVM gave the best results, with a validation accuracy 
of 99.98 percent attained. To detect the grapevine yellow diseases of 
grapes, Ampatzidis et al. (2018) applied a linear SVM to classify the 
features extracted from AlexNet pre-trained CNN. The developed 
system achieved a classification accuracy of 95.23 percent. For 
comparison, SVM with the extracted features using local binary 
patterns and color histogram was considered, in which the attained 
accuracy was merely 26.7 percent. Muhammad et al. (2021) extracted 
the features of aloe vera disease and apple disease using AlexNet and 
VGG19 pre-trained models. Subsequently, these features were used 
as the input of KNN, SVM, probabilistic neural network, fuzzy logic, 
and ANN. For both diseases, the best results were obtained when the 
features of AlexNet were used to develop the SVM classifier. Khan et 
al. (2020) introduced multiple deep models based on AlexNet and VGG 
to extract the features of plant diseases and adopted a fusion strategy 
to combine the extracted features into a single vector. Türkoğlu and 
Hanbay (2019) considered three different pre-trained CNN models, 
namely AlexNet, VGG16, and VGG19, for the feature extraction of 
plant disease detection. The obtained features were then classified by 
SVM, extreme learning machine, and KNN. The highest accuracy of 
95.5 percent was achieved for the combination of AlexNet as feature 
extractor and SVM as classifier. 

MATERIALS AND METHOD

Data Acquisition

An image acquisition campaign took place in a commercial oil palm 
farm in Pontian, Johor, Malaysia from September 2019 to February 
2020, covering the images of the oil palm disease at different 
phenological growth stages. The leaf images were captured through 
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a smartphone camera without additional image filters and color 
compensation functions. The data were taken at 9.00 a.m. (morning), 
1.00 p.m. (afternoon), and 5.00 p.m. (afternoon) with the mixture of 
images captured with and without a macro lens adaptor. Two thousand 
images of oil palm disease with the combination of healthy (500 
images), eye spot (500 images), leaf rot (500 images), and leaf speckle 
(500 images) disease leaves were acquired. The acquired images were 
in the size of 4608 x 2592 pixels. Subsequently, the raw images were 
divided into three different batches: training dataset, testing dataset, 
and validation dataset. The leaf images were distributed based on the 
ratio of 70 percent (training), 20 percent (testing), and 10 percent 
(validation). 

Figure 2 presents the example of the acquired oil palm leaf diseases 
in this study.

Figure 2

The Example of Oil Palm Leaf Diseases (a) Eye Spot; (b) Leaf Rot; 
and (c) Leaf Speckle

Image Enhancement and Resizing

To reduce the computing unit workload during the training of the 
CNN classifier, each acquired RGB image in the size of 4608 x 2592 
pixels was manually cropped to 227 x 227 pixels. This is also to fit 
the AlexNet pre-trained CNN model with the input size of 227 x 227 
pixels. For each original image, only one selected region showing 
symptoms of leaf disease was cropped. The histogram equalization 
function was then applied to compensate for the image contrast for 
better sharpness. The equalized images were then converted into 
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L*a*b color space format (Habib et al., 2020) before feeding into the 
AlexNet pre-trained CNN model. 

Development of AlexNet Pre-Trained CNN Model

A standard AlexNet pre-trained CNN model was applied in this study 
for the detection of oil palm leaf disease. By default, the pre-trained 
AlexNet CNN model has been designed to classify 1,000 classes of 
objects, and thus, the kernel size of the Softmax layer is 1 x 1x 1000 
(refer to Table 1). To apply transfer learning, the dimension of the 
Softmax layer was modified to 1 x 1 x 4 such that the AlexNet pre-
trained model could be used for the oil palm leaf disease detection 
with four different classes (healthy, eye spot, leaf rot, and leaf 
speckle). The dimensions of other layers before the Softmax layer 
were fixed as in Table 1. The AlexNet CNN model was optimized 
in terms of validation accuracy and training time by fine-tuning the 
hyperparameters of learning rate, maximum epoch, momentum, batch 
size, and optimizer type. 

The performance of the AlexNet CNN model was evaluated based on 
the evaluation metrics of accuracy, recall, specificity, precision, and 
F1-score. All simulations were carried out in the MATLAB R2019a 
environment (MathWorks Inc, Natrick, MA, USA).

