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ABSTRACT
 

Globally, recent research are focused on developing appropriate and 
robust algorithms to provide a robust healthcare system that is versatile 
and accurate. Existing malaria models are plagued with low rate of 
convergence, overfitting, limited generalization due to restriction to 
binary cases prediction, and proneness to local minimum errors in 
finding reliable testing output due to complexity of features in the 
feature space, which is a black box in nature. This study adopted a 
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stacking method of heterogeneous ensemble learning of Artificial 
Neural Network (ANN) and Support Vector Machine (SVM) 
algorithms to predict multiclass, symptomatic, and climatic malaria 
infection. ANN produced 48.33 percent accuracy, 60.61 percent 
sensitivity, and 45.58 percent specificity. SVM with Gaussian kernel 
function  gave better performance results of 85.60 percent accuracy, 
84.06 percent sensitivity, and 86.09 percent specificity. Consequently, 
to improve prediction performance, a stacking method was introduced 
to ensemble SVM with ANN. The proposed ensemble malaria model 
was tuned on different thresholds at a threshold value of 0.60, the 
ensemble model gave an optimum accuracy  of 99.86 percent, 
sensitivity  100 percent, specificity  98.68 percent, and mean square 
error 0.14. The ensemble model experimental results indicated that 
stacked multiple classifiers produced better results than a single model. 
This research demonstrated the efficiency of heterogeneous stacking 
ensemble model on effects of climatic variations on multiclass malaria 
infection classification. Furthermore, the model reduced complexity, 
overfitting, low rate of convergence, and proneness to local minimum 
error problems of multiclass malaria infection in comparison to 
previous related models. 

Keywords: Artificial neural network, data mining, ensemble, 
malaria infection, support vector machine.

INTRODUCTION

One major health problem among humans especially in the tropical 
region is malaria infection. People are diagnosed of malaria at least 
three times per year. From the World Health Organization statistical 
record, most malaria cases emanated from the African region. About 
93 percent or 213,000,000 malaria cases were reported in 2018 with 
405,000 mortality rates as compared to 3.4 percent malaria cases in the 
Asia region (Southeast) and 2.1 percent malaria cases in the Eastern 
Mediterranean region. Globally, six countries, namely Uganda, 
Democratic Republic of the Congo, Nigeria, Côte d’Ivoire, Niger, 
and Mozambique, have prevalent cases of malaria (Teboh-ewungkem 
& Ngwa, 2020; Thornton, 2020; WHO, 2019). Malaria is a parasitic 
infection transmitted by a vector known as Anopheles mosquito. The 
vector consists of a parasite known as Plasmodium species, which 
invades the red blood cell, thus infecting the liver system (Mueller et 
al., 2009; Vaughan & Kappe, 2017).
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Recent research are focused on the dynamics and complexities of 
malaria parasite transmission. Research on the risk of asymptomatic 
and symptomatic influences on malaria infection are still valid 
today (Bannister & Mitchell, 2003; Depinay et al., 2004). Existing 
literature examined the binary nature of malaria cases; however, the 
non-linear system involves multiclass cases. Malaria parasite can be 
clinically diagnosed in counts of low, mild or high. Occasionally, 
different diagnosed cases may even overlap, and medical problems 
need a knowledge intensive program analysis and generalization. 
The domain complex networks of problems need to be ensembled 
to devise an individualized solution (Randolph, 2008). Consequently, 
big data of malaria cases are being recorded yearly and there are 
difficulties in analyzing and making inferences to reduce its complex 
nature (Keeling & Rohani, 2011). On several occasions, the system 
is plagued with problems of local minimum response and overfitting 
resulting from enormous parameters to fix. Then, the call for machine 
learning models arises to find the knowledge intensive mechanism and 
break the complexity of data interpretation to solve medical problems 
at hand (Hegazy et al., 2013). Machine learning methods eradicate 
the problems in predicting values, classifying patterns, filtering data, 
structuring data, and extracting valuable features from data when faced 
with many irrelevant/noisy features. They also extract association 
among data components, model the data and generate systems that are 
less error-free, as well as integrate the system with different sensors 
using classification and inferences (Maina et al., 2017; Namdev et al., 
2015).

