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ABSTRACT

This paper presents a new diagnostic model for various diseases. In 
the proposed diagnostic model, a water wave optimization (WWO) 
algorithm was implemented for improving the diagnosis accuracy. 
It was observed that the WWO algorithm suffered from the absence 
of global best information and premature convergence problems. 
Therefore in this work, some improvements were proposed to 
formulate the WWO algorithm as more promising and efficient. The 
global best information issue was addressed by using an improved 
solution search equation and the aim of this was to explore the global 
best optimal solution. Furthermore, a premature convergence problem 
was rectified by using a decay operator. These improvements were 
incorporated in the propagation and refraction phases of the WWO 
algorithm. The proposed algorithm was integrated into a diagnostic 
model for the analysis of healthcare data. The proposed algorithm 
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aimed to improve the diagnosis accuracy of various diseases. The 
diverse disease datasets were considered for implementing the 
performance of the proposed diagnostic model based on accuracy and 
F-score performance indicators, while the existing techniques were 
regarded to compare the simulation results. The results confirmed that 
the WWO-based diagnostic model achieved a higher accuracy rate as 
compared to existing models/techniques with most disease/healthcare 
datasets. Therefore, it stated that the proposed diagnostic model is 
more promising and efficient for the diagnosis of different diseases.

Keywords: Computational intelligence, water wave optimization, 
disease diagnosis, diagnostic model, metaheuristic technique.

INTRODUCTION

In present time, an enormous amount of healthcare data are collected 
through various sources such as automatic diagnosis system, 
medical imaging process, and patient information forms like intake, 
consent, treatment, assessment etc. When the data collection process 
is completed, it can be entered into the computer system by a data 
entry operator and the data are available for customer relationship 
management systems (CRM), electronic health record systems, etc. 
Nevertheless, there are several concerns related to data collection 
and data entry processes. These concerns are highlighted as typos 
(typographical errors) at the end of data entry and collection process, 
inaccurate entries, information filled in wrong attributes of patients 
form, etc. Therefore, computational intelligence (CI) methods can 
be used for preprocessing medical data (data cleaning, missing value 
imputation, attribute selection, attribute weighting), classification, 
clustering, and prediction of diseases. 

CI is a research area that consists of ideas, models, and procedures 
for the development of intelligent systems. It also refers to the 
capability of computers to solve specific tasks. It comprises nature-
inspired techniques and computational approaches that are employed 
for solving complex real-world difficulties. Many CI algorithms 
have been developed with either theories or approaches of physics 
(water cycle algorithm (WCA), wavefront alignment algorithm 
(WFA), chemistry (artificial chemical reaction optimization (ACRO), 
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chemical reaction optimization (CRO)), biology (artificial bee 
colony (ABC), bat algorithm (BA), beehive), and mathematics (base 
optimization algorithm (BOA)) (Bezdek, 1994; 1998). CI can be also 
described as the sub-branch of computer science that provides the 
solution for problems through intelligent algorithms (Duch, 2007). 
Furthermore, Engelbrecht (2007) considered five building blocks 
of CI, such as artificial neural network (ANN), fuzzy system (FS), 
swarm intelligence (SI), evolutionary computing (EC), and artificial 
immune system (AIS). 

The abovementioned techniques are widely used for analyzing and 
developing models for data analysis. These algorithms can be either 
supervised or unsupervised in nature. The supervised nature can be 
described through classification, whereas unsupervised nature can 
be described as clustering. Furthermore, clustering determines the 
groups of people with particular health service requirements, risk 
development for disease, and other medical conditions. Meanwhile, 
the healthcare sector can produce massive amount of data, 
administrative reports, electronic medical records of patients, and 
more useful information (Belciug & Gorunescu, 2020). The data can 
also be related to diagnosis, treatment, and prevention of diseases, 
injuries, mental and physical impairments. Therefore, there is a need 
of an optimized system for automatic disease diagnosis and patient 
management that can be built based on computational methods. 