EXPERIMENTAL RESULTS AND DISCUSSION

Fine-Tuning of AlexNet CNN Classifier

Before the implementation of the AlexNet CNN model in the oil 
palm leaf disease identification, the optimal network parameters were 
identified to maximize the prediction accuracy. Five hyperparameters 
were taken into consideration, namely learning rate, maximum epoch, 
momentum, batch size, and optimizer. 

Learning Rate

Learning rate is one of the tunable values in the training of a 
classification model. It is applied to the weights of the network toward 
the loss gradient across the training process. Generally, the choice 
of a suitable learning rate is subjective and dependent on the type of 
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network architecture and data. A fast-learning rate will result in high 
training speed, but the chances of under-fitting are high. 

To fine-tune the learning rate, the values of learning rate were varied 
from 0.1 to 0.0000001 (see Figure 3), while the values of maximum 
epoch, momentum, batch size, and type of optimizer were fixed as 
50, 0.9, 4, and ADAM, respectively. Figure 3 shows the obtained 
accuracy and computation time during the training process by utilizing 
different learning rates. As shown in Figure 3, the model accuracy 
was significantly varied with the changes in learning rate. A smaller 
learning rate improved the generalization capability of the prediction 
model, but at the expense of a longer computation time. The results 
were in accordance with the reported study by Jacobs (1988). The 
highest accuracy of 81 percent was attained when the learning rate 
was marked at the value of 0.000001. A further decrease in learning 
rate did not significantly improve the prediction accuracy but took 
a longer duration to converge. For this reason, the learning rate of 
0.000001 was selected and used for the subsequent analysis.

Learning rate is the scale factor of weight at each step during the 
training of the classification model. Even though a larger learning 
rate, such as 0.1, 0.01, and 0.001, shows a faster training process, the 
obtained training accuracy may not be satisfactory. It can be seen in 
Figure 3 that the model with a large learning rate experienced under-
fitting and failed to obtain higher accuracy, although the training 
process could be completed in a faster manner than the model with 
a smaller learning rate. Utilizing a low learning rate may reduce 
the chances of over-fitting during the model training and lead to a 
smoother convergence training curve and higher accuracy (Tang et al., 
2019). However, too small a learning rate results in slow convergence 
(Hannan et al., 2020).
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Figure 3

The Effect of Using Different Learning Rates to the Obtained Accuracy 
and Computation Time During the Training Process of the AlexNet 
CNN Model

Maximum Epoch

Epoch represents how frequent the entire training datasets pass through 
the network. It serves as one of the most crucial hyperparameters 
for the data to be optimally fitted. The concept of optimum value is 
preferred when training a deep learning model because it minimizes 
the training time without sacrificing the model’s accuracy. The model 
was tested with four different maximum epoch values: 50, 100, 150, 
and 200. Other parameters were the learning rate – 0.0001, momentum 
– 0.9, batch size – 4, and type of optimizer – ADAM.  

Figure 4 illustrates the variation of prediction accuracy and total 
computation time during the training process by considering different 
maximum epochs. The distinct feature of the prediction model with 
transfer learning that required fewer epochs is clearly shown in Figure 
4. Among all the considered values, the prediction model with 50 
maximum epochs achieved the highest accuracy. The declination of 
the prediction accuracy occurred after this value. The manipulation of 
this parameter beyond this value did not give significant improvement 
to the model’s validation accuracy. Therefore, the optimum maximum 
epoch was chosen to be 50. 
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Figure 4

The Effect of Using Different Maximum Epoch Values to the Obtained 
Accuracy and Computation Time During the Training Process of the 
AlexNet CNN Model

Momentum

Momentum is the gain parameter applied to the learning algorithm. 
It increases pressure on a training session for faster training accuracy 
and speed. A high momentum value allows the model to react faster 
in the training session. The integration of a momentum parameter 
into the optimizer of the AlexNet CNN model may move the overall 
prediction closer to the ideal outcome (Skowron et al., 2020). The 
determination of the optimum momentum value will be based on the 
training results with the momentum values of 0, 0.5, 0.9, and 0.99. 

