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ABSTRACT

The robustness of some classical univariate classifiers is hampered 
if the data are contaminated. Overfitting is another hiccup when the 
data sets are uncontaminated with a considerable sample size. The 
performance of the classification models can be easily biased by 
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the outliers’ problems, of which the constructed model tends to be 
overfitted. Previous studies often used the Bayes Classifier (BC) and 
the Predictive Classifier (PC) to address two groups of univariate 
classification problems. Unfortunately for substantial large sample 
sizes and uncontaminated data, the BC method overfits when the 
Optimal Probability of Exact Classification (OPEC) is used as an 
evaluation benchmark. Meanwhile, for small sample sizes, the BC 
and PC methods are extremely susceptible to outliers. To overcome 
these two problems, we proposed two methods: the Smart Univariate 
Classifier (SUC) and the hybrid classifier. The latter is a combination 
of the SUC and the BC methods, known as the Smart Univariate 
Bayes Classifier (SUBC). The performance of the new classification 
methods was evaluated and compared with the conventional BC and 
PC methods using the OPEC as a benchmark value. To validate the 
performance of these classification methods, the Probability of Exact 
Classification (PEC) was compared with the OPEC value. The results 
showed that the proposed methods outperformed the conventional 
BC and PC methods based on the real data sets applied. Numerical 
results also revealed that the SUC method could solve the overfitting 
problem. The results further indicated that the two proposed methods 
were robust against outliers. Therefore, these new methods are 
helpful when practitioners are confronted with overfitting and data 
contamination problems. 

Keywords: Bayes, Predictive, Outliers, Overfitting, Classification.

INTRODUCTION

In practice, we often have difficulty allocating or classifying an object 
into one of two groups based on the object score. In many instances, 
a comparison between the object score and the benchmark value is 
made to assign an object to the correct group (Wald, 1944; Song et 
al., 2020). Classification methods can be applied to many studies to 
identify unique membership (Pang et al., 2019; Hamid et al., 2018; 
Okwonu et al., 2012). For instance, El Abbassi et al. (2021) applied 
a univariate classifier to nanoelectronics and spectroscopy to classify 
relevant information from the data set. Classification can be applied 
to determine ICT knowledge awareness (Dávideková et al., 2019). 
Jimoh et al. (2022) applied classification methods to classify malaria 
infection. The classification method can also be used to classify 
students as first-class or second-class upper based on their final CGPA. 
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However, the classification benchmark value must be well defined 
and compared before assigning the object to the respective groups 
(Hamid et al., 2016). Thus, this benchmark formulation criterion is 
crucial in classification tasks. 

Classification methods often require groups and variables of interest 
to be defined prior to model construction. In some cases, two or 
more variables could be of interest to the researcher to obtain group 
information. In contrast, other researchers may be interested in a single 
variable in order to ascertain actual or predicted group membership. 

The classical classification methods often show a minimum 
misclassification rate if the data set follows a normal distribution 
pattern. On the other hand, if this pattern is violated, the inference 
breaks down as we might draw erroneous inferences and wrong 
conclusions (Das & Imon, 2016). Therefore, normality should be taken 
seriously, because if this assumption does not hold, it is impossible to 
draw accurate and reliable conclusions (Field, 2009; Oztuna et al., 
2006). Departure from the normality for any samples demonstrated 
that the Type I error rate is affected (Blanca et al., 2017; Cain, Zhang 
& Yuan, 2017).  The group variables of the study determine the 
importance of the research inference. In this case, the dimension of 
the variables may be categorised into univariate or multivariate. The 
other aspect is the homoscedasticity of the variance when discussing 
the robustness of these techniques. Besides multivariate classification, 
univariate classification is essential and widely applied in different 
fields of study. 

In recent times, the paradigm of univariate classification focused on 
different techniques that have been proposed using time series data 
(Thet Zan & Yamana, 2016; Sun et al., 2014). For example, the Bayes 
rule is a unique classifier based on group membership probabilities 
(Taheri & Mammadov, 2013). The predictive classifier (Huberty & 
Holmes, 1983) relies on the average between group means. These 
techniques have been applied to classification problems in different 
fields of studie (Chattopadhyay et al., 2012; Wei, 2018; Banik, 2019; 
Barbini et al., 2013; Aborisade & Anwar, 2018; Bharadwaj & Shao, 
2019; Trovato, 2016; Berry, 2004; Ma et al., 2011; Theodoridis & 
Koutroumbas, 2009).

Conventionally, the univariate classification for two groups is 
performed using two groups: students’ -test and power analysis. The 
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procedures of this test and analysis often rely on the probability value, 
power values, and sample size to make an inference. Donoho and Jin 
(2008) devised other procedures to classify  dimensional data sets 
without utilising the covariance matrix. Relying on this complicated 
classification method, Huberty and Holmes (1983) proposed a 
univariate variable classifier for two groups by comparing the 
univariate variable’s value with the average of the two group means. 
This technique was proposed as an alternative to power analysis. 

The Bayes Classifier is assumed to be robust because it uses the 
posterior probability to assign an object to the actual group. The 
robustness of this method can be attributed to the non-application 
of any measure of central tendencies, such as the mean, which is 
easily influenced by the outliers. Intuitively, outliers in one group 
may increase the probability of that group over the other and may 
influence the correct classification of the object into its actual group. The 
evaluation of this technique is conventionally optimal if the Probability  
of Exact Classification (PEC) is measured by                                  
is the group membership probabilities. The pitfall with evaluating the 
Bayes procedure using the Optimal Probability of Exact Classification 
(OPEC) is overfitting, especially when the data set satisfies the 
normality assumption. Outliers often influence the univariate 
predictive and the Bayes classifiers. These methods are sensitive to 
overfitting when the data sets are normally distributed.

In this paper, we proposed two methods, namely the Smart Univariate 
Classifier (SUC) and the hybrid classifier, which was a combination of 
the Smart Univariate Classifier (SUC) and the Bayes Classifier (BC). 
This newly constructed hybrid method was called the Smart Univariate 
Bayes Classifier (SUBC). The two proposed methods were designed 
to address the weaknesses of the conventional univariate methods 
concerning the sensitivity to outliers and overfitting problems. The 
SUC method mimicked Fisher’s linear classifier, while the SUBC 
method depended on data transformation and plug-in using the Bayes 
classifier. First, these two methods extracted outliers by applying the 
F-weight to determine the inlier of each data set. Then, the second 
phase of the proposed methods transformed the outlier data points 
into inlier data points before the classifier was applied to determine 
group membership. Finally, the hybrid method applied the Bayes 
rule to perform group classification on the transformed F-Weighted 
data set. The main contribution of this paper is the robustness of 
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the two proposed methods to solve the overfitting problem and the 
transformation of outliers to inliers. Furthermore, we investigated 
the classification performance of the proposed methods and the 
conventional classification methods using continuous and discrete 
variables.

The next part of this paper discusses the Predictive Classification 
method, followed by the Bayes Classifier. The proposed Smart 
Univariate Classifier and Smart Univariate Bayes Classifier are 
outlined in the next section, followed by data collection and 
comparative performance analysis. The performance comparison 
through the probability of exact classification (hit ratio) and analysis 
is then presented, and finally the conclusion is conferred in the last 
section.

METHODOLOGY

In this section, we discuss the conventional methods, Predictive 
Classifier (PC) and Bayes Classifier (BC), with the proposed 
methods, Smart Univariate Classifier (SUC) and Smart Univariate 
Bayes Classifier (SUBC). The different classifiers are based on step 
computational procedures defined in the following sections.

Predictive Classifier 

We describe the predictive classifier according to Huberty and Holmes

(1)

(2) 

Otherwise classify    to Group 2        Equation 1 is very sensitive to 
outliers as the mean is easily perturbed with a slight change in the 
data set. The basic idea of Equation 1 is variable swap, in which the 
independent variable is swapped with the dependent variable and vice 
versa. This procedure mimics the point biserial correlation coefficient 
in which a variable swap is applicable as shown in Equation 3.   
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We describe the predictive classifier according to Huberty and Holmes
(1983). This technique classifies an object 𝑋𝑋𝑖𝑖 to Group 1 (∆1)
according to Equation 1.

𝑋𝑋𝑖𝑖  <  (�̅�𝑋1+�̅�𝑋2)
2

where �̅�𝑋𝑖𝑖 is the mean vectors of Group ∆𝑖𝑖 as shown in Equation 2.

