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ABSTRACT 

Machine learning (ML) prediction determinants based on open 
data (OD) are investigated in this work, which is accomplished by 
examining current research trends over ten years. Currently, OD is 
commonly regarded as the most crucial trend for users to improve their 
ability to make decisions, particularly to the exponential expansion 
of social networking sites (SNSs) and open government data (OGD). 
The purpose of this study was to examine if there was an increase 
in the usage of OD in ML prediction techniques by conducting a 
systematic literature review (SLR) of the results of the trends. The 
papers published in major online scientific databases between 2011 
and 2020, including ScienceDirect, Scopus, IEEE Xplore, ACM, 
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and Springer, were identified and analysed. After various selection 
processes, according to SLR based on precise inclusion and exclusion 
criteria, a total of 302 articles were located. However, only 81 of them 
were included. The findings were presented and plotted based on 
the research questions (RQs). In conclusion, this research could be 
beneficial to organisations, practitioners, and researchers by providing 
information on current trends in the implementation of ML prediction 
using OD setting by mapping studies based on the RQs designed, the 
most recent growth, and the necessity for future research based on the 
findings.

Keywords: Machine learning, open data, prediction, systematic 
literature review.

INTRODUCTION

The proliferation of open data (OD) has resulted in a new generation 
of open datasets that are reusable, accessible, sustainable, and 
interoperable, exploring the possibility for OD principles to be 
implemented globally, and allowing multiple modules, frameworks, 
and organisations to collaborate (OKFN, 2014; OD, 2012; W3C, 
2009). Since 2009, the open government data (OGD) movement 
has grown dramatically, when the United States (US) government 
committed to implementing the principle of openness by publishing 
millions of datasets initiated by Barack Obama, the former US 
President (Saxena, 2019). Later, the European Commission, Mexico, 
and Singapore opened the floodgates of publicly available information 
(Foulonneau et al., 2014). All stakeholders from a range of social, 
economic, environmental, and other backgrounds can benefit from the 
dataset’s access, use, and interchange thanks to the creation of the 
OGD platform. Moreover, emerging OGDs are advantageous to these 
sectors as well as for scholarly debates, particularly in the context 
of service (MAMPU, 2017; Lindman et al., 2014). Web 2.0-based 
technologies, such as downloading raw data, using a transparent 
application programming interface (API), and accessing linked open 
data (LOD), are all options that have been used (Song et al., 2013). 

Recently, a rising amount of user-generated content (UGC), such 
as reviews, commentaries, and previous experiences, in addition to 
OGD, provided through social networking services (SNSs) has made 
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much of the OD material accessible (Pantano et al., 2017). Based 
on word-of-mouth communications and decision-making processes, 
SNSs have a significant impact (Chu & Kim, 2011), and users’ 
interests must be successfully drawn and exploited. Besides, digital 
marketers are conscious that they must improve the usability of SNS 
by providing value-added services (Diffley et al., 2011). As a result, to 
satisfy the expectations of new social media experiences, social media 
operators are developing new capabilities by delivering a varied array 
of built-in applications (Jai et al., 2014) and personalised topic-specific 
virtual environments (e.g., Instagram, YouTube, Facebook, Twitter, 
and LinkedIn) to provide better UGC by incorporating comments, 
updates on prior experiences, and recommendations for future content 
(Turban et al., 2015). 

Furthermore, the machine learning (ML) approach aims to learn 
unknown data concepts. OD has been implemented to forecast various 
attitudes or behaviours in decision-making processes in several 
studies using ML methodologies. As an example, OD was utilised 
to assist a traveller’s procedure for deciding by profiling elements of 
various tourism locations throughout the world and locales using the 
Random Forest (RF) method of the ML technique (Pantano et al., 
2017). Therefore, the goal of this paper is to review the latest ten-
year OD-related articles to gain a general understanding of prediction 
using the ML method and to map the existing studies based on the 
designed research questions (RQs) through a systematic literature 
review (SLR). More precisely, the aim is to educate stakeholders 
about the current trends and practices and the bibliometric knowledge 
of the published articles in the field of prediction in OD and ML.

Several studies on prediction using ML are currently being performed, 
but none of them are directly relevant to the field of OD. Due to 
the rapid growth of OGD and SNSs, OD is now the most relevant 
trend for practitioners seeking to develop their prediction process. 
Nevertheless, a further study utilising SLR should be carried out to 
observe how well OD studies can predict behaviour related to a given 
interest using ML based on performance indicators. Theoretically, the 
goal of adopting SLR is to organise and summarise the current ten-
year patterns in open datasets, which might greatly aid in prediction 
using various ML approaches and algorithms. This trend analysis will 
also present possible research gaps and challenges that will help other 
practitioners and researchers in this field.
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An Overview of the Related Studies

Since there is no specific analysis of the recent trends in the ML 
prediction of using OD, reviews on related studies are presented in 
Table 1. The table depicts the contributions of six research studies 
(three systematic reviews and three other forms of reviews), addressing 
various aspects of OD using the predictive ML approach. These 
reviewed articles mainly focused on the novelty of open datasets in 
ML technique prediction. The evidence presents the current state and 
existing trends, including future research. The literature summarises 
the current state-of-the-art predictions using various ML approaches. 
The articles addressed issues and challenges, which show potential 
gaps and future directions.