Data clustering is an important data analysis technique for grouping 
data elements such that data elements present in one group are 
different from other groups. It can be further described using the terms 
cluster analysis, unsupervised classification, and segment analysis. 
The clustering algorithms consist of either similarity or dissimilarity 
measures for determining the closeness among data elements. The 
similarity measure represents a similarity between two data elements 
or clusters. Whereas dissimilarity measure determines dissimilarity 
between two data elements or clusters quantitatively. The cluster 
analysis employs these measures to extract information from the 
datasets. Buhmann (1995) characterized the clustering process into 
four steps: (i) data representation, (ii) modeling, (iii) optimization, 
and (iv) validation, as shown in Figure 1.
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Figure 1 

Illustrate the Clustering Process

Vectorial data, distributional data, and proximity data are some of the 
forms for data representation and modeling that define the structure 
of clustering. The various modeling methods are central clustering, 
pairwise clustering, and hierarchical clustering. Furthermore, the 
stochastic or deterministic methods are used for optimizing the cost 
function, while cluster validation can be done through various tests. 
Numerous clustering algorithms have been developed and categorized 
based on input data type, similarity measure, type of cluster formed, 
objective function, and clustering approach (Andreopoulos et al., 
2009). 

Moreover, many diagnostic models have been reported in the literature 
for disease diagnosis (Altayeva et al., 2016; Jothi & Hussian, 2015; 
Ni et al., 2017; Nilashi et al., 2018; Rao et al., 2018). Nevertheless, 
diagnostic accuracy is one of the main concerns, especially for 
healthcare datasets. Therefore, there is a need to develop intelligent 
systems that can assist humans to make accurate judgments. 
Recently, water wave optimization (WWO) gained wide popularity 
among the research community and obtained optimal results for 
numerous optimization problems: (i) constrained and unconstrained 
optimization (Lenin et al., 2016; Manshahia, 2017; Siva et al., 2016); 
(ii) scheduling (Shao et al., 2018; Zhao et al., 2019a); (iii) allocation 
of frequency spectrum (Singh et al., 2019); (iv) multi-objective 
optimization (Hematabadi & Foroud, 2019; Shao et al., 2019); and 
(v) parameter optimization of neural network (Liu et al., 2019). The 
absence of global best information and premature convergence can 
affect the performance of the WWO algorithm with complex and 
discrete optimization problems. 
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To overcome the aforementioned issues, some improvements are 
proposed in the WWO algorithm based on the global search mechanism 
and updated decay operator. A particle swarm optimization (PSO)-
inspired updated global search mechanism is proposed for addressing 
the global best information issue. The decay operator aims to handle the 
premature convergence problem of the WWO algorithm. This paper 
presents a WWO-based diagnostic model for diagnosis of different 
diseases. The proposed model consists of WWO-based clustering 
technique for determining the labeling of class. Furthermore, the 
WWO-based clustering algorithm is applied in the diagnosis phase 
of the proposed model. This algorithm aims to improve the diagnostic 
accuracy. The remaining parts of the paper are structured as follows: 
the related works section discusses the recent works in the field of 
disease diagnosis, followed by the section that describes basic water 
wave optimization. Next, the proposed WWO-based diagnostic model 
is discussed and this section is followed by the experiment results. 
Lastly, the contribution is concluded in the final section.

RELATED WORK

This section discusses the works reported on the diagnosis of different 
diseases and existing issues related to the WWO algorithm. The 
various medical diagnosis and prognosis issues related to metaheuristic 
algorithms such as learning model, selection of algorithm, and 
performance indicators were presented in Al-Muhaideb and Menai 
(2013). Tsai et al. (2016) discussed the various issues and challenges 
associated with metaheuristic algorithms like parallel computation, 
data heterogeneity, handling missing data, and privacy preservation 
for adaption in healthcare. Several metaheuristic algorithms were 
adopted for designing a liver disorder diagnostic system to help 
physicians in Bekaddour and Chikhi (2016). The structure discovery 
in medical datasets is a complicated task and extraction of overlapping 
information is not easy process. An overlapping K-means (OKM) 
algorithm was adopted for extracting overlapped information in 
Khanmohammadi et al. (2017). Furthermore, the sensitivity problem 
of OKM was dealt using k-harmonic algorithm. The findings 
confirmed that aforementioned combination successfully overcame 
the sensitivity problem and also extracted overlapped information.
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In medical diagnosis, feature reduction is an important activity for 
improving the performance of diagnosis process as well as cost 
reduction. Gadekallu and Khare (2017) adopted cuckoo search 
(CS) and rough set-based approach for feature reduction in medical 
datasets. CS was used to optimize the parameters of the rough set 
approach for attaining optimal features. DNA copy number is 
a significant attribute for effective treatment of cancer disease. 
However, due to large DNA sequencing, it is not possible to detect the 
DNA copy number more accurately. A Bayesian model comprising 
hidden Markov model and Gaussian mixture was presented for more 
accurate detection of DNA copy number (Manogaran et al., 2018). 
Khiarak et al. (2019) addressed the feature selection and imbalanced 
data issues of heart disease through imperialist competitive algorithm 
and genetic crossover operator, respectively. Grey wolf optimizer 
(GWO) and modified PSO algorithms were considered to address 
the feature reduction and accuracy rate issues of diabetes disease 
(Le et al., 2020). The poor initialization and local optima issues of 
fuzzy c-means clustering (FCM) addressed through fuzzy magnetic 
optimization algorithm and performance was evaluated on a variety 
of medical datasets (Kushwaha & Pant, 2018). 

