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ABSTRACT

Wireless multipath clustering is an important area in channel 
modeling, and an accurate channel model can lead to a reliable 
wireless environment. Finding the best technique in clustering wireless 
multipath is still challenging due to the radio channels’ time-variant 
characteristics. Several clustering techniques have been developed 
that offer an improved performance but only consider one or two 
parameters of the multipath components. This study improved the 
K-PowerMeans technique by incorporating weights or loads based on 
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the principal component analysis and utilizing the Minkowski distance 
metric to replace the Euclidean distance. K-PowerMeans is one of 
the several methods in clustering wireless propagation multipaths 
and has been widely studied. This improved clustering technique was 
applied to the indoor datasets generated from the COST 2100 channel 
Model and considered the multipath components’ angular domains 
and their delay. The Jaccard index was used to determine the new 
method’s accuracy performance. The results showed a significant 
improvement in the clustering of the developed algorithm than the 
standard K-PowerMeans.

Keywords: Channel model, Minkowski distance, multipath clustering, 
principal component analysis, radio wave propagation. 

INTRODUCTION

Channel modeling has been of great importance in mobile 
communications, especially in system simulations and evaluations. An 
accurate channel model is necessary for any wireless communication 
system to ensure good performance evaluation and a reliable system 
design. The main objective of channel modeling is to characterize the 
multipath components (MPCs) in different wireless environments, 
and there are two methodologies involved – clustered and non-
clustered structure modeling (He et al., 2017). The non-clustered 
model characterizes the channel using the individual MPCs and has 
already been utilized for a long time (Chong et al., 2005; He et al., 
2015; Wang et al., 2012).

For clustered structure modeling, MPCs are grouped into clusters 
where the intra-and inter-cluster statistics are being characterized 
for parameters, such as delay, number, position, and angular spreads. 
Much attention has been on the clustering of wireless multipaths by the 
research community in the past two decades. Cluster-based channel 
modeling has been the basis of many channel models nowadays, such 
as the European Cooperation in Science and Technology (COST) 
259, COST 2100, 3GPP Spatial Channel Model, and the European 
Wireless World Initiative New Radio (WINNER) (He et al., 2017).
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Accurate channel models are necessary if the goal is to achieve 
a reliable communication and maximum data rate, especially for 
wireless multiple-input multiple-output (MIMO) systems. To develop 
an accurate channel model, one must characterize those MPCs 
properly, and the clustered structure offers a significant advantage 
in achieving this. Many studies have ventured into finding the best 
way or method to group a radio channel’s MPC accurately. However, 
there are still some challenges in terms of the automatic clustering 
techniques’ accuracy performance because the clustering algorithm 
should consider all the real-world MPCs’ attributes. Continuous 
improvement on how to accurately cluster MPC has been very evident 
in the studies conducted for the past two decades. Nonetheless, due 
to the time-variant characteristics of the radio channels, there is still a 
need to develop new clustering techniques that can group the wireless 
multipaths more precisely. Some clustering algorithms use weights or 
loads to their datasets to improve the clustering performance such as 
in the studies of Gu (2016), Huang et al. (2018), Chen et al. (2019), 
and Khan et al. (2020); however, further exploration on other methods 
are still needed.

Being one of the well-known clustering methods, K-PowerMeans 
(KPM) is also used in this study but is applied to the indoor datasets 
generated from the COST 2100 Channel Model (C2CM). The objective 
of this study is to improve the KPM’s performance by developing a 
new clustering technique based on KPM’s basic framework that offers 
higher accuracy in clustering wireless multipaths. The contributions 
of this study are the incorporation of weights to each dimension of 
the dataset based on the principal component analysis (PCA) and 
the utilization of the Minkowski distance as the distance metric. 
Minkowski distance has been used in various studies for optimization 
such as in Chouikhi et al. (2017), Xu et al. (2019), Khaldi et al. (2020), 
and Singh and Jayaram (2020).