Table 1 

Contribution of Previous Review Studies on OD in ML Prediction

Ref. Title Year Type Contributions

Iskandaryan 
et al. (2020)

Air Quality Prediction 
in Smart Cities using 
ML Technologies based 
on Sensor Data: A 
Review

2020 Systematic 
Review 

2002–2019 
(41 articles)

Reviewed current approach to 
prediction concept

Quantitative analysis and 
trends of evidence were 
presented.

Highlighted prediction 
techniques, open dataset 
characteristics, and 
performance metrics analysis.

Butt et al. 
(2020)

Spatio-Temporal Crime 
Hot Spot Detection 
and Prediction: A 
Systematic Literature 
Review

2020 Systematic 
Review

2010–2019
(49 articles)

Demonstrated quantitative 
analysis and trends evidence.

Highlighted prediction 
and detection techniques, 
dataset characteristics, and 
performance measurement 
analysis.

Showed potential gaps, 
challenges, and future 
research direction.

Goldstein et 
al. (2019)

A Review of ML 
Applications to Coastal 
Sediment Transport and 
Morphodynamics

2019 Review Evaluated the implementation 
of ML in experiments on 
supervised regression tasks. 

Described a selection of 
best practices for using ML 
techniques. 

Suggested potential areas for 
future study, the use of new 
ML methods, and open data 
exploration.

(continued)
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Ref. Title Year Type Contributions

Gutierrez- 
Osorio and 

Pedraza 
(2020)

Modern Data Sources 
and Techniques for 
Analysis and Forecast 
of Road Accidents: A 
Review

2019 Review Provided an overview of the 
state-of-the-art prediction 
through ML algorithms 
and advanced information 
analysis techniques.

Proposed a classification of 
ML according to its origin 
and characteristics.

Suggestions on how to 
improve precision and 
accuracy.

Tamada et 
al. (2019)

Predicting and 
Reducing Dropout in 
Virtual Learning using 
Machine Learning 
Techniques: A 
Systematic Review

2019 Systematic 
Review 

2015–2018 
(199 articles)

Demonstrate quantitative 
analysis and trends in ML. 

Highlighted the evolution 
of publications on ML 
techniques used, dataset 
characteristics, and proposed 
solutions.

Provided guide for future 
studies and tool development.

Al-Garadi et 
al. (2019)

Predicting 
Cyberbullying on 
Social Media in the 
Big Data Era using 
Machine Learning 
Algorithms: 
Review of Literature 
and Open Challenges

2019 Review Reviewed prediction models 
and issues.

Emphasis on features of 
algorithm selection and using 
various ML algorithms for 
prediction.

Highlighted issues and 
challenges.

METHODOLOGY

The systematic literature review (SLR) method was employed to 
gain access to a large number of possible publications and to gain a 
thorough understanding of the literature in numerous research streams 
(Kitchenham & Charters, 2007; Bizer et al., 2011). SLR is effective 
in researching and providing a research area’s overview in the sense 
of OD prediction, displaying the quantity of proof, and generating 
specific research facts. The SLR’s findings aid in identifying research 
priorities within the field required. In general, the review procedure 
follows the steps outlined in Figure 1 (Davis et al., 2006; Maglyas et 
al., 2011). The results of the above method are known after the study 
has been completed and all the findings have been published. 
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Figure 1 

The Study Selection Processes

The publications were reviewed twice, as according to Budgen et 
al. (2011), this ensures consistency in the process of inclusion and 
exclusion of the papers (Budgen et al., 2011). The first round of 
analysis was performed to identify the study’s specific topic using 
titles, abstracts, and keywords (Yin, 2013), based on research questions 
(RQs), excluding non-related studies. In the second phase, the entire 
texts of the papers were scrutinised, and non-related publications 
were once again discarded. Consequently, any fresh and relevant 
information of the RQs was gathered. The above-mentioned articles 
were thoroughly reviewed and fine-tuned as necessary. To determine 
the current status and trend, the mapping approach was used.

Research Questions (RQs)

The SLR’s main objective is to identify all applicable studies for the 
RQs in light of Table 2’s criteria. The RQs were then divided into 
two categories: bibliometric research questions (BRQs) and content 
research questions (CRQs) (Sadoughi et al., 2020). 

