
 511

Journal of ICT, 20, No. 4 (October) 2021, pp: 511–539

How to cite this article:
Almogahed, A., & Omar, M. (2021). Refactoring techniques for improving software
quality: A practitioners’ perspectives. Journal of Information and Communication
Technology, 20(4), 511-539. https://doi.org/10.32890/jict2021.20.4.3

Refactoring Techniques for Improving Software Quality:
Practitioners’ Perspectives

1Abdullah Almogahed & 2Mazni Omar
1Department of Software Engineering, Taiz University,

Yemen
1&2School of Computing, Universiti Utara Malaysia,

Malaysia

abdullah.almogahed@outlook.com
mazni@uum.edu.my

Received: 30/8/2020 Revised: 12/1/2021 Accepted: 10/3/2021 Published: 27/9/2021

ABSTRACT

Refactoring is a critical task in software maintenance and is commonly
applied to improve system design or to cope with design defects.
There are 68 different types of refactoring techniques and each
technique has a particular purpose and effect. However, most prior
studies have selected refactoring techniques based on their common
use in academic research without obtaining evidence from the
software industry. This is a shortcoming that points to the existence
of a clear gap between academic research and the corresponding
industry practices. Therefore, to bridge this gap, this study identified
the most frequently used refactoring techniques, the commonly
used programming language, and methods of applying refactoring
techniques in the current practices of software refactoring among
software practitioners in the industry, by using an online survey.

http://e-journal.uum.edu.my/index.php/jict

JOURNAL OF INFORMATION AND
COMMUNICATION TECHNOLOGY

512

Journal of ICT, 20, No. 4 (October) 2021, pp: 511–539

The findings from the survey revealed the most used refactoring
techniques, programming language, and the methods of applying the
refactoring techniques. This study contributes toward the improvement
of software development practices by adding empirical evidence on
software refactoring used by software developers. The findings would
be beneficial for researchers to develop reference models and software
tools to guide the practitioners in using these refactoring techniques
based on their effect on software quality attributes to improve the
quality of the software systems as a whole.
Keywords: Exploratory study, software refactoring, survey,
refactoring techniques.

Introduction

The codes and associated documentation of software systems
always undergo modifications because of a problem or the necessity
for improvement (L’Erario & Thomazinho, 2020; Rajlich, 2014).
Therefore, software maintenance has become an integral component
of software development and management (Rehman et al., 2018; Sun
et al., 2015). The maintenance process includes the essential tasks
to preserve the integrity of the existing software system (Ghannem
et al., 2017). These modifications are incremental and aim to either
update some functionalities, correct some design flaws, or fix some
bugs (Ghannem et al., 2017; L’Erario & Thomazinho, 2020). These
software maintenance activities become more complex when the size
of the system and the number of requirements increase at any one time
(Ghannem et al., 2017). Another term usually associated with software
maintenance is software evolution (Godfrey & German, 2008; Rajlich,
2014). The term ‘evolution’ is defined as the “capability of software
products to be evolved to continue to serve their customers in a cost-
effective manner” (Ciraci & van den Broek, 2006; Cook et al., 2000).
Therefore, software evolution is a subset of software maintenance
activities. Software maintenance and evolution activities are inevitable
due to requests generated for improvements and change (L’Erario &
Thomazinho, 2020; Rajlich, 2014). Many studies have reported that
software maintenance and evolution activities represent more than
80 percent of the total software development costs (Alizadeh et al.,
2019; Fernández-Sáez et al., 2018; L’Erario & Thomazinho, 2020;
Ouni et al., 2016). It has also been shown that software developers

 513

Journal of ICT, 20, No. 4 (October) 2021, pp: 511–539

typically spend around 60 percent of their time to understand the
codes they are maintaining (Abid et al., 2020; Alizadeh et al., 2019).
With the evolution of the software industry resulting in the growth
and complexity of software day-by-day, software practitioners are
acknowledging the significance of good quality software (Malhotra &
Jain, 2019). Clearly, software developers need better ways to manage
and reduce the growing complexity of software systems and improve
their productivity.

Fortunately, the cost of software maintenance and evolution activities
can be significantly reduced by the software refactoring process
(Besker et al., 2018; Kaur & Singh, 2019; Mkaouer et al., 2014;
Ouni et al., 2016). Refactoring is considered as a standard solution,
which involves improving the design structure of the software while
preserving its functionality (Alizadeh et al., 2019). For this purpose,
68 basic types of refactoring techniques have been proposed and
categorized into six categories based on their similarity in purpose
(Fowler et al., 2002; Fowler & Beck, 2019). Each refactoring
technique comes with the motivation to use it and the explanation on
how to perform each technique (Elish & Alshayeb, 2011; Fowler et
al., 2002; Fowler & Beck, 2019; Rochimah et al., 2015).

Many studies have addressed the impact of different refactoring
techniques on software quality attributes. The findings reveal that the
refactoring techniques do not always improve all aspects of software
quality (Al-Dallal & Abdin, 2018; Almogahed et al., 2018; Almogahed
et al., 2019; Kaur & Singh, 2019). Different refactoring techniques
have a diverse (and sometimes opposite) impact on software quality
(Al-Dallal & Abdin, 2018; Almogahed et al., 2018; Almogahed et al.,
2019; Kaur & Singh, 2019). Therefore, there is no consensus among
researchers regarding the impact of the refactoring techniques on
software quality. The inconsistent or contradictory results concerning
the impact of refactoring techniques on software quality have become
challenges for developers when they use the refactoring techniques to
improve software quality. Chaparro et al. (2014) posited that assessing
the pros and cons of a refactoring technique is very challenging for
software developers and this becomes even more challenging when
one refactoring technique conflicts with another. Additionally,
Nyamawe et al. (2018) indicated that selecting the best refactoring
technique from some potential techniques to remove a design flaw

514

Journal of ICT, 20, No. 4 (October) 2021, pp: 511–539

is challenging for software developers. According to Nyamawe et al.
(2019), it is often challenging to determine which kind of refactoring
technique should be applied. In other words, it is very challenging for
software practitioners to select appropriate refactoring techniques to
improve software quality (Al-Dallal & Abdin, 2018; Almogahed et
al., 2018; Almogahed et al., 2019; Kaur & Singh, 2019). Evaluating
the pros and cons of each refactoring technique involves a great deal
of effort and time, and this in turn, leads to increased maintenance
costs. However, according to Kaur and Singh (2019), most of the
previous studies have not provided any valid justification when
choosing refactoring techniques. The issues of refactoring techniques
that software practitioners most or least frequently perform as part of
their daily maintenance tasks have been selected by very few studies
(Kaur & Singh, 2019). This observation indicates the gap between
refactoring techniques examined by academic researchers and
refactoring techniques actually applied by industry practitioners (Al-
Dallal & Abdin, 2018; Kaur & Singh, 2019). Therefore, it is suggested
for researchers to involve industry professionals when conducting a
survey to select the most frequently used refactoring activities (Al-
Dallal & Abdin, 2018; Kaur & Singh, 2019).