Figure 5 shows the relationship between accuracy and total training 
time against different momentum values used in the ADAM optimizer. 
As indicated in this figure, an increase in the momentum value was 
accompanied by increasing accuracy. By varying the momentum 
from 0 to 0.99, the highest accuracy of 83.25 percent was recorded 
at the momentum value of 0.99. The momentum applied in the 
ADAM optimizer allowed the gradient fitted to the best fit situation 
to accumulate the past gradient as the prediction for the next step. 
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The setting of high momentum during the training process would 
improve the accuracy, and the effect on the overall training time was 
significant. Throughout the model training, the learning curve would 
keep fluctuating upon completion; the utilization of momentum 
allowed the learning curve to get out from the local minima of each 
fluctuation faster and allowed the learning validation updates to 
respond faster. In this case, prediction accuracy was the priority when 
selecting a suitable parameter setting and thus, the momentum value 
of 0.99 would be chosen for further AlexNet modeling.

Figure 5

The Effect of Using Different Values of Momentum to the Obtained 
Accuracy and Computation Time During the Training Process of the 
AlexNet CNN Model

Batch Size

Data batch size represents the number of samples propagating through 
the network during each cycle of training. It affects the generalization 
gap difference between the training and testing time and leads to high 
losses during the training process (Hoffer et al., 2017). The larger the 
data batch size, the faster the computational speed. However, a large 
data batch size does not guarantee a promising training performance, 
particularly when the model training is conducted on a non-parallel 
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computing featured machine (Hoffer et al., 2017). Figure 6 illustrates 
how the training accuracy and computation time vary when different 
data batch sizes of 4, 8, 16, 32, 64, and 128 are assigned. 

Figure 6
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AlexNet CNN Model

As shown in Figure 6, in general, a decreasing trend in the prediction 
accuracy could be observed with the increasing batch size. The model 
accuracy was marked at a peak with the predefined minimum batch 
size of 4. Furthermore, its total training time of 3877 seconds was 
below the average of the total time taken by all batch sizes, i.e., 
4228.67 seconds. The obtained result was in agreement with the 
conclusion in Hoffer et al.’s (2017) study. It was found that a small 
batch size could minimize the generalization gap during the training 
process, producing relatively higher accuracy results than that of the 
model with large batch size, with the learning rate, momentum, and 
gradient clipping fixed for both models (Hoffer et al., 2017).
 
Type of Optimizer

Optimizer is the main solver for any CNN model training. It allows 
the training process to complete with the lowest training loss by 

12 
 

 
 

As shown in Figure 6, in general, a decreasing trend in the prediction accuracy could be observed 
with the increasing batch size. The model accuracy was marked at a peak with the predefined 
minimum batch size of 4. Furthermore, its total training time of 3877 seconds was below the 
average of the total time taken by all batch sizes, i.e., 4228.67 seconds. The obtained result was 
in agreement with the conclusion in Hoffer et al.’s (2017) study. It was found that a small batch 
size could minimize the generalization gap during the training process, producing relatively 
higher accuracy results than that of the model with large batch size, with the learning rate, 
momentum, and gradient clipping fixed for both models (Hoffer et al., 2017). 
  
Type of Optimizer 
 
Optimizer is the main solver for any CNN model training. It allows the training process to 
complete with the lowest training loss by continuously manipulating the weight and learning 
rate across the learning cycle. ADAM, SGDM, and root mean squared propagation (RMSProp) 
are the common optimization algorithms applied to improve the training process through 
gradient manipulation. The network performance by utilizing these three optimizers is depicted 
in  

Figure 7. It is pertinent to note that the low epoch value of 50 was applied.  
 
Figure 7 
 
The Effect of Using Different Types of Optimizers to the Obtained Accuracy and Computation 
Time During the Training Process of the AlexNet CNN Model (Epoch Value of 50) 
 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

70

75

80

85

90

95

100

4 8 16 32 64 128

Tr
ai

ni
ng

 T
im

e 
(s

)

Ac
cu

ra
cy

 (%
)

Batch Size

Accuracy (%) Training Time (s)



    399      

Journal of ICT, 21, No. 3 (July) 2022, pp: 383–410

continuously manipulating the weight and learning rate across the 
learning cycle. ADAM, SGDM, and root mean squared propagation 
(RMSProp) are the common optimization algorithms applied to 
improve the training process through gradient manipulation. The 
network performance by utilizing these three optimizers is depicted 
in Figure 7. It is pertinent to note that the low epoch value of 50 was 
applied. 