Table 2

Research Questions Criteria

Open Data Type of datasets that have been used
Machine Learning Techniques/methods that have been implemented
Prediction Accuracy of prediction and effective predicting 

techniques 
Research Novelty Potential research gaps, limitations, and challenges
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Bibliometric Research Questions (BRQs) 

To guide in the search and results presentation, the following RQs 
were investigated using the chosen papers on: 
1.	 How many prediction papers have been published in the fields 

of OD and ML?
2.	 How has the trend changed over time? 

Content Research Questions (CRQs)

Following the determination of the BRQs, a more extensive 
investigation of the publications’ complete text was necessary to 
respond to the RQs below: 
1.	 What are the ML approaches for a prediction that have been 

reported in existing OD research? 
2.	 What are the accuracies or performance measures of the 

predictions when using OD and ML?
3.	 In this analysis, what were the characteristics of the open 

datasets used? 
4.	 From studies related to the development of a robust prediction 

model, what are the possible challenges and study gaps 
highlighted?

Data Collection

The findings of the literature review were strongly influenced by 
keywords and the digital databases used in performing the search 
(Kitchenham & Charters, 2007). The articles were obtained from 
the selected databases using the search strategy to answer the RQs 
created.

Selection of Database and Search Queries

The inquiry began with a preliminary search focused on the nature of 
OD and prediction on 1st June 2020, utilising Google Scholar to locate 
keywords and develop an understanding of both available and crucial 
papers. Google Scholar was chosen to deliver scholarly literature 
metadata or full-text indexes (journal articles, conference papers, and 
workshops) (Halevi et al., 2017) as shown in Table 3 because of its 
usability as a web search engine and citations monitoring tool in the 
majority of online peer-reviewed journals.
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Table 3

Preliminary Search Results of Articles Found by Using Google 
Scholar on 1st June 2020

Google Scholar

Search Keywords No. of Articles
Open Data AND prediction AND Machine Learning 2,700,000
“Open Data” AND “prediction” AND “Machine 
Learning”

     18,200

“Open Data” AND (“prediction” OR “predict*” OR 
“forecast*”) AND “Machine Learning”

     23,500

However, a brief check revealed that the phrases “predict” and 
“forecast” were equivalent to “prediction” and were used in some 
of the literature after several repetitions of combining and searching 
particular keywords. According to previous assessments, the most 
useful databases in the computer science (CS) and information 
technology (IT) fields are IEEE, ACM, and ScienceDirect (Bizer et 
al., 2011). The reason for choosing IEEE was that it is a significant 
organisation for advanced technology excellence (Madarash-Hill 
& Hill, 2004), while ACM is still the world’s largest CS database 
(Zelevinsky et al., 2008). Scopus was chosen in the meantime because 
it provides access to the world’s abstract literature and citation database 
with the most peer-reviewed abstracts and a complete overview of 
research output (Boyle & Sherman, 2006), with Springer serving as 
a digital database supplement. In conclusion, to find relevant articles, 
the search strategy comprised the decisions as shown in Table 4, 
and database searches were performed using titles, keywords, and 
abstracts as mentioned in Table 5. Table 6, based on a total of 302 
ML prediction-related articles using OD publications, shows the 
distribution of articles from particular digital databases, with Scopus 
yielding the most results throughout the search procedure. Searches 
done within the ScienceDirect and ACM databases, meanwhile, 
provided the lowest results with 16 and 15 articles, respectively.
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Table 4

Search Strategy Decisions

Criteria Description
Databases Scopus (https://www.scopus.com/), ScienceDirect 

(https://www.sciencedirect.com/), IEEE Xplore 
(https://ieeexplore.ieee.org/), Springer (https://link.
springer.com/), and ACM (https://dl.acm.org/)

Items Journal papers, conference papers, magazines, and 
workshops

Search applied on Full-text papers, within article or document title, 
keywords, and abstract

Publication period Between January 2011 and December 2020

Table 5

Search Keywords for Each Database

Databases Search Keywords
Scopus TITLE-ABS-KEY (“Open Data” AND (“prediction” OR 

“predict*” OR “forecast*”) AND “Machine Learning”)
ScienceDirect Title, abstract, keywords: (“Open Data” AND 

(“prediction” OR “predict” OR “forecast”) AND 
“Machine Learning”)

IEEE Xplore “Open Data” AND (“prediction” OR “predict*” 
OR “forecast*”) AND “Machine Learning”

Springer “Open Data” AND (“prediction” OR “predict*” 
OR “forecast*”) AND “Machine Learning”

ACM “Open Data” AND (“prediction” OR “predict*” 
OR “forecast*”) AND “Machine Learning”

Table 6

Publications Distribution (n = 302)

Scientific Databases No. of Articles
Scopus (http://scopus.com) 175
Springer (https://link.springer.com/)   59
IEEE Xplore (http://ieeexplore.ieee.org/Xplore/home.jsp)   37
ScienceDirect (http://www.sciencedirect.com)   16
ACM (http://dl.acm.org)   15 
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Criteria for Study Selection

It was discovered that the number of articles collected (n = 302) using 
the search terms was quite large and that some were duplicate articles 
and were the same articles found in different databases. Therefore, 
they were subsequently removed and thus resulting in a final number 
of 240 relevant articles. From these journals, the abstracts of the 
articles were then reviewed, and 144 articles remained after removing 
concerns, which were irrelevant based on Table 7’s list of criteria for 
inclusion and exclusion.

