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ABSTRACT 

Wireless sensor networks (WSN) have a wide range of applications. 
Therefore, developing an energy-efficient methodology for 
estimating cluster heads (CHs) to ensure efficient data transmission 
has become highly relevant. Meta-heuristic strategies for optimal CHs 
are the current investigation inclination. As the network grows, the 
conventional optimization strategies emerge unsuccessful, and the 
outcomes of hybridizing bring performance enhancement in WSN. 
A Probabilistic Multi-Tiered Grey Wolf Optimizer (GWO) was 
implemented in this study on an upgraded Grey Wolf Optimizer for 
optimum CH selection. It used fitness value to strengthen GWO’s 
search for the best solution, resulting in even dispersal of CHs. 
Communication routes were updated based on routes to the CHs and 
base station to lessen energy consumption by a layered-based routing 
scheme. GWO’s governance enhanced the network’s ability. The 
distributed nodes’ geographical territory was categorized into four 
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tiers. CH was chosen grounded on the objective value that required 
fewer difficult control factors than existing techniques. Simulations 
showed that the suggested technique could extend the network’s 
stability time by (31.5 %) compared to hetDEEC-3, L-DDRI, Novel-
LEACH-POS, DBSCDS-GWO, and P-SEP.

Keywords: Cluster head, energy optimization, grey wolf optimization, 
cluster head selection, wireless sensor network lifespan.

INTRODUCTION

Sensor nodes are dispersed in a wireless sensor network (WSN) to 
evaluate humidity, temperature, pressure, and other variables. On 
the other hand, their computational power, battery capacity, and 
transmission range are incredibly restricted. Furthermore, many 
WSNs operate sensors in hostile settings, making restoration and 
refill of malfunctioning nodes problematic and costly. Consequently, 
energy-proficient nodes will assist in prolonging the lifetime of the 
network. Nodes placed in the target zone continue to operate till the 
energy lasts. As a result, one of the most difficult tasks in extending the 
life of a WSN is figuring out how to create an energy-efficient routing 
scheme. According to Wang et al. (2016), by decreasing the overall 
transmission range and regulating energy utilization across nodes 
during the network lifespan, a clustering-based tiered routing scheme 
helps enhance energy efficiency and boost network sustainability.
 
In the clustering approach, the sensing region is divided into many 
clusters. A specific node in every cluster will take on the role of cluster 
head (CH) or leader node. CH is the cluster’s nerve centre; it aims to 
connect with cluster members (CM), gather statistics from CMs, and 
deliver them to the base station (BS), as shown in Figure 1. The most 
challenging difficulty in clustering-dependent routing algorithms is to 
optimize the choice of CHs and create a more robust dispersed cluster. 
Haque et al. (2020) and Gao et al. (2019) argued that WSNs ought to 
be reliable, self-configurable, modular, and resource-efficient. Every 
sensor node in a network comprises a sensing component, processing 
module, and communication component. Thakkar et al. (2020) 
stated that the sensor detects a circumstance and transforms it into 
the suitable processing category, while the sensed signal is processed 
as per the criteria in the processing unit. Then, data are sent to the 
communication module for distribution to the adjacent nodes. Das et 
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al. (2020) and Elshrkawey et al. (2018) compared the overall energy 
ratio of the communicator (about 51%), which is greater than that of 
other activities. Wang et al. (2018) suggested traffic congestions from 
CM and other CHs sending data to BS, whereby the spots around 
BS are stronger than other sites. This condition can be addressed 
by integrating Particle Swarm Optimization (PSO) with a Genetic 
Algorithm (GA) that takes a sequence of shifting routes as its sink 
node. As a result, Janarthanan and Kumar (2019) proposed various 
heuristic strategies based on enhanced routing to reduce the proportion 
of energy consumed by WSNs and increase overall efficiency. It 
can ensure the quality of the connectivity, battery exhaustion as a 
consequence of the high transmission, and node mobility.

Conventional routing strategies prioritize finding the quickest path 
to the destination, minimizing latency, and optimizing throughput by 
efficiently utilizing available resources. As a result, despite traditional 
routing that minimizes latency, most WSN routing methods aim to 
make the most of the network node’s limited resources. This research 
will address the CH’s decision difficulty using a tier routing technique 
by partitioning the network communication zone into numerous tiers. 
Each manifold has been assigned unique responsibilities based on the 
Grey Wolf Optimizer (GWO) concept. 

Figure 1 

Wireless Sensor Network
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Contribution of Research 

This study presents a novel energy-competent optimized protocol, built on the meta-heuristic GWO 
algorithm, to equalize network energy usage and lengthen the life cycle of cluster-based WSNs. In 
creating an energy-efficient and robust sensor network, a Probabilistic Multi-Tiered Grey Wolf 
Optimizer-Based Routing (PMR-GWO) is proposed to optimize the network throughput and balance 
the network load. The formation of clusters, transmission within clusters, communication between 
clusters, and auxiliary transmission are all improved in this article by taking into account residual 
energy, transmission angle, and distance. The threshold function of the CH is updated to change the 
size of the clusters, and the network region partition technique is optimized by considering residual 
energy and node distance. Bahl and Kumar (2021) recommended LEACH-Distance Degree Residual 
Index (DDRI-L) for a more comprehensive search (exploration), in which changing the stage process 
factor leads to a global refinement search, improving exploration performance. For a confined search 
(exploitation), Bahl and Bhola (2022) suggested Multi-Tiered Grey Wolf Optimization (MGWO), with 
the factor coefficient vectors being necessary to emphasize exploitation. Further, the integrated 
proposed PMR-GWO maintains the exploration-exploitation trade-off, extends the network’s lifetime, 
improves energy efficiency, and improves the network’s total throughput performance. By contrasting 
the results of the designed PMR-GWO to that of other current cluster head selection algorithms, the 
superiority of the proposed PMR-GWO is demonstrated. 
 
The content of this paper is organized as follows: the use and underlying work of various heuristic 
strategies that can be applied to routing algorithms in WSNs is discussed in Section 2. Section 3 
examines the existing GWO method for the current situation, while Section 4 introduces the formulation 
of the planned method PMR-GWO. Section 5 deals with simulations and their investigation. Finally, 
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Contribution of Research

This study presents a novel energy-competent optimized protocol, built 
on the meta-heuristic GWO algorithm, to equalize network energy 
usage and lengthen the life cycle of cluster-based WSNs. In creating 
an energy-efficient and robust sensor network, a Probabilistic Multi-
Tiered Grey Wolf Optimizer-Based Routing (PMR-GWO) is proposed 
to optimize the network throughput and balance the network load. The 
formation of clusters, transmission within clusters, communication 
between clusters, and auxiliary transmission are all improved in this 
article by taking into account residual energy, transmission angle, 
and distance. The threshold function of the CH is updated to change 
the size of the clusters, and the network region partition technique 
is optimized by considering residual energy and node distance. Bahl 
and Kumar (2021) recommended LEACH-Distance Degree Residual 
Index (DDRI-L) for a more comprehensive search (exploration), in 
which changing the stage process factor leads to a global refinement 
search, improving exploration performance. For a confined search 
(exploitation), Bahl and Bhola (2022) suggested Multi-Tiered Grey 
Wolf Optimization (MGWO), with the factor coefficient vectors 
being necessary to emphasize exploitation. Further, the integrated 
proposed PMR-GWO maintains the exploration-exploitation trade-
off, extends the network’s lifetime, improves energy efficiency, and 
improves the network’s total throughput performance. By contrasting 
the results of the designed PMR-GWO to that of other current cluster 
head selection algorithms, the superiority of the proposed PMR-GWO 
is demonstrated.

The content of this paper is organized as follows: the use and 
underlying work of various heuristic strategies that can be applied 
to routing algorithms in WSNs is discussed in Section 2. Section 3 
examines the existing GWO method for the current situation, while 
Section 4 introduces the formulation of the planned method PMR-
GWO. Section 5 deals with simulations and their investigation. 
Finally, Section 6 concludes the paper and gives the future scope of 
PMR-GWO.

RELATED WORKS

Several routing conventions of WSNs have caught the interest of many 
experts due to the exponential growth and expansion of sensors. Gherbi 
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et al. (2017) and Mazumdar et al. (2018) compared other common 
routing protocols and found that clustering routing was a far more 
optimal approach to minimize sensor energy utilization and extend 
the lifespan of networks. Low-Energy Adaptive Clustering Hierarchy 
(LEACH) is the most well-known clustered routing protocol amongst 
homogeneous WSNs. The CHs are chosen randomly in LEACH, and 
the sensors are swapped into CHs on a regular basis. Energy utilization 
is distributed evenly among the sensor nodes to lengthen the network’s 
service life expectancy and boost effectiveness. Rohit and Deepti 
(2017) presented a Vice-CH Empowered Centralized Cluster-Based 
Routing technique (VCH-ECCR). By combining Vice-CH, VCH-
ECCR minimized the probability of clustering; thus, cluster analysis 
would incur overhead. Within every loop of the network, the count of 
CHs was modified depending on the percentage of alive nodes. 

Hamzah et al. (2019) proposed a Fuzzy Logic-based Energy-
Efficient Clustering for WSN based on minimum separation Distance 
enforcement between CHs FL-EEC/D as a fuzzy logic-dependent 
energy effectual clustering for WSNs estimating separation range 
monitoring among CHs. In FL-EEC/D, a fuzzy inference framework 
for CH choice was presented. The remaining energy, density, density, 
position appropriateness, and interspace from BS were employed as 
the major characteristics to designate a suitable node as CH when 
utilizing this paradigm. Compared to LEACH, FL-EEC/D had a 
longer life cycle for homogeneous WSNs. 