Figure 7

The Effect of Using Different Types of Optimizers to the Obtained 
Accuracy and Computation Time During the Training Process of the 
AlexNet CNN Model (Epoch Value of 50)

Figure 7 presents that the highest prediction accuracy of 83.25 percent 
was attained by the ADAM optimizer, while the model accuracy with 
the SGDM optimizer was 2.7 percent lower. This finding was in 
agreement with the work reported by Tang et al. (2019). By applying 
transfer learning with the CIFAR-100 dataset on ResNet-34, the 
network with the ADAM optimizer gave a relatively higher accuracy 
than that of the SGDM optimizer at a low epoch value. It was due 
to the poor generalization performance of SGDM during the training 
process. However, for the model training iteration approaches to 
achieve unity, the accuracy of SDGM would be higher than ADAM 
and RMSProp (Tang et al., 2019). For the ADAM optimizer, the high 
progressive epoch might lead to the failure of the algorithm to search 
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for the correct path for effective convergence toward the sub-optimal 
point.

Figure 8 shows the prediction accuracy and total computation time 
attained by the network with different types of optimizers at the epoch 
value of 200. With a larger epoch value, SGDM outperformed the 
ADAM optimizer, with the attained prediction accuracy of 91.84 
percent. The result corroborated the findings of Tang et al. (2019) on 
the effect of a larger epoch value on the improved accuracy of the 
SGDM optimizer.

Figure 8

The Effect of Using Different Types of Optimizers to the Obtained 
Accuracy and Computation Time During the Training Process of the 
AlexNet CNN Model (Epoch Value of 200)

It can be seen that the ADAM and SGDM optimizers worked effectively 
at the low and high epoch values, respectively. Given these special 
characteristics of ADAM and SGDM optimizers, the idea of multi-
optimizer fine-tuning was applied in this study. The SGDM optimizer 
was used in the second attempt of model fine-tuning to obtain higher 
accuracy. Applying multi-optimizers in classification model training 
had shown to improve the accuracy by about 3 percent after deploying 
the SGDM optimizer as the second optimizer during the critical liver 
alteration using CNN models (Arjmand et al., 2020). Attempting 
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to obtain a classification model with optimum performance, the 
ADAM trained AlexNet model was retrained with the same batch 
of training datasets using the hyperparameters as shown in Table 2. 
The implementation of these two levels of fine-tuning resulted in 
outstanding accuracy. The prediction accuracy was improved from 
80.75 percent to 95.5 percent.

Table 2

The Optimized Hyperparameters used for AlexNet CNN Model

Hyperparameter Stage
First Fine-Tuning Second Fine-Tuning

Learning Rate 0.000001 0.000001
Epoch 50 200
Momentum 0.99 0.99
Batch Size 4 4
Optimizer ADAM SGDM

Fine-Tuning of AlexNet-SVM Classifier

The use of convolutional layer, pooling layer, or the fully connected 
layer in CNN as the feature extraction has been widely studied. This 
approach eases the pre-processing stage by removing the segmentation 
and statistical or gray level co-occurrence matrix feature extraction. 
The AlexNet architecture consists of several layers, as shown in Table 
1. Therefore, selecting the most appropriate layer as the main feature 
extraction layer for leaf disease classification was first analyzed, 
followed by the selection of the appropriate optimizer. 

Selection of the Feature Extraction Layer

AlexNet consists of 20 image pre-processing layers, where feature 
maps are extractable from each layer. The identification of a suitable 
feature map was crucial in this case. This is due to the SVM model 
requiring the feature map to have the lowest amount of noise and 
strong disease feature layer as the input data. Figure 9 illustrates the 
prediction accuracy of the AlexNet-SVM model obtained using the 
extracted features from different AlexNet feature extraction layers. 
AlexNet-SVM using the feature map extracted from fully connected 
layer 6 (fc6) achieved the highest accuracy of 93.3 percent. As the 
fundamental concept of the feature extraction layer of CNN, an image 
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will be filtered and diminished to form a feature map and coagulated 
to be smaller and smaller across the layers. The selection of the most 
appropriate layer allows the SVM classifier to be fitted at a low loss rate 
and results in higher accuracy. The AlexNet architecture consists of 
five convolutional layers that serve as the image dimension minimizer. 
At the first few convolutional layers (cv1 to cv4), the generated image 
feature maps were not precise enough to represent the leaf disease 
features, as the image features extracted were simpler and coarser, 
such as color, shape, and lines that exist in the image data. Therefore, 
classifier training with these data would result in low classification 
accuracy. For the deeper layers (cv5 to fc8), disease feature maps were 
refined and the classifier would be able to learn more complicated 
and abstract disease features. Therefore, the classification model with 
these input data would achieve higher validation accuracy.