This study identifies the most frequent refactoring techniques applied
by software practitioners at present. In addition, it distinguishes the
commonly used programming language and methods of applying
refactoring techniques. For these purposes, an exploratory study was
conducted using the quantitative approach, i.e., an online survey,
to obtain insights from the practitioners on their current software
refactoring practices. The identification of the most frequently
used refactoring techniques by software practitioners would enable
researchers to focus on the techniques in their studies. In this way,
solutions to mitigate the challenges faced by software practitioners
in selecting appropriate refactoring techniques that can improve
the quality of software systems and eliminate design flaws can be
proposed. As a result, the effort and time spent by software practitioners
to assess the pros and cons of each refactoring technique can be
saved, which in turn, will reduce maintenance costs. In addition, the
common programming languages used for refactoring by software
practitioners can be identified. Researchers will therefore be able to
develop techniques and tools to apply automatically in refactoring
techniques based on the common programming languages.

 515

Journal of ICT, 20, No. 4 (October) 2021, pp: 511–539

The remainder of this paper is structured as follows. The Related
Works Section describes the literature review, the Methodology
Section explains the methodology used for the research, the Results
and Findings Section reports the results and findings, the Discussion
Section deliberates the findings, and lastly, the Conclusion Section
concludes and recommends future research.

RELATED WORKS

The term ‘refactoring’ was first coined by Opdyke in his PhD thesis
in the context of object-oriented programming (Opdyke, 1992).
Refactoring has been defined as “the process of changing a software
system in such a way that it does not alter the external behavior of
the code and yet, improves its internal structure” (Fowler et al., 2002;
Fowler & Beck, 2019). In other words, refactoring is a process that
makes a change in the internal structure of the software in order to
make it simpler to understand and cheaper to modify without altering
the software’s behavior (Al-Dallal, 2015; Choi et al., 2018; Kaur &
Singh, 2017). This means the internal structure of a software can
be improved by refactoring without creating any new functionality
(Alves et al., 2016). This strategy can be achieved by restructuring
classes, methods, and variables, mainly to assist in modifications and
extensions in the future (Elish & Alshayeb, 2011; Fowler et al., 2002;
Fowler & Beck, 2019). This restructuring is utilized to enhance several
software qualities attributes, including extensibility, maintainability,
reusability, and understandability (Fowler et al., 2002; Fowler &
Beck, 2019; Wang et al., 2015). Fowler et al. (2002) proposed 68
refactoring techniques in their refactoring catalog grouped into six
categories as shown in Table 1.

516

Journal of ICT, 20, No. 4 (October) 2021, pp: 511–539

Table 1

Categories of Refactoring with Their Relevant Techniques

Category Refactoring Techniques

Composing Methods
1)	 Extract Method 2) Inline Method 3)
Replace Temp with Query 4) Replace Method
with Method Object 5) Substitute Algorithm
6) Extract Variable 7) Inline Temp 8) Split
Temporary Variable 8) Remove Assignments
to Parameters 9) Introduce Explaining
Variable.

Simplifying
Conditional
Expressions

1)	 Decompose Conditional 2) Replace
Conditional with Polymorphism 3) Introduce
Null Object 4) Introduce Assertion 5)
Consolidate Conditional Expression 6)
Consolidate Duplicate Conditional Fragments
7) Remove Control Flag 8) Replace Nested
Conditional with Guard Clauses.

Moving Features
between Objects

1)	 Move Method 2) Move Field 3) Extract Class
4) Inline Class 5) Hide Delegate 6) Remove
Middleman 7) Introduce Foreign Method 8)
Introduce Local Extension.

Organizing Data

1)	 Replace Data Value with Object 2) Replace
Array with Object 3) Duplicate Observed
Data 4) Change Bidirectional Association
to Unidirectional 5) Encapsulate Field 6)
Encapsulate Collection 7) Replace Type
Code with Class 8) Replace Type Code
with Subclasses 9) Replace Type Code with
State/Strategy 10) Self Encapsulate Field
11) Change Value to Reference 12) Change
Reference to Value 13) Change Unidirectional
Association to Bidirectional 14) Replace
Magic Number with Symbolic Constant 15)
Replace Subclass with Fields 16) Replace
Record with Data Class.

(continued)

 517

Journal of ICT, 20, No. 4 (October) 2021, pp: 511–539

Dealing with
Generalization

1)	 Pull Up Method 2) Push Down Method 3)
Push Down Field 4) Extract Subclass 5)
Extract Superclass 6) Extract Interface 7)
Collapse Hierarchy 8) Form Template Method
9) Replace Inheritance with Delegation 10)
Replace Delegation with Inheritance 11) Pull
Up Field 12) Pull Up Constructor Body

Simplifying Method
Calls

1) Rename Method 2) Remove Parameter 3)
Replace Parameter with Explicit Methods 4)
Preserve Whole Object 5) Replace Parameter
with Method 6) Introduce Parameter Object
7) Remove Setting Method 8) Add Parameter
9) Separate Query from Modifier 10)
Parameterize Method 11) Hide Method 12)
Replace Constructor with Factory Method
13) Replace Error Code with Exception 14)
Replace Exception with Test 15) Encapsulate
Downcast.

The refactoring techniques in the ‘Composing Methods’ category
are used to package codes effectively. Typically, large methods cause
most of the problems as they often include numerous information
that makes them complex and hard to understand. The refactoring
techniques in the ‘Composing Methods’ category streamline methods,
eliminate code duplication, and facilitate future improvements. The
refactoring techniques in the ‘Simplifying Conditional Expressions’
category are used to simplify complicated conditional statements.
The refactoring techniques in the ‘Moving Features between Objects’
category are used to distribute functionalities in a perfect way among
different classes in case these functionalities are not distributed in an
appropriate way. These refactoring techniques demonstrate ways to
move functionalities in a safe way between classes and generate new
classes. The refactoring techniques in the ‘Organizing Data’ category
help to deal with data in an easy way. In other words, they help to
handle data and hide information from public access. The refactoring
techniques in the ‘Dealing with Generalization’ category deal with
moving methods around the inheritance hierarchy. They are mainly
attached to moving functionalities around a hierarchy of the class
inheritance, producing new classes, and replacing inheritance among
classes with a delegation and vice versa. The refactoring techniques

Category Refactoring Techniques

518

Journal of ICT, 20, No. 4 (October) 2021, pp: 511–539

in the ‘Simplifying Method Calls’ category help to make the calling
of the methods simpler to understand. In turn, this leads to simplifying
the interaction among classes.