�̅�𝑋𝑖𝑖 =  ∑ 𝑥𝑥𝑘𝑘
𝑛𝑛𝑖𝑖
𝑘𝑘=1

𝑛𝑛𝑖𝑖
,   𝑖𝑖 = 1, 2
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Otherwise classify 𝑋𝑋𝑖𝑖 to Group 2 (∆2). Equation 1 is very sensitive to 
outliers as the mean is easily perturbed with a slight change in the data 
set. The basic idea of Equation 1 is variable swap, in which the 
independent variable is swapped with the dependent variable and vice 
versa. This procedure mimics the point biserial correlation coefficient 
in which a variable swap is applicable as shown in Equation 3.  

𝑟𝑟𝑝𝑝,𝑏𝑏 =  (�̅�𝑥2−�̅�𝑥1)√𝑝𝑝×𝑞𝑞
√𝑠𝑠𝑧𝑧2

  (3) 

where 𝑛𝑛 = 𝑛𝑛1 + 𝑛𝑛2, 𝑝𝑝 = 𝑛𝑛1
𝑛𝑛  and  𝑞𝑞 = 𝑛𝑛2

𝑛𝑛  are the group probabilities of 
Group 1 and Group 2, and 𝑠𝑠𝑧𝑧

2 is the pooled covariance of Groups 1 and 
2. To avoid having a negative value of the correlation coefficient, the 
mean of the first group is always greater than the mean of the second 
group for efficiency and better classification purposes. In this case, 𝑛𝑛1 
refers to the smaller group and 𝑛𝑛2 refers to the larger group. The 
concept of variable swap can be reversed by changing the classification 
“inequality”. Based on this statement, Equation 1 can be written as the 
following Equation 4, which implies that the conventional variable 
position remains.   

𝑋𝑋𝑖𝑖 >  (�̅�𝑋1+�̅�𝑋2)
2      (4) 

Equation 4 implies that an object 𝑋𝑋𝑖𝑖 is assigned to ∆1, otherwise, assign 
𝑋𝑋𝑖𝑖 to ∆2. Unfortunately, Equation 1 and Equation 4 give the same 
classification result. The biserial point correlation that corresponds to 
Equation 4 is given in Equation 5. 

𝑟𝑟𝑝𝑝,𝑏𝑏 = (�̅�𝑥1−�̅�𝑥2)√𝑝𝑝×𝑞𝑞
√𝑠𝑠𝑧𝑧2

    (5) 

Taking the absolute value of Equation 5 yields the corresponding value 
of Equation 3. At this point, we have addressed what we may consider 
the weakness of variable interchange in Equation 1. The remaining part 
of this paper considers other univariate classifiers, such as the Bayes 
classifier and the proposed univariate classifier methods, SUC and 
SUBC.  

Bayes Classifier 

Given that 𝑔𝑔1(𝑥𝑥) and 𝑔𝑔2(𝑥𝑥) are the probability density functions and 
𝑋𝑋𝑑𝑑×1 is a random variable for the two groups denoted as ∆1 and ∆2, 
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(3)

(4)

(5)

Taking the absolute value of Equation 5 yields the corresponding value 
of Equation 3. At this point, we have addressed what we may consider 
the weakness of variable interchange in Equation 1. The remaining 
part of this paper considers other univariate classifiers, such as the 
Bayes classifier and the proposed univariate classifier methods, SUC 
and SUBC. 

Bayes Classifier
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any value of 𝑋𝑋𝑑𝑑×1 can be assigned to any of the groups. In the 
following, we assume that the priori probabilities and the cost of 
inaccurate classification for the two groups are equal. Let 𝐶𝐶𝑖𝑖 =
{𝑥𝑥𝑖𝑖,𝑑𝑑×1, 𝑑𝑑 = 1} be the sample spaces of the univariate random variables. 
Suppose ∇1 is the values of 𝑥𝑥1,𝑑𝑑×1 to be classified into Group ∆1, and 
∇2  denotes the values of 𝑥𝑥2,𝑑𝑑×1 to be classified into Group ∆2. The 
aim is that each random value or object must only be classified into 
one group (Johnson & Wichern, 1992). This univariate approach is 
based on the conditional probability concept. Let us describe the 
process of classifying the object as Equation 6 and Equation 7. 

𝑃𝑃(1|2) = 𝑃𝑃(𝑥𝑥1,𝑑𝑑×1𝜖𝜖∇1|∆2) = ∫ 𝑔𝑔2(𝑥𝑥)𝑑𝑑𝑥𝑥∇1
    (6) 

𝑃𝑃(2|1) = 𝑃𝑃(𝑥𝑥2,𝑑𝑑×1𝜖𝜖∇2|∆1) = ∫ 𝑔𝑔1(𝑥𝑥)𝑑𝑑𝑥𝑥∇2
     (7) 

Equation 6 implies the conditional probability 𝑃𝑃(1|2) of assigning an 
object to Group ∆1 when it is actually from Group ∆2, while Equation 
7 implies the conditional 𝑃𝑃(2|1) of assigning an object to Group 
∆2 when it is from Group ∆1. Let us denote the priori probability of ∆1 
as 𝑤𝑤1 that is 𝑃𝑃(∆1) = 𝑤𝑤1, and ∆2 as 𝑤𝑤2 implying that 𝑃𝑃(∆2) = 𝑤𝑤2 
such that adding this two probabilities will produce a total of 1 as 
shown in Equation 8. 

 𝑃𝑃(∆1) + 𝑃𝑃(∆2) = ∑ 𝑤𝑤𝑖𝑖 = 12
𝑖𝑖=1                                    (8) 

Let 𝐴𝐴𝐶𝐶 denotes the correct allocation and 𝐴𝐴𝑀𝑀 is the misallocation. 
Therefore, the probability of correct allocation or the probability of 
misallocation for the two groups can be expressed as Equations 9 to 
12. 

𝑃𝑃(𝐴𝐴𝐶𝐶 𝑡𝑡𝑡𝑡 ∆1) = 𝑃𝑃(𝑥𝑥𝑖𝑖,𝑑𝑑×1𝜖𝜖∇1|∆1)𝑃𝑃(∆1) = 𝑃𝑃(1|1)𝑤𝑤1     (9) 

𝑃𝑃(𝐴𝐴𝑀𝑀 𝑡𝑡𝑡𝑡 ∆1) = 𝑃𝑃(𝑥𝑥𝑖𝑖,𝑑𝑑×1𝜖𝜖∇1|∆2)𝑃𝑃(∆2) = 𝑃𝑃(1|2)𝑤𝑤2    (10) 

𝑃𝑃(𝐴𝐴𝐶𝐶 𝑡𝑡𝑡𝑡 ∆2) = 𝑃𝑃(𝑥𝑥𝑖𝑖,𝑑𝑑×1𝜖𝜖∇2|∆2)𝑃𝑃(∆2) = 𝑃𝑃(2|2)𝑤𝑤2     (11) 

𝑃𝑃(𝐴𝐴𝑀𝑀 𝑡𝑡𝑡𝑡 ∆2) = 𝑃𝑃(𝑥𝑥𝑖𝑖,𝑑𝑑×1𝜖𝜖∇2|∆1)𝑃𝑃(∆1) = 𝑃𝑃(2|1)𝑤𝑤1     (12) 

Equation 9 and Equation 11 give the probabilities of correct allocation, 
while Equation 10 and Equation 12 give the probabilities of 
misallocation, respectively. In other words, Equation 9 to Equation 12 
summarize the confusion matrix at a glance such that Equation 9 and 
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         (8)

(9)
    

(10)
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(12)

Equation 9 and Equation 11 give the probabilities of correct 
allocation, while Equation 10 and Equation 12 give the probabilities of 
misallocation, respectively. In other words, Equation 9 to Equation 12 
summarize the confusion matrix at a glance such that Equation 9 and 
Equation 11 is the diagonal of the confusion matrix whereas Equation 
10 and Equation 12 is the off diagonal of the confusion matrix. Due 
to equal probability and equal cost of misallocation assumptions 
(Johnson & Wichern, 1992; Johnson, 1987), it is sometimes easy to 
implement this procedure. Nevertheless, it is advisable to consider 
alternative allocation methods when this assumption fails. We shall 
consider the Bayes posterior probability rule for allocating an object 
to the desired group. The Bayes procedure (Sainin et al., 2021; Ma 
et al., 2011; Theodoridis & Koutroumbas, 2009) can be stated as 
Equation 13.
                             (13)
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We determine the inliers from Equation 17 and Equation 18 as shown 
in Equation 19.