Purkar and Deshpande (2018) suggested an Energy Efficient Clustering 
Protocol to Enhance Performance of Heterogeneous Wireless 
Sensor Network (EECPEP-HWSN) as an energy-efficient clustering 
technique for improving HWSN’s functionality. The approach was 
built as a three-level HWSN, comprising ordinary, advanced, and 
super nodes. The initial power of the sensors, hops, and leftover 
vitality of the sensors in service were all taken into account through 
the CH shortlisting. HWSN’s energy competence and steadiness were 
improved using this protocol. 

Wang et al. (2019) analysed the Energy Centres Screening via 
Particle Swarm Optimization algorithm (EC-PSO) as a new clustering 
method. Initially, the procedure divided node locations using spatial 
approaches to pick CHs. The PSO procedure was then used to discover 
the network’s energy centre, and the CH was elected as the node 
adjoining the energy centre. Furthermore, the strategy presented a low-
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energy safety technique to prevent vulnerable nodes from being relay 
nodes. The protocol could efficiently extend the network lifespan by 
integrating the above methods. Zhao et al. (2018) suggested Fitness-
value-based Improved GWO (FIGWO) that incorporated a modified 
GWO to optimize the access to information of the GWO’s global 
optimal to ensure an improved dispersal and additional symmetrical 
clustering architecture of CHs for energy-efficient routing technique 
for WSNs. Chithaluru et al. (2020) proposed Node Ranked-LEACH 
(NR-LEACH) as a position-based energy-efficient approach. 
Each relay node in this technique had data from the source node. 
Additionally, each node could send data to BS. NR-LEACH admitted 
all nodes for packet transmission to BS and used the same energy 
level. The link could be assembled successfully using a pessimistic 
process since each node was robust and had global awareness. 

Al-Baz and El-Sayed (2018) presented a Genetic Algorithm-based 
LEACH (LEACH-GA) that incorporated node energy and range 
as selection criteria, including main and auxiliary factors for CH 
election, to ensure equal energy utilization. It solved overhead costs, 
similar clusters in terms of region, and limited life. 

Research has indicated several bio-inspired meta-heuristic methods 
as WSN routing grows increasingly difficult and sophisticated. The 
residual energy of nodes and the knowledge of their surroundings are 
provided to every node in this technique. Coverage and interactive 
nodes are allotted to all networks; subsequently, clustering and active 
nodes are assigned to some nodes. The approach has a high performance 
in relation to energy depletion. A Multi-Level Hybrid Clustering 
Routing Protocol (MLHP) relying on GWO was proposed by Al-
Aboody and Al-Raweshidy (2016). The GWO method was applied at 
level two with no changes to the existing method. This method was 
capable of achieving improved network energy efficiency, longevity, 
and stabilization phase efficacy. However, this technique lengthened 
the instability phase, which caused data transfer to be unpredictable.

Ullah (2020) offered a Hybrid Energy-Efficient Distributed Algorithm 
(HEED) and proposed the concept of categorizing CHs based on the 
amount of node leftover energy and discontinuous overhead. The 
method struck a compromise between dispersing network energy 
among all nodes for longer network durability and not reducing the 
minimal node at any stage for faster time convergence. It did not 
function better in the presence of heterogeneous external factors. 
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Naranjo et al. (2017) presented a Prolonged Stable Election Protocol 
(P-SEP) that took into account the heterogeneities of two levels of 
nodes: advanced and normal nodes. Both had the same chance to 
become a CH. This method outperformed the competition regarding 
network longevity. Priya et al. (2020) suggested the PSO method by 
employing an energy-efficient CH selection technique for both particle 
encoding and fitness value design. The intra-cluster range, sink node 
range, and leftover energy were all regarded for achieving energy 
efficiency. Cluster creation was based on the computed weighted range, 
with member nodes joining their corresponding CHs. In this instance, 
the sink range and residual energy of sensors were considered. GWO 
is a collection of Swarm Intelligence (SI) approaches influenced by 
the grey wolf behaviour through their leadership and hunting strategy. 
Because of its accessibility and simplicity, this technique has been 
used by several domain investigators to tackle their domain-related 
difficulties. Mirjalili et al. (2016), Faris et al. (2018), Gupta et al. 
(2020), Lipare et al. (2020), and Bansal and Singh (2021) presented 
GWO as a new meta-heuristic encouraged by grey wolves. It depicts 
the governing structure and the searching activity of grey wolves. The 
dominance organization is postulated in a pack of 5–12 wolves on an 
estimate, founded on four categories of wolves’ alpha      beta
delta        and omega        The     is at the highest of the formal organization. 
It is in charge of making judgments, leading all the other wolves, 
and leading the pack in hunts or other activities. The     duty in the 
second level of the work is to counsel the commander and promote 
group dominance amongst the other wolves. The    at the base of the 
pyramid, can only seek prey and procreate before a leader.   are 
wolves that do not fit into any of these three groups. It is the third 
wolf in the organization, above the    but below the      keeps an eye 
on the region’s borders and warns the pack if anything goes wrong. 
The primary phases are: (i) detecting, chasing, and encircling, (ii) 
harassing the target until it reaches a steady state, and (iii) striking.

Kaushik et al. (2019) developed a Distance-Based Stable Clustering 
algorithm using GWO (DBSCDS-GWO) for establishing a stable, 
symmetric, and energy-efficient connected dominating set-based 
WSN. The meta-heuristic method GWO specified a set of dominator 
nodes computationally and identified the best arrangement of the 
dominator nodes concerning the sink and dominate nodes. The 
fundamental criterion for achieving a stable network was to balance 
the load and delay the fatality of the foremost dominator by comparing 
the comparative energy of sensor nodes with the suggested parameter 
Dominator Lifetime Index (DLI). 
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Nigam and Dabas (2021) presented an advanced technique termed 
Enhanced Structural Optimization using LEACH (ESO-LEACH). 
The PSO-driven energy-efficient clustering was proposed, and a 
meta-heuristic particle swarm enhancement was used for essentially 
clustering the sensor nodes. Improved nodes and an enhanced set 
of rules for CH election were applied to reduce the randomness of 
the standard approach. Kumar and Kumar (2021) suggested Inertia 
Motivated GWO (IMGWO) to achieve a better balance between 
exploration and exploitation. The convergence of an Artificial 
Neural Network (ANN) with Back Propagation (BP) was poor since 
it depended on initial values. Rather than BP, the meta-heuristic 
technique was a superior option. IMGWO was utilized to train ANN 
(IMGWO-ANN) to demonstrate its proficiency regarding medical 
diagnostics prognosis.

The above-discussed benchmarks were selected due to their similarity 
in parameters such as distance, residual energy for CH selection, 
and cluster formation. Researchers and practitioners emphasize 
meta-heuristic algorithms that can quickly and effectively solve 
clustering problems. For its advantages of fast exploring speed, 
high search resolution, and ease of application, GWO outperforms 
PSO, Gravitational Search Algorithm (GSA), Differential Evolution 
(DE), and Free Energy Perturbation (FEP) algorithms in terms 
of optimization. However, because GWO is a novel biological 
intelligence algorithm, the theory’s evolution and investigation are 
still in their early stages. Further study and analysis are required to 
make the technique work at a higher level.

GWO has a small set of variables that allow it to address non-
deterministic polynomial (NP)-hard challenges in a few repetitions. 
This approach handles various domain challenges, including WSN 
geolocation, load frequency control dispatch, feature extraction, 
technical difficulties, and single objective challenges, among others. 
Clustering is an NP-hard task in WSN, but it can be handled with an 
appropriate optimization approach. This study suggests PMR-GWO, 
an optimum cluster head scheme technique relying on the GWO 
algorithm. This approach considers residual energy, intra-cluster 
distance, sink distance, and node dormancy ratio to choose the best 
collection of CHs. Further, the present study establishes an objective 
function that incorporates crucial factors for determining the best 
option. This study used the accurate detection agent modelling approach 
in PMR-GWO to characterize the energy-efficient CHS. From either 
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perspective, a cluster-based routing weight metric is presented. This 
attribute guides the sensors to join their corresponding CH groups. 
The sensor nodes with the highest weight will be transferred to the 
clusters that correlate to them. As a result, the sensors will function as 
CM under the CHs, transmitting data to the BS via the CHs. 

The suggested approach is evaluated in several sensor node conditions 
by altering the nodes and CHs. The proposed architecture is contrasted 
to various algorithms such as 3-level heterogeneous Distributed 
Energy-Efficient Clustering (hetDEEC-3), L-DDRI, Novel-LEACH-
POS, DBSCDS-GWO, and P-SEP to assess its efficacy. The PMR-
GWO algorithm was used to achieve the best energy efficacy and 
navigation performance in WSNs by out-spreading its lifespan.

METHODOLOGY

The route optimization strategy for WSN predicated on the GWO is 
detailed in this subsection. A centralized clustering route discovery 
system was presented to minimize the unpredictability of CH 
selection. The phase of CH choice was focused on by BS using the 
redesigned GWO, and the decision of CH election was subsequently 
propagated to all devices connected to the network. The CM entered 
the cluster and reached a steady phase in the equivalent stages in the 
LEACH methodology. The sensors relayed the position and starting 
charge to the BS, which gathered and preserved the knowledge in 
the first phase of the CH set-up. The starting strength of the nodes 
was supplied to the BS, and the location of each node was preset. 
By clustering knowledge from each iteration, the energy usage of the 
node could be approximated, and the energy statistics of the node 
every iteration might be acquired. As a result, the nodes did not have 
to report the location and energy data to the BS for iterations.