Feature extraction extracts best features and suitable information to 
handle a given task in solving a problem (Mizher et al., 2019). Feature 
extraction is a transformational approach to transform space input 
features into few subspaces that retain accurate feature description. 
In machine learning, feature extraction is active in removing outliers 
and redundant data, thus improving learning accuracy and reducing 
complexity. Over the decades, dimensionality reduction is a challenging 
issue in handling feature extraction and feature selection to obtain 
a robust model. Feature selection and feature extraction algorithms 
have been proposed to enrich classification of groups of patterns, 
signals, and features to make inferences about a particular problem 
in a specific domain of interest and enhance prediction accuracy 
(Khalid et al., 2014). The classifiers involved are the Convolutional 
Neural Network (CNN) (Roy et al., 2018; Su, 2020; Triwijoyo, 2017), 
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Multiple Linear Regression (Priambodo & Ahmad, 2018), Decision 
Tree (Ibrahim et al., 2016), Feed Forward Neural Network (FNN) 
(Priambodo & Ahmad, 2018), Back Propagation Neural Network 
(BPNN) (Hairuddin et al., 2020), k-Nearest Neighbor (k-NN) (Gupta 
& Mittal, 2018), Support Vector Machine (SVM) (Chaudhari & 
Agrawal, 2015), and Bayes (Ganesan et al., 2010).

Ensemble learning is a machine learning paradigm employing multiple 
learning methods to solve machine learning problems of missing 
feature, feature selection, error correlation, confidence estimation, 
class imbalanced data, etc. in diverse real-world applications (Oza 
& Russell, 2000; Yang et al., 2016; Zhou, 2009). It constructs and 
combines a set of hypotheses for training data by employing multiple 
algorithms and bridging the gaps in their weaknesses and strengths 
(Moayedi & Jahed Armaghani, 2018). Ensemble learning exhibits 
correct high prediction and classification performance as compared 
to single learning models (Kwon & Kwak, 2019). The key idea to 
improve performance is to modify training datasets, build classifiers 
on these n-training sets, and combine them to the final decision rule. 
Ensemble learning method comprises bagging, boosting, and stacking. 
Its generalization is attractive as compared to single learning model 
(Brown, 2010; Samat et al., 2014).

Yearly, there are high malaria incidence cases that affect both young 
and old citizens as compared to other infections, and several difficulties 
have risen in predicting its occurrence and analysis of its possible 
threats. The need to develop an alternative fast healthcare solution 
that employs the unique features of several models and complements 
the weaknesses and strengths of one another is of great importance. 
Medical personnel, patients, and any stakeholders will have greater 
opportunities to perform malaria severity predictions. 

This paper’s subsequent section organization is as follows: Section II 
presents a review of related previous models’ performances and their 
limitations, Section III introduces the methodology and materials 
used for the Support Vector Machine and Artificial Neural Network 
(SVM_ANN) Model, Section IV gives the Ensemble Stacked SVM_
ANN Model result, Section V discusses the model result, summary 
of the model, strength, limitation of the study, and future direction. 
Finally, Section VI sums up the paper with concluding remarks.
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RELATED WORKS

Conventional microscopy is sometimes inefficient to diagnose 
infections and there is a difficulty of overlapping in computation of 
results. Classification algorithms, namely Neural Network, SVM, 
and Naïve Bayes, have been employed with Discrete Wavelength 
Transform (DWT) and Gray-Level Co-Occurrence Matrix (GLCM) 
for feature extraction, and SVM has been proven to be outstanding. 
Several literature justified the effectiveness of SVM in handling binary 
class problems; in contrast, this study only incorporates a classifier to 
check the level of parasitemia in red blood cells (RBCs), which are 
multiclass in nature (Chaudhari & Agrawal, 2015).

Various machine learning algorithms, such as k-Nearest Neighbor 
(k-NN), Linear Discriminant Classification (LDC), and Logistic 
Regression (LR), were combined to gain physical features that can 
differentiate among cells easily and thus increase diagnostic capability. 
From the results, it was discovered that for late trophozoites, LDC 
gave the highest accuracy of 99.7 percent in comparison to NNC with 
99.5 percent accuracy and LR with 99.1 percent accuracy to detect 
stages of schizont and to differentiate between uninfected RBCs. 
Furthermore, for early detection of trophozoites, LDC gave the best 
accuracy of 98 percent, specificity of 99.8 percent, but was weak in 
specificity of 45.0 percent to 66.8 percent. The major challenge in 
the research is that oftentimes early trophoizoites are being mistaken 
with late trophoizoites. Therefore, better algorithms for detection are 
needed to back up expert analysis and Giemsa staining experiment to 
be conducted (Park et al., 2016).