     
(19)

If no outlier exists, we proceed as follows by computing the sample 
variance s given in Equation 20. 

        
(20)

From the sample variance in Equation 20, we compute the pooled 
F-weight variance as shown in Equation 21.

      
(21)

Based on Equations 18 to 21, we obtain the coefficient of the model as 
can be referred to Equations 22 and 23.
      

(22)

     (23)

To evaluate the performance of the SUC method, the group evaluation 
criteria are obtained as in Equations 24 to 26.
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is as follows.

Let 𝑥𝑥1 and 𝑥𝑥2 be univariate random observations from ∆1 and ∆2 such 
that 𝑛𝑛 − 2 ≥ 𝑝𝑝, 𝑝𝑝 = 1. We assume that 𝑥𝑥1 and 𝑥𝑥2 are normally 
distributed with mean and variance, which is 𝑥𝑥𝑖𝑖~𝑁𝑁(𝜇𝜇, 𝜎𝜎2). Let 𝑊𝑊
denote the F-weight as shown in Equation 17.

𝑤𝑤𝑖𝑖 = 𝑥𝑥𝑖𝑖
𝑍𝑍 ,  𝑤𝑤𝑖𝑖 ∈ 𝑊𝑊, 𝑖𝑖 = 1, 2 

where 𝑍𝑍 = 𝑋𝑋1
`𝑋𝑋2, 𝑥𝑥1 ∈ 𝑋𝑋1, 𝑥𝑥2 ∈ 𝑋𝑋2, and 𝑤𝑤𝑖𝑖 are the weight associated 

with each group. Applying Equation 17, the F-weight mean vector is 
given as Equation 18. 

�̅�𝑥𝑖𝑖 =
∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖

𝑛𝑛𝑖𝑖
𝑥𝑥𝑖𝑖=1

𝑤𝑤𝑖𝑖

We determine the inliers from Equation 17 and Equation 18 as shown
in Equation 19.

𝐼𝐼 = {1 𝑖𝑖𝑖𝑖  𝑤𝑤𝑖𝑖 < �̅�𝑥𝑖𝑖, �̅�𝑥𝑖𝑖 = �̅�𝑥1, �̅�𝑥2
0 𝑖𝑖𝑖𝑖  𝑤𝑤𝑖𝑖 > �̅�𝑥𝑖𝑖

If no outlier exists, we proceed as follows by computing the sample 
variance s given in Equation 20.

𝑆𝑆𝑖𝑖
2 = ∑ (𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖−�̅�𝑥𝑖𝑖)2𝑛𝑛𝑖𝑖

𝑖𝑖=1
𝑛𝑛𝑖𝑖 − 1

From the sample variance in Equation 20, we compute the pooled F-
weight variance as shown in Equation 21.
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(𝑛𝑛1+𝑛𝑛2) − 2

Based on Equations 18 to 21, we obtain the coefficient of the model
as can be referred to Equations 22 and 23.
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𝑤𝑤𝑥𝑥2 = (�̅�𝑥1−�̅�𝑥2)`

𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
2 𝑤𝑤2𝑥𝑥2 = (�̅�𝑥1 − �̅�𝑥2)`𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

−2 (𝑤𝑤2𝑥𝑥2) = 𝜔𝜔𝑤𝑤2𝑥𝑥2     (23) 

On the other hand, if an outlier exists, we repeat Equations 17 and 18 
on the outliers only and apply Equation 19 to detect whether the outlier 
still exist. This process continues until all the outliers are transformed 
into inliers. The inliers are merged to form the reweighted data set  �̌�𝑤𝑖𝑖. 
The mean vectors, sample variance of  �̌�𝑤𝑖𝑖, are computed similarly as 
Equations 18 to 20 and substituted into Equations 21 to 23, 
respectively.  

The coefficient (𝜔𝜔) in Equations 22 and 23 is similar to 
(∑ 𝑤𝑤𝑖𝑖𝑔𝑔𝑖𝑖(𝑥𝑥𝑖𝑖,𝑑𝑑×1)2

𝑖𝑖=1 )−1 in Equation 13, and 𝑤𝑤1𝑥𝑥1 and 𝑤𝑤2𝑥𝑥2 in 
Equations 22 and 23 is similar to 𝑤𝑤𝑖𝑖𝑔𝑔𝑖𝑖(𝑥𝑥𝑖𝑖,𝑑𝑑×1) in Equation 13. 
Therefore, Equations 22 and 23 mimic Equations 14 and 15. Hence, 
Equations 22 and 23 are simply a linear combination that allocates 
𝑤𝑤1𝑥𝑥1 to ∆1 or otherwise to ∆2 if it is true. This procedure mimics the 
Fisher linear classification method (Sheth, 2019; Fisher, 1936). The 
insensitivity of the SUC method towards outliers and overfitting is due 
to the F-weight application to the data sets. 

To evaluate the performance of the SUC method, the group evaluation 
criteria are obtained as in Equations 24 to 26. 

𝑇𝑇𝑥𝑥1 = (�̅�𝑥1 − �̅�𝑥2)`𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
−2 �̅�𝑥1 = 𝜔𝜔�̅�𝑥1         (24) 

𝑇𝑇𝑥𝑥2 = (�̅�𝑥1 − �̅�𝑥2)`𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
−2 �̅�𝑥2 = 𝜔𝜔�̅�𝑥2         (25) 

𝑇𝑇𝑥𝑥1𝑥𝑥2 =  𝑇𝑇𝑥𝑥1 + 𝑇𝑇𝑥𝑥2
2𝑑𝑑 , 𝑑𝑑 = 1         (26) 

Thus, Equation 26 is the benchmark value used for classification tasks. 
To assign an object to any of the groups correctly, the following 
decision criterion was adopted based on Equations 24 to 26 as 
presented in Equation 27. 

Classify 𝑤𝑤1𝑥𝑥1 to ∆1 if 𝑤𝑤𝑥𝑥1 > 𝑇𝑇𝑥𝑥1𝑥𝑥2, otherwise assign 𝑤𝑤1𝑥𝑥1 to ∆2 if  
𝑤𝑤𝑥𝑥1 < 𝑇𝑇𝑥𝑥1𝑥𝑥2. In a simpler form, this decision criteria can be written as 
in Equation 27.   

∆ = {
𝑤𝑤𝑥𝑥1 > 𝑇𝑇𝑥𝑥1𝑥𝑥2  assign object to ∆1
𝑤𝑤𝑥𝑥1 < 𝑇𝑇𝑥𝑥1𝑥𝑥2  assign object to ∆2

        (27) 
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Smart Univariate Bayes Classifier 

The hybrid method (SUBC) is a combination of the SUC and BC 
procedures with two phases. The first phase utilises the SUC 
procedures (see Equations 17-23), while in the second phase, we 
apply the BC procedures as described in Equations 6 to 16 to build 
the SUBC model and assign the group membership. It implies that the 
proposed SUBC method mimics and retains the basic characteristic of 
the BC decision criteria. Therefore, the algorithm for SUBC method 
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Smart Univariate Bayes Classifier  
 
The hybrid method (SUBC) is a combination of the SUC and BC 
procedures with two phases. The first phase utilises the SUC 
procedures (see Equations 17-23), while in the second phase, we apply 
the BC procedures as described in Equations 6 to 16 to build the SUBC 
model and assign the group membership. It implies that the proposed 
SUBC method mimics and retains the basic characteristic of the BC 
decision criteria. Therefore, the algorithm for SUBC method can be 
explained in the following Algorithm 1. 
 

Algorithm 1: Algorithm for SUBC method 
Phase 1 - Utilise the SUC procedure as follows 

Step 1: Determine the inliers or outliers (apply Equation 19). 
Step 2: If outliers exist, transform the outliers into inliers. 
Step 3: Repeat Step 1 and Step 2 to obtain a reweighted F-weight. 
Step 4: Merged the inliers to form the reweighted data set  �̌�𝑤𝑖𝑖.   
Step 5: Compute the mean vectors and sample variance of  �̌�𝑤𝑖𝑖  

                  in a similar way as in Equations 18 to 20.  
Step 6: Substitute all values obtained from Step 4 into Equations 

21 to 23 to obtain the model’s coefficient. 
 