The PMR-GWO algorithm employed an energy-efficient CHS 
method, including adequate particle encoding and fitness function. 
The intra-cluster coverage, sink node interval, node dormancy, and 
leftover energy for the sensor node were all taken into account for 
achieving energy efficiency. Cluster development was carried out 
based on the analytical weight distance, and member nodes re-joined 
their associated CHs. In this setup, the sink distance and leftover 
energy of sensors were considered. 



636        

Journal of ICT, 21, No. 4 (October) 2022, pp: 627–663

The populace-based meta-heuristic algorithm was founded on golf’s 
social conduct and lifespan enhancement of a GWO technique for 
wireless networks. As a rectilinear obstacle, it optimized the network 
to pick the optimum CH nodes over numerous groups. The strategy was 
to divide the network into multiple levels using a tiered design, with 
each layer having its own set of duties. The cluster head in manifold 1 
and near the BS was chosen using a cluster-based technique. If there 
were multiple nodes in the manifold, the residual energy of each node 
was used to make a decision. If there were additional two nodes in 
manifold 1, the CH was determined by a game theory model. Game 
theory is the process of modelling the strategic interaction between 
two or more players in a situation containing set rules and outcomes. 
In this study, only one node was chosen as CH. The foremost aims 
of the planned research are to extend the network lifespan sequence, 
reduce vitality utilization, and raise network performance.

Its grey wolf pyramid was based on the GWO paradigm. Grey wolves 
are categorized as alpha      beta      delta      and omega      each with 
its own set of roles. The rules below should be adhered to in putting 
this guidance pecking order in place in the WSN. Across both tiers 
and clusters, the holistic method was applied. Among these levels, 
sensors were dispersed as per their distance from the BS, with each 
tier containing many sensors. Thus, every level was R range from the 
preceding layer, i.e., R radius from the BS in layer 1 and 2×R range 
from the BS in layer 2. As a result, the network was separated into 
tiers, with layer 1 being the first, layer 2 being the second, layer 3 
being the third, and layer 4 being the fourth. The length of extent R 
would be chosen in a stable/augmented manner based on the sensing 
system’s design. If a low R value was used, the node would cluster 
near the BS, triggering an energy pit (hot-spot problem). If a high R 
value was utilized, the signal intensity would be insufficient on either 
side. Nodes in layer 1 were chosen as leader nodes or CH, and nodes 
in a layer designated as a linked layer (layer 2) were stated as co-
leaders. As indicated in Figure 2, the nodes in layer 3 were referred 
to as standby co-leaders, while the member nodes in layer 4 were 
addressed as CMs. 

To improve the energy efficiency of WSNs, choosing the right 
CHs in hierarchical clustering approaches is critical. The first key 
consideration when choosing CHs was its dispersal, as CHs focusing 
on one side resulted in significant distances between sensors and CHs. 
As a result, each node’s benefit from the propagation location near 
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CH was lowered. To lessen transmission energy usage at the nodes, 
the CHs must be deployed appropriately. A quantitative formalization 
was essential in characterizing the optimum combination of CHs. 
The conveying, reception, leftover, and data-gathering energy were 
separated from the node energy, which were mixed back into the 
buffered energy (energy used and left once a node acted as a CH). 
If a node with low standby energy was chosen as a CH, it might be 
drained before acquiring all of the information from its neighbours, 
affecting network steadiness.

The CHs were chosen using an optimization technique. The suggested 
conceptualization’s optimization model took into account the location 
proportion among BS and CH, coverage area, residual energy, CH 
balancing factor, and node dormancy ratio. This fitness function 
guaranteed that the node with the highest energy and closest to the 
BS had a better probability of being chosen as CH. When a newer 
CH was identified, the range to transfer signals was also adjusted. For 
the evaluation of CH, the suggested technique in this work employed 
GWO due to its fast convergence rate compared to other meta-
heuristic strategies.

Figure 2 

Systematic Layering of Grey Wolf’s Hierarchy for PMR-GWO

8 
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This study proposed a new computational framework, PMR-GWO’s optimization capability, to certify 
the choice of the optimum CHs for WSN. It included two steps. In the primary step, LEACH-Distance 
Degree Residual Index (L-DDRI) by Bahl and Kumar (2021) was used to filter out the cluster members 
as candidate cluster heads (CCHs) by adaptively probing for the finest parameter balance using the 
novel threshold of LEACH to generate the initial population of CCHs. In the second stage, the 
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This study proposed a new computational framework, PMR-GWO’s 
optimization capability, to certify the choice of the optimum CHs for 
WSN. It included two steps. In the primary step, LEACH-Distance 
Degree Residual Index (L-DDRI) by Bahl and Kumar (2021) was used 
to filter out the cluster members as candidate cluster heads (CCHs) by 
adaptively probing for the finest parameter balance using the novel 
threshold of LEACH to generate the initial population of CCHs. 
In the second stage, the efficacious MGWO was applied to tackle 
the localization challenge in WSN, which limited the localization 
error. Consequently, strategies were incorporated to eliminate the 
communication overhead and reduce the energy costs of WSN, based 
on the optimum dataset acquired in the first level. A two-level hybrid 
clustering algorithm (i.e., PMR-GWO) based on GWO for WSN was 
projected in this research. A centralized choice was suggested for the 
primary level, in which the CCHs list played a significant part in the 
decision-making process of CHs. In level 2, a modified GWO was 
proposed for the selection of optimal CHs for WSN to save more 
energy. The PMR-GWO methodology is presented in Figure 3.

The proposed PMR-GWO’s operation was on the arbitrarily positioned 
immobile nodes in the sensor network. It is presumed that n nodes 
signify the CH search mediators (wolves) as 
For emulating the locations of the search mediators (wolves) in 
WSN while the nodes were fixed, the location of the search mediator 
(candidate CH) was denoted by      in the two-dimensional (2D) space 
demonstrating the node’s sites                                    The finest search 
mediator’s site was then adopted to decide the finest solution for the 
optimal CHs. The foremost intent of the PMR-GWO was to designate 
the CHs for prolonged life expectancy. A fitness function was built on 
numerous constraints to proficiently designate the CHs, like remaining 
energy, sink distance, intra-cluster distance, node dormancy ratio, and 
degree. 

The criteria involved in the suitability method’s formulation were as 
follows:

• Network Coverage (f1)
The network coverage of each CH, where a suitable allocation of 
CHs shall return both identical network coverage among CHs and 
availability for each node, is as shown in Equation 1: 

(1)
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Here,              denotes the network coverage and        signifies the squared 
distance between the distant node and the node’s midway. As a result, 
all nodes were within                    the rounded zone was amid the node’s 
midpoints and           and the node’s interior loop enclosed by a CH had 
a radius more concise than the CH’s extent.

Figure 3 

PMR-GWO Methodology
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Furthermore, assessing distances was less time-consuming than 
determining if a node was in a loop, as shown in Equation 2:

                                                 (2)                                    

The              distance (radius) was used to evaluate if a node was in the  
service area         The subset of the node that the k-th CH covered 
(range) is written as in Equation 3:

       (3)

Here,                           is the radius between the ID-unique node 
and the k-th CH. It is worth noting that            divided the overall service 
area proportionally. As a result, the further the nodes connected by the 
CHs, the stronger the dispersal. A fitness value may be written as in 
Equation 4:

(4) 

Here,                  signifies the cardinality set (i.e., element count) and 
the unification averts enumeration overlying nodes enclosed by an 
additional CH.

• Balancing Element (f2)
There is a requirement for the cluster to be balanced. There is a risk 
that certain giant clusters, as well as some small clusters, will form 
due to the arbitrary grouping of sensors. As a result, this statistic was 
factored in for balancing energy use, as in Equation 5.

                                                                                                                                (5)

Where        is the number of alive sensor nodes in each round. 

• Interspace Proportion among BS and CH (f3)
The proportion of the separation amid the BS and CH to the maximum 
number of nodes in the relevant CH was used to determine the average 
sink radius. Since distance has a significant effect on energy usage, 
this characteristic was considered. As a result, to reduce energy usage, 
this distance must be reduced. It is written in the form of Equation 6:

                                                                                                                       (6)
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• Residual Energy (f4)
The communication, reception, leftover, and data gathering energy 
were separated from the node energy, which were mixed into the 
backup energy (vitality expended and leftover as the node turned into a 
CH). If a node with a low standby vitality was chosen as a CH, it might 
be drained before acquiring all of the content from its neighbours, 
affecting robustness and reliability. Because the network’s lifespan 
is determined by how much energy is used, it is critical to reduce 
energy usage. As a result, this statistic was taken into consideration. It 
was determined as the sum of all the nominated CHs’ current energy. 
Therefore, CH nodes with large backup energy were prioritized in 
Equation 7:

   (7)

• Node Dormancy Ratio (f5)
The node dormancy strategy is divided into two parts: (a) choosing 
nodes in diverse locations to be inactive on an arbitrary base, and 
(b) identifying nodes in diverse locations to be dormant founded on 
extending to CHs. An optimal set of nodes is recognized and defined 
as the weighted ranking of remaining energy, range, degree difference, 
and equivalent diameter. The node dormancy procedure on this 
collection of nodes causes CMs with the least energy and elongated 
maximum range to turn out to be defunct, ultimately picking CH for 
the cluster, which diminishes the energy utilization on CH and thus 
improves bandwidth utilization. Configure       dormancy criteria for 
all CMs as studied by Mengjia et al. (2019) given as Equation 8:

                                                                                  (8)  
                      
Here, S(x) is the node and               is the energy at distance from BS. 
The           and mortality ratio of the node were inversely proportionate. 
The higher the            the higher the likelihood of dormancy. As a result, 
Equation 9 calculates the node dormancy proportion, P (Zhidong et 
al., 2018).

