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ABSTRACT

The strategy surrounding the extraction of a number of mixed variables 
is examined in this paper in building a model for Linear Discriminant 
Analysis (LDA). Two methods for extracting crucial variables from 
a dataset with categorical and continuous variables were employed, 
namely multiple correspondence analysis (MCA) and principal 
component analysis (PCA). However, in this case, direct use of either 
MCA or PCA on mixed variables was impossible due to restrictions 
on the structure of data that each method could handle. Therefore, this 
paper executed some adjustments including a strategy for managing 
mixed variables so that those mixed variables were equivalent in 
value. With this, both MCA and PCA could be performed on mixed 
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variables simultaneously. The variables following this strategy of 
extraction were then utilised in the construction of the LDA model 
before applying them to classify objects going forward. The suggested 
models using three real sets of medical data were then tested, where 
the results indicated that using a combination of MCA and PCA for 
extraction and LDA could reduce the model’s size. It had a positive 
effect on the model’s classification task and better performance since 
it led towards minimising the leave-one-out error rate. Accordingly, 
the models proposed in this paper, including the strategy that was 
adapted, were successful in presenting good results over the full LDA 
model. Regarding the indicators that were used to extract and to retain 
the variables in the model, cumulative variance explained (CVE), 
eigenvalue, and a non-significant shift in the CVE (constant change) 
could be considered a useful reference or guideline for practitioners 
experiencing similar issues in future.

Keywords: Classification, linear discriminant analysis, multiple 
correspondence analysis, mixed variables, principal component 
analysis.

INTRODUCTION

Linear discriminant analysis (LDA) is frequently favoured in 
classification problems when explanatory variables have multivariate 
normal distribution, and the populations share an identical or uniform 
covariance matrix (Nazman & Erbas, 2017). The model tends to work 
in this case, even though the population deviates from normality 
(Gyamfi et al., 2017). However, notwithstanding this strength or 
robustness, LDA commonly experiences notable challenges, either 
when the objects (n) size is restricted if compared to the size of the 
variables (p), or when comparing to a similar number, n and p (Bodnar 
et al., 2020). As such, a singular issue in the model may be evident 
(Tharwat et al., 2017), may induce instability in the model itself, may 
produce a poor quality of the constructed model (Swesi & Bakar, 
2019) or even worse, not possible to construct the model (An & Chen, 
2009). As a result, accurate classification is doubtful. 

On the other hand, the issue of managing such a condition could be 
overcome by altering the mathematical functions present in the LDA, 
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like easing or loosening its reliance on certain calculations when 
computing the inverse covariance matrix (Tarr et al., 2016). Despite 
this fact, limited research has addressed this possibility. A possible 
option in addressing this issue may include: (i) removing variables 
that are less informative in explaining the variations among the 
populations (variable selection); or (ii) mixing the initial variables 
by adopting a different approach in obtaining fewer new variables 
that have sufficient information (variable extraction) for classification 
purposes. Selecting variables is a reasonably straightforward method; 
nevertheless, it is sensitive of the correlation between the variables 
that may cause issues in the analysis, particularly with a vast number 
of variables (Zhang et al., 2017).

An alternative method, variable extraction, may address this issue. 
However, it requires a methodological approach in combining the 
initial variables to obtain the information considered important. 
Research examining the selection of variables and variable extraction 
in the area of classification has been carried out by numerous 
researchers, as reported in Peres and Fogliatto (2018), Ghosh and 
Shuvo (2019), as well as in AL-Jumaili (2020). However, the focus 
has been restricted to examining categorical or continuous variables 
only at one time. Therefore, it is important to explore the feasibility 
of variable extraction or varied types of data utilising LDA as the 
foundation in constructing the model. Currently, many problems tend 
to be associated with extracting enough data that are useful to merge 
or combine before constructing the LDA model.

Mixed-variable datasets are often unpredictable with various variable 
types, values, and structures. This challenge can be tackled either at 
data level or mathematical model level. The latter requires extra work 
but often preferred by most researchers. On the other hand, the former 
is much easier whereby pre-processing on data is often executed prior 
to complex analysis (Mohamed et al., 2018). 