Table 7

Criteria for Inclusion and Exclusion

Inclusion Criteria Exclusion Criteria
•     Include primary research on the RQs.
•     Research articles or journal issue
      closely related to the topic of RQs.
•     Articles explaining “open data”AND
     “prediction”AND “machine learning.”
• Industry, government, and any 

academic research or study.
•     Full-text publications are available.

•   Secondary studies (e.g., systematic 
literature, survey, review).

•   A copy of a research study that is 
identical to the original. 

•    Publications that do not define OD, 
prediction, or machine learning.

•      Papers are written in languages other 
than English.

• Articles on business (general  
business issue).

Results Included

The review’s content was restricted based on the title, abstract, 
and availability of the papers. In other words, the selected papers 
were only approved after the complete texts had been checked and 
mapped systematically to the current study. After the title and abstract 
screening, 7 articles were eliminated for non-scholarly papers, and 56 
articles were removed for not answering the RQs. After completing 
all stages shown in Figure 2, 81 articles were selected from the final 
review. 

Figure 3 depicts the distribution of publications by scientific databases 
in more detail between 2011 and 2020, in which Scopus had the 
highest number with 34 articles, followed by IEEE Xplore with 25 
articles, and ACM with 10 articles. ScienceDirect and Springer were 
the lowest with 8 and 4 articles, respectively. Among the 81 selected 
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articles, 51 were conference articles, 29 were journals, and 1 was a 
workshop paper.

Figure 2

The Final Articles Included (n = 81)

 

Figure 3

The Publications Distributed by the Type of Articles (n = 81)
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Data Extraction

The entire contents of the publications were evaluated in detail at this 
stage, and the data obtained were categorised according to the search 
method used to respond to each RQ. The papers were analysed in-
depth using elicitation procedures established through a systematic 
examination of empirical evidence (Davis et al., 2006). All the articles 
were analysed using the CRQs and BRQs that had been identified as 
explanations for the findings. At the end of the process, the publishing 
frequency was determined.

Bibliometric Research Questions (BRQs)

To respond to the RQs, the bibliographic data from the publications 
were analysed and compiled in this part.
BRQs1 – Articles’ publication range and trend: It is crucial to keep 
track of whether the quantity of papers has increased or decreased 
over time. From the BRQs, the novelty of this focus research could be 
seen from the trend presented.

Content Research Questions (CRQs)

The substance of the papers was assessed at this stage, and information 
for RQs was acquired.
CRQs1 – Machine Learning Techniques: ML is a young branch in 
the field of Artificial Intelligence (AI), which belongs to one of the 
core research topics of AI and neural computing (Xue, 2020). ML 
approaches have only recently become a widely used method for 
data mining, creating multiple conclusions for prediction purposes 
(Alyahyan & Düştegör, 2020). The papers were derived based on 
the research method discussed in the articles or by determining the 
research design through the evaluation of knowledge used in the 
articles for non-stated approaches.

CRQs2 – Accuracy or performance measure of the predictions: 
Performance tests were conducted to determine the prediction’s 
accuracy.
CRQs3 – Characteristics of open datasets: It is crucial to consider how 
the sorts of datasets listed in the articles, which have been utilised in 
ML, affect prediction results.
CRQs4 – Potential challenges and research gaps: The highlighted 
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potential challenges and research gaps in existing studies of OD used 
ML prediction approaches.

RESULTS AND DISCUSSIONS

To better understand the trends of the investigations, the data from the 
SLR were mapped and the results were scrutinised and compared to 
each of the RQs.

Bibliometric Research Questions (BRQs)

BRQs1 – Articles’ publication range and trend:
In this section, for each year, a quantitative study of OD and forecast 
papers was conducted to evaluate whether there was an increasing 
or declining trend. The distribution articles’ publication range of all 
81 mentioned publications spanning the years of 2011 to 2020 and 
involving 26 countries is as shown in Figure 4.