 (9)                                           

          is a collection of clusters. If BS was within the radio range of the 
CCH list, nodes would evaluate it as the best collection of CHs in the 
WSN, indicating node (i). The fitness function (fi) was then computed 
via node(i)                    as in Equation 10:

  (10)
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Here, σ, µ, ϑ,τ and φ signify persistent value and  
                                  If (node(i). 

Rather than minimizing each fitness function independently, it is 
preferable to minimize the sum of all, as stated in Equation. The 
fitness functions listed above were in perfect sync with one another, 
and thus, Equation 11 is computed as follows:

                             (11)

An effective CH nominee would have a low transmission cost and 
remaining energy of more than 1/2 Ea.

ENERGY MODEL

The energy model was similar to the model given in Elshrkawey et 
al. (2018) that considered the required energy to convey a k-bit signal 
across a radius of d, as formulated in Equation 12:  

                                                                    (12)

The cluster creation in LEACH was designed to guarantee that the 
predicted batch size was k- bit signal and threshold distance value (d0). 
On the other hand, the CH’s decision was based on arbitrary numbers 
produced by the sensors. Furthermore, its unpredictability contributed 
to the set of initial nodes’ unpredictability. The ideal cluster count 
(kopt) was calculated, and the estimate differed substantially from 
the quantity in the actual WSN. By computing the actual kopt, the 
suggested technique derived an appropriate cluster that ensured a CH 
in every round for Tier 1 nodes, and nodes in Tier 2 could transfer data 
if no CH was identified in Tier 2.

Cluster Number Calculation

For Tier 1, the optimal value of CHs (K1) was: all Phase One nodes 
(m) in the network model were in the region                                 
which was close to BS. As a result, the energy required to send a l-bit 
word in the CH is as given in Equation 13: 

                                                 (13)

4 

 

Here, σ, µ, ϑ,τ and φ signify persistent value and σ + µ + 𝜗𝜗 + τ + φ = 1. 
If (node(i). 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 < 𝑅𝑅𝑅𝑅𝑑𝑑𝑅𝑅𝑅𝑅𝑅𝑅) 
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ENERGY MODEL 
 

 

                                               𝐸𝐸𝑇𝑇𝑇𝑇(𝑘𝑘, 𝑑𝑑) = { 
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𝑚𝑚
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2 ] =  𝐷𝐷

2𝜋𝜋𝐾𝐾1,   as in Equation 15:  
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𝐷𝐷

2𝜋𝜋𝐾𝐾1                                                           (15) 
 

 
                             𝐸𝐸𝑒𝑒𝑙𝑙𝑐𝑐𝑓𝑓𝑡𝑡𝑒𝑒𝑐𝑐 = 𝑙𝑙 (𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒 + 𝑚𝑚

𝐾𝐾1 𝐸𝐸𝑛𝑛𝑡𝑡𝑛𝑛−𝐶𝐶𝐶𝐶)                                                          (16) 
 
 
     𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙 = 𝐾𝐾1𝐸𝐸𝑒𝑒𝑙𝑙𝑐𝑐𝑓𝑓𝑡𝑡𝑒𝑒𝑐𝑐                                                        

      = 𝑙𝑙(𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑚𝑚 + 𝐸𝐸𝐷𝐷𝐷𝐷𝑚𝑚 + 𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑚𝑚 +  𝐾𝐾1𝜖𝜖𝑓𝑓𝑓𝑓 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
2 + 𝜖𝜖𝑓𝑓𝑓𝑓 

𝐷𝐷
2𝜋𝜋𝐾𝐾1 )𝑚𝑚                      (17)           

                                                                                    
 

4 

 

Here, σ, µ, ϑ,τ and φ signify persistent value and σ + µ + 𝜗𝜗 + τ + φ = 1. 
If (node(i). 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 < 𝑅𝑅𝑅𝑅𝑑𝑑𝑅𝑅𝑅𝑅𝑅𝑅) 

 
 

fi = σ ∗ |⋃ coverK
𝑁𝑁
𝑘𝑘=1 | +  µ ∗ ∑ ቀ𝑛𝑛𝑎𝑎𝑙𝑙𝑙𝑙

𝑁𝑁 − 𝑙𝑙𝑗𝑗ቁ𝑁𝑁
𝑗𝑗=1  +  𝜗𝜗 ∗ ∑ ቆ1

𝑙𝑙𝑗𝑗
∗ ( 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)ቇ𝑚𝑚

𝑗𝑗=1 + € ∗

∑ ∑ (𝐸𝐸0
𝑀𝑀
𝑅𝑅=1 − 𝐸𝐸𝑑𝑑) ∗ 𝐸𝐸𝑅𝑅

𝑁𝑁
𝑗𝑗=1 ±  φ ∗ P                             (11) 

 
 
Ea. 

 
 

ENERGY MODEL 
 

 

                                               𝐸𝐸𝑇𝑇𝑇𝑇(𝑘𝑘, 𝑑𝑑) = { 
     𝑘𝑘 𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒    + 𝑘𝑘 𝐸𝐸𝑓𝑓𝑓𝑓 𝑑𝑑2,    𝑑𝑑 <  𝑑𝑑0
    𝑘𝑘 𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒    + 𝑘𝑘 𝐸𝐸𝑚𝑚𝑚𝑚𝑑𝑑4,    𝑑𝑑 > 𝑑𝑑0

                     (12) 

 
value (d0).  
 
 (kopt)  
 
kopt,  
 

 
 (A =  M/3), (d <  d0),  
 
 

𝐸𝐸𝑒𝑒ℎ = 𝑙𝑙 𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒   ቀ
𝑚𝑚
𝐾𝐾1 − 1ቁ + 𝑙𝑙𝐸𝐸𝐷𝐷𝐷𝐷  𝑚𝑚

𝐾𝐾1 + 𝑙𝑙 𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒 + 𝑙𝑙 𝜖𝜖𝑓𝑓𝑓𝑓 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
2                                                  (13) 

 
𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

                    𝐸𝐸𝑛𝑛𝑡𝑡𝑛𝑛−𝐶𝐶𝐶𝐶 = 𝑙𝑙𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒 + 𝑙𝑙𝜖𝜖𝑓𝑓𝑓𝑓 𝑑𝑑𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶
2                                                               (14) 

 
𝑑𝑑𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶

2  was set to 𝐸𝐸 [𝑑𝑑𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶
2 ] =  𝐷𝐷

2𝜋𝜋𝐾𝐾1,   as in Equation 15:  
 

𝐸𝐸𝑛𝑛𝑡𝑡𝑛𝑛−𝐶𝐶𝐶𝐶 = 𝑙𝑙𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒 + 𝑙𝑙𝜖𝜖𝑓𝑓𝑓𝑓 
𝐷𝐷

2𝜋𝜋𝐾𝐾1                                                           (15) 
 

 
                             𝐸𝐸𝑒𝑒𝑙𝑙𝑐𝑐𝑓𝑓𝑡𝑡𝑒𝑒𝑐𝑐 = 𝑙𝑙 (𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒 + 𝑚𝑚

𝐾𝐾1 𝐸𝐸𝑛𝑛𝑡𝑡𝑛𝑛−𝐶𝐶𝐶𝐶)                                                          (16) 
 
 
     𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙 = 𝐾𝐾1𝐸𝐸𝑒𝑒𝑙𝑙𝑐𝑐𝑓𝑓𝑡𝑡𝑒𝑒𝑐𝑐                                                        

      = 𝑙𝑙(𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑚𝑚 + 𝐸𝐸𝐷𝐷𝐷𝐷𝑚𝑚 + 𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑚𝑚 +  𝐾𝐾1𝜖𝜖𝑓𝑓𝑓𝑓 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
2 + 𝜖𝜖𝑓𝑓𝑓𝑓 

𝐷𝐷
2𝜋𝜋𝐾𝐾1 )𝑚𝑚                      (17)           

                                                                                    
 

4 

 

Here, σ, µ, ϑ,τ and φ signify persistent value and σ + µ + 𝜗𝜗 + τ + φ = 1. 
If (node(i). 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 < 𝑅𝑅𝑅𝑅𝑑𝑑𝑅𝑅𝑅𝑅𝑅𝑅) 

 
 

fi = σ ∗ |⋃ coverK
𝑁𝑁
𝑘𝑘=1 | +  µ ∗ ∑ ቀ𝑛𝑛𝑎𝑎𝑙𝑙𝑙𝑙

𝑁𝑁 − 𝑙𝑙𝑗𝑗ቁ𝑁𝑁
𝑗𝑗=1  +  𝜗𝜗 ∗ ∑ ቆ1

𝑙𝑙𝑗𝑗
∗ ( 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)ቇ𝑚𝑚

𝑗𝑗=1 + € ∗

∑ ∑ (𝐸𝐸0
𝑀𝑀
𝑅𝑅=1 − 𝐸𝐸𝑑𝑑) ∗ 𝐸𝐸𝑅𝑅

𝑁𝑁
𝑗𝑗=1 ±  φ ∗ P                             (11) 

 
 
Ea. 