The objective of this paper is to explore two extraction methods as a pre-
processing step prior to LDA, notably, multiple correspondence analysis 
(MCA), and principal component analysis (PCA) in order to extract 
important variables from the initial datasets, which are: (i) mixtures or 
combinations of continuous variables and categorical variables; and (ii) 
existence of correlation problems among the measured variables. The 
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proposed strategy begins by manipulating the measured mixed variable 
data in order to allow the use of PCA and MCA prior to the construction 
of LDA. PCA standardises all continuous variables and rates binary 
variables as -1 and 1, while MCA discretises all continuous variables 
based on their average values. Then, the extracted components from 
PCA and MCA that are free from correlation problems are used to 
construct LDA for classification purposes.

The difficulties that emerge are: (i) to ascertain whether the information 
or data is useful in order to minimise the proportion of errors in 
classifying objects via the LDA model; (ii) to place the process of 
variable extractions, model construction, and model evaluation in an 
appropriate way; and (iii) to ascertain if the combination of variable 
extractions and LDA is useful. The next part of this paper provides 
an outline of the notion surrounding LDA and variable extractions, 
which is then followed by outlining the suggested strategy in this 
approach. The results of the investigation are then presented, and 
lastly, the findings of this study are presented in the last section.

LINEAR DISCRIMINANT ANALYSIS WITH VARIABLE 
EXTRACTIONS

The main motivation of this paper is to adapt a strategy of variable 
extractions so that PCA and MCA can be implemented simultaneously 
when facing with a mixture of variables, in order to select only important 
variables to be included in the LDA model. The variables following the 
strategy of extractions are then used as input in building the classifier 
through LDA. Therefore, the variable extraction is a primordial step for 
automatic diagnosis, and the performance of the LDA model depends 
on the strategy used and the quality of the extracted variables. 

Linear Discriminant Analysis 

Let us first signify two groups as π1 and π2, whereby each group has: (i) 
a multivariate normal distribution with means, μ1 and μ2, respectively; 
and (ii) a uniform covariance matrix, Σ. The multivariate normal 
distribution of π1 is N(μ1, Σ) and π2 is N(μ2, Σ); thus the relative 
sizes of the posterior probabilities of the vector of measurements 
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(x) membership group, πi, mentioned in Anderson (1958) can be 
expressed as in Equation 1:

	

(1)

Next, given the assumption that the costs attributed to misclassification 
are the same, the upcoming object is assigned to π1 if the relative is 
greater than 1, or else assigned to π2. Some algebraic on Equation 2 
gives:

	 (2)

where Equation 2 is recognised as an LDA function (Anderson, 1958).

However, from a practical perspective, the unknown parameters μ1, μ2  
and Σ are often substituted with the maximum likelihood estimators 
obtained from a randomly selected sample. A study by Alheety (2020) 
suggested that estimators are dependent on the sample relating to 
prior information. However, the estimation given by Equation 2 is 
deteriorated, especially when the variables are correlated, as shown 
by Krzanowski (1975; 1977). The larger the collinearity between 
the variables, the greater the loss in precision will be (Chandan et 
al., 1998). Serious stability issues will also eventuate if the data 
are highly multicollinear (Prats-Montalbán et al., 2006). Another 
issue is that the developed algorithm should first extract continuous 
variables or categorical variables when dealing with mixed variables. 
The applications of either PCA or MCA on mixed variables are 
inappropriate in this case to be performed simultaneously. Therefore, 
some adjustments are needed, including a strategy for managing 
mixed or combined variables using PCA and MCA simultaneously.

Principal Component Analysis with LDA

In this section, PCA is used to transform a group of initially related 
variables, X = (x1, x2, … , xm), into linear combinations of a group of 
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lessened pair-wise uncorrelated variables called principal components, 
Z = (z1, z2, … , zk), via linear combinations of Z = aT X for k ≤ m for  
(Jolliffe, 1986). Here, aT is a matrix of eigenvalues, a = (a11, a22, … , 
akk), selected in giving a maximum variance of the elements of var(Z) 
= aTΣa condition to aT

i  ai = 1 and aT
i  ah, where i ≠ h. 

PCA has been recognised for perceiving higher multivariate 
dimensional data into a smaller dimension, for example, two dimension 
(2D). This approach is useful if there is an indication of redundancy 
(correlation) amongst the variables. As such, this suggests that the 
independent variables are either near-linearly or linearly reliant on one 
another (Artoni et al., 2018), which may be due to displaying similar 
information. Moreover, utilising PCA in classification has been proven 
workable in facial recognition problems by Barnouti et al. (2016) 
and Deshpande and Ravishhankar (2017), and has consequently 
become a notable option in simplifying data before constructing the 
classification model (i.e. Jamal et al., 2018; Li, 2017; Nasution et al., 
2018). The research undertaken by these scholars indicated that effort 
was focused on the application of PCA to reduce the range of variables 
prior to classification. Nevertheless, the majority of dialogue in these 
studies was restricted to continuous variables. Therefore, this research 
explores how PCA can be employed for mixed variables.