Regarding the most commonly used refactoring techniques, a few prior
studies have discussed the selection of the refactoring techniques. Kim
et al. (2014) studied the benefits and challenges of refactoring at the
Microsoft company by using three complemental methods (interview,
survey, and quantitative analysis) for the version history of Windows
7. The overall results showed that the benefits of refactoring included
an improvement of the quality, while its challenges were costs and
risks. Additionally, Kim et al. (2014) identified seven refactoring
techniques as shown in Table 2 that are commonly used by the software
practitioners at the Microsoft company. Ouni et al. (2015) claimed that
there are 11 commonly used refactoring techniques in the practices as
shown in Table 2. Al-Dallal (2015) conducted a systematic literature
review (SLR) and identified eight refactoring techniques commonly
used by the reviewed studies. Mariani and Vergilio (2017) performed
an SLR and detected 14 refactoring techniques commonly used. Al-
Dallal and Abdin (2018) carried out an SLR and determined the ten
most used refactoring techniques in the studies they reviewed. Kaur
and Singh (2019) conducted a systematic mapping study (SMS) of
previous works and reported the ten most used refactoring techniques.
Lacerda et al. (2020) carried out an SLR and reported the top commonly
used refactoring techniques in the previous studies reviewed. Table
2 presents the most frequently used refactoring techniques based
on the previous studies (Al-Dallal, 2015; Al-Dallal & Abdin, 2018;
Kaur & Singh, 2019; Kim et al., 2014; Lacerda et al., 2020; Mariani
& Vergilio, 2017; Ouni et al., 2015) and the refactoring coverage in
percentage based on these studies. The coverage is calculated base on
Equation 1 as follows:

Coverage= (No.of studies reporting the technique)/
(the total number of studies)*

100

(1)

 519

Journal of ICT, 20, No. 4 (October) 2021, pp: 511–539

Ta
bl

e
2

Th
e

M
os

t F
re

qu
en

tly
 U

se
d

Re
fa

ct
or

in
g

Te
ch

ni
qu

es
 B

as
ed

 o
n

Pr
ev

io
us

 S
tu

di
es

N
o.

C
om

m
on

 re
fa

ct
or

in
g

te
ch

ni
qu

es
C

ov
er

ag
e

SL
R

 b
y

La
ce

rd
a

et

al
. (

20
20

)

SM
S

by
K

au
r a

nd

Si
ng

h
(2

01
9)

SL
R

 b
y

A
l-D

al
la

l
an

d
A

bd
in

(2

01
8)

SL
R

 b
y

M
ar

ia
ni

 a
nd

Ve

rg
ili

o
(2

01
7)

O
un

i
et

 a
l.

(2
01

5)

SL
R

 b
y

A
l-D

al
la

l
(2

01
5)

K
im

et

 a
l.

(2
01

4)

1
A

dd
 P

ar
am

et
er

 1
4.

3%
x

x
x


x

x
x

2
C

ol
la

ps
e

H
ie

ra
rc

hy
 1

4.
3%

x
x

x


x
x

x
3

En
ca

ps
ul

at
e

Fi
el

d
 4

2.
9%

x
x




x
x



4
Ex

tra
ct

 C
la

ss
 7

1.
4%

x








x
5

Ex
tra

ct
 S

ub
cl

as
s

 2
8.

6%
x

x


x


x
x

6
Ex

tra
ct

 S
up

er
cl

as
s

 5
7%

x


x





x
7

Ex
tra

ct
 M

et
ho

d
10

0%











8
In

lin
e

C
la

ss
 4

2.
9%

x
x

x





x
9

In
lin

e
M

et
ho

d
 2

8.
6%


x

x
x

x
x



10
In

tro
du

ce
 N

ul
l O

bj
ec

t
 1

4.
3%

x
x


x

x
x

x
11

M
ov

e
Fi

el
d

 8
5.

7%









x

12
M

ov
e

M
et

ho
d

 8
5.

7%









x

(c
on

tin
ue

d)

520

Journal of ICT, 20, No. 4 (October) 2021, pp: 511–539

13
Pu

ll
U

p
Fi

el
d

 7
1.

4%



x




x


14
Pu

sh
 D

ow
n

Fi
el

d
 7

1.
4%




x



x



15
Pu

ll
U

p
M

et
ho

d
71

.4
%

x








x
16

Pu
sh

 D
ow

n
M

et
ho

d
 4

2.
8%

x


x



x

x
17

R
en

am
e

M
et

ho
d

 5
7%




x


x
x



18
R

em
ov

e
Pa

ra
m

et
er

 4
2.

9%


x
x

x
x




19
R

ep
la

ce
 M

et
ho

d
w

ith

M
et

ho
d

O
bj

ec
t

 1
4.

3%
x

x


x
x

x
x

20
R

ep
la

ce
 C

on
di

tio
na

l
w

ith
 P

ol
ym

or
ph

is
m

28
.6

%


x


x
x

x
x

N
ot

e.
 

: A
 re

fa
ct

or
in

g
te

ch
ni

qu
e

w
as

 re
po

rt
ed

 b
y

a
st

ud
y.

X:
 A

 re
fa

ct
or

in
g

te
ch

ni
qu

e
w

as
 n

ot
 re

po
rt

ed
 b

y
a

st
ud

y.

N
o.

C
om

m
on

 re
fa

ct
or

in
g

te
ch

ni
qu

es
C

ov
er

ag
e

SL
R

 b
y

La
ce

rd
a

et

al
. (

20
20

)

SM
S

by
K

au
r a

nd

Si
ng

h
(2

01
9)

SL
R

 b
y

A
l-D

al
la

l
an

d
A

bd
in

(2

01
8)

SL
R

 b
y

M
ar

ia
ni

 a
nd

Ve

rg
ili

o
(2

01
7)

O
un

i
et

 a
l.