BACKGROUND AND RELATED STUDIES

The demand for a broader bandwidth in some wireless communication 
systems such as in fourth generation (of cellular communications) 
(4G), fifth generation (5G), and MIMO systems are now increasing. 
Through the utilization of a cluster-based channel model, a wider 
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bandwidth requirement can be attained. If a cluster-based channel 
model is desired, parameterization of clusters’ positions, number, 
delay, and angular spreads is essential, and this can be done through 
clustering of MPCs.

A cluster can be defined as a group of propagation multipaths 
exhibiting identical properties. Two types of multipath clustering 
techniques have already been introduced: manual (visual inspection 
of data) or automatic, and some are even a combination of manual 
and automatic. In the past, visual inspection has been widely used 
(Laurila et al., 2002; Toeltsch et al., 2002; Vuokko et al., 2005; Yu et 
al., 2005). However, manual inspection has limitations in grouping 
high-dimensional data. Due to this, automatic clustering has been 
developed for better channel modeling. Unfortunately, developing 
a more accurate and much efficient clustering technique is still 
challenging and in need of more research. Some of these algorithms 
are K-Means, Variational Gaussian Mixture Model (GMM), 
K-PowerMeans (KPM) framework, Ant Colony Clustering (ACC), 
Kernel Power Density (KPD)-based algorithm, and Kurtosis Measure 
(KuM)-based algorithm.

One of the most popular methods is K-Means. K-Means algorithm is 
a hard partitional approach that directly divides data objects into some 
pre-specified number of clusters (Xu & Wunsch, 2005). Typically, 
K-Means is utilized with a Euclidean metric to determine the distance 
between points and cluster centers, making it easy to determine 
spherical or ball-shaped clusters in the data. Although it is a popular 
method, initialization of the number of clusters is needed in K-Means. 
To solve this problem, an improvement was made, thus paving the way 
to the introduction of K-PowerMeans in various studies (Gustafson et 
al., 2014; Hanpinitsak et al., 2017; Li et al., Mota et al., 2013; Zhang, 
2018). The KPM algorithm incorporates the power of MPCs, which 
makes it different from K-Means. 

In the study of Mota et al. (2013), they utilized KPM with a different 
initialization procedure to cluster synthetic data generated from the 
Saleh-Valenzuela (SV) model. By considering the various parameters 
such as delay, azimuth, and power, it was found out that Xie-Beni 
(XB) and D53 (Dunn’s) indices presented the best results with almost 
equal performances. In the study of Gustafson et al. (2014), the KPM 
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algorithm was used by taking the multipath component distance as 
a distance metric in parameter space as being applied in the 60 GHz 
Channel Model. It was discovered that the cluster peak power variation 
around the mean could be appropriately modeled using a log-normal 
distribution. In another study, Hanpinitsak et al. (2017) used the KPM 
framework to cluster data from the MIMO channel indoor environment 
at 11 GHz. The geometry of the scattering points (SPs) measured from 
the ray tracer was exploited and used by the KPM framework for 
clustering. The results indicated that the proposed method had higher 
performance than the conventional KPM in terms of characterization 
of the channel and had less complexity. Recently, Li et al. (2018) also 
employed KPM for MPCs clustering, space alternating generalized 
expectation-maximization (SAGE) algorithm to estimate MPCs, and 
multipath component distance-based algorithm for tracking. This new 
method was called the hybrid clustering approach. Using the MIMO 
channel model for the subway station scenario, this novel approach 
showed an effective way of clustering MPCs and capturing all the 
characteristics of the clusters. These studies used different datasets 
and utilized various validation indices to evaluate their clustering 
performance. 