Multiple Correspondence Analysis with Classification 

To enhance the PCA method, MCA was initially developed between 
the early 1960s and late 1970s when the former method was unable to 
estimate optimum properties and offer compelling tools in depicting 
the hidden structure in a set of categorical variables (Hamid et al., 
2018). The initial creation in Guttman (1941) showed that the MCA 
method was noted as the PCA of qualitative or nominal variables. 
As highlighted by Josse and Husson (2016), MCA can be inferred 
as PCA using categorical data as found in survey-related studies, in 
which most of the information was categorical. Here, MCA projects q 
categorical data into a relatively smaller subspace (s), which accounts 
for the maximum variance of the categorical data (Kaminska et al., 
1999). Similar to PCA, the initial dimension describes the greatest 
variance in the data, while the second dimension depicts a maximum 
of the remaining variation and so forth (Blasius & Thiessen, 2000). 
The capability of MCA in simplifying multiple relationships between 
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categorical variables also helps scholars and other experts who are 
keen on performing classification activities and need to handle a vast 
range of variables (Das & Sun, 2016; Das et al., 2018; Sivasankaran 
& Balasubramanian, 2020).

Nonetheless, those experts or practitioners employing MCA will often 
experience issues such as the intricacy and shortage of data when 
examining numerous categorical variables at the same time (Mori et 
al., 2016). Therefore, the results would fail to be well understood, 
given the perception of numerous variables would be difficult to 
comprehend. The entire process of analysis would also become quite 
arduous and complicated in the situation where the data were sparse 
(Messaoud et al., 2007). However, one approach in preventing issues 
of this kind from eventuating is by using subsets or combining some 
(Mori et al., 2016), thereby providing an option in the selection 
process that is both rational and easily explained.

Moreover, it could assist in simplifying the structures that the analysis 
is trying to explain. According to Ali et al. (2018), a relatively low 
dimensional view via MCA could represent the categorical variables. 
Likewise, as highlighted by D’Enza and Greenacre (2012), MCA 
seeks to detect a lesser set of artificial dimensions through maximising 
the explained variability of the categorical data. Indeed, prior research 
has revealed that MCA is capable of dealing with categorical variables 
in trying to determine patterns and correlations among the data (see 
Das et al., 2018; Dungey et al., 2018; Zhang et al., 2017). Therefore, 
it is useful for experts who are keen to reduce the dimension of the 
data when faced with numerous categorical variables. However, at 
this stage, scant interest has been shown by scholars when examining 
mixed variables. The interest of this current research is towards 
adapting MCA to reduce the size of measured q categorical variables 
into s extracted components in relation to the LDA model.

Employing PCA or MCA will help in addressing classification issues 
quite simply, as PCA or MCA can be used to decrease the number 
of initial variables to fewer extracted components. In this way, the 
extracted components can be utilised to build the classification model. 
However, while this process may seem appropriate, consideration needs 
to be given on the selection of components to support the objective 
in building the model. PCA and MCA both extract components that 
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depict the unpredictability of the initial variables. Nonetheless, LDA 
requires sound and good discriminators to confirm that it functions 
optimally for future classification needs.

METHODOLOGY

This paper presents a strategy by manipulating two extraction methods, 
PCA and MCA, on mixed continuous and categorical variables aimed 
at revealing meaningful structures in multivariate data. The adapted 
strategy aimed to increase feasibility of implementing both PCA 
and MCA simultaneously on the mixed variables. Therefore, the 
construction of classifiers using a single model, LDA, with different 
types of variables beforehand could be implemented ideally. The 
constructed models were then tested on three medical datasets that 
have various types of variables for validation purposes.