From historical records, there is widespread usage of ANN, a machine 
learning tool for prediction of diseases especially cancer and malaria 
(Arulampalam & Bouzerdoum, 2003). Nowadays, SVM has been 
proven to work better than ANN for binary classification problems 
(Zacarias & Bostrom, 2013). For simple representation, Decision 
Tree is widely used but usually involves large training sets. In a real-
life system like the healthcare system, an accurate prediction model 
is needed. A previous study focused on SVM and Firefly Algorithm 
(FFA) copulation to detect malaria cases. In the study, FFA was 
employed to choose appropriate parameters for SVM. The proposed 
method was applied to areas of Jodhpur and Bikaner in India where 
malaria transmission was unstable. The result of the study indicated 
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that SVM-FFA worked better in comparison to SVM, ANN, Auto-
Regressive Moving Average method, and other existing models (Ch 
et al., 2014).

Existing literature considered behavioral features of Counts of 
Chromatin Dots (NCD), Infected Red Blood Cells Size (RBCS), 
Location of Chromatin (LC), Structure of Parasite (SP), RBCT 
(RBCT) and Counts of Parasite/RBC (CRBC). No consideration was 
given to symptomatic characteristics of infected red blood cells (Di 
Ruberto et al., 2000). Several studies revealed that climatic variations 
also had a great influence on malaria incidence (Zhou et al., 2004). 
The literature also disclosed that most existing models were not 
subjected to several performance measures to ascertain their level 
of effectiveness and robustness. This study developed a model that 
solved multiclass nature of parasitemia in thick red bold cells and 
measured with several performance metrics of sensitivity, specificity, 
accuracy, mean square error (Barros et al., 2010).

An approach to handle multitask multiclass SVM with basis of 
regularization functional minimization was conducted. Multiclass 
problems having a quadratic objective function were subjected into 
a constrained optimization problem to learn directly from the data. 
Two different learnings took place: label-compatible and label-
incompatible multitask learning. Choosing appropriate kernels help to 
categorize the linear multitask learning approach to non-linear cases 
(Mohammed et al., 2020). With several experiments conducted and 
compared to other multitask learning models, this approach stood out 
to be good to solve multitask multiclass problems (Ji & Sun, 2013). 
Accurate malaria parasite mitochondrial protein identification helped 
to find appropriate drugs to combat the infection and sequence-
based approach was adopted for the detection of malaria parasite 
in mitochondrial proteins. Beforehand, to discretely formulate the 
protein sequences, adjoining dipeptide composition was extended 
to g-gap dipeptide composition. Its optimal features were selected 
with incremental feature selection approach and analyzed with 
Analysis of Variance (ANOVA). The result of the evaluation 
indicated 97.1 percent accuracy, with 101 optimal 5-gap dipeptides. 
This method was proven to be better when compared to existing 
methods (Ding & Li, 2015).

A co-infection predictive symptom-based system was developed for 
malaria and typhoid infections. The research aim was to develop 



    123      

Journal of ICT, 21, No. 1 (January) 2022, pp: 117–148

a computer-based system that would help in medical diagnosis, 
especially in areas that lacked facilities and medical experts. SVM 
was employed for the co-infection classification of 20 patient malaria 
cases that were collected as data samples. The result of the proposed 
system was 80 percent accurate for classifying malaria and 60 percent 
accurate for classifying typhoid. An accuracy of 90 percent was 
attained for the typhoid and malaria co-infection and it captured a 
relatively low dataset. The limitation of the study was that several 
performance metrics were needed to be employed to ascertain the 
correctness of the system. Moreover, the effects of global thresholding 
and climatic conditions were not considered (Aminu et al., 2016).