Computational time and cost have a significant impact on the medical 
diagnosis process. Therefore, several metaheuristic algorithms were 
presented for diagnosis of diseases with less computation and reduced 
computational cost (Mahendru & Agarwal, 2019). It is noticed that 
segmentation is an important activity in the field of medical imaging 
data analysis and classification results can be affected due to poor 
segmentation. A new metaheuristic based on the crow behavior was 
considered for segmentation of medical imaging data analysis (Baek 
et al., 2019). 

Accuracy is an important performance indicator in the field of medical 
diagnosis. Khan and Algarni (2020) considered the low accuracy rate 
of heart disease and developed an Internet of medical things (IoMT) 
framework. The classification accuracy was improved by using a 
combination of slap swarm optimization algorithm and adaptive 
neuro-fuzzy inference system (ANFIS). Similarly, Devikanniga 
(2020) regarded the accuracy issue of diagnostic process and extreme 
learning and improved AAA algorithm for accurate prediction of 
osteoporosis. Alsayat and Sayed (2016) also considered the accuracy 
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issue and combined self-organizing map (SOM) and K-means to 
achieve higher accuracy for heart disease. The accuracy issue of 
several healthcare datasets like cancer, heart, liver disease, and 
diabetes was also rectified using symbiotic organisms search (SOS) 
algorithm (Noureddine et al., 2020). The earlier treatment of diseases 
could reduce the death rate count significantly. 

To keep in mind and also to reduce the treatment cost, a combination 
of genetic algorithm and fuzzy logic was presented for effective 
treatment of heart disease (Reddy et al., 2020). The diagnostic 
accuracy could also be affected due to imbalanced parameter setting 
and feature selection. Wang and Chen (2020) rectified these issues 
of diagnostic process using chaotic whale optimization algorithm 
(WOA). The performance of rule-based diagnostic systems is 
highly dependent on the effectiveness of the discovered rules. The 
rule discovery in medical datasets can be described as one of the 
prominent tasks. The PSO algorithm was utilized to discover rules for 
heart disease (Alkeshuosh et al., 2017). Furthermore, a binary variant 
of PSO was presented to discover the effective rules for coronary 
artery disease (CAD) (Moghadam et al., 2021). Similarly, ant-based 
clustering algorithm was adopted to determine the more prominent 
rules for disease diagnosis (Kuo et al., 2007).

WWO is a recent metaheuristic algorithm that has received wide 
attention in the research community. This algorithm provides state-
of–the-art results for many optimization problems. Nevertheless, 
several issues can affect the performance of the WWO algorithm. 
This section summarizes the issues related to WWO and its solutions. 
The diversity and search mechanism issues of WWO are handled 
through comprehensive learning and variable population size (Zhang 
et al., 2015) and applied for solving fifteen different single objective 
problems. To effectively explore the solution space, Wu et al. (2015) 
redesigned the propagation, refraction, and breaking operator of 
WWO in terms of population size, best known solution, and exchange 
mechanism. Zheng and Zhang (2015) considered the imbalanced 
search mechanism of WWO, which could be balanced by using 
population reduction strategy and removing the refraction operator. 
The convergence speed and local search issues of WWO were 
addressed through opposition-based learning and local neighborhood 
search scheme (Wu et al., 2017). The exploration, local optima, and 
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exploitation issues of the WWO algorithm were attended through 
dynamic iterative greedy algorithm, crossover strategy, and insertion-
based local search (Zhao et al., 2018). These amendments were 
incorporated into propagation, refraction, and breaking operators of 
WWO and were applied for solving no-wait flowshop scheduling.  