Phase 2 - Build the SUBC model as follows 
Step 1: Apply the BC procedures as described in Equations 6 to 15  

to build the SUBC model. 
Step 2: Assign the group membership using the decision criteria in  

Equation 16. 
 

 

Data Collection 

This study aims to investigate the comparative classification 
performance of the proposed methods (SUC and SUBC) against the 
conventional methods (BC and PC). In addition, we examined the 
breakdown of the methods based on random outliers. Finally, we also 
studied the relationship to determine whether the strong, moderate, or 
weak correlations correspond to a minimum or maximum 
misclassification rate. To achieve these objectives, we applied two 
types of data sets (continuous and discrete). Part A consists of 
continuous data set, while Part B consists of discrete data set.  
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performance of the proposed methods (SUC and SUBC) against the 
conventional methods (BC and PC). In addition, we examined the 
breakdown of the methods based on random outliers. Finally, we also 
studied the relationship to determine whether the strong, moderate, 
or weak correlations correspond to a minimum or maximum 
misclassification rate. To achieve these objectives, we applied 
two types of data sets (continuous and discrete). Part A consists of 
continuous data set, while Part B consists of discrete data set. 

Part A:  This section consists of four data sets. The first data set was 
based on the effect of quality of sleep; short sleep (1-4 hours), and long 
sleep (5-8 hours) in relation to undergraduate academic performance 
with an emphasis on grade point average (GPA) categorisation using 
Pittsburgh Sleep Quality Index (PSQI) Scale and Perceived Stress 
Scale (PSS) (Lok, 2018). Then, using the methods discussed, which 
were BC, PC, SUC and SUBC, we applied the PSQI and PSS scales 
to classify students into graduate classes based on their corresponding 
GPA using the methods discussed. The second data set consisted 
of the air quality index for three locations in Malaysia (Putrajaya, 
Kuala Lumpur and Petaling Jaya) before the outbreak of the Covid-19 
pandemic in 2019 (14/10/2019-10/11/2019) and during the same 
period with the Covid-19 pandemic in 2020 (14/10/2020-10/11/2020) 
(Department of Environment, 2020). The data set was collected 
with two conditions: without movement control order (2019) and 
with movement control order (pandemic period 2020). The third 
data comprised the PH water level in Ampang Pecah and Kg. Timah 
(Department of Environment, 2020), while the fourth data consisted 
of body weight measurement (mg) of wide and laboratory-bred female 
and male Aedes albopictus mosquitoes and body size measurements 
of Aedes albopictus mosquitoes (Okwonu et al., 2012).

Part B: This section covered discrete data and consisted of two data 
sets. The first data set in this section covered the Covid-19 daily 
report. The data set was paired as follows: confirmed and discharged, 
confirmed and dead, discharged and dead patients. We used the 
Covid-19 data set from Malaysia (Kementerian Kesihatan Malaysia, 
2020) and Nigeria (NCDCgov, 2020). The second data set in this 
section comprised road traffic accidents via car and motorcycle. 
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These data were categorised based on severe injury, slight injury, and 
the annual summary of car/motorcycle road traffic accidents (Jabatan 
Siasatan dan Penguatkuasaan Trafik, 2020).

Therefore, the performance of the classification methods for 
continuous and discrete data was investigated to infer information to 
enable us to distinguish the performance of these methods based on 
classification accuracy and correlation value. 

Comparative Performance Analysis

In this section, the comparative performance analysis was carried out 
using the four methods. The performance of the proposed methods 
was evaluated using the optimum probability of exact classification 
(OPEC). The computed probabilities of exact classifications (PEC) 
(Okwonu, Ahad, Ogini et al., 2022) of these methods were based on 
the hit ratio compared to the OPEC value. The misclassification error  

The evaluation benchmark for this study was designed using the 
acceptable benchmark approach called the Optimum Probability of 
Exact Classification (OPEC) as shown in Equation 28. 

      
         

(28)

where  represents the standard normal distribution function. Equation 
28 is used to obtain the OPEC value, while Equation 29 is applied to 
compute the probability of misclassification.

  
            (29)

Equation 30 below describe the optimal misclassification rule to 
determine how robust the classifiers is. However, Equation 30 often 
lead to high misclassification rate hence we developed an alternative 
optimal evaluation criteria for classification performance.

13 
 

evaluated using the optimum probability of exact classification 
(OPEC). The computed probabilities of exact classifications (PEC) 
(Okwonu, Ahad, Ogini et al., 2022) of these methods were based on 
the hit ratio compared to the OPEC value. The misclassification error 
rate (𝜀𝜀) can be obtained by computing the difference between OPEC 
and PEC, which is 𝜀𝜀 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑂𝑂𝑂𝑂𝑂𝑂. The robustness of these 
methods can be inferred by the value of 𝜀𝜀. A minimal value associated 
with 𝜀𝜀 implies that the methods are robust. The breakdown of these 
methods was investigated by introducing random outliers to the PSQI 
and PSS data sets. Therefore, the robustness and the breakdown 
capability of the methods discussed above can be determined by 
comparing the difference between OPEC and PEC.  

The evaluation benchmark for this study was designed using the 
acceptable benchmark approach called the Optimum Probability of 
Exact Classification (OPEC) as shown in Equation 28.  

∇  =  (�̅�𝑥1 − �̅�𝑥2)
𝑠𝑠      

  
𝛿𝛿 =  𝜃𝜃(∇)         (28) 

where 𝜃𝜃 represents the standard normal distribution function. Equation 
28 is used to obtain the OPEC value, while Equation 29 is applied to 
compute the probability of misclassification. 

𝜀𝜀 = 𝜃𝜃(∇) − 𝑂𝑂𝑂𝑂𝑂𝑂   
   = 𝛿𝛿 − 𝑂𝑂𝑂𝑂𝑂𝑂         (29) 

Equation 30 below describe the optimal misclassification rule to 
determine how robust the classifiers is. However, Equation 30 often 
lead to high misclassification rate hence we developed an alternative 
optimal evaluation criteria for classification performance. 

          𝜀𝜀𝜀𝜀 = 1 − 𝑂𝑂𝑂𝑂𝑂𝑂                                                      (30) 

Equation 29 is also used to detect the overfitting of these methods. If 𝜀𝜀 
has a negative value, it implies that overfitting has occurred. Equations 
28 and 29 are applied to evaluate the performance of the classification 
methods by focusing on the proportion of correct group membership 
prediction (Jimoh et al., 2022; Huberty & Holmes, 1983; Alf & 
Abrahams, 1968; Levy, 1967). Another method similar to Equation 29 
to analyse the performance of classifiers was discussed in Mohd Noor 
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The evaluation benchmark for this study was designed using the 
acceptable benchmark approach called the Optimum Probability of 
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where 𝜃𝜃 represents the standard normal distribution function. Equation 
28 is used to obtain the OPEC value, while Equation 29 is applied to 
compute the probability of misclassification. 
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Equation 30 below describe the optimal misclassification rule to 
determine how robust the classifiers is. However, Equation 30 often 
lead to high misclassification rate hence we developed an alternative 
optimal evaluation criteria for classification performance. 
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Equation 29 is also used to detect the overfitting of these methods. If 𝜀𝜀 
has a negative value, it implies that overfitting has occurred. Equations 
28 and 29 are applied to evaluate the performance of the classification 
methods by focusing on the proportion of correct group membership 
prediction (Jimoh et al., 2022; Huberty & Holmes, 1983; Alf & 
Abrahams, 1968; Levy, 1967). Another method similar to Equation 29 
to analyse the performance of classifiers was discussed in Mohd Noor 
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methods by focusing on the proportion of correct group membership 
prediction (Jimoh et al., 2022; Huberty & Holmes, 1983; Alf & 
Abrahams, 1968; Levy, 1967). Another method similar to Equation 29 
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RESULTS AND DISCUSSION

Part A 

Table 1 shows the performance analysis of the four methods using the 
first continuous data set. The values reported in Table 1 are the PEC 
values.  In Table 1, the outliers are randomly introduced to the original 
data to determine the robustness and the breakdown of the methods. 
We observe that the BC and the SUBC are more robust than the other 
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the original data set. Then, in the third row, we add eight outliers 
in addition to the ten outliers in Row 2, making it 18. Finally, we 
introduce outliers for the other rows in a similar procedure. As more 
outliers are introduced, the proposed SUC method shows outstanding 
performance over the other three methods since 0.8600 is the highest 
among the four methods. 