METHODOLOGY

The COST 2100 Indoor Datasets

The COST 2100 Channel Model (C2CM) was used to generate the 
indoor datasets utilized in this study. The C2CM is a Geometry-
Based Stochastic Channel Modeling (GBSCM), which assumes 
that a wideband propagation channel can be described through the 
direction and delay domains at the receiving station and transmitting 
station sides with physical clusters. These physical clusters are 
groups of MPCs (Verdone & Zanella, 2012). C2CM has a MATLAB 
implementation and can support indoor and semi-urban channel 
scenarios representing single-link and multiple MIMO channel access 
links. In this study, there were two datasets generated from C2CM 
representing the indoor channel scenarios, which are as follows: 

1. 	 Indoor, B1, line-of-sight, single link (channel scenario 1).
2. 	 Indoor, B2, line-of-sight, single link (channel scenario 2).
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B1 and B2 refer to band 1 and band 2, respectively. The indoor 
environments were generated at 5.3 GHz band. Each dataset contained 
30 different sets of data pertaining to the 30 trials performed. The 
datasets were in Excel file format and can be found from the IEEE 
DataPort. Before being utilized by the clustering technique, these 
datasets underwent several pre-processes such as directional cosine 
transform (DCT), clusterability, and whitening transform (WT). DCT 
is used to overcome the problem of the circular nature of the angular 
domain. Clusterability, on the other hand, checks the suitability for 
clustering of the transformed dataset. Furthermore, to standardize 
the dataset, WT is applied. A more detailed discussion of each pre-
processing can be found in Blanza et al. (2019).

The Framework of K-Power Means

The primary basis of the newly developed clustering algorithm in this 
study is the K-PowerMeans (KPM). KPM is an unsupervised learning 
algorithm that requires that the clusters’ initialization to be known a 
priori. Below are the main steps needed (He et al., 2017):

1. 	 Initialize randomly K cluster centroids μ1, μ2,..., μK,    
       wherein the positions of K centroid are chosen to be as   
       independent events from the dataset Φ.
2. 	 Assign every sample x of MPC to a particular cluster centroid        
      μj: for every set x, as defined in Equation 1.

	

c(k): = argmin{αx . dMPC (x,μj 
(k))}

	        j 
	  	  

(1)

	
where superscript  indicates the -th iteration and  serves as the 
store indices in the -th iteration of MPC clustering.

3. Update the cluster centroids: for each , set as in Equation 2 

	  			   (2)
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4. Perform steps 2 and 3 again until the data have converged. The 
addition of power weighting to determine the MPC distance, , is 
the one that sets KPM to be different from the standard K-Means.

Minkowski Distance Metric

The Minkowski distance (MD) is the distance measurement 
between two points in the normal vector space. Given two points  

and  in N-dimensional space, with  and 
, the Minkowski distance between these two 

points is given in Equation 3 (Minkowski distance, n.d.). 

                        (3)

MD is a generalization of the Euclidean distance and the Manhattan 
distance. A p-value of 2 makes MD equal to the Euclidean distance, 
and when p = 1, MD is just the same as the Manhattan distance. 

Principal Component Analysis

The principal component analysis (PCA) summarizes the whole 
dataset containing various observations through the inter-correlated 
variables or dimensions. PCA is also one way of visualizing the 
information in a dataset (Kassambara, 2017). 

PCA is utilized to extract the essential information from a range of 
multivariate data and convert it to principal components that consist 
of a new set of variables. This new set of variables or dimensions are 
just the linear combination of the original dataset. PCA’s purpose is 
to determine the different principal components or directions in which 
there is a maximum variation of data.

In the MATLAB implementation of PCA, the first parameters to 
obtain are the principal component coefficients known as loadings. 
These coefficients are represented by the matrix coefficient  in Eq. 
(4). Given an m-by-n data matrix of X, where m is the number of 
observations and n is the number of variables or dimensions, the 
coefficient matrix  produced is n-by-n. Each column of contains 
coefficients for one principal component. The first column 
represents the first principal component, while column  gives the 
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n-th and the last principal component. These columns are arranged in 
decreasing order of component variance. On the other hand, each row 
of  represents the variables or dimension starting from row one as 
the variable one until the last row for the n-th variable as in Equation 
4. 