Similarly, local optima, convergence rate, and low accuracy issues 
were handled through elite opposition mechanism and sine cosine 
algorithm (SCA) (Zhang et al., 2018). The SCA algorithm was 
integrated into the propagation and breaking phases for balancing 
search mechanisms and in turn obtained better convergence rate. 
Shao et al. (2018) also considered diversity, local optima, and quality 
of solution issues of WWO. These issues were resolved by using 
perturbation mechanism, path ranking technique, and two stage-
based propagation operators, respectively. The quality of solution 
and generation of neighborhood candidate issues were addressed by 
using Nawaz–Enscore–Ham method and block shift operator (Zhao 
et al., 2019a) and the resulted algorithm was applied for solving 
flowshop dispatch problem. Hematabadi and Foroud (2019) regarded 
the convergence issue of WWO and introduced chaotic maps for 
resolving the same issue. Furthermore, to increase the solution space 
of the WWO algorithm, bare bones technique was implemented into 
the refraction phase. Zhao et al. (2019b) considered the quality of 
solutions, imbalanced search mechanism, and local search issues of 
WWO and these issues were resolved by using random opposition 
learning, updated propagation operator, and self-adaptive mechanism.

The low accuracy and premature convergence issues were resolved by 
integrating a velocity component in the propagation phase of WWO 
(Zhang et al., 2019) and the velocity component was inspired through 
wind driven algorithm. The local search mechanism of WWO was 
enhanced through quadratic programming approach (Singh et al., 
2019). Issues like quality of solutions, balancing the local and global 
searches, and local minima of WWO were addressed by using priority 
rule based on NEH method, self-adaptive neighboring structure, and 
variable neighborhood structure, respectively (Zhao et al., 2020). 
The discrete and complex optimization problems could not be solved 
effectively using the WWO algorithm. A binary version of WWO 
was presented for solving such optimization problems in an effective 
manner (Ibrahim et al., 2020).
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From the above review, it can be observed that medical informatics 
get wide attention from the research community. A large number of 
techniques and classifiers have been reported for accurate diagnosis 
of diseases. In this study, sixteen recent research papers are discussed 
to determine the research gaps in terms of disease diagnosis and 
applicability of metaheuristic algorithms. It is found that accuracy is 
one of the important concerns regarding the performance of classifiers 
as well as diagnosis of diseases. In recent time, several metaheuristic 
algorithms are adopted for analyzing and discovering new patterns/
rules for healthcare datasets. Feature reduction and rule discovery 
are also active areas of research in the case of disease diagnosis. It 
is also noted that diverse metaheuristic algorithms are adopted for 
computing relevant features as well as rules for disease diagnosis. 
Several studies also focused on computational cost, treatment cost, 
feature selection, and segmentation issues of the diagnostic process. 
Moreover, these studies confirmed that metaheuristic algorithms have 
advantage over standard/ traditional classifiers such as Naïve Bayes 
(NB), decision tree (DT), and many more. 

Furthermore, this work considers the WWO-based metaheuristic 
algorithm for effective diagnosis and treatment of diseases. It is 
observed that the performance of the metaheuristic algorithm highly 
depends on the searching behavior to find the optimal solution. 
Therefore, this paper also investigates the various issues related to the 
WWO algorithm that can affect its performance. This study includes 
seventeen recent research papers on the WWO algorithm to determine 
the existing issues. It is found that several issues have been reported 
in the literature that can affect WWO’s performance. These issues 
are summarized as trapped in local minima or optima, population 
diversity, convergence rate, and search mechanisms (local as well as 
global). Nevertheless, convergence rate and search mechanism issues 
are the prominent ones that can affect the performance of the WWO 
algorithm. 

Prior to the implementation of the WWO algorithm for disease 
diagnosis, this work also addresses the search mechanism and 
convergence issues of WWO. The objectives of this work can be 
listed as follows: (1) Design an improved search mechanism for the 
WWO algorithm to obtain more promising and accurate results. (2) 
The convergence rate issue of WWO is resolved through an effective 
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operator and the aim of this operator is to generate diverse population. 
(3) The aforementioned improvements (1–2) are incorporated into 
WWO to make it more viable and robust. (4) As accuracy is one of the 
major concerns in the medical diagnosis field, the improved variant of 
WWO is adopted for disease diagnosis. (5) Finally, the performance 
of WWO is assessed over eight benchmark disease datasets.

WATER WAVE OPTIMIZATION

WWO is a metaheuristic algorithm based on the shallow water wave 
concept and has been adopted to solve a wide range of constrained and 
unconstrained optimization problems (Soltanian et al., 2018; Zheng, 
2015). The solution space of WWO is similar to the seabed area 
where each solution represents a “wave” and each wave is represented 
through height and wavelength. The seabed depth represents the 
fitness of waves and higher fitness can be described in terms of water 
level. At the time of the initialization, λ is set to 0.5 and the height 
of each wave is set to constant as hmax. The functionality of WWO 
is characterized using i) propagation, ii) refraction, and iii) breaking 
operators. These operators are responsible for attaining global optima. 