Table 1 

Performance Analysis of PSQI/PSS Data for Graduate Categories 
and the Effect of Outliers (n=150)

BC PC SUBC SUC Random Outliers (RO)
0.9933 0.9133 0.9933 0.9300 -----

0.9667 0.9067 0.9667 0.9233 16=1,20=2,21=41,17=57,12=32,9=19
,5=15,2=12,1=11,3=13 (RO=10)
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BC PC SUBC SUC Random Outliers (RO)

0.9267 0.8833 0.9267 0.9033 17=5,30=3,17=7,20=1,4=14,11=31,5
=15,7=27 (RO=18)

0.8867 0.8633 0.8867 0.8833 23=3,27=2,19=1,5=25,2=22,6=26 
(RO=24)

 0.86 0.8533 0.86 0.8667 32=2,22=2,9=29,16=46 (RO=28)

0.8467 0.8467 0.8467 0.8600 23=3,9=69 (RO=30)

Figure 1 displays the breakdown of the different methods based on the 
PEC and the number of random outliers introduced. The performance 
analysis in Figure 1 shows that SUBC performs as good as BC, and 
it remains consistent regardless of the number of outliers in the data 
set. However, when the number of random outliers increases, the SUC 
outperforms the other methods. Thus, it can be concluded that the 
SUC method is more robust when the data set comprise more outliers.   

Figure 1

Comparative Breakdown Analysis of the Classification Methods

Table 2

Probability of Correct Classifications 

BC PC SUBC SUC
PCC 0.9933 0.9167 0.9933 0.9300

1-PCC 0.0067 0.0833 0.0067 0.0700
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each method. The probability shows the number of students is 
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classification of their graduate classes. Table 2 shows the observations 

0.7
0.8
0.9

1
1.1

1 2 3 4 5 6

PE
C

Random outliers

BC PC SUBC SUC



    15      

Journal of ICT, 22, No. 1 (January) 2023, pp: 1–30

Table 2 describes the probability of correct classification (PCC) 
for each method. The probability shows the number of students is 
correctly classified to their respective graduate classes. Most of the 
methods show that the majority of the objects belong to the actual 
groups, whereas minorities are misclassified to another group. From 
the analysis, there are misclassified individuals who fail to fit the 
classification of their graduate classes. Table 2 shows the observations 
that are correctly classified and misclassified observations based on 
the hit ratio. The hit ratio values for each method are discussed as 
follows. The BC and SUBC achieved the same classification accuracy 
of 99.33 percent, followed by the SUC with 93.0 percent correct 
classification. The PC reaches 91.67 percent of prediction accuracy. 
The performance analysis (see Table 1) reveals that the correlation 
value  is positively weak. The weak correlation value indicates that 
the minimum misclassification rate is associated with a weak positive 
correlation value. It can be further explained that the exact group 
classification does not translate to a strong relationship of a group 
membership. It means that the classification performance cannot be 
compared with the level of association of the data set. This is a new 
concept of relating the classification performance with the strength of 
the correlation value. The rest of the analysis for the other data sets is 
based on the comparison between these two criteria: the proportion of 
correct classification and the correlation among the methods. 

Table 3

Performance analysis of cumulative air quality index before (2019) 
and during lockdown (2020) (n=84)

BC PC SUBC SUC

0.5833 0.5833 0.61 0.593
 

Table 3 to Table 6 contain the classification of the air quality index 
(AQI) before and during the Covid-19 pandemic in Malaysia. In Table 
3, the SUBC method (86.9%) is the best classifier, followed by SUC 
(84.5%), while both BC and PC account for 83.1%. However, this 
data set is weakly negatively correlated (); therefore, the minimum 
misclassification error rates relate to a very weak and negative 
relationship. 
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Table 3 to Table 6 contain the classification of the air quality index 
(AQI) before and during the Covid-19 pandemic in Malaysia. In Table 
3, the SUBC method (86.9%) is the best classifier, followed by SUC 
(84.5%), while both BC and PC account for 83.1%. However, this data 
set is weakly negatively correlated (𝑟𝑟 = −0.15); therefore, the 
minimum misclassification error rates relate to a very weak and 
negative relationship.  
 
Table 4 
 
Performance Analysis of Putrajaya AQI before (2019) and during 
Lockdown (2020) (𝑛𝑛 = 28) 
 

 BC PC SUBC SUC 
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Table 4

Performance Analysis of Putrajaya AQI before (2019) and during 
Lockdown (2020) 

BC PC SUBC SUC
0.607 0.518 0.571 0.518
0.393 0.482 0.429 0.482
-0.001 0.088 0.035 0.088

              

Applying this criterion to the classification problem suggests that the 
BC method performs poorly, with a significant misclassification error 
rate of 39.3 percent. Therefore, the justification for applying the OPEC 
as an evaluation and validation benchmark is adopted and justified. 
The SUBC classifier correctly predicts a group membership of 94.2 
percent, followed by PC and SUC with 85.5 percent, respectively, 
based on the OPEC criterion. The correlation value obtained is 
negative and very weak (-0.063). The effect of outliers is generally 
negative in all statistical and probability models. That is why the 
proposed robust classification methods are essential.

Table 5

Performance Analysis of Kuala Lumpur AQI before (2019) and 
during Lockdown (2020) (n=28)

BC PC SUBC SUC
0.679 0.643 0.679 0.696

In Table 5, the SUC classifier accurately predicts the group membership 
with 76.9 percent, BC and SUBC with 75 percent, and PC with 71 
percent. The relationship shows a weak and negative correlation.
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Table 6

Performance Analysis of Petaling Jaya AQI before (2019) and during 
Lockdown (2020) (n=28)

BC PC SUBC SUC
0.536 0.518 0.500 0.519

The performance analysis in Table 6 demonstrates that the BC 
achieves the highest accuracy of 99.4 percent in classifying the group 
membership, followed by SUC (96.3%) and PC (96.1%). Meanwhile, 
SUBC accounts for 92.8 percent, with a weakly negative relationship.
 
Table 7

Performance Analysis of PH Level of Water in Ampang Pecah and 
Kg. Timah (Mm) (n=39)

  BC  PC SUBC SUC
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this data is positive and very weak, 0.08.  
 
Table 8 
 
Performance Analysis of Wide Female and Male Aedes Albopictus 
Mosquitoes’ Weight (mm) (n=96) 

18 
 

Table 6 
 
Performance Analysis of Petaling Jaya AQI before (2019) and during 
Lockdown (2020) (n=28) 

BC PC SUBC SUC 

0.536 0.518 0.500 0.519 
𝜹𝜹 =0.539,  𝑟𝑟 = −0.1960, 𝑟𝑟2 = 0.0384 

The performance analysis in Table 6 demonstrates that the BC 
achieves the highest accuracy of 99.4 percent in classifying the group 
membership, followed by SUC (96.3%) and PC (96.1%). Meanwhile, 
SUBC accounts for 92.8 percent, with a weakly negative relationship. 
  
Table 7 
 
Performance Analysis of PH Level of Water in Ampang Pecah and Kg. 
Timah (Mm) (n=39) 
 

   BC  PC SUBC SUC 

 0.8611 0.875 0.8611 0.8333 

𝜀𝜀 -0.001 -0.015 -0.001  
𝛿𝛿 = 0.8599, 𝑟𝑟 = 0.0793,  𝑟𝑟2 = 0.0063 
 
The analysis shows that accurate group membership prediction does 
not reflect highly correlated data sets. Instead “the better the prediction 
power, the weaker the correlation value”. This finding is relatively 
possible for continuous data sets. Table 7 contains the classification 
analysis of the PH level of water in two different locations. This was 
applied to observe if the PH level of water quality in these locations is 
unique or varies. It was verified in Table 7 that the BC, PC and SUBC 
methods overfit (ε = −0.001, −0.015, −0.001) based on the OPEC 
benchmark. On the other hand, SUC shows a 96.9 percent accurate 
prediction of a group membership. The correlation value displayed for 
this data is positive and very weak, 0.08.  
 