 
 

ENERGY MODEL 
 

 

                                               𝐸𝐸𝑇𝑇𝑇𝑇(𝑘𝑘, 𝑑𝑑) = { 
     𝑘𝑘 𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒    + 𝑘𝑘 𝐸𝐸𝑓𝑓𝑓𝑓 𝑑𝑑2,    𝑑𝑑 <  𝑑𝑑0
    𝑘𝑘 𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒    + 𝑘𝑘 𝐸𝐸𝑚𝑚𝑚𝑚𝑑𝑑4,    𝑑𝑑 > 𝑑𝑑0

                     (12) 

 
value (d0).  
 
 (kopt)  
 
kopt,  
 

 
 (A =  M/3), (d <  d0),  
 
 

𝐸𝐸𝑒𝑒ℎ = 𝑙𝑙 𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒   ቀ
𝑚𝑚
𝐾𝐾1 − 1ቁ + 𝑙𝑙𝐸𝐸𝐷𝐷𝐷𝐷  𝑚𝑚

𝐾𝐾1 + 𝑙𝑙 𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒 + 𝑙𝑙 𝜖𝜖𝑓𝑓𝑓𝑓 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
2                                                  (13) 

 
𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

                    𝐸𝐸𝑛𝑛𝑡𝑡𝑛𝑛−𝐶𝐶𝐶𝐶 = 𝑙𝑙𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒 + 𝑙𝑙𝜖𝜖𝑓𝑓𝑓𝑓 𝑑𝑑𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶
2                                                               (14) 

 
𝑑𝑑𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶

2  was set to 𝐸𝐸 [𝑑𝑑𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶
2 ] =  𝐷𝐷

2𝜋𝜋𝐾𝐾1,   as in Equation 15:  
 

𝐸𝐸𝑛𝑛𝑡𝑡𝑛𝑛−𝐶𝐶𝐶𝐶 = 𝑙𝑙𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒 + 𝑙𝑙𝜖𝜖𝑓𝑓𝑓𝑓 
𝐷𝐷

2𝜋𝜋𝐾𝐾1                                                           (15) 
 

 
                             𝐸𝐸𝑒𝑒𝑙𝑙𝑐𝑐𝑓𝑓𝑡𝑡𝑒𝑒𝑐𝑐 = 𝑙𝑙 (𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒 + 𝑚𝑚

𝐾𝐾1 𝐸𝐸𝑛𝑛𝑡𝑡𝑛𝑛−𝐶𝐶𝐶𝐶)                                                          (16) 
 
 
     𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙 = 𝐾𝐾1𝐸𝐸𝑒𝑒𝑙𝑙𝑐𝑐𝑓𝑓𝑡𝑡𝑒𝑒𝑐𝑐                                                        

      = 𝑙𝑙(𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑚𝑚 + 𝐸𝐸𝐷𝐷𝐷𝐷𝑚𝑚 + 𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑚𝑚 +  𝐾𝐾1𝜖𝜖𝑓𝑓𝑓𝑓 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
2 + 𝜖𝜖𝑓𝑓𝑓𝑓 

𝐷𝐷
2𝜋𝜋𝐾𝐾1 )𝑚𝑚                      (17)           

                                                                                    
 

4 

 

Here, σ, µ, ϑ,τ and φ signify persistent value and σ + µ + 𝜗𝜗 + τ + φ = 1. 
If (node(i). 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 < 𝑅𝑅𝑅𝑅𝑑𝑑𝑅𝑅𝑅𝑅𝑅𝑅) 

 
 

fi = σ ∗ |⋃ coverK
𝑁𝑁
𝑘𝑘=1 | +  µ ∗ ∑ ቀ𝑛𝑛𝑎𝑎𝑙𝑙𝑙𝑙

𝑁𝑁 − 𝑙𝑙𝑗𝑗ቁ𝑁𝑁
𝑗𝑗=1  +  𝜗𝜗 ∗ ∑ ቆ1

𝑙𝑙𝑗𝑗
∗ ( 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)ቇ𝑚𝑚

𝑗𝑗=1 + € ∗

∑ ∑ (𝐸𝐸0
𝑀𝑀
𝑅𝑅=1 − 𝐸𝐸𝑑𝑑) ∗ 𝐸𝐸𝑅𝑅

𝑁𝑁
𝑗𝑗=1 ±  φ ∗ P                             (11) 

 
 
Ea. 

 
 

ENERGY MODEL 
 

 

                                               𝐸𝐸𝑇𝑇𝑇𝑇(𝑘𝑘, 𝑑𝑑) = { 
     𝑘𝑘 𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒    + 𝑘𝑘 𝐸𝐸𝑓𝑓𝑓𝑓 𝑑𝑑2,    𝑑𝑑 <  𝑑𝑑0
    𝑘𝑘 𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒    + 𝑘𝑘 𝐸𝐸𝑚𝑚𝑚𝑚𝑑𝑑4,    𝑑𝑑 > 𝑑𝑑0

                     (12) 

 
value (d0).  
 
 (kopt)  
 
kopt,  
 

 
 (A =  M/3), (d <  d0),  
 
 

𝐸𝐸𝑒𝑒ℎ = 𝑙𝑙 𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒   ቀ
𝑚𝑚
𝐾𝐾1 − 1ቁ + 𝑙𝑙𝐸𝐸𝐷𝐷𝐷𝐷  𝑚𝑚

𝐾𝐾1 + 𝑙𝑙 𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒 + 𝑙𝑙 𝜖𝜖𝑓𝑓𝑓𝑓 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
2                                                  (13) 

 
𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

                    𝐸𝐸𝑛𝑛𝑡𝑡𝑛𝑛−𝐶𝐶𝐶𝐶 = 𝑙𝑙𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒 + 𝑙𝑙𝜖𝜖𝑓𝑓𝑓𝑓 𝑑𝑑𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶
2                                                               (14) 

 
𝑑𝑑𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶

2  was set to 𝐸𝐸 [𝑑𝑑𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶
2 ] =  𝐷𝐷

2𝜋𝜋𝐾𝐾1,   as in Equation 15:  
 

𝐸𝐸𝑛𝑛𝑡𝑡𝑛𝑛−𝐶𝐶𝐶𝐶 = 𝑙𝑙𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒 + 𝑙𝑙𝜖𝜖𝑓𝑓𝑓𝑓 
𝐷𝐷

2𝜋𝜋𝐾𝐾1                                                           (15) 
 

 
                             𝐸𝐸𝑒𝑒𝑙𝑙𝑐𝑐𝑓𝑓𝑡𝑡𝑒𝑒𝑐𝑐 = 𝑙𝑙 (𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒 + 𝑚𝑚

𝐾𝐾1 𝐸𝐸𝑛𝑛𝑡𝑡𝑛𝑛−𝐶𝐶𝐶𝐶)                                                          (16) 
 
 
     𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙 = 𝐾𝐾1𝐸𝐸𝑒𝑒𝑙𝑙𝑐𝑐𝑓𝑓𝑡𝑡𝑒𝑒𝑐𝑐                                                        

      = 𝑙𝑙(𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑚𝑚 + 𝐸𝐸𝐷𝐷𝐷𝐷𝑚𝑚 + 𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑚𝑚 +  𝐾𝐾1𝜖𝜖𝑓𝑓𝑓𝑓 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
2 + 𝜖𝜖𝑓𝑓𝑓𝑓 

𝐷𝐷
2𝜋𝜋𝐾𝐾1 )𝑚𝑚                      (17)           

                                                                                    
 

4 

 

Here, σ, µ, ϑ,τ and φ signify persistent value and σ + µ + 𝜗𝜗 + τ + φ = 1. 
If (node(i). 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 < 𝑅𝑅𝑅𝑅𝑑𝑑𝑅𝑅𝑅𝑅𝑅𝑅) 

 
 

fi = σ ∗ |⋃ coverK
𝑁𝑁
𝑘𝑘=1 | +  µ ∗ ∑ ቀ𝑛𝑛𝑎𝑎𝑙𝑙𝑙𝑙

𝑁𝑁 − 𝑙𝑙𝑗𝑗ቁ𝑁𝑁
𝑗𝑗=1  +  𝜗𝜗 ∗ ∑ ቆ1

𝑙𝑙𝑗𝑗
∗ ( 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)ቇ𝑚𝑚

𝑗𝑗=1 + € ∗

∑ ∑ (𝐸𝐸0
𝑀𝑀
𝑅𝑅=1 − 𝐸𝐸𝑑𝑑) ∗ 𝐸𝐸𝑅𝑅

𝑁𝑁
𝑗𝑗=1 ±  φ ∗ P                             (11) 

 
 
Ea. 

 
 

ENERGY MODEL 
 

 

                                               𝐸𝐸𝑇𝑇𝑇𝑇(𝑘𝑘, 𝑑𝑑) = { 
     𝑘𝑘 𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒    + 𝑘𝑘 𝐸𝐸𝑓𝑓𝑓𝑓 𝑑𝑑2,    𝑑𝑑 <  𝑑𝑑0
    𝑘𝑘 𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒    + 𝑘𝑘 𝐸𝐸𝑚𝑚𝑚𝑚𝑑𝑑4,    𝑑𝑑 > 𝑑𝑑0

                     (12) 

 
value (d0).  
 