(2
01

5)

SL
R

 b
y

A
l-D

al
la

l
(2

01
5)

K
im

et

 a
l.

(2
01

4)

 521

Journal of ICT, 20, No. 4 (October) 2021, pp: 511–539

It is noted that only the Extract Method had the highest consensus
between academics (Al Dallal, 2015; Al-Dallal & Abdin, 2018;
Kaur & Singh, 2019; Lacerda et al., 2020; Mariani & Vergilio, 2017;
Ouni et al., 2015) industry research (Kim et al., 2014) with 100
percent coverage; while full consensus was missing on the other 19
refactoring techniques as shown in Table 2. This observation showed
the gap between academics and industrial research on the refactoring
techniques studied by academic researchers and those currently being
applied by industry practitioners.

Since there are many different refactoring techniques, each of which
has a specific purpose and effect (positive, negative, ineffective) on
software quality, it is very challenging for software practitioners
to evaluate the pros and cons of each refactoring technique and
choose suitable refactoring techniques to improve software quality
or remove design flaws (Chaparro et al., 2014; Nyamawe et al.,
2019). The selection of improper refactoring techniques can lead to
deterioration in the quality of software systems, which in turn, will
increase maintenance costs. Empirical investigations are required on
the relationship between each refactoring technique individually and
the software quality attributes (Al-Dallal & Abdin, 2018; Almogahed
et al., 2018; 2019; Kaur & Singh, 2019). Therefore, the refactoring
techniques that should be investigated for their effects on software
quality are those that are the most commonly used by software
practitioners. Consequently, researchers can propose solutions, such
as a reference model based on the results of these investigations. Such
solutions can serve as a guideline to enable the software practitioners
to have a better understanding of the impact of each refactoring
technique on the software quality attributes and enable them to select
a suitable refactoring technique to make improvements (Almogahed
et al., 2018; 2019). Ultimately, efforts taken and time spent by
software practitioners in assessing and choosing the right refactoring
techniques can be saved, which in turn, will reduce maintenance costs.

522

Journal of ICT, 20, No. 4 (October) 2021, pp: 511–539

METHODOLOGY

This section describes the exploratory study (using survey) conducted
among software practitioners. The discussion in this section starts
with the questionnaire design, and continues with the sampling,
questionnaire testing, data collection, and response rate.

Questionnaire Design

The questionnaire was designed based on the guideline proposed
by Gay et al. (2012). According to Gay et al. (2012), it is important
that the questionnaire is attractive and brief, contains only items that
relate to the study’s objectives, collects demographic information as
necessary, focuses on items based on single topics or ideas, defines
and explains ambiguous terms, words the questions clearly, avoids
leading questions, organizes items from general to specific, and keeps
items and response options together. Moreover, careful attention must
be given to the length of the questionnaire, as well as the length,
content, order, and type of individual questions. The questionnaire
comprised two sections: (i) demographic data; and (ii) the current
refactoring techniques practiced. The questionnaire was designed by
using Google Form (http://www.googledocs.com), consisting of 18
questions organized into two main sections. The following subsections
describe the two main sections of the questionnaire.

Demographic Information

It is quite common to begin the questionnaire by gathering information
related to the demographic data to identify and understand the
respondents’ profile. This demographic section included respondents’
details, such as their job function in the organization, their years of
experience, and their familiarity with refactoring techniques. The
questions in this section were of two types: i) in the form of a checkbox,
whereby the respondents could choose one or multiple answers; and
ii) in the form of a direct question for which the respondents could
type their answer.

 523

Journal of ICT, 20, No. 4 (October) 2021, pp: 511–539

The Current Practices of Refactoring Techniques

This section aims to identify the current practices related to the most
frequently used refactoring techniques among software practitioners.
Precisely, there were seven questions relating to the application of
refactoring techniques. These questions were in the form of check-box
questions as well as open-ended questions for which the responses
must be typed. Table 3 presents the questions and types of response.

Table 3

The Questions and Types of Response to Current Practices for
Refactoring

No. Questions Types of Response

1 The methods used to apply the refactoring
techniques. Checkbox

2 Asking to mention other methods if they
have not been included in the methods

presented.
Open-ended

3 Used programming languages. Checkbox

4
Asking to report other programming

languages if they have not been included in
programming languages presented.

Open-ended

5
Respondents’ opinions as to whether or not
they agree on the 20 most commonly used
refactoring techniques shown in Table 2.

Yes/No

6 Identifying other than the 20 refactoring
techniques used in practice and not

mentioned in the questionnaire.
Open-ended

7 Requiring respondents to indicate whether
they have any difficulties with the use of

refactoring techniques and, if any, to specify
those difficulties.

Open-ended

Sampling

The target population for this study was the software practitioners
who apply the software refactoring techniques. The main constraint in
selecting these software practitioners was that they had a tight work
schedule and could not be reached easily. Due to this limitation and the

524

Journal of ICT, 20, No. 4 (October) 2021, pp: 511–539

fact that not all software practitioners were using software refactoring
techniques, this study used non-probability sampling, i.e., purposive
(judgmental) sampling, which is considered appropriate when only
a limited number or category of people can be approached (Sekaran
& Bougie, 2016). It involves the selection of a unique sample with
specific features important for the study (Nardi, 2003). The sample
comprised software practitioners in Malaysia, Saudi Arabia, and
Yemen. Furthermore, the sample could definitely meet the objectives
of the study since they are chosen based on specific characteristics
(Zikmund et al., 2010).

The sample software practitioners were obtained by contacting software
practitioners working in private and public companies. The target
respondents were the persons responsible for system maintenance,
system renovation, system re-development (enhancement), or system
development (new development). The sample encompassed 103
software practitioners, which were considered sufficient for this
study. This corresponded to Roscoe’s (1975) rule of thumb, whereby
a sufficient sample size is between 30 and 500. The minimum sample
size of 30 is acceptable for statistical analysis (Fisher, 2007; Sekaran,
2003).

Questionnaire Testing

The purpose of this questionnaire testing is for face and content validity
of the questions. The pre-testing of content validity was to ensure that
the correct quality data were provided in the questionnaire, while face
validity was used to test whether or not the instrument measures what
it was designed to measure. The pre-test identified whether the survey
had any problems, whether it was too difficult to understand, whether
the wording of the questions was ambiguous, or whether it could lead
to biased responses.