Table 8 
 
Performance Analysis of Wide Female and Male Aedes Albopictus 
Mosquitoes’ Weight (mm) (n=96) 

18 
 

Table 6 
 
Performance Analysis of Petaling Jaya AQI before (2019) and during 
Lockdown (2020) (n=28) 

BC PC SUBC SUC 

0.536 0.518 0.500 0.519 
𝜹𝜹 =0.539,  𝑟𝑟 = −0.1960, 𝑟𝑟2 = 0.0384 

The performance analysis in Table 6 demonstrates that the BC 
achieves the highest accuracy of 99.4 percent in classifying the group 
membership, followed by SUC (96.3%) and PC (96.1%). Meanwhile, 
SUBC accounts for 92.8 percent, with a weakly negative relationship. 
  
Table 7 
 
Performance Analysis of PH Level of Water in Ampang Pecah and Kg. 
Timah (Mm) (n=39) 
 

   BC  PC SUBC SUC 

 0.8611 0.875 0.8611 0.8333 

𝜀𝜀 -0.001 -0.015 -0.001  
𝛿𝛿 = 0.8599, 𝑟𝑟 = 0.0793,  𝑟𝑟2 = 0.0063 
 
The analysis shows that accurate group membership prediction does 
not reflect highly correlated data sets. Instead “the better the prediction 
power, the weaker the correlation value”. This finding is relatively 
possible for continuous data sets. Table 7 contains the classification 
analysis of the PH level of water in two different locations. This was 
applied to observe if the PH level of water quality in these locations is 
unique or varies. It was verified in Table 7 that the BC, PC and SUBC 
methods overfit (ε = −0.001, −0.015, −0.001) based on the OPEC 
benchmark. On the other hand, SUC shows a 96.9 percent accurate 
prediction of a group membership. The correlation value displayed for 
this data is positive and very weak, 0.08.  
 
Table 8 
 
Performance Analysis of Wide Female and Male Aedes Albopictus 
Mosquitoes’ Weight (mm) (n=96) 

19 
 

 
BC PC SUBC SUC 

0.4688 0.4896 0.5100 0.4896 
𝛿𝛿=0.536,  𝑟𝑟 = 0.218, 𝑟𝑟2 = 0.047 
 
Based on Table 8, the proposed SUBC achieves the highest prediction 
accuracy with 95.2 percent, followed by PC and SUC with 91.3 percent 
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lowest prediction accuracy at 87.5 percent. The relationship for the 
Aedes Albopictus mosquito data is also positively weak. 
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Based on Table 8, the proposed SUBC achieves the highest prediction 
accuracy with 95.2 percent, followed by PC and SUC with 91.3 
percent prediction accuracy, respectively. Meanwhile, the BC records 
the lowest prediction accuracy at 87.5 percent. The relationship for 
the Aedes Albopictus mosquito data is also positively weak.

Table 9

Performance Analysis of Laboratory-reared Female and Male Aedes 
Albopictus Mosquitoes Body Size (mm) (n=30)

BC PC SUBC SUC
1.00 0.950 1.00 0.950

-0.002 -0.002

In Table 9, the BC and SUBC methods predict the group membership 
with 100% accuracy. However, both methods overfitted 
Meanwhile, the PC and SUC methods achieve 95.2% of the group 
membership prediction. Therefore, the association shown has a weak 
negative correlation.

Table 10

Performance Analysis of Wide and Laboratory-reared Female and 
Male Aedes Albopictus Mosquitoes Wing Length (mm) (n=20)

BC PC SUBC SUC
1.00 0.925 1.00 0.90

-0.007 -0.007

Similarly, the data set in Table 10 demonstrates that the BC and SUBC  
methods obtain 100 percent accuracy in predicting the group 
membership, and there is also overfitting in both methods                     
The accurate group predictions for the PC and SUC methods are 
93.2 percent and 90.6 percent, respectively. Even though the BC and 
SUBC show overfitting in Table 9 and Table 10, the methods can be 
accepted because the OPEC value is approximately one. Therefore, 
the correlation for this data set is weak and negatively correlated.
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membership, and there is also overfitting in both methods                      
(𝜀𝜀 = −0.007). The accurate group predictions for the PC and SUC 
methods are 93.2 percent and 90.6 percent, respectively. Even though 
the BC and SUBC show overfitting in Table 9 and Table 10, the 
methods can be accepted because the OPEC value is approximately 
one. Therefore, the correlation for this data set is weak and negatively 
correlated. 
 
Part B  
 
The results in this section demonstrate the performance analysis of the 
four methods on the two discrete data related to Covid-19 data sets. 
Table 11 to Table 13 demonstrate the performance analysis based on 
the Malaysian Covid-19 data sets for 189 days, while Tables 14 to 16 
show the performance analysis of the Covid-19 data sets for 163 days 
in Nigeria.  
 
Table 11 
 
Performance Analysis of Confirmed and Discharged Cases for 
Covid-19 Virus, Malaysia data (n=189) 
 

BC PC SUBC SUC 
0.466 0.471 0.466 0.492 

𝛿𝛿=0.512,  𝑟𝑟 = 0.379,  𝑟𝑟2 = 0.144 
  

As shown in Table 11, the SUC predicts 96.1 percent correct group 
membership, and this is followed by the PC method with 92 percent 
accuracy, while both BC and SUBC achieve 91 percent correct 
classification. The correlation value is positive and relatively weak 
(𝑟𝑟 = 0.379).    
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virus, Malaysia data (n=189) 
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Part B 

The results in this section demonstrate the performance analysis of the 
four methods on the two discrete data related to Covid-19 data sets. 
Table 11 to Table 13 demonstrate the performance analysis based on 
the Malaysian Covid-19 data sets for 189 days, while Tables 14 to 16 
show the performance analysis of the Covid-19 data sets for 163 days 
in Nigeria. 

Table 11

Performance Analysis of Confirmed and Discharged Cases for 
Covid-19 Virus, Malaysia data (n=189)

BC PC SUBC SUC
0.466 0.471 0.466 0.492

As shown in Table 11, the SUC predicts 96.1 percent correct group 
membership, and this is followed by the PC method with 92 percent 
accuracy, while both BC and SUBC achieve 91 percent correct 
classification. The correlation value is positive and relatively weak 

Table 12

Performance analysis of confirmed and death cases for Covid-19 
virus, Malaysia data (n=189)

BC PC SUBC SUC
0.889 0.725 0.889 0.646
-0.03 -0.03

Table 12 shows that the BC and SUBC methods are overfitted  
(ɛ = -0.03), while both PC and SUC methods predict the group 
membership correctly at 83.9 percent and 74.8 percent, respectively. 
Dissimilar to other data sets, the correlation of this data is positive 
and moderately strong (r = 0.659). This makes sense as it reveals 
a considerably strong relationship between confirmed and death 
cases, implying that the number of deaths would also increase if the 
confirmed cases increases. 
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𝜀𝜀 -0.03  -0.03  
𝛿𝛿 =0.864,  𝑟𝑟 = 0.659, 𝑟𝑟2 = 0.434 

Table 12 shows that the BC and SUBC methods are overfitted (ɛ = -
0.03), while both PC and SUC methods predict the group membership 
correctly at 83.9 percent and 74.8 percent, respectively. Dissimilar to 
other data sets, the correlation of this data is positive and moderately 
strong (r = 0.659). This makes sense as it reveals a considerably strong 
relationship between confirmed and death cases, implying that the 
number of deaths would also increase if the confirmed cases increases.  

Table 13 
 
Performance Analysis of Discharged and Death Cases for Covid-19 
Virus, Malaysia Data (n=189) 
 

BC PC SUBC SUC 
0.825 0.741 0.825 0.685 

𝛿𝛿= 0.867,  𝑟𝑟 = 0.305,  𝑟𝑟2 = 0.093 

Table 13 also reveals that both the BC and SUBC methods achieve the 
highest correct predictions at 95.2 percent, while PC and SUC 
correctly predict the group memberships with 85.5 percent and 79 
percent accuracy, respectively. This data set shows a weak positive 
relationship. The implication is that the more people are discharged, 
the lower the death rate. Hence the weak correlation value is justified. 
 