A study was carried out on resultant simultaneous effects of 
temperature and rainfall on the dynamics of mosquito population and 
malaria incidence cases. The result revealed that temperature was a 
higher determinant of malaria outbreaks in a vulnerable population 
(Parham & Michael, 2010). Modeling statistical tools of Long-Short-
Term Memory (LSTM), Auto-Regressive Integrated Moving Average 
(ARIMA), Back Propagation–ANN (BP-ANN), as well as Seasonal 
and Trend Decomposition using Loess and ARIMA (STL+ARIMA) 
were previously adopted by researchers between 2011 – 2017 to 
predict the influence of climatic variations on malaria infection. In 
a previous study, a stacking architecture was proposed to combine 
different algorithms. Gradient Boosting Regression Tree (GBRT) was 
employed to combine four algorithms, and the model prediction was 
improved by the stacking structure. The performance metrics of mean 
absolute deviation (MAD), root mean square error (RMSE), and mean 
absolute scaled errors (MASE) were employed to test the model’s 
predictive power. Initially, RMSE values of the existing four models 
were 13.176, 14.543, 9.571, and 7.208; MASE values were 0.469, 
0472 ,0.296, and 0.2666; and MAD values were 6.403, 7.658, 5,871, 
and 5.691. The results indicated that the MAD, RMSE and MASE 
values of GBRT decreased to 4.625, 6.810, and 0.224, respectively 
(Wang et al., 2019).

A study was conducted on the analysis of hematological predictors 
of malaria infection in the Ashanti region of Ghana with the 
Logistic Regression model. The study revealed that skills needed for 
microscopic examination of peripheral blood film were often lacking 
among laboratory scientists. A binary logistic model was conducted and 
it identified the predictors’ age, hemoglobin, platelet, and lymphocyte 
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as the most significant asymptomatic predictors. The result from the 
study indicated 77.4 percent sensitivity and 75.7 percent specificity 
with a positive predictive value (PPV) and negative predictive value 
(NPV) of 52.72 percent and 90.51 percent, respectively (Paintsil et 
al., 2019). A research was conducted in Ethiopia among southern 
lowland areas from July to September 2016. The study focused on 
investigating malaria severity in several regions of the study sites. 
90 villages were randomly selected from five villages. The statistical 
significance of P value ≤ 0.05 was applied as a benchmark. The 
results of the study indicated 2/5 independent clusters with higher 
risks. Over ¼ febrile cases were confirmed positive and over 2/4 of 
the positive cases’ causative agent was Plasmodium falciparum, the 
rest ¼ causative agent was Plasmodium vivax. Conclusively, enough 
malarial intervention programs should be conducted in such areas 
with critical conditions (Esayas et al., 2020). 

A survey of asymptomatic malaria and mosquito vectors was conducted 
in the border region of China-Laos to investigate the epidemic trend 
of malaria infection. Nested polymerase chain reaction (PCR) and 
microscopy examination was conducted on blood samples of 354 
local residents from one year to seventy-two years (1 – 72 years old) 
at Sankang village in 2016. Furthermore, 2,430 adult mosquitos were 
trapped in Muang Khua district in the same year from June to August. 
The results of the surveillance of mosquitos indicated that Culex and 
Anopheles were the predominant vectors. The predominant species of 
seven groups of Anopheles was Anopheles sinensis, thus indicating 
that the China-Laos border had the largest malaria epidemic condition 
(Zhang et al., 2020). 

In the last decades, researchers seek for robust and efficient machine 
learning methods to arrive at a definite conclusion from unreadable 
ambiguous data. Ensemble methods emerged and gained significant 
attention in the scientific community. Machine learning ensemble 
methods combine multiple learning algorithms to attain better 
predictive performance than could be obtained from single base 
learning algorithms. Combining multiple learning models has been 
hypothetically and experimentally shown to provide a significantly 
better performance than their single base learners. In the literature, 
ensemble learning algorithms set up a dominant and state-of-the-art 
approach for obtaining maximum performance. Ensemble methods 
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have been applied in a variety of real-life problems ranging from 
face and emotion recognition through text classification and medical 
diagnosis to financial forecasting. Future research may exploit 
ensemble learning for improving prediction accuracy and machine 
learning readability and enhancing model reliability (Pintelas & 
Livieris, 2020).