The questionnaire was subjected to two rounds of analysis and
revision, to ensure not only that the contents were detailed and
relevant, but also that the design was user-friendly, the instructions
were straightforward, and the language was comprehensible. These
components were tested before the questionnaire was distributed to
the selected sample. Ikart (2019) reported that the minimum number of
experts to review a questionnaire is two or three. In this study, the pre-

 525

Journal of ICT, 20, No. 4 (October) 2021, pp: 511–539

test was administered to six respondents drawn from the population
of interest. After the review of the questionnaire, slight changes were
made to some of the questions to enhance understandability and
readability. Table 4 summarizes the questionnaire pre-testing carried
out in two rounds by the six respondents, three in each round.

Table 4

Questionnaire Pre-Testing

Round ID Field of Specialization Results/Outcomes
First
Round

A1 MSc in Information Technology The study overview
was modified to include
the background and
accurately explain
the purpose of the
questionnaire.

B1 MSc in Information Technology Some questions
have been altered
and updated in the
demographics section

C1 BSc Software Engineering Adding some items
to the programming
language used and
methods of performing
the refactoring
techniques.

Second
Round

A2 BSc Software Engineering It was all clear, easy,
and understandable.

B2 BSc Software Engineering It was all clear, easy,
and understandable.

C2 BSc in Information Technology It was all clear, easy,
and understandable.

Data Collection and Response Rate

The main purpose of data collection is to gather data from the
representative sample. The online survey created by Google Form was
used for the data collection. The questionnaire link was sent online
to target respondents through emails and social media networks. The
respondents were given eight weeks to fill in the online questionnaire.
Table 5 indicates the total number of questionnaires that were

526

Journal of ICT, 20, No. 4 (October) 2021, pp: 511–539

distributed to the respondents and their response rate. The
unreturned questionnaires were labeled as lost, while the incomplete
questionnaires were considered as rejected due to incomplete answers
and excluded from data analysis. The completed questionnaires were
labeled as usable and included in data analysis. Based on Table 5,
the response rate for this study was 31.07 percent. This denoted that
the completed questionnaires could be analyzed since Saunders et
al. (2015) recommended that the reasonable average response rate is
between 30.0 percent – 40.0 percent.

Table 5

Response Rate of the Questionnaire

Description Software
Practitioners

Rate (%)

Sent 103 100.0%
Lost 61 59.22%
Received 42 40.78%
Usable/ Complete online survey 32 31.07%
Rejected/ Incomplete online survey 4 3.88%
Not familiar with refactoring 6 5.8%

Software practitioners are very busy individuals and cannot be
easily accessed. Indeed, not all software practitioners use software
refactoring techniques because the refactoring process is not a simple
task and involves high costs and huge risks. Due to these limitations,
the number of software practitioners who are familiar with refactoring
techniques was low (32 out of 103). However, the average response
rate (31.07 %) was acceptable for statistical analysis (Fisher, 2007;
Saunders et al., 2015; Sekaran, 2003).

 527

Journal of ICT, 20, No. 4 (October) 2021, pp: 511–539

RESULTS AND FINDINGS

This section discusses the findings obtained from the exploratory
study. The first section presents the demographic and background
information on the participating software practitioners. The second
section describes the current practices of refactoring techniques.

Demographic Data

The demographic data were presented in terms of the respondents’
core team role, main team assignment, and years of experience.
Table 6 depicts that a majority of the respondents were software
testers (37.5%), followed by software developers (34.4%), project
managers (12.5%), requirement analysts (6.3%), software architects
(3.1%), and networking (3.1%).

Table 6

Core Team Role in Organization

Core Team Role Frequency Percentage
Software Tester 12 37.5%
Software Developer 11 34.4%
Project Manager 4 12.5%
Requirement Analyst 2 6.3%
Software Architect 1 3.1%
Networking 1 3.1%
All of the above 1 3.1%
Total 32 100.0%

Regarding their main team assignment as shown in Table 7, most of the
respondents were assigned to system maintenance (37.5%), followed
by system - new development (34.4%), system renovation (12.5%),
system re-development (9.4%), and network engineering (3.1%).

528

Journal of ICT, 20, No. 4 (October) 2021, pp: 511–539

Table 7

Main Team Assignment in Organization

Main Team Assignment Frequency Percentage
System maintenance 12 37.5%
System - new development 11 34.4%
System renovation (enhancement) 4 12.5%
System re-development 3 9.4%
Network engineering 1 3.1%
All of the above 1 3.1%
Total 32 100.0%

Table 8 portrays information relating to the respondents’ work
experience. Most of the respondents (46.9%) had a range of 5 to 10
years of work experience, while 37.5 percent had work experience
between 11 and 15 years, followed by 12.5 percent having work
experience between three and five years. Only a few (3.1%) had a
very long work experience, at more than 15 years.

Table 8

Work Experience

Experience Frequency Percentage
5–10 years 15 46.9%
11–15 years 12 37.5%
3–5 years 4 12.5%
More than 15 years 1 3.1%
Total 32 100.0%

This indicated that most of the software practitioners were
responsible for software refactoring as they had work experience with
systems maintenance, new system development, renovation, and re-
development.

 529

Journal of ICT, 20, No. 4 (October) 2021, pp: 511–539

Current Practices of Refactoring Techniques

This section describes the survey findings related to the methods of
applying refactoring techniques, the programming languages used,
and the most frequently used refactoring techniques as of current.

Regarding the methods of applying the refactoring techniques, Table
9 reveals that most of the software practitioners (63.3%) used Eclipse
Integrated Development Environment (IDE) to automatically apply
the refactoring techniques, whilst 20 percent utilized other automatic
tools, such as IntelliJ IDEA and RefactorIt tools. On the other hand,
10 percent of the software practitioners applied the refactoring
techniques manually and 6.7 percent used semi-automatic methods.

Table 9

Methods of Applying the Refactoring Techniques

Method Frequency Percentage
Automatic using Eclipse IDE 19 63.3%
Automatic using other tools 6 20%
Manual 3 10%
Semi-automatic 2 6.7%
Total 30 100.0%

Regarding the programming languages used for refactoring, some of
the respondents used more than one programming language (Table
10). The majority of the software practitioners (96.7%) applied Java.
This was followed by C# (13.3%), C++ (10.0%), Python (10.0%),
JavaScript (3.3%), HTML (3.3%), VB.Net (3.3%), and ASP.Net
(3.3%).