		   				     (4)

Other critical parameters in PCA are the latent values represented by   
given in Equation 5, equivalent to the principal component variances. 
These variances are the eigenvalues of the matrix X and in decreasing 
order. The  gives the highest eigenvalue, which corresponds to the 
first principal component. Moreover, another parameter obtained 
is e in Equation 6, which presents the percentage of each principal 
component’s variance to the total variance.

			   				     (5)  

			 
	  		  				    (6)  

The Improved Clustering Method

KPM is the primary basis of the improved method. The main 
framework of KPM was used with modifications in some procedures. 
The new algorithm is shown below:

Algorithm 1 : Improved Clustering Method

Step 1 : Initialize randomly  cluster centroids  , wherein         
             the positions of  centroid are chosen to be as independent  	
             events from the data set .

(continued)
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(continued)

Algorithm 1 : Improved Clustering Method

Step 2:  Assign a particular weight in every feature or dimension of 	
	 sample  of MPC. The weight can be obtained by running 	
	 the dataset in PCA and by performing as follows:

2.1 Generate the coefficient matrix , as shown in Equation 4.
2.2 Rank each loading in every column of  according to their 

contribution in that particular principal component. The 
loading with the most significant contribution is ranked 
n, followed by ranked n-1, until the lowest rank of 1. This 
processing transforms the matrix in Equation 4 into a rank 
matrix R shown in Equation 7. Each entry now in the rank 
matrix is any number from 1 to n. 

			 
				     	  	  		   (7)  

2.3 	Multiply each column in the rank matrix with its corresponding 
percentage given in Equation 6 divided by 100, giving the 
new product matrix  as shown in Equation 8.

		  	 x       		  (8)  

2.4 	Compute the sum of each row in  and divide by n to obtain 
the weight matrix , as shown in Equation 9, which contains 
the weight assigned to each variable or dimension of the 
dataset.

		  				  
		   						      (9)  
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Step 3: Designate every weighted sample   of MPC to a particular 	
             cluster centroid  : for every set  , as defined in Equation 10.

			  	             (10)  

where superscript  indicates the -th iteration and  serves as 
the store indices in the -th iteration of MPC clustering,  is the 
relative power of the sample  of MPC and for the  , instead of 
the Euclidean distance, the Minkowski distance in Equation 3 with 
the optimum p-value is used.

4. 	 Update the cluster centroids: for each , set as in Equation 11.

		                                                  (11)  
     			    	
5. 	 Perform steps 3 and 4 again until the data have converged.

Accuracy Performance Evaluation

To evaluate the accuracy of performance of KPM and the improved 
method in clustering wireless propagation multipaths, the Jaccard 
index, objectively , was used. Jaccard index can have a value from 
0 to 1, indicating the degree of accuracy. The higher the Jaccard score 
of index value, the better the clustering performance, with one being 
perfect. Jaccard index is just one of the many external comparison 
indices. It measures the similarity between two partitions as one type 
of external indices only considers the distribution of points in the 
various clusters.  is given as follows (Varshavsky et al., 2005), as 
defined in Equation 12.

	                                                           (12)

Algorithm 1 : Improved Clustering Method
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where
 is the number of pairs that are classified together correctly 	

      (Case 1). 
 is the number of pairs that are not classified together correctly    
by the algorithm (Case 2). 

 is the number of pairs that are incorrectly classified together 
when they are not supposed to (Case 3).

RESULTS AND DISCUSSION

The Optimal p-value for Minkowski Distance

Table 1 shows the tabulated p-value used in the Minkowski distance 
for KPM with the corresponding Jaccard accuracy score for each 
indoor channel scenario. Ten p-values were tested in two indoor 
channel scenarios, CS1 and CS2, generated from C2CM. Instead of 
the standard Euclidean distance in finding the value of  , the 
Minkowski distance was utilized. Different values of p were examined 
to determine the most optimum. Speed was also included to identify 
the effect of varying the p-values in the algorithm’s computational 
duration.