Table 14 
 
Performance Analysis of Confirmed and Discharged Cases for 
Covid-19 Virus, Nigeria Data (n=163) 
 

 BC PC SUBC SUC 
 0.798 0.647 0.798 0.497 

𝜀𝜀 -0.244 -0.099 -0.244  
𝛿𝛿= 0.548,  𝑟𝑟 = 0.153,  𝑟𝑟2 = 0.023 
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Table 13

Performance Analysis of Discharged and Death Cases for Covid-19 
Virus, Malaysia Data (n=189)

BC PC SUBC SUC
0.825 0.741 0.825 0.685

Table 13 also reveals that both the BC and SUBC methods achieve 
the highest correct predictions at 95.2 percent, while PC and SUC 
correctly predict the group memberships with 85.5 percent and 79 
percent accuracy, respectively. This data set shows a weak positive 
relationship. The implication is that the more people are discharged, 
the lower the death rate. Hence the weak correlation value is justified.

Table 14 

Performance Analysis of Confirmed and Discharged Cases for 
Covid-19 Virus, Nigeria Data (n=163)

BC PC SUBC SUC
0.798 0.647 0.798 0.497
-0.244 -0.099 -0.244

Table 14 reveals that BC, PC, and SUBC methods are overfitted  
(ɛ = -0.244, -0.099, -0.244), based on the OPEC benchmark values. In 
contrast, the SUC method attains 90.7 percent accuracy in predicting 
the group membership, with a very weak positive correlation for this 
data set. 

Table 15

Performance Analysis of Confirmed and Death Cases for Covid-19 
Virus, Nigeria Data (n=163) 

BC PC SUBC SUC
0.834 0.804 0.834 0.733
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Table 15 illustrates that the BC and SUBC can predict the group 
membership correctly with 88.8 percent, while the PC and SUC have 
85.6 percent and 78.1 percent accuracy, respectively. Similar to the 
Malaysian data set, a moderately strong correlation can also be found 
in this Nigeria data set for confirmed and death cases. 

Table 16

Performance Analysis of Discharged and Death Cases for Covid-19 
Virus, Nigeria Data (n=163)

BC PC SUBC SUC
0.767 0.73 0.761 0.509
-0.145 -0.108 -0.139

Again, the data set in Table 16 also reveals that BC, PC and SUBC 
methods are overfitted (ɛ = -0.145, -0.108, -0.139), while the SUC 
method predicts 81.8 percent group membership, and the data show 
an extremely weak and positive correlation.

Tables 17 to 19 display the annual road traffic accident data categorised 
based on the degrees of fatalities. Based on the results in Table 17 to 
Table 19, the probability-based methods (BC and SUBC) overfit the 
OPEC value. However, the PC method outperforms the SUC method 
with a moderate to very strong relationship. Based on the adopted 
benchmark value, we may conclude that these two methods (PC and 
SUC) provide more accurate predictions for classification than the 
probability methods (BC and SUBC). The Pearson correlation of this 
data set is very strong and positively associated, mainly for data sets 
in Tables 17 and 19. 

Table 17

Performance Analysis of Car and Motorbike Road Traffic Accident 
(n=30)

BC PC SUBC SUC
1.00 0.83 1.00 0.82

-0.022 -0.022
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categorised based on the degrees of fatalities. Based on the results in 
Table 17 to Table 19, the probability-based methods (BC and SUBC) 
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overfit the OPEC value. However, the PC method outperforms the 
SUC method with a moderate to very strong relationship. Based on the 
adopted benchmark value, we may conclude that these two methods 
(PC and SUC) provide more accurate predictions for classification 
than the probability methods (BC and SUBC). The Pearson correlation 
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Table 17 reveals that the PC and SUC achieve 85.3 percent and 83.4 
percent correct group prediction, with a very strong positive 
correlation value of 0.946. Meanwhile, the probability-based methods 
(BC and SUBC) in Table 18 show overfitted values (ɛ = -0.007), in 
contrast to the PC and SUC methods which accurately predict the 
group membership at 86.6 percent and 85.6 percent, respectively, with 
a moderately positive correlation of 0.613 for this data set.  
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 1.00 0.86 1.00 0.84 
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𝛿𝛿 =0.993,  𝑟𝑟 = 0.613,  𝑟𝑟2 = 0.376 
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Based on Table 8, the proposed SUBC achieves the highest prediction 
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with 100% accuracy. However, both methods overfitted (𝜀𝜀 =
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group membership prediction. Therefore, the association shown has a 
weak negative correlation. 
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Table 17 reveals that the PC and SUC achieve 85.3 percent and 
83.4 percent correct group prediction, with a very strong positive 
correlation value of 0.946. Meanwhile, the probability-based methods 
(BC and SUBC) in Table 18 show overfitted values (ɛ = -0.007), in 
contrast to the PC and SUC methods which accurately predict the 
group membership at 86.6 percent and 85.6 percent, respectively, with 
a moderately positive correlation of 0.613 for this data set. 

Table 18

Performance Analysis of Car Severe and Motorbike Severe Road 
Traffic Accident Injuries (n=25)

BC PC SUBC SUC
1.00 0.86 1.00 0.84

-0.007 -0.007

Table 19

Performance Analysis of Car Slight and Motorbike Slight Road Traffic 
Accident Injuries (n=25)

BC PC SUBC SUC
1.00 0.76 1.00 0.70

-0.117 -0.117

Similar to the results in Table 19, the probability-based classifiers 
are overfitted, while the classification using PC and SUC methods 
attain 86.1 percent and 79.3 percent accuracy in predicting the group 
membership. This data set reveals a very strong positive correlation 
which is 0.968.

Table 20 summarises the best-performed method for the continuous 
data sets based on the minimum misclassification rate         The results 
show that the proposed methods outperformed the conventional 
methods. Table 20 also includes the comparative analysis of the 
performance of different methods with respect to the Pearson 
correlation     and the coefficient of determination      values. Based 
on the results in this table, we may conclude that a weak positive 
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overfit the OPEC value. However, the PC method outperforms the 
SUC method with a moderate to very strong relationship. Based on the 
adopted benchmark value, we may conclude that these two methods 
(PC and SUC) provide more accurate predictions for classification 
than the probability methods (BC and SUBC). The Pearson correlation 
of this data set is very strong and positively associated, mainly for data 
sets in Tables 17 and 19.  
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Table 17 reveals that the PC and SUC achieve 85.3 percent and 83.4 
percent correct group prediction, with a very strong positive 
correlation value of 0.946. Meanwhile, the probability-based methods 
(BC and SUBC) in Table 18 show overfitted values (ɛ = -0.007), in 
contrast to the PC and SUC methods which accurately predict the 
group membership at 86.6 percent and 85.6 percent, respectively, with 
a moderately positive correlation of 0.613 for this data set.  
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In Table 9, the BC and SUBC methods predict the group membership 
with 100% accuracy. However, both methods overfitted (𝜀𝜀 =
−0.002). Meanwhile, the PC and SUC methods achieve 95.2% of the 
group membership prediction. Therefore, the association shown has a 
weak negative correlation. 

Table 10 
 
Performance Analysis of Wide and Laboratory-reared Female and 
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Similarly, the data set in Table 10 demonstrates that the BC and SUBC 
methods obtain 100 percent accuracy in predicting the group 
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Performance Analysis of Car Slight and Motorbike Slight Road 
Traffic Accident Injuries (n=25) 
 

 BC PC SUBC SUC 
 1.00 0.76 1.00 0.70 

𝜀𝜀 -0.117  -0.117  
𝛿𝛿 =0.883,  𝑟𝑟 = 0.968,  𝑟𝑟2 = 0.937 

Similar to the results in Table 19, the probability-based classifiers are 
overfitted, while the classification using PC and SUC methods attain 
86.1 percent and 79.3 percent accuracy in predicting the group 
membership. This data set reveals a very strong positive correlation 
which is 0.968. 

Table 20 summarises the best-performed method for the continuous 
data sets based on the minimum misclassification rate (𝜀𝜀). The results 
show that the proposed methods outperformed the conventional 
methods. Table 20 also includes the comparative analysis of the 
performance of different methods with respect to the Pearson 
correlation (𝑟𝑟) and the coefficient of determination (𝑟𝑟2) values. Based 
on the results in this table, we may conclude that a weak positive or a 
very weak negative correlation is associated with the minimum 
misclassification rate for a continuous data set. We also observe that 
very small 𝑟𝑟2 values correspond to the minimum misclassification rate. 
The results of the data sets in Table 20 are depicted in Figure 2.   