530

Journal of ICT, 20, No. 4 (October) 2021, pp: 511–539

Table 10

Programming Languages Used for Refactoring

Programming Language Number Percentage of Cases
Java 29 96.7%
C++ 3 10.0%
C# 4 13.3%
Python 3 10.0%
JavaScript 1 3.3%
HTML 1 3.3%
VB.Net 1 3.3%
ASP.Net 1 3.3%
Total 42 139.9%

Note. *percentage of cases is used to describe the data because it
shows the percentage of the number of respondents who chose each
item (it is appropriate for multi-responses question)

These findings indicated that Java was the most frequently used
programming language for the refactoring techniques.

Regarding the most frequently used refactoring techniques currently
used among the software practitioners, a list of 68 refactoring techniques
categorized into six categories as shown in Table 1 was presented to
the respondents. Additionally, a list of the 20 most used refactoring
techniques in research and practice based on comprehensive literature
reviews as portrayed in Table 2 was showed to the respondents.

Then, the respondents were asked whether they agreed or disagreed,
based on their current use of the refactoring techniques, on the
refactoring techniques included in the list of the 20 commonly used
refactoring techniques. A ‘Yes’ answer referred to the agreement
that the refactoring technique was commonly used in their current
practice; while a ‘No’ answer meant the refactoring technique was not
commonly used in their current practices. Table 11 shows the results
obtained from the respondents.

 531

Journal of ICT, 20, No. 4 (October) 2021, pp: 511–539

(continued)

Table 11

Voting of the Respondents on the Most Frequently Used Refactoring
Techniques in their Current Practices

No. Refactoring
Technique

Yes No Total

Yes/
Agreement
Percentage

No/
Disagreement

Percentage
1 Add Parameter 16 16 32 50.0% 50.0%

2 Collapse
Hierarchy 7 25 32 21.9% 78.1%

3 Encapsulate
Field 30 2 32 93.75% 6.25%

4 Extract Class 29 3 32 90.6% 9.4%
5 Extract Subclass 29 3 32 90.6% 9.4%

6 Extract
Superclass 20 12 32 62.5% 37.5%

7 Extract Method 28 4 32 87.5% 12.5%
8 Inline Class 17 14 31 54.8% 45.2%
9 Inline Method 18 13 31 58.1% 41.9%

10 Introduce Null
Object 4 26 30 13.3% 86.7%

11 Move Field 26 4 30 86.7% 13.3%
12 Move Method 27 4 31 87.1% 12.9%
13 Pull Up Field 29 1 30 96.7% 3.3%

14 Push Down
Field 28 2 30 93.3% 6.7%

15 Pull Up Method 29 1 30 96.7% 3.3%

16 Push Down
Method 29 1 30 96.7% 3.3%

17 Rename Method 30 2 32 93.75% 6.25%

18 Remove
Parameter 13 18 31 41.9% 58.1%

19 Replace Method
with Method
Object

3 28 31 9.68% 90.32%

532

Journal of ICT, 20, No. 4 (October) 2021, pp: 511–539

20 Replace
Conditional with
Polymorphism

4 27 31 12.9% 87.1%

Note. Highlighted rows refer to refactoring techniques that have received a
low rate of agreement (below 50%).

In addition, the respondents were asked to specify other refactoring
techniques they were using in their current practices that were not
included in the list of the 20 frequently used refactoring techniques.
The findings revealed that only one respondent (3.1%) specified two
refactoring techniques (Transform Parameters and Convert Abstract
Class to Interface) that were not in Fowler’s (2002) catalog.

These findings clearly indicated the most frequently used refactoring
techniques in current practices. 15 refactoring techniques obtained a
high agreement rate (greater than or equal to 50%). However, five
refactoring techniques obtained a low agreement rate (below 50%),
as highlighted in Table 11, due to the lack of opportunities to apply
them: 1) Remove Parameter (41.9%); 2) Collapse Hierarchy (21.9%);
3) Introduce Null Object (13.3%); 4) Replace Method with Method
Object (9.68%); and 5) Replace Conditional with Polymorphism
(12.9%). Overall, it is recommended that researchers focus on these
15 most used refactoring techniques to study and produce more
effective solutions for the industry practitioners.

DISCUSSION

Refactoring is one of the fastest-growing, if not the fastest-growing area
in software engineering research, due to its strategic importance in the
process of improving and evolving software quality, which in turn, can
reduce maintenance costs. However, most academic research have not
explored the challenges that software practitioners face in refactoring
software. Researchers have selected refactoring techniques and
methods applicable to them subjectively, or on the basis of literature
review, without obtaining evidence from the software industry. As a
result, the existing gap between academic research and the software

No. Refactoring
Technique

Yes No Total

Yes/
Agreement
Percentage

No/
Disagreement

Percentage

 533

Journal of ICT, 20, No. 4 (October) 2021, pp: 511–539

industry prevents the software industry practitioners from exploiting
the benefits of well-researched refactoring techniques. Therefore,
this study bridges this gap by exploring the most applied refactoring
techniques, the programming languages used, and the methods used
to apply refactoring techniques in current practices among software
practitioners.

The findings revealed that 15 refactoring techniques as shown in
Table 11 are commonly applied among the software practitioners.
The logic behind applying the Extract Method is to easily understand
the method, as overly long methods make it extremely difficult to
understand – and even more difficult to change. The Inline Method is
utilized when the method body is more obvious than the method itself.
The Extract Method and Inline Method are commonly employed
as they simplify methods, remove duplication of codes, and create
opportunities for new improvements. The Extract Class is used when
a class has many responsibilities that make it hard to understand. It is
commonly applied as it helps to maintain adherence to the principle
of single responsibility, therefore making the class more obvious
and understandable. Inline Class is normally used when a class does
almost nothing and is not responsible for anything, and no additional
responsibilities are planned. The Move Method or Move Field is
utilized when a method or field is used more in another class than
in its own class. The Move Method and Move Field are commonly
used to reduce dependence between classes by moving the method
or field from the source class to the target class. The reason for
applying Encapsulate Field is that it hides the data and restricts the
accessibility of the data, therefore improving the security of software.
The Add Parameter is employed if the method has insufficient data
to execute certain actions. The Rename Method is utilized when the
method name does not illustrate what the method is doing. The Add
Parameter and Rename Method are normally used to make method
calls simpler and easier to understand. This, in turn, streamlines the
interaction interfaces between classes. The Extract Subclass, Extract
Superclass, Pull Up Method, Push Down Method, and Push Down
Field are refactoring techniques that deal with generalization and
move methods/fields around the inheritance hierarchy. They are
mainly attached to moving functionalities around a hierarchy of the
class inheritance, producing new classes, and replacing inheritance
among classes with a delegation and vice versa. As a result, they make
the inheritance hierarchy more organized and understandable.