Figure 4

The Publications Distributed by Years (n = 81)
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were recorded in 2011 and 2012. Nevertheless, this field of research 
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This suggests that many studies or analyses regarding this research 
were conducted within this period. This drastic change was the result 
of the governments and the practitioners themselves being empowered 
and inspired to make their datasets accessible and public. In 2013, the 
European Commission, for example, released a new version of the 
Public Sector Information Directive, which supplied the entire cultural 
heritage data in the form of public data that European public agencies 
may access (Schultz & Shatter, 2013). Besides, federal agencies under 
the supervision of the White House are producing more open data 
and machine-readable government data, such as open APIs, which 
will be used by the government and private developers (Gray, 2014; 
Weerakkody et al., 2020). In addition, in response to user demand for 
convenient, structured, and access to the OGD platform that is simple 
to use, Germany’s policymakers, public authorities, commercial 
sector, the Dresden Agreement was adopted by researchers (Hunnius 
et al., 2014).

Nevertheless, as seen from the trend, publishing has grown dramatically 
since 2019. It signifies that more investigations or assessments of the 
original research were undertaken within this period, which shows the 
research novelty of this topic on ML prediction using OD. Besides, the 
number is expected to increase in the coming years. The advancement 
of ML can disseminate data model architecture and link data silos with 
data from other organisations to increase data quality and efficiency. 
However, there was a drastic drop in the number of articles in 2020 
that might be affected by the coronavirus disease 2019 (Covid-19) 
pandemic, through the imposition of 24-hour curfews and closing of 
schools and universities. Research shows that this pandemic led to the 
decreasing numbers of non-Covid-19 articles, including the research 
area of OD and ML prediction (Raynaud et al., 2021) in 2020.

Overall, it can be seen that 26 countries worldwide actively participated 
and published in this research area with Taiwan, China, the United 
States of America (USA), Italy, and the United Kingdom being the 
first five active countries. Over the years, the rise of publishing-
producing countries could be aided by government memorandums 
(Gray, 2014; Wright, 2014) and also by the guidelines of OD 
principles (Nugroho et al., 2015), which are believed to encourage 
public knowledge openness and interoperability without barriers to its 
reuse and consumption. Taiwan debuted its first OD portal in 2013 as 
compared to the other governments (Chen & Hsu, 2019).
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However, the trend showed that OD is still limited and underutilised in 
several countries including Malaysia. According to Husin et al. (2019), 
even though OD is a necessity in developing countries, the usage of 
OD was found to be low, which gained the researchers’ interest to 
identify factors that influenced OD adoption among Malaysian users. 
Considering that OD consists of free access to the public, this could 
benefit government agencies to improve their OD in certain areas that 
can be used by the users. From the trend, Malaysia is still lacking OD 
initiatives as compared to other countries due to the low support from 
data providers (Stagars, 2016). Some countries continue to restrict 
data openness because they believe certain data are too sensitive to be 
shared with users. As a result, it can be seen that not so many papers 
are utilising OD in ML prediction models, especially in the Malaysian 
scenario.

	
Content Research Questions (CRQs)

CRQs1 - Machine Learning Techniques:
The origins of publication were drawn and identified from the selected 
articles using the ML approaches and algorithms discussed above, 
with the results displayed in Figure 5. In brief, from the selected 
articles, the main ML techniques can be categorised into Supervised, 
Unsupervised, and Semi-Supervised Learning with appropriate 
algorithms (Mahesh, 2020; Castanon, 2019; Krishna Sharma & Wang, 
2018; Kononenko & Kukar, 2007; Zawacki-Richter et al., 2019). 
However, from the selected articles, there are several other techniques 
that have not been mentioned such as Reinforcement Learning and 
Instance-Based Learning.

Over the previous ten years, the number of publications had increased 
dramatically. It presented that with 50 publications (62.0%), the 
approaches for Supervised Learning had received numerous attention 
and aided the development of prediction utilising OD. Semi-
Supervised Learning, a combination of Supervised and Unsupervised 
Learning methods, was at the second highest with 31.0%, having 25 
articles as compared to the other techniques. The trend demonstrated 
that Supervised Learning and Semi-Supervised Learning had grown 
considerably since 2013 and are anticipated to grow much more in the 
upcoming years, as seen in Figure 6. 
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regression approach, which had just 7 articles. A variety of algorithms 
can be used to accomplish the classification strategy, which predicts 
a discrete value of output, including Naïve Bayes (NB), Logical 
Regression (LR), Random Forest (RF), Support Vector Machine 
(SVM), Bayesian Model, Gradient Boosting Decision Tree (GBDT), 
Decision Tree (DT), J48, and K-Nearest Neighbour Algorithm (KNN), 
according to the literature. However, Linear Regression, Decision Tree 
Regressor, Ridge Regression, and Support Vector Regressor (SVR) 
can be used in a regression technique that predicts a continuous value 
output. 