Table 20 
 
Comparative Analysis of the Best Methods for Continuous Data  
 

r 𝑟𝑟2 PEC OPEC(𝛿𝛿) 𝜀𝜀
= 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑂𝑂𝑂𝑂𝑂𝑂 

Best Methods 

0.283 0.080 0.993 0.999 0.006 BC & SUBC 

-0.148 0.022 0.61  0.702 0.092 SUBC 

-0.063 0.0004 0.571 0.606 0.035 SUBC 

-0.251 0.063 0.696  0.905 0.209 SUC 

-0.196 0.038 0.536  0.539 0.003 BC 
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or a very weak negative correlation is associated with the minimum 
misclassification rate for a continuous data set. We also observe that 
very small      values correspond to the minimum misclassification rate. 
The results of the data sets in Table 20 are depicted in Figure 2.  
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-0.038 0.001 0.925 0.993 0.068 PC
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The comparative analysis in Table 21 shows that the proposed methods 
are more robust than the conventional methods based on the 
misclassification error for discrete data cases. Furthermore, the 
analysis reveals that a weak to a strong positive correlation (𝑟𝑟) are 
associated with the minimum misclassification rate. Moreover, the r2 
shows very small to very large values associated with a relatively 
minimum misclassification rate. These results are illustrated in Figure 
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The comparative analysis in Table 21 shows that the proposed 
methods are more robust than the conventional methods based on 
the misclassification error for discrete data cases. Furthermore, the 
analysis reveals that a weak to a strong positive correlation    are 
associated with the minimum misclassification rate. Moreover, the 
r2 shows very small to very large values associated with a relatively 
minimum misclassification rate. These results are illustrated in Figure 3. 

Table 21

Comparative Analysis of the Best Methods for Discrete Data 

r PEC Best Methods

0.379 0.144 0.492 0.512 0.02 SUC
0.659 0.434 0.725 0.864 0.139 PC
0.305 0.093 0.825 0.867 0.042 BC & SUBC
0.153 0.023 0.497 0.548 0.051 SUC
0.65 0.423 0.834 0.939 0.105 BC & SUBC
0.198 0.039 0.509 0.622 0.113 SUC
0.946 0.895 0.83 0.978 0.148 PC
0.613 0.376 0.86 0.993 0.133 PC
0.968 0.937 0.76 0.883 0.123 PC

Figure 3

Comparative Analysis of Discrete Data 
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Performance Analysis of Car Slight and Motorbike Slight Road 
Traffic Accident Injuries (n=25) 
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Similar to the results in Table 19, the probability-based classifiers are 
overfitted, while the classification using PC and SUC methods attain 
86.1 percent and 79.3 percent accuracy in predicting the group 
membership. This data set reveals a very strong positive correlation 
which is 0.968. 

Table 20 summarises the best-performed method for the continuous 
data sets based on the minimum misclassification rate (𝜀𝜀). The results 
show that the proposed methods outperformed the conventional 
methods. Table 20 also includes the comparative analysis of the 
performance of different methods with respect to the Pearson 
correlation (𝑟𝑟) and the coefficient of determination (𝑟𝑟2) values. Based 
on the results in this table, we may conclude that a weak positive or a 
very weak negative correlation is associated with the minimum 
misclassification rate for a continuous data set. We also observe that 
very small 𝑟𝑟2 values correspond to the minimum misclassification rate. 
The results of the data sets in Table 20 are depicted in Figure 2.   
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Based on the comparative performance analysis, we observed that 
different methods performed differently based on the characteristics of 
the data sets. We had shown that the SUC method did not overfit the 
data when the OPEC benchmark evaluation was applied. We have also 
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than for the continuous ones. Thus, it can be inferred that the proposed 
SUC and SUBC methods performed better than the conventional 
methods (BC and PC) for both types of data sets. Based on the 
comparative analysis, the proposed methods were found to be more 
robust than the conventional methods.  
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using the F-weight, and if any outliers still existed, we reweighted the 

0
0.2
0.4
0.6
0.8

1
1.2

1 2 3 4 5 6 7 8 9

Pe
rfo

rm
an

ce
 v

al
ue

s

Number of experiments

MISCLASSIFICATION RATE

r

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

Pe
rfo

rm
an

ce
 v

al
ue

s

Number of experiments

r square

MISCLASSIFICATION RATE



    25      

Journal of ICT, 22, No. 1 (January) 2023, pp: 1–30

DISCUSSION

Based on the comparative performance analysis, we observed that 
different methods performed differently based on the characteristics 
of the data sets. We had shown that the SUC method did not overfit 
the data when the OPEC benchmark evaluation was applied. We have 
also revealed that all the methods performed differently depending 
on the data types, as summarised in Tables 20 and 21. This study has 
shown that for continuous data, as reported in Table 20, a relatively 
minimum misclassification rate could be associated with very weak 
negative and weak positive correlation values. This analysis was also 
applicable to the    Meanwhile, for a discrete data set (Table 21), it 
indicated that a weak to a strong positive correlation is related to a 
minimum misclassification rate. A similar performance analysis is 
portrayed by    The results showed overfitting for the discrete data 
sets was more than for the continuous ones. Thus, it can be inferred 
that the proposed SUC and SUBC methods performed better than the 
conventional methods (BC and PC) for both types of data sets. Based 
on the comparative analysis, the proposed methods were found to be 
more robust than the conventional methods. 

The proposed method was able to penalise the outlier based on the 
following. The proposed methods transformed the outliers to inliers 
using the F-weight, and if any outliers still existed, we reweighted the 
F-weight until the outliers were transformed into inliers. This study 
also showed that the proposed SUC method solved the overfitting 
problem associated with the BC method when OPEC was used as 
a performance benchmark. We may technically generalise that 
using continuous data for classification problems yielded a weak 
negative and weak positive correlation. Meanwhile, the discrete data 
used for classification yielded a relatively weak to a strong positive 
correlation. The strength and the direction of the correlation values do 
not imply robust or poor classification performance of the methods. 
This suggested that the classification performance is independent of 
the correlation values. 

CONCLUSION

The analysis reveals that the performance of the investigated methods 
is data-dependent. The results show that the proposed Smart Univariate 
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Performance Analysis of Car Slight and Motorbike Slight Road 
Traffic Accident Injuries (n=25) 
 

 BC PC SUBC SUC 
 1.00 0.76 1.00 0.70 

𝜀𝜀 -0.117  -0.117  
𝛿𝛿 =0.883,  𝑟𝑟 = 0.968,  𝑟𝑟2 = 0.937 

Similar to the results in Table 19, the probability-based classifiers are 
overfitted, while the classification using PC and SUC methods attain 
86.1 percent and 79.3 percent accuracy in predicting the group 
membership. This data set reveals a very strong positive correlation 
which is 0.968. 

Table 20 summarises the best-performed method for the continuous 
data sets based on the minimum misclassification rate (𝜀𝜀). The results 
show that the proposed methods outperformed the conventional 
methods. Table 20 also includes the comparative analysis of the 
performance of different methods with respect to the Pearson 
correlation (𝑟𝑟) and the coefficient of determination (𝑟𝑟2) values. Based 
on the results in this table, we may conclude that a weak positive or a 
very weak negative correlation is associated with the minimum 
misclassification rate for a continuous data set. We also observe that 
very small 𝑟𝑟2 values correspond to the minimum misclassification rate. 
The results of the data sets in Table 20 are depicted in Figure 2.   

Table 20 
 
Comparative Analysis of the Best Methods for Continuous Data  
 

r 𝑟𝑟2 PEC OPEC(𝛿𝛿) 𝜀𝜀
= 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑂𝑂𝑂𝑂𝑂𝑂 

Best Methods 

0.283 0.080 0.993 0.999 0.006 BC & SUBC 

-0.148 0.022 0.61  0.702 0.092 SUBC 

-0.063 0.0004 0.571 0.606 0.035 SUBC 

-0.251 0.063 0.696  0.905 0.209 SUC 

-0.196 0.038 0.536  0.539 0.003 BC 
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Classifier (SUC) is robust and has solved the problem of overfitting 
associated with the conventional methods when OPEC is used as a 
performance benchmark. The proposed SUBC method is robust but 
still affected by the overfitting problem. In addition, both proposed 
methods achieve high classification accuracy. The performance of 
the proposed methods based on the introduction of random outliers 
indicates that they are more robust and capable of resisting influential 
observations than conventional methods. The findings also show that 
a minimum misclassification error is independent of the strength of the 
correlation values. Conclusively, the proposed methods are robust and 
capable of overcoming the overfitting problem, which often occurs in 
conventional methods. 
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