Figure 9

The Effect of Using Different Feature Extraction Layers to the 
Obtained Accuracy and Computation Time During the Training 
Process of the AlexNet-SVM Model
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The selection of the most appropriate optimizer was performed by 
evaluating the accuracy of the AlexNet-SVM model using the image 
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features from fc6. Three optimizers were considered here, namely 
ADAM, SGDM, and RMSprop. The highest classification accuracy 
of 93.25 percent was achieved when the AlexNet-SVM model was 
trained with an SGDM optimizer.
 
Performance Comparison

A comparison of the AlexNet CNN and AlexNet-SVM models in 
oil palm leaf disease detection was made. The confusion matrix was 
applied as the guideline to measure the disease prediction results 
for different classes. The performance indexes for both models in 
terms of accuracy, recall, specificity, and precision were evaluated 
subsequently for comparison. Table 3 summarizes the obtained 
results of oil palm leaf disease classification using AlexNet CNN and 
AlexNet-SVM. 

Table 3

The Performance Indexes of Oil Palm Leaf Disease Classification 
Using AlexNet CNN and AlexNet-SVM Models Based on the Confusion 
Matrix

Model Class Eye 
Spot

Healthy Leaf 
Rot

Leaf 
Speckle

Accuracy Recall Specificity Precision F1-
Score

AlexNet 
CNN

Eye Spot 95 1 2 2 0.97 0.94 0.98 0.95 0.95

Healthy 2 96 0 5 0.98 0.98 0.99 0.93 0.95
Leaf Rot 3 0 97 0 0.98 0.97 0.99 0.97 0.97

Leaf 
Speckle

1 1 1 97 0.98 0.93 0.98 0.97 0.95

Average 0.98 0.96 0.99 0.96 0.96

AlexNet-
SVM

Eye Spot 85 3 7 5 0.95 0.93 0.98 0.89 0.89

Healthy 2 95 0 3 0.97 0.92 0.97 0.95 0.94
Leaf Rot 2 1 94 3 0.96 0.91 0.97 0.94 0.93

Leaf 
Speckle

2 4 2 92 0.95 0.89 0.96 0.92 0.91

Average 0.96 0.91 0.97 0.92 0.92

As seen in Table 3, the prediction accuracies for both classifiers were 
satisfactory, exceeding classification accuracy of 0.90. As a whole, 
AlexNet with transfer learning with an average classification accuracy 
of 0.98 outperformed AlexNet-SVM with an average classification 
accuracy of 0.96. For the AlexNet CNN model, the true positive rates 



404        

Journal of ICT, 21, No. 3 (July) 2022, pp: 383–410

of leaf rot and leaf speckle were the highest (97%) while healthy leaf 
had the least (93%). For the AlexNet-SVM method classifier, the class 
with the lowest true positive rate (85%) was eye spot disease, while 
the healthy class had the highest true positive rate (95%) among the 
four classes. The oil palm leaf disease detection accuracy was highly 
dependent on the environmental condition during image acquisition. 

Figure 10(a) shows a misclassified image of eyespot disease, identified 
as leaf speckle by the classification model. For this sample image, 
both diseases of leaf speckle and eye spot coexist. The root of failure 
detection might be due to the complex image background condition, 
lighting condition, and existence of multiple disease symptoms. 

Figure 10(b) exhibits a misclassified image of leaf rot disease, 
identified as eye spot disease, probably due to the lighting condition. 