It can be observed in Figure 1 that as the p-value increased, the accuracy 
decreased with both CS1 and CS2 showing the same trend. Moreover, 
the Minkowski distance with a p-value of 2 was just equivalent to the 
Euclidean distance. By varying the value of p, specifically going below 
the value of 2, a significant improvement in the accuracy performance 
was noticeable in both indoor channel scenarios. In Minkowski, a 
p-value of 2 was just equivalent to the Euclidean distance but going 
below a p-value of 2, enabling Minkowski to produce a higher distance 
between the two pints as compared to the Euclidean distance used by 
KPM. This affected the assignment of each multipath to a particular 
cluster centroid as the basis was the computed minimum distance. The 
higher distance obtained by Minkowski helped the algorithm to better 
identify the correct cluster centroid that each MPC should belong to. In 
Table 1, it can be seen that the p-value of 0.50 was the best option for 
the indoor channel scenario. Channel Scenario 2 obtained its highest 
accuracy at p=0.5. For CS1, p=0.5 did not give the highest accuracy 
but was closely related to p=0.25 and p=0.75. Considering the effect 
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of p=0.5 in CS2, it can be said that the best choice for p-value in 
indoor environments was 0.5. Figure 2 shows that the trend in the 
speed or computational duration of CS1 and CS2 was almost similar. 
Moreover, there was no consistent trend between speed and p-value, 
as it can also be seen that the increase in speed occurred not just in 
higher values of p but also in lower values. However, it can be noticed 
that at a p-value of 100, both channel scenarios obtained their highest 
computational duration.

Table 1

Finding the Optimal P-Value

Channel Scenario 1 (CS1) Channel Scenario 2 (CS2)

p-value Accuracy Speed (s) Accuracy Speed (s)

0.25 0.9493 2.0061 0.9261 1.9093

0.50 0.9427 3.7635 0.9415 3.4145

0.75 0.9468 2.1637 0.9083 1.9933

1.00 0.9363 1.9360 0.8853 1.9327

2.00 0.8915 3.2200 0.8446 3.1400

10.00 0.8842 2.0984 0.8302 2.0211

50.00 0.8712 3.1232 0.8200 3.0916

100.00 0.8523 3.9091 0.7849 4.5087

500.00 0.7495 2.8425 0.7108 3.0635

1000.00 0.6940 1.7228 0.6016 2.7933



    553      

Journal of ICT, 20, No. 4 (October) 2021, pp: 541–563

Figure 1

Jaccard Index versus P-Value

Figure 2

Plot of Speed versus P-Value
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PCA-Based Dimension Weights

The first step in finding the weights for each dimension in the datasets 
was to run the dataset in the PCA in MATLAB and obtain the coefficient 
matrix C. Tables 2 and 3 present the obtained coefficient matrix 
for CS1 and CS2, respectively. Each table contains seven columns 
representing the seven principal components (PCs) generated. The 
PCs were arranged in decreasing order with PC1 as the highest or 
the most principal component, while PC7 is the least one. The tables 
also include seven rows for the seven dimensions (D) or features in 
the dataset. D1 is the whitened x-component of the angle of departure 
( ), D2 is the whitened y-component of the angle of departure 
( ), and D3 is the whitened z-component of the angle of 
departure ( ).

On the other hand, D4 is the whitened x-component of the angle of 
arrival ( ), D5 is the whitened y-component of the angle of 
arrival ( ), and D6 is the whitened z-component of the angle 
of arrival ( ). For D7, it is the whitened delay ( ) of the dataset. 
Each entry in the table represents the loading or weight of every 
dimension to the corresponding PC.