534

Journal of ICT, 20, No. 4 (October) 2021, pp: 511–539

On the other hand, different programming languages are used in
the refactoring process as presented in Table 10. However, the Java
programming language is the most used in the refactoring process
in current practices. This because Java is the most commercially
important and a recent object-oriented language, and the most
widely used platform by industry and academia. In addition, different
methods have been used to perform the refactoring techniques as
shown in Table 9. Automatically using the Eclipse IDE method is the
most common method. Eclipse IDE is one of the most popular IDEs
that supports automated refactoring and is a widely used refactoring
tool. It is, however, up to the software developers to find and know
the refactoring technique to apply. In other words, Eclipse IDE does
not provide full automation to identify opportunities for the use
of refactoring techniques or full automation to perform common
refactoring techniques.

The stockholders can benefit from the findings obtained from this
study in the improvement of the software refactoring process that takes
into consideration the most commonly used refactoring techniques in
current practices. This will contribute to overcoming challenges faced
by software practitioners.

CONCLUSION

This study addressed the issue of industry practitioners not being
involved or considered in previous studies on refactoring techniques.
This exploratory study using the online survey method was conducted
among software practitioners to identify the most frequently used
refactoring techniques, the programming language commonly used, and
methods of applying the refactoring techniques in the current practices
of software refactoring. The findings revealed the 15 most commonly
used refactoring techniques in current practices. Additionally, Java
was the most commonly used programming language (96.7%) in
software development and refactoring. Automatically using Eclipse
IDE was the most common method (63.3%) to apply the refactoring
techniques.

 535

Journal of ICT, 20, No. 4 (October) 2021, pp: 511–539

This study provides evidence from the industry related to the current
practices of refactoring and will be beneficial for academicians and
the industry. Researchers can investigate the effect of the identified
refactoring techniques individually, or in combination, on the software
quality attributes to produce more productive results for the software
industry. Additionally, it is recommended that reference models
using the identified refactoring techniques be developed to guide the
software developers to select suitable refactoring techniques based
on their effect on software quality attributes. Moreover, via these
empirical results, researchers can develop techniques and software
tools that can automatically identify opportunities of these common
refactoring techniques, thus applying them more efficiently.

Future research can conduct empirical investigations on the impact
of the 15 commonly used refactoring techniques on internal quality
attributes, such as abstraction, cohesion, coupling, complexity,
encapsulation, and messaging, and the estimated external quality
attributes, for instance effectiveness, reusability, understandability, and
security, to identify the pros and cons of each refactoring technique.

ACKNOWLEDGMENT

The authors would like to gratefully thank all the participants of this
study for their help and cooperation.

REFERENCES

Abid, C., Alizadeh, V., Kessentini, M., Ferreira, N., & Dig, D.
(2020). 30 years of software refactoring research: A systematic
literature review. IEEE Transactions on Software Engineering,
1(1), 1–24.

Al-Dallal, J. (2015). Identifying refactoring opportunities in object-
oriented code: A systematic literature review. Information and
Software Technology, 58, 231–249. https://doi.org/10.1016/j.
infsof.2014.08.002

536

Journal of ICT, 20, No. 4 (October) 2021, pp: 511–539

Al-Dallal, J., & Abdin, A. (2018). Empirical evaluation of the impact of
object-oriented code refactoring on quality attributes: A systematic
literature review. IEEE Transactions on Software Engineering,
44(1), 44–69. https://doi.org/10.1109/TSE.2017.2658573

Alizadeh, V., Kessentini, M., Mkaouer, W., Ocinneide, M., Ouni,
A., & Cai, Y. (2019). Interactive and dynamic multi-objective
software refactoring recommendations. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated
Software. 1–30. IEEE Computer Society.

Almogahed, A., Omar, M., & Zakaria, N. H. (2018, July). Impact
of software refactoring on software quality in the industrial
environment: A review of empirical studies. In Proceedings of
Knowledge Management International Conference (KMICe),
25 –27 July 2018. Miri Sarawak, Malaysia.

Almogahed, A., Omar, M., & Zakaria, N. H. (2019). Categorization
refactoring techniques based on their effect on software quality
attributes. International Journal of Innovative Technology and
Exploring Engineering (IJITEE), 8(8S), 439–445.

Alves, E. L. G., Massoni, T., Duarte, P., & Machado, D. L. (2016). Test
coverage of impacted code elements for detecting refactoring
faults: An exploratory study. Journal of Systems and Software,
0, 1–16. https://doi.org/10.1016/j.jss.2016.02.001

Besker, T., Martini, A., & Bosch, J. (2018). Managing architectural
technical debt: A unified model and systematic literature
review. Journal of Systems and Software, 135, 1–16.

Chaparro, O., Bavota, G., Marcus, A., & Penta, M. Di. (2014,
September). On the impact of refactoring operations on code
quality metrics. In 2014 IEEE International Conference on
Software Maintenance and Evolution (pp. 456–460). https://
doi.org/10.1109/ICSME.2014.73

Choi, E., Fujiwara, K., Yoshida, N., & Hayashi, S. (2018). A survey
of refactoring detection techniques based on change history
analysis. arXiv preprint arXiv:1808.02320.

Ciraci, S., & van den Broek, P. (2006, January). Evolvability as a
quality attribute of software. In The International ERCIM
Workshop on Software Evolution (pp. 29–31).

Cook, S., Ji, H., & Harrison, R. (2000). Software evolution and
software evolvability. University of Reading, UK. 1–12.

Elish, K. O., & Alshayeb, M. (2011). A classification of refactoring
methods based on software quality attributes. Arabian Journal

 537

Journal of ICT, 20, No. 4 (October) 2021, pp: 511–539

for Science and Engineering, 36(7), 1253–1267. https://doi.
org/10.1007/s13369-011-0117-x

Fernández-Sáez, A. M., Chaudron, M. R., & Genero, M. (2018).
An industrial case study on the use of UML in software
maintenance and its perceived benefits and hurdles. Empirical
Software Engineering, 23(6), 1–65.

Fisher, C. M. (2007). Researching and writing a dissertation: A
guidebook for business students. England: Prentice Hall.