Model Construction and Evaluation

Classification of data with numerous and mixed variables was 
undertaken in this study by employing three main processes: (i) 
extracting the variables utilising PCA or MCA; (ii) building the LDA 
model by employing the extracted components; and (iii) evaluating 
the built model by computing the misclassification rate and explaining 
the percentage of objects that were misclassified. Having the extracted 
Z = (z1, z2, … , zk) components from PCA and/or MCA, then the 
classification rule in Equation 3 is adjusted by:

	 (3)

where ẑ1 and ẑ2 are the estimated mean vectors of Z components in 
Group 1 and Group 2, respectively, and S-1

k  is the inverse of estimated 
uniform covariance matrix Z. The classification processes were 
organised in a leave-one-out manner upon which n-1 objects were 
utilised to extract the variables and to build the LDA model. Then, 
the built model was tested on the excluded objects. The leave-one-out 
was selected to prevent any bias on the built LDA model. Algorithm 1 
lists the details of the steps and processes that were carried out.
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Algorithm 1: Model Construction and Evaluation
Step 1: Prepare the data X for variable extraction using

1.1	 PCA: standardise all continuous variables using 
z-score and rated values of binary variables as either 
-1 or 1.

1.2	 MCA: for each value of continuous variable, do 

where i = 1, 2, …, n and j = 1, 2, …, p.

Step 2:  Omit one object from a sample (n), Xi.  

Step 3:  Perform PCA (and MCA) using the remaining n – 1 
objects (X-i) to extract  fewer Z components than the 
number of variables in X-i.

Step 4:  Estimate all parameters ẑ1,  ẑ2 and S-1
k  based on the 

extracted components Z produced in Step 3.

Step 5:  Construct LDA models as in Equation 3 based on the 
estimated parameters in Step 4. 

Step 6:  Estimate the group of the omitted object Xi from Step 2.

Step 7:  Compare the estimated group and the actual group of the 
omitted object. If there is a difference, count error as 1, 
otherwise count as 0.

 Step 8:  Repeat Steps 2–7 until all objects have been omitted in 
turn.

 Step 9:  Compute the error rate by the total number of error over 
the size of sample.

In summary, this paper recommends two LDA models: (i) one model 
that combines LDA with PCA (LDA+PCA); and (ii) one model that 
combines LDA and MCA (LDA+MCA). The LDA model involving 
all variables (full LDA model or original LDA model) is also depicted 
in determining if the recommended models are sound, acceptable, and 
can be adapted.
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Variable Extraction with Mixed Variables

As depicted in Algorithm 1, first, the measured mixed variables were 
manipulated accordingly to allow for the feasibility use of PCA and 
MCA, by following some practices earlier performed by Krzanowski 
(1975; 1977) and Mahat et al. (2007). This strategy aimed to avoid 
greater misleading in implementing both PCA and MCA. In PCA, 
the standardisation of continuous variables using z-score control 
range values of input variables, while setting the binary values as 
either -1 or 1 was simply to create dissimilarity among the values. 
Meanwhile, for MCA, categorical variables remained as they were 
but discretisation was performed on continuous variables as a way to 
transformed continuum values to categorical.

Next, PCA or MCA was employed to extract relevant information 
from sets of manipulated data, containing both continuous and 
categorical variables. The selection of extracted components was 
important in this case, given that it could influence the performance of 
the LDA model, and at the same time, the LDA model would be free 
from correlated components. In testing this aspect, the current study 
examined three indicators: (i) eigenvalue, (ii) cumulative variance 
explained (CVE), and (iii) constant change in the CVE, to confirm 
their effects on minimising the error rate.

This paper extracted the components with an eigenvalue of at least 1.0 
following Kaiser (1960). However, while the selection that was based 
on CVE was subjective, it was agreed to adopt it (Stevens, 2002) in 
order to extract the components with at least 70 percent and 80 percent 
of the variance explained. Moreover, while the eigenvalue might be 
quite inflexible, CVE could be fairly subjective. Therefore, this paper 
also set out to extract components as long as the incremental number 
of components offered no significant change regarding the CVE. 
Here, the difference in size needed to be smaller than unity. 