The second step was to find the latent values or the eigenvalues 
representing the variance of data for each PC shown in Table 4. Values 
were in decreasing order and gave an idea of each PC’s contribution to 
the overall dataset. Getting the sum of all these eigenvalues resulted in 
a value of one. The first latent value was the highest and corresponded 
to the eigenvalue of PC1 and the same goes for PC2 to PC7. To check 
the contribution of each PC to the overall dataset, their percentage 
was obtained. The higher the percentage, the more significant the 
contribution of a particular PC to data distribution. Figures 3 and 4 
illustrate the Scree plot or the eigenvalues’ plot from the largest to the 
smallest. It can be observed that all seven dimensions had a significant 
contribution to the totality of the data distribution. That meant the 
seven PCs were considered for data analysis.

The next procedure was to find the specific weight to be used for each 
dimension in the dataset. To do this, the loading or weight for each 
dimension in every PC (see Tables 2 and 3) were ranked according to 
their significance in a particular PC. The higher the loading or weight, 
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the higher the rank is. The negative sign is not included as it only is 
indicated in the opposite direction of the PC axis. The highest rank to 
be given is 7 and the lowest is 1 since there are seven dimensions. The 
most significant loading gets a value of 7; the next biggest is assigned 
6 until the smallest loading is assigned a value of 1. Every dimension 
has different rankings in each PC, depending on its contribution. Each 
dimension’s rank is multiplied by that particular PC (see Table 4). 
Using Eq. (9), the sum of the seven columns was divided by 7. The 
results of this procedure can be found in Table 5. Two sets of weights 
were obtained, one from the data distribution of CS1 and the other 
from CS2. Weights generated from CS1 are labeled as SET 1, and 
weights from CS2 are grouped as SET 2.

Table 2

Principal Components of Channel Scenario 1

PC1 PC2 PC3 PC4 PC5 PC6 PC7

D1 -0.1852 0.51267 0.3576 -0.0808 0.4194 0.6214 0.0804

D2 0.0216 0.5378 0.0929 0.6408 0.1605 -0.5150 -0.0060

D3 0.6889 -0.0569 -0.1645 0.0954 0.2275 0.1219 0.6476

D4 -0.1974 -0.2396 -0.4507 0.6655 0.0108 0.4930 -0.1202

D5 -0.1533 -0.5152 0.1646 0.0272 0.7889 -0.2342 -0.0774

D6 -0.1933 -0.3317 0.6737 0.3208 -0.3496 0.0526 0.4133

D7 0.6251 -0.1086 0.3904 0.1648 -0.0432 0.1820 -0.6187

Table 3

Principal Components of Channel Scenario 2

PC1 PC2 PC3 PC4 PC5 PC6 PC7

D1 0.4870 -0.2135 -0.1628 0.0247 -0.1113 0.8142 -0.1228

D2 -0.3560 0.1255 -0.3624 -0.1007 0.7954 0.2881 0.0207

(continued)
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D3 0.6252 -0.0753 -0.0453 -0.1573 0.3278 -0.2571 0.6349

D4 -0.0218 0.2492 0.7588 -0.5222 0.1337 0.2663 0.0145

D5 0.0110 -0.3719 0.5132 0.6750 0.3752 0.0240 -0.0352

D6 -0.0593 0.6938 0.0266 0.4706 -0.1677 0.2531 0.4481

D7 0.4914 0.5013 -0.0185 0.1212 0.2467 -0.2288 -0.6157

Table 4

The Principal Component Variances for Each Channel Scenario

Channel Scenario 1 Channel Scenario 2

PC Latent
Values Percentage PC Latent

Values Percentage

PC1 1.4552 21.4547 PC1 1.6781 24.7253
PC2 1.1626 17.1401 PC2 1.2997 19.1499
PC3 1.1160 16.4537 PC3 1.0091 14.8688
PC4 0.9473 13.9659 PC4 0.8861 13.0551
PC5 0.8823 13.0075 PC5 0.8472 12.483
PC6 0.7943 11.7102 PC6 0.7084 10.4380
PC7 0.4251 6.2679 PC7 0.3583 5.2798