Recently, Deep Learning-based approaches, such as Time Series 
Analysis, Artificial Neural Network (ANN), Multi-Layer Perceptron 
(MLP), Long Short-Term Memory (LSTM), Deep Neural Network 
(DNN), and Auto-Regressive Integrated Moving Averages (ARIMA), 
have been introduced as a substitute to Clustering and Classification 
approaches, which failed to provide results for some research areas. 
Several clustering algorithms, such as Hidden Markov Models 
(HMM), K-Medoids, Fuzzy, and K-means, have been used even though 
Unsupervised Learning techniques were hardly given in the literature. 
Unsupervised Learning is beneficial when there are no labels assigned 
to the data. It seeks for previously undetected trends using the bare 
minimum of human inspection. In addition, a few papers recorded 
Semi-Supervised Learning with 6.17 percent (6 articles), in which 
Supervised Learning (labelled data) and Unsupervised Learning 
(unlabelled data) were combined.

There have been various studies on the multiple ML approach and 
ensemble method, both of which were innovative prominent strategies 
for improving prediction. It can be a mix of several algorithms, such 
as Supervised Learning, Unsupervised Learning, and Deep Learning 
Techniques. A more detailed comparison of the techniques with their 
different algorithms together with the most accurate techniques is 
displayed in Table 8.

From the Classical Classification approach mentioned above, RF was 
reported to extensively outperform all the other models and achieved 
high accuracy scores in several studies (Pradhan et al., 2019; Rocca 
et al., 2016; Kim & Cho, 2019; Dias et al., 2015). Furthermore, for 
the Deep Learning-based approach, most of the articles reported that 
LSTM, a derivative model of Recurrent Neural Network (RNN), is the 



354        

Journal of ICT, 21, No. 3 (July) 2022, pp: 337–381

distinguished technique for their research with the best performance 
measures (Chen et al., 2016; Lee et al., 2020; Awan et al., 2020). 
Regression techniques, such as Linear Regression, Support Vector 
Regressor, KNN Regression, and RF Regression, have also been 
reported in several publications (Violos et al., 2019; Shidik et al., 
2014; Boeke et al., 2019; Cocca et al., 2020). Time Series Analysis, 
particularly ARIMA, has been compared to the other techniques 
together with ANN and Exponential Smoothing State Space (ETS) 
(Kamath & Kamat, 2018). However, the ARIMA technique seemed 
promising, outperforming the other techniques with the best 
performance and model fit.

In addition, new current ML tools, such as WEKA (Waikato 
Environment for Knowledge Analysis), have been reported for 
testing ML algorithms, including SVM, Decision Tree, ANN, Linear 
Regression, and J48 (Derguech et al., 2014; Sarker et al., 2013; Li 
et al., 2015). WEKA offers several data visualisation and predictive 
modelling tools and algorithms, together with graphical user 
interfaces for easy access. The other tool that was demonstrated was 
MathematicaTM, which can be used to run experiments with datasets 
using ML algorithms like RF (Pantano et al., 2017).
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CRQs2 – Performance measure of the predictions:
In evaluating a model’s efficiency, as shown in Table 9, researchers 
tried different kinds of approaches to improve prediction and produce 
more precise results. Nevertheless, some studies did not include any 
performance measures, and some did not compare their work with 
other techniques. ML performance techniques can be evaluated using 
more than only one performance measurement to generate a more 
accurate prediction. 

Accuracy and F1-score have been demonstrated to be used extensively 
in the articles reviewed. Furthermore, most studies have employed a 
combination of Accuracy, AUC, F1-score, Precision, and Recall in 
evaluating their models. Some authors have recommended the Root 
Mean Squared Error (RMSE), Mean Squared Error (MSE), R-squared, 
Mean Average Error (MAE), and Mean Absolute Percentage Error 
(MAPE) as evaluation measures for predicting the best models. 
However, the accuracy of the results also depends on the precision 
of the input data (Belesiotis et al., 2018). Moreover, the model’s 
accuracy would improve if the data had more features (Rocca et al., 
2016). Feature selection, which is also known as attribute selection, 
is an essential process to prediction analysis, especially in real OD 
that consists of a large number of attributes (Basir et al., 2018). 
This study showed significant results on the manipulation of a bio-
inspired algorithm to reduce feature sets. In conclusion, it is difficult 
to nominate the best performance measure because every technique 
has its context and novelty.

CRQs3 - Characteristics of open datasets:
It is equally important to see the state-of-the-art open datasets that 
have been used in ML prediction during the entire SLR process. 
Figure 7 depicts the distribution of the types of datasets investigated, 
with the transportation dataset accounting for 19 percent (15) of the 
total publications. 