Medical Datasets

The models that were adapted, as suggested above, were tested on 
three real sets of medical data that had various variable types such as 
full and reduced sets of breast cancer and heart disease taken from 
Krzanowski (1975, 1980) and Mahat et al. (2007). Besides, these data 
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were reported to have great correlation among the variables, hence 
dealing with such threat is a must. The breast cancer dataset represented 
137 women diagnosed with breast cancer (tumours), 78 of the cases 
were benign (π1) and 59 were malignant (π2). Regarding the variables, 
the original data consisted of 15 variables, where six were ordinal 
variables each with a score ranging between 0 and 10, four nominal 
variables with three conditions each, three binary variables, and two 
continuous variables. Data manipulation was made to fit the proposed 
models where the ordinal variables were treated as a continuous form, 
while the nominal variables were converted to binary values giving 
a fresh set of data consisting of eleven binary variables and eight 
continuous variables. The lessened breast cancer data were attained 
by converting the initial nominal and ordinal variables into binary 
and continuous types; consequently, yielding six binary variables and 
seven continuous variables. The heart data represented 270 patients, 
consisting of 16 variables, of which 120 patients were diagnosed with 
heart disease (π1) and the remainder were void of heart illness (π2). 
The initial dataset consisted of three nominal variables (three states), 
three binary, and seven continuous variables. The nominal variables 
were treated as binary variables, resulting in a fresh dataset consisting 
of nine binary variables and seven continuous variables. Generalising 
this strategy to a categorical variable with multistate would not be a 
problem as one could create q-1 dummy binary variables, where q 
represented the category state of the respective categorical variable.

Since the measured variables were mixed, the extracted components 
that contained high loading would be more from the continuous 
variables as compared to the binary variables, given that the applications 
of PCA on the mixed variables were not compatible to be performed 
simultaneously. This was also due to issues relating to domination 
and variability of the continuous variables being significantly higher 
as compared to the binary variables (Hamid et al., 2017). The same 
problem was faced by Vyas and Kumaranayake (2006) who derived 
the indices of socio-economic status involving mixed variables issues 
(i.e. binary variables derived from categorical variables), whereby 
PCA was employed to diminish the dimensionality of the data. Once 
again, the issue of variability and domination of the continuous 
variables surfaced, indicating that PCA was inappropriate to be used 
for mixed data types.
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RESULTS AND ANALYSIS

Two classification models were proposed by merging (i) LDA and 
PCA and (ii) LDA and MCA on mixed variables simultaneously, 
with the new strategy mentioned. The extraction methods in selecting 
the components used three indicators: (i) eigenvalue, (ii) CVE, and 
(iii) insignificant change in the CVE (constant change). Following 
the proposed models, this study investigated the capability of the 
suggested strategy in managing a number of mixed variables for the 
purpose of overcoming classification problems.

Figure 1 illustrates the approach that was adopted to investigate the 
eigenvalues of PCA for the three medical datasets. As can be seen in 
the figure, the eigenvalues decreased as the number of components 
grew. The performance here showed the significance of PCA, in 
which the initial extracted component signified the maximum 
variance in the data, trailed by the second extracted component, and 
so forth. Nevertheless, it is hard to observe or distinguish an ‘elbow’ 
from the lines, which presented challenges in confirming the optimal 
number of extracted components. The benchmark used to extract 
the components with an eigenvalue of at least 1.0 produced eight 
extracted components for the full breast cancer data and five extracted 
components for both reduced breast cancer and heart datasets.

Figure 1 

Eigenvalues Against the Number of Components in PCA
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Figures 2 to 4 show the results of examining CVE in PCA and MCA 
for all medical datasets. The curve representing the CVE in MCA can 
be seen in Figure 2 as being marginally higher as compared to the 
CVE curve in PCA for the initial ten extracted components. It can then 
be seen that both curves began to become nearer when more extracted 
components came into play. Figure 3 depicts a similar behaviour of 
the CVE by PCA and MCA for reduced breast cancer data. The gap 
seen among both curves was evident for the initial seven extracted 
components, with the curves becoming nearer once more components 
were extracted from the data. Lastly, Figure 4 shows the CVE for the 
heart dataset. It can be seen that the CVE in MCA was marginally 
higher as compared to the CVE in PCA for a majority of components 
extracted.

Figure 2

Cumulative Variance Explained in PCA and MCA for Full Breast 
Cancer Data
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Figure 3 

Cumulative Variance Explained in PCA and MCA for Reduced Breast 
Cancer Data

Figure 4 

Cumulative Variance Explained in PCA and MCA for Heart Data
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Reviewing the constant change in the CVE for all data as illustrated 
in Figures 5 to 7, this indicated the declining magnitude of change 
as the quantity of extracted components increased. This ‘monotonic 
decrement’ supported the CVE results, as shown in Figures 2 to 4. 
Figures 5 to 7 also demonstrate a minor difference between the results 
of PCA and MCA. It is shown that PCA and MCA were inclined to 
offer comparable results in extracting the components from the initial 
sets of data.