PC1 PC2 PC3 PC4 PC5 PC6 PC7
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Figure 3

Scree Plot of PCs in CS1

Figure 4

Scree Plot of PCs in CS2
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Table 5

Computed Weights for Each Dimension using PCA

PCA-Based Weights

D1 D2 D3 D4 D5 D6 D7
SET 1 0.6038 0.5103 0.5164 0.6454 0.5136 0.6392 0.5713

SET 2 0.5147 0.5689 0.6145 0.5584 0.5746 0.5691 0.5997

Accuracy Performance of the Improved KPM

Table 6 gives the generated Jaccard score or index in each indoor 
CS. For CS1, the Jaccard index obtained using the original KPM 
in clustering wireless multipaths was 0.8915 or equivalent to 89.15 
percent of accuracy. When the Minkowski distance at p=0.5 was 
applied in place of the Euclidean distance, the performance greatly 
improved to 0.9427 with a difference of 0.0512 or 5.12 percent. 
Using the calculated weights in SET 1 with Minkowski distance, the 
performance at 0.9358 was still higher than 0.8915. Still, there was 
a slight drop in performance as compared to using the Minkowski 
distance only. Nevertheless, when SET 2 weights were employed, 
there was an increase in performance as compared to only using 
the Minkowski distance. In the case of CS2, the same trend could 
be found. Utilizing the Minkowski distance greatly enhanced the 
performance of KPM as its Jaccard index jumped from 0.8446 to 
0.9415. When applying the two sets of weights, it can be observed that 
SET 1 reduced performance while SET 2 offered some improvement. 
Considering the results, it can be said that utilizing the Minkowski 
distance at 0.5 p-value combined with the SET 2 weights in KPM 
produced an improvement in its clustering performance. The highest 
accuracy performance obtained in CS1 was 94.71 percent, while in 
CS2, it was 94.81 percent.
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Table 6

Comparison of Accuracy Performance

(Original 
KPM)

(KPM using 
Minkowski 
distance at 

p=0.5)

(KPM using 
Minkowski 

distance at p=0.5 
and added SET 1 

weights)

(KPM using 
Minkowski 

distance at p=0.5 
and added SET 2 

weights)

CS1 0.8915 0.9427 0.9358 0.9471

CS2 0.8446 0.9415 0.9391 0.9481

CONCLUSION AND RECOMMENDATIONS

Clustering wireless multipaths is an essential aspect of channel 
modeling. To attain a reliable wireless channel, it is imperative to 
have an accurate channel model. Moreover, this requires a clustering 
technique that can group the various wireless multipaths correctly. 
In this study, KPM’s basic framework was improved by employing 
the Minkowski distance as the metric in determining the minimum 
distance of each multipath to the mean centroid of each cluster. 
Moreover, each dimension or feature in the dataset was given a 
particular weight based on the computed values in PCA. By combining 
the Minkowski distance and the PCA-based weights, it can be said 
that the performance of KPM greatly improved. Channel Scenario 1 
showed a 5.56 percent increase in its accuracy performance, while 
CS2 offered a significant improvement of 10.35 percent. With this, 
it can be concluded that employing the PCA-based weights in KPM 
and using the Minkowski distance at an optimum p-value of 0.5 can 
enhance KPM’s performance in clustering indoor datasets of C2CM. 

The new clustering technique offered a significant increase in the 
accuracy of performance with the indoor channel scenario datasets 
as compared to the standard KPM, but further improvement is still 
needed to obtain a much higher Jaccard score. Other methods in 
determining the weight of each dimension of data can be explored. 
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Apart from that, other distance metrics such as the Hamming distance 
and Mahalanobis distance can also be employed to enhance the 
accuracy of performance further.
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