The propagation operation corresponds to the generation of new 
waves (X’) through displacement of old waves (X). This process is 
described in Equation 1.  

		  		               	(1)

where, rand is the random number and Ld denotes the dimension length. 
If , then, X is replaced through X’ and .  parameter is 
reset; otherwise, X remains the same and .  

The deep-water waves can be characterized through long wavelengths 
and low heights. On the other hand, shallow water waves have short 
wavelengths and low heights. When waves move from deep water to 
shallow water, the wavelength of the waves decrease in a significant 
manner. The reduction of wavelengths can be computed after each 
generation in WWO using Equation 2. 

	 	 (2)
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where  denotes the minimum fitness, denotes the maximum 
fitness with respect to the current population, α denotes the coefficient 
parameter for wavelength reduction, and ε is a constant. 

The refraction operator considers the wave with height equals to zero 
and its aim is to improve the height of such waves. The new position 
of wave (X’) is calculated using Equation 3 and it can be described in 
terms of Gaussian of standard deviation and mean vectors. Mean is 
computed as the average of original position (Xd) and best position 
(Xbestd) as mentioned in Equation 4, whereas deviation from these 
positions can be described through standard deviation as mentioned in 
Equation 5. Equations 3–5 are described as below.  

			   			    (3)

		              			    (4)

		                			    (5)

 parameter is reset after execution of the refraction parameter 
and wavelength is computed using Equation 6.

                                    	 (6)

The waves break into solitary waves after reaching a threshold 
value. The breaking operator is responsible to break the wave (X) 
into solitary waves after attaining the optimal location as compared 
to best solution (Xbest). The solitary wave (X’) is chosen by adding 
offset calculated using k-dimensions randomly between 1 to kmax 
(predefined number) to the original position in d dimension as in 
Equation 7. 

	 	 (7)

where β represents the coefficient of breaking,  is generating a random 
sequence. If wave X’ is found to be better than X, then X is replaced 
through X’.
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PROPOSED WWO-BASED DIAGNOSTIC MODEL

This section describes the WWO-based diagnostic model for disease 
diagnosis. It comprises three phases, namely preprocessing, diagnosis, 
and performance evaluation. Figure 2 illustrates the proposed WWO-
based diagnostic model. 

Figure 2

Proposed WWO-based Diagnostic Model for Disease Diagnosis
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Preprocessing Phase 

In this phase, the initial disease dataset was uploaded in the diagnostic 
model for diagnosis tasks. Before the handover of datasets for the 
diagnosis phase, some preprocessing operations and data cleaning 
tasks were performed (missing value imputation, dimension 
reduction, detect and remove inaccurate records, etc.). Raw dataset 
was converted into a preprocessed dataset, which had all information 
regarding its attributes and class labels. The next step was to remove 
class information from the preprocessed dataset and handover the 
data to the diagnosis phase.

Diagnosis Phase

This phase is responsible for accurate diagnosis of disease data 
instances. The WWO-based clustering algorithm is implemented in the 
diagnosis phase. Before applying the WWO algorithm for clustering, 
some improvements are inculcated. The aim of these improvements 
is to assist the proposed algorithm in making a more robust, efficient, 
and accurate diagnosis.

Improved WWO Algorithm

This subsection presents an improved WWO algorithm for allocating 
the data objects into different groups. The WWO algorithm contains 
three operators, i.e., propagation, refraction, and breaking, to attain 
the global optimum solution. It is noticed that the local search ability 
of WWO is strong, but has a weak global search mechanism (Zhao 
et al., 2018). In the literature, it is mentioned that PSO had a strong 
global search ability due to its global best information component. 
Therefore, inspired from PSO’s global search mechanism, the global 
solution search equation of WWO was updated by integrating the 
global best information component in the propagation operator. The 
aim of this component was to direct the search toward global optimum 
solution. On the other hand, the refraction operator was responsible 
for premature convergence issue (Hematabadi & Foroud, 2019). It 
was observed that when waves moved from deep water to shallow 
water, the height of waves decreased, and the height of some waves 
became zero. In turn, the algorithm converged on the local optimum 
solution due to a sudden decrement in wave height. The refraction 
operator considered such waves whose height was equal to zero and 
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enhanced the wave height at each iteration through small fraction. In 
this work, the premature convergence issue was handled through the 
decay operator, which was integrated into the refraction operator of 
WWO. 