 (kopt)  
 
kopt,  
 

 
 (A =  M/3), (d <  d0),  
 
 

𝐸𝐸𝑒𝑒ℎ = 𝑙𝑙 𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒   ቀ
𝑚𝑚
𝐾𝐾1 − 1ቁ + 𝑙𝑙𝐸𝐸𝐷𝐷𝐷𝐷  𝑚𝑚

𝐾𝐾1 + 𝑙𝑙 𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒 + 𝑙𝑙 𝜖𝜖𝑓𝑓𝑓𝑓 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
2                                                  (13) 

 
𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

                    𝐸𝐸𝑛𝑛𝑡𝑡𝑛𝑛−𝐶𝐶𝐶𝐶 = 𝑙𝑙𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒 + 𝑙𝑙𝜖𝜖𝑓𝑓𝑓𝑓 𝑑𝑑𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶
2                                                               (14) 

 
𝑑𝑑𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶

2  was set to 𝐸𝐸 [𝑑𝑑𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶
2 ] =  𝐷𝐷

2𝜋𝜋𝐾𝐾1,   as in Equation 15:  
 

𝐸𝐸𝑛𝑛𝑡𝑡𝑛𝑛−𝐶𝐶𝐶𝐶 = 𝑙𝑙𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒 + 𝑙𝑙𝜖𝜖𝑓𝑓𝑓𝑓 
𝐷𝐷

2𝜋𝜋𝐾𝐾1                                                           (15) 
 

 
                             𝐸𝐸𝑒𝑒𝑙𝑙𝑐𝑐𝑓𝑓𝑡𝑡𝑒𝑒𝑐𝑐 = 𝑙𝑙 (𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒 + 𝑚𝑚

𝐾𝐾1 𝐸𝐸𝑛𝑛𝑡𝑡𝑛𝑛−𝐶𝐶𝐶𝐶)                                                          (16) 
 
 
     𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙 = 𝐾𝐾1𝐸𝐸𝑒𝑒𝑙𝑙𝑐𝑐𝑓𝑓𝑡𝑡𝑒𝑒𝑐𝑐                                                        

      = 𝑙𝑙(𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑚𝑚 + 𝐸𝐸𝐷𝐷𝐷𝐷𝑚𝑚 + 𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑚𝑚 +  𝐾𝐾1𝜖𝜖𝑓𝑓𝑓𝑓 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
2 + 𝜖𝜖𝑓𝑓𝑓𝑓 

𝐷𝐷
2𝜋𝜋𝐾𝐾1 )𝑚𝑚                      (17)           

                                                                                    
 

4 

 

Here, σ, µ, ϑ,τ and φ signify persistent value and σ + µ + 𝜗𝜗 + τ + φ = 1. 
If (node(i). 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 < 𝑅𝑅𝑅𝑅𝑑𝑑𝑅𝑅𝑅𝑅𝑅𝑅) 

 
 

fi = σ ∗ |⋃ coverK
𝑁𝑁
𝑘𝑘=1 | +  µ ∗ ∑ ቀ𝑛𝑛𝑎𝑎𝑙𝑙𝑙𝑙

𝑁𝑁 − 𝑙𝑙𝑗𝑗ቁ𝑁𝑁
𝑗𝑗=1  +  𝜗𝜗 ∗ ∑ ቆ1

𝑙𝑙𝑗𝑗
∗ ( 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)ቇ𝑚𝑚

𝑗𝑗=1 + € ∗

∑ ∑ (𝐸𝐸0
𝑀𝑀
𝑅𝑅=1 − 𝐸𝐸𝑑𝑑) ∗ 𝐸𝐸𝑅𝑅

𝑁𝑁
𝑗𝑗=1 ±  φ ∗ P                             (11) 

 
 
Ea. 

 
 

ENERGY MODEL 
 

 

                                               𝐸𝐸𝑇𝑇𝑇𝑇(𝑘𝑘, 𝑑𝑑) = { 
     𝑘𝑘 𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒    + 𝑘𝑘 𝐸𝐸𝑓𝑓𝑓𝑓 𝑑𝑑2,    𝑑𝑑 <  𝑑𝑑0
    𝑘𝑘 𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒    + 𝑘𝑘 𝐸𝐸𝑚𝑚𝑚𝑚𝑑𝑑4,    𝑑𝑑 > 𝑑𝑑0

                     (12) 

 
value (d0).  
 
 (kopt)  
 
kopt,  
 

 
 (A =  M/3), (d <  d0),  
 
 

𝐸𝐸𝑒𝑒ℎ = 𝑙𝑙 𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒   ቀ
𝑚𝑚
𝐾𝐾1 − 1ቁ + 𝑙𝑙𝐸𝐸𝐷𝐷𝐷𝐷  𝑚𝑚

𝐾𝐾1 + 𝑙𝑙 𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒 + 𝑙𝑙 𝜖𝜖𝑓𝑓𝑓𝑓 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
2                                                  (13) 

 
𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

                    𝐸𝐸𝑛𝑛𝑡𝑡𝑛𝑛−𝐶𝐶𝐶𝐶 = 𝑙𝑙𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒 + 𝑙𝑙𝜖𝜖𝑓𝑓𝑓𝑓 𝑑𝑑𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶
2                                                               (14) 

 
𝑑𝑑𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶

2  was set to 𝐸𝐸 [𝑑𝑑𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶
2 ] =  𝐷𝐷

2𝜋𝜋𝐾𝐾1,   as in Equation 15:  
 

𝐸𝐸𝑛𝑛𝑡𝑡𝑛𝑛−𝐶𝐶𝐶𝐶 = 𝑙𝑙𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒 + 𝑙𝑙𝜖𝜖𝑓𝑓𝑓𝑓 
𝐷𝐷

2𝜋𝜋𝐾𝐾1                                                           (15) 
 

 
                             𝐸𝐸𝑒𝑒𝑙𝑙𝑐𝑐𝑓𝑓𝑡𝑡𝑒𝑒𝑐𝑐 = 𝑙𝑙 (𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒 + 𝑚𝑚

𝐾𝐾1 𝐸𝐸𝑛𝑛𝑡𝑡𝑛𝑛−𝐶𝐶𝐶𝐶)                                                          (16) 
 
 
     𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙 = 𝐾𝐾1𝐸𝐸𝑒𝑒𝑙𝑙𝑐𝑐𝑓𝑓𝑡𝑡𝑒𝑒𝑐𝑐                                                        

      = 𝑙𝑙(𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑚𝑚 + 𝐸𝐸𝐷𝐷𝐷𝐷𝑚𝑚 + 𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑚𝑚 +  𝐾𝐾1𝜖𝜖𝑓𝑓𝑓𝑓 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
2 + 𝜖𝜖𝑓𝑓𝑓𝑓 

𝐷𝐷
2𝜋𝜋𝐾𝐾1 )𝑚𝑚                      (17)           

                                                                                    
 



    643      

Journal of ICT, 21, No. 4 (October) 2022, pp: 627–663

Where         is the interspace in CH to BS, and the data accumulation 
is as expected in Equation 14:

 (14)

Subsequently, nodes were likewise dispersed, whereby          was set 
to                             as in Equation 15: 

(15)

Now, energy degenerate in a cluster in one edge is as given in Equation 
16:

(16)

and the over-all energy is given in Equation 17:

                                                           
(17)          

                                                                                   
To calculate K1, associate Equation 18 to zero and discriminate wrt K1:

                                                                          (18)

Here,     is the node count in Tier 1 and regular span from CH to BS 
is assumed by 

The ideal proportion of CHs (K2) is formulated in Equation 19 for the 
current network. The remaining network (Tier 2 and Tier 3) had been 
calculated using the same formulation as in LEACH-C:

                                                                    
(19)

Here,                   and                            Subsequently, in this research 
phase, a multi-tiered CHS procedure was prompted.

Candidate Cluster Heads (CCHs) Selection

The CH selection variables were directly linked to the modelling 
approach of the probabilistic threshold strategy. The best-suited node 
for CH could indeed be obtained by modifying the categorization 
strategy. Furthermore, combining any technique with the unified 
arbitrary numeral-generating system could improve the statistical 
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𝐾𝐾1 = √𝑚𝑚𝑚𝑚
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𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
                                                                          (18) 

 
Here, 𝑚𝑚 is the node count in Tier 1 and regular span from CH to BS is assumed by  

E[𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ] = 0.765 𝐴𝐴
2 

 

  𝐾𝐾2 = √ 𝑛𝑛
2𝜋𝜋  √

𝜖𝜖𝑓𝑓𝑓𝑓 
𝜖𝜖𝑚𝑚𝑚𝑚 

  𝑀𝑀
𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

                                                                  (19) 

 
Here, 𝑛𝑛 = 𝑁𝑁 − 𝑚𝑚 and 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.765 𝑀𝑀

2 .  
 
 
(𝑅𝑅𝑑𝑑)  (𝑅𝑅𝑑𝑑)  
 
The (𝑅𝑅𝑑𝑑) must be 0 < (𝑅𝑅𝑑𝑑)< 1;  
 
𝑅𝑅𝑑𝑑. 
 