Figure 10

An Example of Misclassified Leaf Disease Sample Image Due to (a) 
the Coexistence of Both Diseases and (b) Lighting Condition

 

Besides the average classification accuracy, the AlexNet CNN 
classification model outperformed the AlexNet-SVM classification 
model in other performance indexes. In machine learning, the 
metrics of recall and precision are two extreme indexes in measuring 
the stability of a model, as it reflects the relevance of the obtained 
prediction results. The stability of the AlexNet model was higher 
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Besides the average classification accuracy, the AlexNet CNN classification model 
outperformed the AlexNet-SVM classification model in other performance indexes. In machine 
learning, the metrics of recall and precision are two extreme indexes in measuring the stability 
of a model, as it reflects the relevance of the obtained prediction results. The stability of the 
AlexNet model was higher than that of AlexNet-SVM, where the recall and precision of 0.96 
were obtained, as compared to the recall of 0.91 and precision of 0.92 attained by AlexNet-
SVM. In most cases, the fraction of recall is always compared to specificity. This is because 
specificity measures the regularity of a model to generate a true prediction on the testing 
samples, which is exactly the opposite of recall. The AlexNet CNN model with the specificity 
of 0.99 tended to score higher in this case as compared to the AlexNet-SVM model with the 
specificity of 0.92. F1-score reflects the balance between recall and precision of a model. 
AlexNet excelled in this part as well with a value of 0.96, which was 0.04 higher than the score 
of the AlexNet-SVM model.  
 
The main classification units of AlexNet CNN and AlexNet-SVM were Softmax and SVM 
algorithms, respectively. The accuracy and compatibility of these two classifiers are constantly 
the point of argument in most studies (Li et al., 2019). The main difference between these two 
classifiers is in the probability computing methods of the algorithms. To be more specific, 
Softmax is a common linear regression classifier. The prediction of probability is established 
using the cross-entropy loss function toward all the class labels. On the other hand, SVM is 
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than that of AlexNet-SVM, where the recall and precision of 0.96 
were obtained, as compared to the recall of 0.91 and precision of 0.92 
attained by AlexNet-SVM. In most cases, the fraction of recall is 
always compared to specificity. This is because specificity measures 
the regularity of a model to generate a true prediction on the testing 
samples, which is exactly the opposite of recall. The AlexNet CNN 
model with the specificity of 0.99 tended to score higher in this case 
as compared to the AlexNet-SVM model with the specificity of 0.92. 
F1-score reflects the balance between recall and precision of a model. 
AlexNet excelled in this part as well with a value of 0.96, which was 
0.04 higher than the score of the AlexNet-SVM model. 

The main classification units of AlexNet CNN and AlexNet-SVM 
were Softmax and SVM algorithms, respectively. The accuracy 
and compatibility of these two classifiers are constantly the point 
of argument in most studies (Li et al., 2019). The main difference 
between these two classifiers is in the probability computing methods 
of the algorithms. To be more specific, Softmax is a common linear 
regression classifier. The prediction of probability is established using 
the cross-entropy loss function toward all the class labels. On the other 
hand, SVM is more local biased on prediction, whereby classification 
is made based on the hinge loss during computation.

The results obtained in this work were in accordance with previous 
studies on face recognition using AlexNet CNN and AlexNet-SVM 
(Almabdy & Elrefaei, 2019). It has been reported that AlexNet CNN 
possessed greater prediction capability than AlexNet-SVM in face 
recognition, when the dataset of ORL, GTV face, Georgia Tech 
face, LFW, F_LFW, YouTube face, and FEI faces were taken into 
account. The AlexNet transfer learning model achieved a higher value 
of precision, accuracy, recall, and F1-score, within the range of 93 
percent to 99 percent as compared to the AlexNet-SVM method with 
the performance indexes within the range of 90 percent to 99 percent.

CONCLUSION

In this study, the implementation of deep learning, specifically, 
AlexNet CNN, into oil palm leaf disease detection was the main 
focus. Additionally, the AlexNet-SVM model, in which AlexNet 
CNN was utilized as the feature extractor of SVM, was applied in 
solving the oil palm leaf disease classification as. The performance of 
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the classification models was evaluated based on accuracy, precision, 
recall, specificity, and F1-score. The average accuracy, precision, 
recall, specificity, and F1-score of 0.98, 0.96, 0.99, 0.96, and 0.96, and 
0.96, 0.91, 0.97, 0.92, and 0.92 were attained by AlexNet CNN and 
AlexNet-SVM, respectively. The results showed that the AlexNet-
based disease classification model outperformed the AlexNet-SVM 
model. 
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