The spectrums of the transportation dataset were traffic congestion, 
traffic accidents, traffic flow forecast, primary delay in urban 
railways, electric vehicles, car-sharing system, parking slot or street 
parking, etc. With 13 publications (16%), the second highest was 
Environmental, Climate, and Meteorology. Specifically, meteorology, 
air temperature, weather forecasting, climate, soil, rainfall, typhoons, 
floods, air pollution, forestry, and wildland were all covered by the 
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datasets. Then, with 10 publications (12%), the data collected as part 
of scientific research, such as biology, disease, chemistry, medicines, 
drugs, life sciences, and healthcare and biomedicine, came in third 
place. A total of 9 publications (11%) were on energy relating to any 
energy or power consumption, solar, and water data. Not so different 
from the energy dataset, the Commerce, Finance, and Economy 
category had 8 publications (10%) consisting of purchasing behaviour, 
customer income level, food export, price trend of stocks, finance, and 
credit risk prediction data. In comparison to the other types of datasets, 
the lowest were Crime and Citizen Safety, Social and Community, 
Entertainment and Tourism, Entity-profiling, Geospatial, Education, 
and Smart Home.

Figure 7

Proportions of the Dataset Types Employed in the Studies (n = 81)

16

Geospatial, Education, and Smart Home.

Figure 7

Proportions of the Dataset Types Employed in the Studies (n = 81)

Table 12

Performance Measure Trend for OD in ML Approach Prediction

Ref. Techniques ACC F1 PR RE AUC MSE RMSE R MAE MAPE
Belesiotis et al.
(2018)

Regression, Ridge 
Regression, RF, SVR

X

Mohammad et al.
(2019)

LR, ANN, RF X

Pradhan et al.
(2019)

NB, DT, RF, KNN, 
Multinomial LR 

X

Rocca et al. 
(2016)

Multiple LR, RF X

Pohjankukka et al.
(2016)

KNN, MLP, Ridge 
Regression

X

Goel et al. (2019) SVM, NB, KNN, NN X
Stolfi et al. (2020) Polynomial Fitting, F, 

KM, KP, SP, TS
X

Lee et al. (2020) LSTM X
Zou and Ergan
(2018)

HMM X

Bhatia et al. 
(2018)

NB, LR, RF, SVM, 
NN (MLP)

X

Piscopo et al.
(2017)

RF X

Wu et al. (2017) DT X
Lee and Park
(2017)

ANN X
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The type of the datasets and their characteristics were examined from 
the datasets that had been cited in the articles and several more detailed 
dataset examples presented in Table 10. However, some articles did 
not cite their datasets due to information sensitivity and security to 
the data providers or stakeholders, such as data provided by the police 
department or data related to personal data protection. The types of 
datasets and their characteristics with respect to the source of the 
dataset can provide information to the researchers and practitioners in 
selecting and evaluating the prediction models that are most suited for 
their studies. Correct and reliable features of datasets will increase the 
accuracy of prediction and performance. 

Limited experimental data and unknown relevant variables may pose 
a challenge in some studies. As a result, OD can give useful data to 
confirm current data, increase the applicability of indicator variables, 
and improve forecast validity (Noymanee et al., 2017). Another 
challenge of OD from the government portal is an imbalance dataset, 
which leads to low prediction performance (Zainudin & Shamsuddin, 
2016).
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CRQs4 – Potential challenges and research gap highlighted in existing 
studies

In the present study, there are some challenges and research gaps that 
have been highlighted in the publications to improve the proposed 
model by increasing the accuracy performance. Further research may 
be required to fill in the research gap. 

Most of the articles suggested exploring and evaluating other state-
of-the-art ML models that could potentially improve the prediction 
models. The performance of DNN was compared to other approaches, 
such as the Convolutional Neural Network (CNN) feature extraction 
and the Recurrent Convolutional Neural Network (RCNN), which 
have been used to improve prediction accuracy (Chen et al., 2019). 
A combination of DL and ML prediction has also been carried out 
on the Persian sentiment analysis by using Tweet OD for the first 
time; however, future research should include new features to the 
classification to boost the performance (Nezhad & Deihimi, 2020). 
Research shows that manipulating of the bio-inspired search algorithms 
can be considered in OD for future studies, as it can demonstrate the 
best setup for more promising results (Basir et al., 2018). Nevertheless, 
some researchers also showed that conventional ML models could 
work better than DL techniques over time. Therefore, it is a research 
opportunity to explore other options and select the better ML or DL 
model in prediction (Awan et al., 2020). 

Another key point raised by the researchers is the need to include 
more OD variances in the prediction model, which could help the 
performance index (Chen et al., 2018). Some studies also found that 
incorporating data from multiple dataset sources improved prediction 
model accuracy significantly (Belesiotis et al., 2018). Existing 
researchers mentioned that the robust prediction model development 
was heavily influenced by the accuracy and reliability of datasets to be 
trained in the model. Moreover, it was noted that certain predictions 
were not accurate due to the instability of the database itself in which 
the dataset would require more features and sufficient data (Jai et 
al., 2014). In addition, another research gap is the study on how the 
various databases impacted the prediction results (Devyatkin et al., 
2018). The literature also proposed that training and test datasets can 
be prepared without shuffling, such as using the 2011–2015 training 
data and the 2016 data as the test dataset (Prabakar et al., 2018). One 
more limitation reported is the training data, which did not have a 
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“contextual consistency” feature and thus affected the accuracy of the 
results.