Updated Global Search Mechanism

The global search corresponds to exploit the optimal candidate in 
hopes of attaining global optima. It was observed that the global 
search of WWO was lacking to guide the search in the direction of 
global optima as shown in Equation 8. 

		    	  	  (8)

In the above equation,  describes the updated location of a wave,  
is the current location of a wave, rand function defines a random 

number in -1 to 1, L(d) describes the search space length and
describes the wavelength. The location of the wave was updated by 
following the old location of a wave, random function, and wavelength 
without information of the global best wave. This resulted in weak 
global exploration capability. Therefore, the global search equation 
was updated by integrating the global best information component and 
inertia weight factor as mentioned in Equation 9. These amendments 
were inspired by the PSO algorithm.

	                 	 (9)  

Decay Operator

The premature convergence problem was rectified through the decay 
operator. The decay operator was integrated into the refraction 
operator. The aim of this operator was to enhance the wave height 
in a stepwise manner. This was because the premature convergence 
problem occurred as wave height decreased to zero, when waves 
moved from deep to shallow water. In turn, the algorithm returned the 
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local best solution instead of global optimum. The decay operator was 
incorporated into the refraction operator for updating the position of 
waves. The new search equation can be described using Equation 10. 
 
	       	              (10) 

Steps of Improved WWO Algorithm

The algorithmic steps of the proposed WWO algorithm for the 
diagnosis of different diseases are described in Algorithm 1.

Algorithm 1: Improved WWO algorithm

1: Set user defined parameters and population of WWO algorithm 
such as wave (C) such as 

2: Compute the closeness of data objects using the objective function 
mentioned in Equation 11. 
                                                            (11)  

 denote data points and cluster centers, i.e., wave. 
Clusters can be represented through waves. 

3: Allocate data objects to different clusters (waves) using least value 
of objective function and kept the best one .

4: While (maximum iteration is not reached), do the following
5: For each cluster (wave)  
6: Propagation operator generates the new position of wave  

using Equation 9.
7: If  then
8: If  
9: Apply Breaking operator to break the wave  as mentioned in 

Equation 12. 
                                            (12)

10: Update  and  

(continued)
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11: Else, Refraction operator is applied to generate new wave 
using Equations 10 and 13.
                                                                              (13)
   

12: Update the wavelength using Equation 14. 

                                            (14)
13: Determine the best wave 
14: End while
15: Compute the optimal position of waves

Evaluation Phase

This phase evaluates the simulation results of the WWO-based 
diagnostic model. The outcome of the model is either healthy or 
unhealthy groups. Two performance indicators, namely accuracy 
and F-score, were adopted for evaluating the performance of the 
diagnostic model.

EXPERIMENTAL RESULTS

This section discusses the simulation results of the WWO diagnostic 
model. The performance of the WWO-based diagnostic model was 
assessed over various medical datasets downloaded from the UCI 
repository. The descriptions of these datasets are given in Table 1. 
Two performance indicators were adopted to check the efficacy of 
diagnostic model. Several state-of-the-art techniques/models were 
chosen to compare the simulation results of the WWO diagnostic 
model. Furthermore, results were described as an average of thirty 
runs. The parameter setting of the proposed WWO algorithm was 
based on the setting reported in Soltanian et al. (2018).

Algorithm 1: Improved WWO algorithm
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Table 1

 Summary of Healthcare Datasets

Sr. No. Datasets Clusters (K) Instances Dimension
1 CMC 3 1473 9
2 Thyroid 3 215 5
3 Dermatology 6 358 34
4 BC 2 683 9
5 WDBC 2 569 30
6 LD 2 345 6
7 Heart 2 270 13
8 Diabetes 2 768 8

Performance Indicators

This section presents the two performance indicators that are used to 
evaluate the efficacy of the WWO-based diagnostic model. 
Accuracy: It is calculated using Equation 15. Accuracy of the 
algorithm can be described in terms of true positive (TP) rate and true 
negative (TN) rate with respect to all data instances, i.e., true positive 
(TP), true negative (TN), false positive (FP), and false negative (FN).

		     		             (15)

F-Score: It also signifies the accuracy of the model and is computed 
in terms of precision and recall. Precision describes the true positive 
rate with respect to all positive instances. While recall describes the 
actual true positive rate with respect to true positive and false negative. 
F-score is computed using Equation 16.