Fowler, M., Beck, K. (2019). Refactoring: Improving the design of
existing code (2nd ed.). Addison-Wesley Professional. https://
doi.org/10.1007/3-540-45672-4_31

Fowler, M., Beck, K., Brant, J., Opdyke, W., & Roberts, D. (2002).
Refactoring: Improving the design of existing code (1st ed.).
Addison-Wesley Professional.

Gay, L. R., Mills, G. E., & Airasian, P. (2012). Educational research:
Competencies for analysis and application (10th ed.). Pearson.

Ghannem, A., Kessentini, M., Hamdi, M. S. S., & Boussaidi, G.
El. (2017). Model refactoring by example: A multi‐objective
search-based software engineering approach. Journal of
Software: Evolution and Process, 30(4), e1916. https://doi.
org/10.1002/smr.1916

Godfrey, M. W., & German, D. M. (2008, September). The past,
present, and future of software evolution. In 2008 Frontiers of
Software Maintenance (pp. 129–138).

Ikart, E. M. (2019). Survey questionnaire survey pretesting method:
An evaluation of survey questionnaire via expert reviews
technique. Asian Journal of Social Science Studies, 4(2), 1–17.
https://doi.org/10.20849/ajsss.v4i2.565

Kaur, G., & Singh, B. (2017, June). Improving the quality of software
by refactoring. In 2017 International Conference on Intelligent
Computing and Control Systems (ICICCS) (pp. 185–191).
IEEE.

Kaur, S., & Singh, P. (2019). How does object-oriented code
refactoring influence software quality? Research landscape
and challenges. Journal of Systems and Software, 157, 110394.
https://doi.org/10.1016/j.jss.2019.110394

Kim, M., Zimmermann, T., & Nagappan, N. (2014). An empirical
study of refactoring challenges and benefits at Microsoft. IEEE
Transactions on Software Engineering, 40(7), 633–649. https://
doi.org/10.1109/TSE.2014.2318734

538

Journal of ICT, 20, No. 4 (October) 2021, pp: 511–539

L’Erario, A., & Thomazinho, H. C. S. (2020). An approach to software
maintenance: A case study. International Journal of Software
Engineering and Knowledge Engineering, 30(5), 603–630.
https://doi.org/10.1142/S0218194020500217

Lacerda, G., Petrillo, F., Pimenta, M., & Gaël, Y. (2020). Code smells
and refactoring: A tertiary systematic review of challenges and
observations. Journal of Systems and Software, 167, 110610.
https://doi.org/10.1016/j.jss.2020.110610

Malhotra, R., & Jain, J. (2019, March). Analysis of refactoring
effect on software quality of object-oriented. In International
Conference on Innovative Computing and Communications (pp.
197–212). Springer Singapore. https://doi.org/10.1007/978-
981-13-2354-6

Mariani, T., & Vergilio, S. R. (2017). A systematic review on search-
based refactoring. Information and Software Technology, 83,
14–34. https://doi.org/10.1016/j.infsof.2016.11.009

Mkaouer, W., Kessentini, M., Bechikh, S., Deb, K., & Cinnéide,
M. Ó. (2014, September). Recommendation system for
software refactoring using innovation and interactive
dynamic optimization. In Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering
(pp. 331–336).

Nardi, P. M. (2003). Doing survey research: A guide to quantitative
methods. Boston: Pearson Education.

Nyamawe, A. S., Liu, H., Niu, Z., Wang, W., & Niu, N. (2018).
Recommending refactoring solutions based on traceability and
code metrics. IEEE Access, 4(c), 49460–49475. https://doi.
org/10.1109/ACCESS.2018.2868990.

Nyamawe, A. S., Liu, H., Niu, N., Umer, Q., & Niu, Z. (2019,
September). Automated recommendation of software
refactorings based on feature requests. In 2019 IEEE 27th
International Requirements Engineering Conference (RE) (pp.
187–198). IEEE. https://doi.org/10.1109/RE.2019.00029

Opdyke, W. F. (1992). Refactoring object-oriented frameworks.
(Doctoral dissertation, University of Illinois).

Ouni, A., Kessentini, M., Sahraoui, H., Cinnéide, M. Ó., Deb, K.,
& Inoue, K. (2015, February). A multi-objective refactoring
approach to introduce design patterns and fix anti-patterns.
In First North American Search Based Software Engineering
Symposium (NASBASE) (pp. 1–16).

 539

Journal of ICT, 20, No. 4 (October) 2021, pp: 511–539

Ouni, A., Kessentini, M., Sahraoui, H., Inoue, K., & Deb, K. (2016).
Multi-criteria code refactoring using search-based software
engineering: An industrial case study. ACM Transactions on
Software Engineering and Methodology (TOSEM), 25(3), 1–53.

Rajlich, V. (2014, May). Software evolution and maintenance. In
Proceedings of the on Future of Software Engineering (FOSE)
(pp. 133–144). ACM.

Rehman, F., Maqbool, B., Riaz, M. Q., Qamar, U., & Abbas, M.
(2018, April). Scrum software maintenance model: Efficient
software maintenance in agile methodology. In 2018 21st Saudi
Computer Society National Computer Conference (NCC) (pp.
1–5). IEEE.

Rochimah, S., Arifiani, S., & Insanittaqwa, V. F. (2015). Non-source
code refactoring: A systematic literature review. International
Journal of Software Engineering and Its Applications, 9(6),
197–214. https://doi.org/10.14257/ijseia.2015.9.6.19

Roscoe, J. T. (1975). Fundamental research statistics for the
behavioral sciences. Holt.

Saunders, M., Lewis, P., & Thornhill, A. (2015). Research methods
for business students. Pearson Education Limited.

Sekaran, U. (2003). Research methods for business (4th ed.). John
Wiley

Sekaran, U., & Bougie, R. (2016). Research methods for business: A
skill building approach (7th ed.). John Wiley & Sons Ltd.

Sun, X., Li, B., Leung, H., Li, B., & Li, Y. (2015). MSR4SM: Using topic
models to effectively mining software repositories for software
maintenance tasks. Information and Software Technology, 66,
1–12. https://doi.org/10.1016/j.infsof.2015.05.003

Wang, H., Kessentini, M., Grosky, W., & Meddeb, H. (2015, October).
On the use of time series and search based software engineering
for refactoring recommendation. In Proceedings of the 7th
International Conference on Management of computational
and collective intElligence in Digital EcoSystems (pp. 35–42).
ACM.

Zikmund, W. G., Babin, B. J., Carr, J. C., & Griffin, M. (2010).
Business research methods. (8th ed.). South-Western: Cengage
Learning.