 𝑅𝑅𝑑𝑑   𝑇𝑇(𝑛𝑛𝑖𝑖)  
 
 𝑅𝑅𝑑𝑑≤ 𝑇𝑇(𝑛𝑛𝑖𝑖),  
 
(𝑁𝑁𝑖𝑖)  
 
(𝑁𝑁𝑖𝑖)  
 

T(ni) = Pi

1-Pi×ቆr×mod( 1
Pi

)ቇ
×  α Eresn

Ein[n] + ρ ቆ1- ቀDegree[n]
Nalv

ቁቇ + φ ቀ1- dtoBS[n]
dtoBSrmax[n]ቁ   , if ni ∈ N                                (20) 

 
𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟

𝑛𝑛   
 
𝐸𝐸𝑖𝑖𝑛𝑛  
 
 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎  
 
𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡[𝑛𝑛]  
 
𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟𝑚𝑚𝑎𝑎𝑡𝑡[𝑛𝑛]  
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procedure’s clustering process. This adjusted arbitrary numeral was 
compared to the T(n) threshold to decide whether a node should 
behave as a CH. The purpose of the L-DDRI method was to see how 
random numbers affected the CH electoral system. The Gaussian 
Arbitrary Numeral Generator, which generated haphazard statistics 
from a normal dispersal, produced such random values. At the onset 
of each round, a node generated a random number        ranging from 
0 to 1. This      was calculated using a regular dispersal with a mean  
of 0 and a variation of 1.The       must be               else, the node  
would choose a fresh    This process was repeated until an arbitrary 
numeral in the series of 0 to 1 was found.    was compared to the  
      level after it formed. If a node appointed itself as a CH in 
                   it must participate in the present round as a non-CH node. The 
CH notified other nodes in the network about its current condition. 
The non-CH node selected one of the CH nodes with the least amount 
of communication assets and sent a joint announcement to the elected 
CH. In essence, changing the designated CH threshold was required to 
maximize the network’s longevity and vitality output. In other words, 
three key criteria would be examined when determining the level of 
threshold: the distance between node and BS, residual energy, node 
dormancy, and neighbour’s node density inside the cluster zone. The 
CH selection was enhanced by the node’s additional residual energy 
and the number of alive neighbours. Furthermore, nodes with the same 
remaining energy, a shorter distance to sink, and compatible alive 
neighbours counted as CCH. The newly designed node index variable  
     was determined from presently offered energy, baseline energy, 
living node counter, and node density from BS, which was crucial 
to CCH’s electoral mechanism. The threshold value was rebuilt as 
a decisive criterion for a node to be picked as a CH. The node index  
     was integrated with threshold equation, which was derived from 
Equation 20 by embracing the above metrics:

                                (20)

Where      is the leftover vitality of node n,     is the preliminary vitality,          
     is the alive node enumeration,         is the interspace node n to BS,  
and        is the node span restrained to BS. The BS picked K1  
nodes as in Equation 18 and designated them as CHs for Tier 1 through 
a centralized process.
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The node’s eligibility for CH was decided by its distance from the BS, 
remaining energy, and energy utilization ratio. The most appropriate 
nodes were designated as CCHs according to Equation 21:

                                                                                               
(21)

Here,    is the node’s remaining vitality and    is the node’s opening 
vitality.

Probabilistic GWO - Predicated preference of CHs in Two Levels

In Tier 2, the suggested GWO design was aimed at the randomly 
dispersed stationary nodes. The CH exploration investigators (wolf) 
were represented by    nodes                                     Because 
altering the location of a static sensor was impossible in GWO, the 
screening mediator’s location (contender CH) was denoted by        in a 
2D space that depicted the nodes’ coordinates 
The closest node to the leading search coordinator role (position) was 
used to arrive at the final answer. The two-tiered GWO-based CH 
selection is as described in the MGWO Algorithm.

• The number of CCH in each layer shall be determined by the 
BS based on the adaptation function of L-DDRI. The adaptation 
function includes the residual energy and relative centrality of 
the node its distance from the BS, degree of node, and node 
dormancy. 

• Simulate MGWO to divide the network into several layers based 
on the relationship between signal reception, transmission, 
and distance. Each node determines which layer it belongs to 
depending on its position and distance from BS.

• Probabilistic multi-tiered GWO-based selection of CHs 
dependent on suitable fitness function based on coverage area 
and CH balancing factor is implemented to identify the most 
dominating member among the group as CH and subordinates 
to CH as backup CH.

• After the CH is determined, all member nodes select the nearest 
CH to form the cluster. 

• The node in the cluster communicates with the CH in a 
single-hop network, and the MGWO communication route is 
established between CHs to avoid a long-distance transmission. 
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• The CH is reselected based on its residual energy and round-
robin time to establish and maintain the new route.

A fitness function determined the CH choice; the fitness function 
played a critical role in the MGWO algorithm’s probing-for-prey 
process. The node’s attributes, comprising remaining energy (Er) and 
the population of neighbours, were fed into this formula. The outcome 
was a value indicating how well the node was suited to becoming a 
leader.

A structure could be separated into several clusters using the clustering 
technique, and a cluster subset was made up of manifold groups in the 
network. The original cluster population, defined as the best feasible 
cluster set in this study, was referenced as the initial cluster set, and 
the objective role estimate of the present optimum cluster set was 
determined. MGWO generated a new cluster set by changing each 
cluster in the existing optimum set at arbitrary, and a multiplicity of 
the new clusters created a novel cluster set. The objective role estimate 
of the novel cluster set was then determined as in Equation 22.

(22) 

Where     , σ, µ, ϑ and φ are the arbitrary statistics in [0,1],                 is 
the checklist of sensors adjacent to a specific           and           is the overall 
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was the one with the maximum   the node with the uppermost 
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as a CH. Subsequently, the choice was finalized; CHs would send a       
                with CH _ID and CH range from BS. The PMR-GWO 
pseudo-code was defined as Algorithm 1.
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7. While t ≤ tmax do 
8. ∀ existing optimum clusters 
9. If (quantity of cluster associates ≥ 3) 
10. Initialize packs Pi, (𝐶𝐶𝐶𝐶𝐶𝐶1, 𝐶𝐶𝐶𝐶𝐶𝐶2, 𝐶𝐶𝐶𝐶𝐶𝐶3, 𝐶𝐶𝐶𝐶𝐶𝐶4, 𝐶𝐶𝐶𝐶𝐶𝐶5, …….) indicate 10% nodes as CHs in 

a pack from (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) list whose (residual energy > average remaining energy). 
11. Initialize the population size Pi (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) (i = 1, 2, ..., n).  
12. Initialize the max numbers of iteration Tmax. 
13. Call_Procedure MGWO (𝐶𝐶𝐶𝐶𝐶𝐶1, 𝐶𝐶𝐶𝐶𝐶𝐶2, 𝐶𝐶𝐶𝐶𝐶𝐶3, 𝐶𝐶𝐶𝐶𝐶𝐶4, 𝐶𝐶𝐶𝐶𝐶𝐶5, …….) 
14. ConFignovel clusters 
15. Analyse objective function estimate of novel cluster (Fnew) 
16. If (Fnew < Fopt) 
17. Existing optimum cluster = novel cluster  
18. Fopt = Fnew 
19. Else If (rand() > probability) 
20. Existing optimum cluster = novel cluster  
21. Fopt = Fnew 
22. End if 
23. End while 
 

SIMULATION RESULTS 
 

T(ni)  
 

𝑘𝑘𝑜𝑜𝑜𝑜 = (√(𝑛𝑛 ∗ 𝜀𝜀𝑓𝑓  )/√2𝜋𝜋) ∗ (1/𝜀𝜀𝑚𝑚 ) ∗ ( 𝑀𝑀2

𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
2 )                                                  (23)                                                                   

 
 
Table 1  
 
Simulation Framework 
 

 
 

Constraints Value 

Range of sensing zone, node count 200x200 m2, N = 100 

Portion of cluster heads p = 0.1 

Packet size l = 4000 bits 

Preliminary energy of ordinary node 0.5 J 

Data aggregation energy cost EDA = 5 nJ/bit 

Energy cost of transmitter/receiver  Eelec = 50 nJ/bit 

Transmission coefficient of amplifier (free space) 𝜖𝜖𝑓𝑓𝑓𝑓  = 10 pJ/bit/m2 

Transmission coefficient of amplifier (multi-path space) 𝜖𝜖𝑚𝑚𝑜𝑜 = 0.0013 pJ/bit/m4 
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The technique combined GWO and the probability-based strategy. 
By dynamically investigating for the best parametric equilibrium 
via innovative threshold T (n) of reactive clustering to construct the 
approximate solution of CCHs, the fundamental step was employed 
to sort out the cluster members as potential CHs. Threshold T (n) 
was used to select the reserve and active CHs. The node’s energy, 
proximity from the BS, and population were all considered while 
calculating the CH, and the threshold T was calculated using the 
energy, distance aspect, and density effect. Focusing on the ideal 
dataset obtained in the first level, stage two employed the effective 
Revised GWO to address the geolocation issue in WSN, which 
limited the path loss and incorporated measures to eliminate the 
transmission delay and decrease the WSN’s energy. In determining 
the most dominant teammate as CH and subordinates to CH as reserve 
CH, a probabilistic multi-tiered GWO-based choice of CHs linked 
to specific fitness functions relying on network coverage, leftover 
energy, node dormancy proportion, distance, and CH balancer factor 
was developed.

SIMULATION RESULTS

The PMR-GWO algorithm was simulated in MATLAB to validate 
its efficacy, as illustrated in Sensor Network in Figure 4. The 
PMR-GWO method was compared to the P-SEP, L-DDRI, Novel-
LEACH-POS, hetDEEC-3, and DBSCDS-GWO algorithms 
under similar investigational environments. Table 1 lists the key 
simulation constraints. The BS identified CHs at the start of every 
round via the mechanism in this article, and each round lasted 1 s. 
The network lifetime, CH count, and data packet count processed by 
BS were implemented as estimation indications for the algorithm’s 
performance. Table 2 presents the comparative analysis of protocols 
in terms of significant parameters considered for implementation, 
location of node, whether protocol was multi-hop or single-hop, level 
of hierarchy, load balancing, type of node either mobile or static, type 
of nodes, and CH rotation in each iteration.