	        		             (16)
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Simulation Results 

This subsection discusses the performance of the proposed WWO-
based diagnostic model on seven healthcare datasets. These datasets 
are: (i) CMC, (ii) thyroid, (iii) dermatology, (iv) BCW, (v) WDBC, 
(vi) LD, (vii) diabetes, and (viii) heart diseases. The implementation 
results of the WWO-based diagnostic model and other models/
techniques are presented in Table 2. The experimental results were 
compared with nine state-of–the-art techniques. According to the 
analysis of results, it showed that the WWO-based diagnostic model 
obtained more substantial results for diagnosing most of the diseases, 
except for BC and CMC. It also stated that the accuracy rate of 
the WWO-based diagnostic model was higher than other models/
techniques. 

F-score is another performance indicator that can be used to assess the 
diagnostic model performance in terms of disease datasets. It considers 
precision and recall to evaluate the diagnostic model performance 
in terms of true positive rate. It is a more significant performance 
indicator than accuracy. The F-score rates of the WWO-based 
diagnostic model and another techniques/model are reported in Table 
3. The results confirmed that the WWO model had a higher F-Score 
rate as compared to the other models/techniques. Nevertheless, the 
F-score rate of the CMC and thyroid datasets were slightly lower 
than other techniques/models. The fuzzy-magnetic optimization 
clustering (Fuzzy-MOC) algorithm provided a higher F-score rate on 
the CMC dataset. Whereas PSO-GA obtained a higher F-score rate 
for the thyroid dataset. From observation, it can be concluded that the 
WWO-based diagnostic model provided significant accurate results 
in contrast to other models/techniques in the literature and was one of 
the robust and efficient algorithms to diagnose diseases. 
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Figures 3(a-h) demonstrate the categories of disease using the WWO-
based diagnostic model. Figure 3(a) illustrates the data objects of 
diabetes. The proposed model grouped data objects into two clusters: 
(i) with diabetes and (ii) without-diabetes categories. Figures 3(b & 
c) show the distribution of the data objects that belonged to liver and 
heart diseases. The WWO model divided the data objects into different 
clusters by using the similarity measure. Furthermore, healthy and 
non-healthy patients were successfully determined using the WWO 
model. The data objects of the thyroid dataset are illustrated in Figure 
3(d). These data objects were divided into normal, hyperthyroidism, 
and hypothyroidism clusters using the WWO model. The proposed 
model significantly differed patients in (i) hyperthyroidism and (ii) 
hypothyroidism groups or clusters as the data objects belonging to 
these clusters were non-linear in nature. Figure 3(e) presents the data 
objects of dermatology disease. These data objects were clustered into 
six categories: (i) psoriasis, (ii) saboreic, (iii) lichen, (iv) pityriasis, 
(v) chronic, and (vi) pityriasis. All data objects were high non-linear 
in nature; nevertheless, the WWO model significantly separated the 
data objects into respective clusters. The data objects of the CMC 
disease are illustrated in Figure 3(f). The WWO model clustered the 
CMC disease data objects into three categories such as: (i) no use, (ii) 
long term, and (iii) short term. Figures 3(g-h) present the data objects 
of two cancer diseases. The WWO model diagnosed both diseases in 
an effective manner and categorized the data objects into respective 
clusters. Finally, it stated that the WWO based diagnostic model was
an effective model for disease diagnosis. 
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Figure 3(a-h) 

Diagnosis of Diseases Data using the Proposed WWO Based 
Diagnostic Model

(continued)
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Statistical Results 

Statistical analysis is also as important as experimental analysis. 
The statistical analysis also validates the existence of the model/
techniques for solving the specific task. Furthermore, it is performed 
on simulation results achieved by the proposed model with respect 
to other models/techniques. The statistical analysis determines either 
the simulation results reported the by model/technique are different 
from other models/techniques or not. This work also considered the 
statistical analysis to investigate the performance of the WWO model 
in the healthcare domain. Statistical tests are applied to confirm the 
existence of the newly proposed algorithm. In this work, Friedman 
statistical test was regarded to evaluate the statistical difference 
between the performance of the proposed WWO algorithm and the rest 
of the clustering algorithms. Two hypotheses, i.e., H0 and H1, were 
designed to perform the statistical test. H0 denotes that the performance 
of all algorithms is the same, known as the null hypothesis, whereas 
H1 denotes that the performance of all algorithms is not the same. 
Here, the value of alpha (α) was set to 0.05 and represented the level 
of confidence. Tables 4–5 illustrate the statistical results of Friedman 
test on the accuracy indicator. Ranking of the WWO model and other 
models/techniques are reported in Table 4. The WWO model claimed 
the first rank (1.25), among the other models/techniques, whereas 
the kernel fuzzy c-means clustering (KFCM) algorithm obtained the 
lowest rank (8.25). The statistical results of the test are reported in 
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Table 5. These results rejected the null hypothesis and confirmed that 
the simulation results of the WWO model were substantially different 
than other models/techniques. The critical value of the test was 
41.1068 on the confidence level 0.05 and the p-value was 4.78E-06. 