UGC and SNSs, such as Twitter, Facebook, Instagram, and many 
more, have been widely identified as OD platforms, and the current 
study remarked that Twitter might not be the best medium for detecting 
event features of the dataset. Likely, combining multiple datasets 
(e.g., Facebook posts or web searches) will improve predictions and 
framework flexibility. Tweets referenced as features in predictive 
models can be further investigated using network characteristics. The 
use of these networks’ structural characteristics will minimise “noise” 
in the data used for prediction and provide better-quality evidence for 
future events (Awan et al., 2020). In addition, videos are shared on 
social media as it is one of the OD platforms that provide comments/
reviews features to predict effective video concepts by using ML 
prediction such as the Self-Organising Map (SOM) technique (Thabet 
et al., 2021).

Furthermore, the models predict whether the same strategy can be 
generalised and applied for different contexts or tasks of research 
that should be done, which is termed as Transfer Learning (Cocca et 
al., 2020). Extension research could be performed, for example, by 
transferring the proposed prototype of predictors by creating a mobile 
app or by implementing parallel graphics processing unit-based (GPU) 
computation on the prediction for millions of users and billions of 
items (Stolfi et al., 2020; Pradhan et al., 2019). New services can also 
be developed by implementing big data processing techniques with 
more data streams combined (Lee & Park, 2017).

Limitations and Threats to Validity

Limitations: The findings of this study are based on the following 
limitations: (a) publications that were available after December 2020 
were not accounted for; (b) results may be subjected to the limitations of 
each digital library’s automated search engines (IEEE, ScienceDirect, 
ACM, Springer, and Scopus); (c) only studies published in English 
have been chosen; and (d) a single researcher carried out the whole 
review.

Threats to validity: In this study, papers that did not have OD, 
prediction, and ML in their titles, keywords, and abstracts were 
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excluded. Because of its sensitivity, certain datasets were found to 
be missing in the literature and were referred to as grey literature, 
such as scientific reports. This may also lead to a negative connotation 
that SLR could not discuss such important datasets and their scientific 
contribution.

CONCLUSIONS AND AREAS FOR FURTHER RESEARCH

The goal of this research was to present the findings of the SLR 
that highlight the enormous potential of OD sources in ML-based 
prediction to influence users’ attitudes and behaviours. In practice, 
ML prediction tools can help anticipate outcomes for various fields in 
decision-making. This study could help organisations, practitioners, 
and researchers by giving information on current trends in the OD 
setting and mapping studies based on the RQs designed, the most 
recent developments, and the necessity for additional research based 
on the information supplied. In this systematic review, 81 selected 
articles published from January 2019 to December 2020 were 
examined. The trends showed that ML prediction techniques using 
OD increased since 2014 and are expected to be more in the coming 
years. Since the opening of datasets by the governments, 26 countries 
worldwide actively participated and published articles in this research 
area. However, in the analysis, some countries, including Malaysia, 
are not ranked in any one of the top countries contributing to the 
ML prediction using OD. This is probably due to a lack of skills and 
competencies among government agencies in Malaysia on leveraging 
AI and ML. This can be investigated in more detail and is worthy of 
being identified as one of the implementation gaps.

Various state-of-the-art ML techniques applied in several sub-fields in 
the prediction model have been mentioned in these existing studies, 
but all of them are still in their infancy. Each ML technique has its 
state-of-the-art or novelty. Most of the studies reviewed compared 
the proposed prediction model with other techniques to achieve the 
most accurate and robust model. There are more than ten performance 
measures that can be used for ML techniques in this scope of research. 

However, choosing the optimal performance measurement is difficult 
because each technique has its own context and novelty. As the 
accuracy of the prediction model depends on the accuracy of the 
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input datasets, this study researched the characteristics of the open 
datasets that have been used in the literature and their impact on the 
accuracy of the results. The type of datasets and their characteristics 
in comparison with the source of the datasets can provide information 
to the researchers and practitioners in selecting and evaluating which 
prediction models should be proposed in their studies. In addition, the 
articles have identified various challenges and research gaps that must 
be addressed to improve the proposed prediction model in terms of 
increasing the accuracy of the results. 

This study has certain flaws as not much research has been done on 
this area, and thus more research is needed to fill in the research gap. 
Consideration of a longer publication period of reviewed journals 
may show a more prominent trend in ML prediction using OD.
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