A. Network lifetime: The time interval between the start of the 
network and the demise of the foremost node, also referred to as 
network steadiness duration.
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B. Throughput: The number of data packets acknowledged by BS.
C. CH sums up per round: A total node that conveys accumulated data 
to BS from its associates is preferred in accordance with the T(ni) 
threshold function. It is decided in numerous network representations, 
as in Equation 23.

                                                  (23)                                                                  

D. Energy consumption: This metric evaluates how much energy each 
node expends when transmitting packets to sink nodes. 

Figure 4 

Sensor Network (200 m × 200 m)
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Network Lifetime

The entire activation duration of a WSN is controlled by the network 
initiation time and node mortality period. Figure 5 demonstrates the 
contrasts in the quantity of survived nodes and network lifespan 
in rounds for P-SEP, L-DDRI, Novel-LEACH-POS, hetDEEC-3, 
DBSCDS-GWO, and PMR-GWO. Figure 6 shows the mean alive 
node count for P-SEP, L-DDRI, Novel-LEACH-POS, hetDEEC-3, 
DBSCDS-GWO, and PMR-GWO as 17.27, 16.24, 25.87, 23.94, 
25.27, and 39.5, respectively. Meanwhile, the alive node count for 
P-SEP, L-DDRI, Novel-LEACH-POS, hetDEEC-3, DBSCDS-GWO, 
and PMR-GWO was 32.25, 34.66, 37.95, 38.52, 36.92, and 33.41, 
sequentially. In Figure 5, the lifespan of the projected PMR-GWO was 
improved by 51.2 percent, 52.0 percent, 33.2 percent, 24.6 percent, 
and 32.8 percent, correspondingly, comparative to P-SEP, L-DDRI, 
Novel-LEACH-POS, hetDEEC-3, and DBSCDS-GWO. The above 
statistics were due to the fact that nodes with little remaining 
energies had a slight possibility of being the CH, which prevented 
the occurrence of the quick demise of the node with little remaining 
vitality, thereby outstretching the network’s lifespan sequence.
 
Figure 5 
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Figure 6 

Alive Node Count

Figures 7 proved the effectiveness of related strategies with different 
primary vitalities using the first node dead (FND), half node dead 
(HND), and last node dead (LND) parameters. It indicated that 
the nodes for P-SEP, L-DDRI, Novel-LEACH-POS, hetDEEC-3, 
DBSCDS-GWO, and PMR-GWO started vanishing (FND) 
subsequently at 1,026, 1,149, 1,578, 1,376, 1,174, and 1,473 rounds. 
Moreover, nodes did not perish before 1,473 rounds with said PMR-
GWO. The network lifetime of PMR-GWO was lengthened when 
the death node count approached 50 percent, relative to P-SEP, 
L-DDRI, Novel-LEACH-POS, hetDEEC-3, and DBSCDS-GWO. 
Consequently, as seen in Figure 7, all nodes perished at the same time. 
Likewise, imitation consequences amid HND and the sum of rounds 
for numerous conventions for P-SEP, L-DDRI, Novel-LEACH-
POS, hetDEEC-3, DBSCDS-GWO, and the proposed PMR-GWO 
method with fluctuating preliminary energies are revealed in Figure 
7. The total round for HND of P-SEP, L-DDRI, Novel-LEACH-POS, 
hetDEEC-3, DBSCDS-GWO, and PMR-GWO was 1,235, 1,377, 
2,052, 2,469, 2,496, and 2,538 separately. In comparison to prior 
methods, PMR-GWO required additional rounds for HND.

The total round for LND of P-SEP, L-DDRI, Novel-LEACH-POS, 
hetDEEC-3, DBSCDS-GWO, and PMR-GWO was 6,705, 5,215, 
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6,427, 3,583, 4,851, and 9,763, respectively. The PMR-GWO 
algorithm necessitated extra rounds for the LND compared to the 
other methods. PMR-GWO adopted a clustering approach that was 
unique among conventions. It also had a predetermined time mount 
communication, which reduced the number of participating nodes in 
genuine data transmission and enhanced the life cycle.

Figure 7 

First Node Dead Count, Half Node Dead Count, and Full Node Dead 
Count

Packets Received By BS

Figure 8 illustrates the amount of data packets acknowledged by the 
BS as the network throughput of PMR-GWO improved by 150.4 
percent, 175.6 percent, 70.5 percent, 142.5 percent, and 137.6 percent 
proportional to P-SEP, L-DDRI, Novel-LEACH-POS, hetDEEC-3, 
and DBSCDS-GWO. The PMR-GWO method used an appropriate 
CH choice process, and nodes had a prolonged life duration. When the 
number of iterations remained constant, the proportion of sustaining 
nodes in the network was greater than in other techniques, causing 
more packets to be transmitted by the BS.
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Figure 8

Performance Comparison of Data Transmission
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the data transmission period from nodes to CH would be prolonged, 
leading to greater energy consumption, and the CH would be able 
to spend more energy by transmitting unneeded data. When the total 
number of CHs was large, the entire system load and the mean energy 
demand of each network round increased, and the efficiency of network 
data fusion decreased, reducing the network’s longevity. Figures 
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stabilizing the CH count in PMR-GWO in relation to node demise 
could not be overstated. The aggregate cluster frequency band would 
indeed be reduced if WSN included a considerable number of dead 
nodes to accommodate the network’s energy consumption. Maximum 
counts of CHs for P-SEP, L-DDRI, Novel-LEACH-POS, hetDEEC-3, 
DBSCDS-GWO, and PMR-GWO are shown in Table 3.

Figure 9 

Performance Assessment of CH Count as r=100
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Figure 10

CHs Count at r=500

Table 3 

Maximum Count of CHs 

         Protocol Max Count of CHs (No.)
P-SEP 22

L-DDRI 20
Novel-LEACH-POS 71

hetDEEC-3 45

DBSCDS-GWO 23

PMR-GWO 21

Energy Consumption

The comparative assessment of energy consumption for PMR-GWO 
and other routing protocols is shown in Figure 11. The aggregate 
resource used by the network for communication, receipt, and 
interpretation of results was referred to as energy usage.
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The energy usage of both CH and cluster members was used to 
create contrasts amid various techniques. The PMR-GWO approach, 
as shown in Figure 11, utilized the least amount of energy possible. 
According to the simulation results, the PMR-GWO network lifetime 
was increased while energy consumption was reduced. In PMR-
GWO, the network survived up to 9,763 rounds. It clearly surpassed 
other protocols in relation to network lifetime, number of active and 
dead nodes, and energy consumption, as evidenced by the analytical 
outcomes. The energy consumption of P-SEP, L-DDRI, Novel-
LEACH-POS, hetDEEC-3, DBSCDS-GWO, and PMR-GWO was 
-0.03165 J, -0.03387 J, -0.03503 J, -0.03235 J, - 0.03456 J, and 
-0.03623 J, correspondingly, which specified the lowest energy 
consumption.

Figure 11 

Performance Evaluation of Energy Consumption
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As revealed in the simulation outcomes, the suggested PMR-GWO 
method was computationally competent in stabilizing energy 
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expenditure, preserving a substantial quantity of energy, and 
prolonging the network’s lifetime for a layered-established design 
that focused on WSN compared to further recognized algorithms. 
This investigation projected a routing convention for WSNs founded 
on an improved GWO. This approach ensured that sophisticated 
nodes in the cluster were further prospective to qualify as CHs by 
providing unique fitness functions for enhanced and regular nodes 
and altering GWO. As a result, the accountability of choosing lower 
energy nodes as CHs could be decreased, and the network lifetime 
could be enlarged. 

The simulation outcomes demonstrate that concerning P-SEP, 
L-DDRI, Novel-LEACH-POS, hetDEEC-3, and DBSCDS-GWO, the 
energy consumption, lifetime, and throughput of the network were 
meaningfully enhanced. The suggested PMR-GWO was expanded 
to bigger sensor networks to consider multi-hop connectivity across 
CHs, resulting in lower energy usage of both distant BS and CHs. 
Furthermore, after the CHs were chosen, non-essential energy 
dissipation was decreased to rationally lessen the additional energy 
exhausted by overall sensors to communicate their locations and 
energy to the BS. PMR-GWO assured deterministic CH allocation, 
reduced the effective communication range of sensed data to the 
sink, and equalized network load. The energy consumption of P-SEP, 
L-DDRI, Novel-LEACH-POS, hetDEEC-3, DBSCDS-GWO, and 
PMR-GWO was -0.03165 J, -0.03387 J, -0.03503 J, -0.03235 J, - 
0.03456 J and -0.03623 J. On the other hand, the network lifespan 
of the suggested PMR-GWO was amplified by 51.2 percent, 52.0 
percent, 33.2 percent, 24.6 percent, and 32.8 percent, respectively, 
relative to P-SEP, L-DDRI, Novel-LEACH-POS, hetDEEC-3, and 
DBSCDS-GWO. The number of data packets acknowledged by the 
BS as network throughput of PMR-GWO was improved by 150.4 
percent, 175.6 percent, 70.5 percent, 142.5 percent, and 137.6 percent 
in relation to P-SEP, L-DDRI, Novel-LEACH-POS, hetDEEC-3, and 
DBSCDS-GWO. The suggested viewpoint can be elongated to new 
developing futuristic technologies such as the Internet of Things (IoT) 
and the Internet of Everything (IoE), where network scopes are large, 
and energy usage by sensor networks must be optimized. As a result, 
the suggested technique may reduce a sensor network’s energy usage, 
making it suitable for IoT and IoE deployments.
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