Table 4

Ranking of Models/Techniques using Friedman Statistical Test on the 
Accuracy Indicator

FCM Fuzzy-
PSO KFCM Fuzzy-

MOC PSO K-
means GA PSO-

GA WWO Proposed 
WWO

6.94 6.81 8.25 5.13 6.38 8.25 5.25 3.13 3.63 1.25

Table 5

Summary of Friedman Test on the Accuracy Indicator

Method Statistical Value p-Value Hypothesis

Friedman Test 41.1068 4.78E-06 Rejected

Tables 6–7 illustrate the statistical results of the test using F-score 
indicator. The ranking of each model/technique is displayed in Table 
6, while statistical results are presented in Table 7. It was analyzed 
that the WWO model claimed the first rank (1.38) among all models/
techniques, while Fuzzy-PSO had the lowest rank (8.19). Furthermore, 
the statistical results disagreed with the null hypothesis (H0) and 
confirmed the existence of the WWO model as the simulation results 
were significantly different than the other models/techniques. The 
critical value of the test was 36.456818 on the confidence level 0.05 
and the p-value was 3.18E-05. Therefore, the statistical analysis 
proved that the WWO model was an effective model for the diagnosis 
of diseases and was substantially different than others. 
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Table 6

Ranking of Models/Techniques using the F-score Indicator Based on 
Friedman Statistical Test 

FCM Fuzzy-
PSO KFCM Fuzzy-

MOC PSO K-
means GA PSO-

GA WWO Proposed 
WWO

6.13 8.19 6.88 3.88 5.94 7.13 7.63 4.38 3.5 1.38

Table 7

Results of Friedman Test using the F-score Indicator

Method Statistical Value p -Value Hypothesis
Friedman Test 36.456818 3.18E-05 Rejected

CONCLUSION

This work presented the WWO-based diagnostic model for diagnosis 
of different diseases. The functionality of the WWO model is divided 
into three phases: (i) preprocessing, (ii) diagnosis, and (iii) evaluation 
phases. In the diagnosis phase, the WWO-based algorithm was adopted 
to diagnostic tasks, i.e., to determine different classes of disease 
datasets. However, few amendments were integrated into the WWO 
algorithm to improve the diagnostic accuracy. These amendments 
were characterized as global best information component in global 
search and updated decay operator. The global search of WWO was 
enhanced by integrating the global best information component and 
inertia weight. The aim of this integration was to guide the search in the 
direction of optimal solution and explore the search space effectively. 
The premature convergence issue was resolved through an updated 
decay operator. This operator enhanced the wave height in a stepwise 
manner to attain the global optima instead of local optima. Eight well-
known healthcare datasets were considered for evaluating the WWO-
based diagnostic model performance. Accuracy and F-score were 
selected as the performance indicators. Several models/techniques 
were chosen to compare the simulation results. The findings confirmed 
that the WWO model converged on higher accuracy and F-score rates 
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as compared to the other modes/techniques. The statistical analysis 
also claimed that the WWO model obtained better diagnostic results 
for most diseases. Therefore, it can concluded that the WWO-based 
diagnostic model is a promising and efficient diagnostic model 
for disease diagnosis. In future research, other issues related to 
WWO like local optima, balancing of local and searches should be 
considered. Furthermore, neighborhood concept-based strategies 
could be integrated into WWO to make it more efficient. It can also be 
hybridized with other metaheuristics to generate the optimal solution 
for complex optimization problems. Nevertheless, it is also stated that 
the proposed diagnostic model only works with the disease datasets, 
not on the image dataset. Moreover, the proposed model cannot 
focus on the attribute weighting for disease prediction. In future, the 
capability of the proposed diagnostic model should be explored with 
image data as well as to include an attribute weighting method for 
better prediction accuracy. Furthermore, multiple objective functions 
could be integrated in the proposed diagnostic model to achieve better 
results.
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