Figure 5

Constant Changes in CVE in PCA and MCA for Full Breast Cancer 
Data
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Figure 6

Constant Changes in CVE in PCA and MCA for Reduced Breast 
Cancer Data

Figure 7

Constant Changes in CVE in PCA and MCA for Heart Data

A summary of the performance of the suggested models based on 
the leave-one-out error rate is presented in Table 1. The table depicts 
the best choice regarding the number of components based on the 
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eigenvalue, CVE at 70 percent and 80 percent, and the constant change 
in the CVE for the three sets of data, namely heart data, reduced breast 
cancer (RBC) data, and full breast cancer (FBC) data. The respective 
leave-one-out error rate was calculated to measure the performance 
of the proposed models and included the performance of the full 
LDA model for the purpose of comparison. For the FBC dataset, the 
LDA model with all 19 measured variables (original LDA model) 
resulted in a value close to 10 (error rate = 0.07) that represented 
misclassified patients. On the other hand, better performance was seen 
in the proposed LDA+PCA model for all indicators that were used. 
Meanwhile, the suggested LDA+MCA model exhibited a near-perfect 
classification. Here, both of the proposed models demonstrated an 
improvement over the full LDA model (original model). Furthermore, 
the models that used constant change of CVE extracted the smallest 
number of components, possibly indicating that this indicator was 
reasonably better than other indicators. 

Likewise, the RBC dataset showed an error rate of 0.04 (six patients 
not classified correctly) depicted by using the full LDA model. In spite 
of that, the least chosen components were four and five, respectively, 
for the LDA+PCA and LDA+MCA models, which were far less 
than the full LDA model. These fewer variables successfully offered 
better performance on the classification result. The final dataset (heart 
data) showed that the full LDA model had an error rate of 0.08 (22 
patients were classified incorrectly) when using all 16 variables in 
constructing the LDA model. Nevertheless, the LDA models with 
extracted components using either PCA or MCA proved to be far 
superior, producing a smaller error rate for all indicators used.

Generally, the results obtained on the leave-one-out error rate 
revealed that the proposed LDA+PCA and LDA+MCA models were 
significantly enhanced as compared to the full LDA model. The 
models showed good achievement with fewer variables (components) 
at hand.
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Table 1

Results of LDA with Two Extraction Methods for All Three Real 
Medical Datasets

Classi-
fication 
models 

Extraction 
indicators

Full breast 
cancer data

Reduced breast 
cancer data Heart data

Number 
of select-
ed com-
ponents

Error 
rate

Number 
of select-
ed com-
ponents

Error 
rate

Number 
of select-
ed com-
ponents

Error 
rate

Full 
LDA
(original 
model)

-- 19 0.07 13 0.04 16 0.08

LDA + 
PCA

Eigenvalue 8 0.01 5 0.01 5 0.01

CVE 70% 8 0.01 6 0.01 8 0.00

CVE 80% 10 0.00 7 0.01 10 0.01

Constant 
change 5 0.00* 4 0.01* 3 0.00*

LDA + 
MCA

CVE 70% 7 0.00 5 0.01* 8 0.01

CVE 80% 9 0.00 6 0.01 9 0.01

Constant 
change 6 0.00* 5 0.01* 3 0.01*

* values with bold represent the best results 

CONCLUSION

In this paper, the use and application of variable extraction methods 
(i.e. PCA and MCA) have been demonstrated in solving problems 
associated with classification tasks. The methods of extraction were 
shown to offer a major decrease in the number of variables used, 
which is useful in constructing the LDA model. Furthermore, the 
findings of LDA using the two extraction methods (i.e. proposed 
models) for all datasets were better as compared to the original model 
(full LDA). Accordingly, this infers that PCA and MCA could both be 
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utilised as alternate solutions in reducing the number of continuous 
and categorical variables when addressing classification challenges, 
even when facing mixed variables.

Similarly, the indicators used in this paper provided a differing 
number of extracted components, although their performance in 
classifying was similar. The findings based on the results confirmed 
that using those three indicators could affect the performance of LDA 
and as such, was considered reliable. However, no indicator can be 
viewed as the best and therefore, the use of such indicators should 
be used cautiously in line with the objectives and requirements of the 
investigation as well as with the structure of the model. According to 
Krzanowski (1987), it is acceptable to subjectively select variables 
from the initial data used as long as the degree of variation maintained 
by the reduced components is satisfactory. As a whole, both models, 
as proposed in this paper, offer suitable options to be applied in 
practice for the classification purposes primarily once facing variables 
that are correlated. Moreover, the strategy adopted in handling mixed 
variables is appropriate in offering good classification outcomes. 
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