An ensemble machine learning model was proposed for the prediction 
of resistance artemisinin of malaria due to its exponential increase 
in many areas of Sub-Saharan Africa and Southeast Asia and in the 
late 2000s in Cambodia. Recent research are exploring underlying 
mechanisms behind the incidence cases of artemisinin resistance to 
transform isolated data and handling the tens of thousands of variables 
and machine learning models. Scikit-learn package with Gradient 
Boosting, Random Forest, Decision Tree, Lasso Lars, Elastic Net, 
Light Gradient Boosting Machine (LightGBM), Stochastic Gradient 
Decent, and Extreme Random Tree were employed with various 
scaling methods ranging from Principal Component Analysis, Min/
Max Scaler, Wrapper, Maximum Absolute Scaler, Robust Scaler, 
Sparse Normalizer, Truncated Singular Value Decomposition 
Wrapper, and Standard Scale Wrapper. A recent study aimed at 
accurately predicting Plasmodium falciparum drug resistance levels 
of artemisinin isolate as quantified by the IC50 and also predicting the 
parasite vitro transcriptional profiles of the clearance rate of malaria 
parasite isolates. After training with 498 individual models, two 
ensemble models (voting and stacking) methods were adopted by the 
model selection method, i.e., Caruana ensemble selection algorithm. 
The result of the study indicated that the voting ensemble model was 
the best model with the lowest normalized RMSE of 0.1228 and a 
mean absolute percentage error (MAPE) of 24.27 percent. This 
implied that the voting ensemble model accurately predicted IC50 in 
malaria isolates (Ford & Janies, 2019).

A performance evaluation of deep neural ensembles toward malaria 
parasite detection in thin-blood smear images was conducted in 
2019 due to burdensome of disease diagnosis and adverse variability 
of inter/intra-observer variability, mainly in large-scale screening 
under resource-constrained settings of microscopic thick/thin-film 
blood examination. Convolutional Neural Network (CNN) is a deep 
learning algorithm with the architecture for image recognition but 
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is plagued with high variance and sometimes would overfit due to 
its sensitivity to training data fluctuations. A recent study aimed to 
improve robustness and generalization and reduce model variance by 
employing ensembles algorithms to detect parasitized cells in thin-
blood smear images. Various cross validations were conducted to 
prevent data leakage into the validation and reduce generalization. 
Then, the models were evaluated with accuracy, mean squared error 
(MSE), area under the receiver operating characteristic (ROC) curve 
(AUC), F-score, precision, and Matthews correlation coefficient 
(MCC). The result of the study indicated that the ensemble model 
constructed with VGG-19 and Squeeze Net performed better that the 
state-of-the-art models in several performance metrics (Rajaraman et 
al., 2019).

An ensemble framework for classification of malaria disease was 
proposed due to the challenge of having prevalence of data with non-
infected cases as compared to infected cases. Consequently, the major 
concern was to develop a model-based decision support system that 
could handle unbalanced datasets relatively well and give accurate 
prediction. To overcome the aforementioned problem, ensemble 
methods of boosting, bagging, and voting algorithms that could handle 
minority samples were proposed. In the study, a comparative analysis 
on accurately classifying imbalanced and balanced malaria disease 
datasets with AdaBoost, Random Forest, Multilayer Perceptron 
(MLP), and Linear Discriminant Analysis (LDA) classifiers was 
conducted. The experimental result indicated that the Random Forest 
algorithm showed outstanding performance for the classification of 
imbalanced malaria disease (Sajana & Narasingarao, 2018b).

A comparative study on imbalanced malaria disease diagnosis using 
ensemble machine learning algorithms was conducted because malaria 
infection was prevalent majorly in non-urban areas. In the study, a 
skewed distribution of data was collected with five positive cases 
and 160 negative cases from a private clinic where 87 were neonatal 
patients. To balance the dataset, the Synthetic Minority Oversampling 
Technique (SMOTE) algorithm was employed. Afterward, various 
classifiers such as Decision Tree using C4.5, Naive Bayesian, and 
Radial Basis Function (RBF) Network carried out the classification. 
A comparative study on the research indicated that RBF Network 
had the highest classification accuracy of 98.9 percent, Bayesian had 
94.7 percent, and Decision Tree 92.7 percent (Sajana & Narasingarao, 
2018a). 
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Despite the greatest predictive ability of ensemble learning, some 
vital issues remain unaddressed. Several important ones are what 
factors affect the accuracy of an ensemble, to what extent they work, 
and the challenges of evaluating the relationships among the domain 
of interest features. The factors to be studied include the accuracy 
of individual models, the diversity among the individual models 
in an ensemble, decision-making strategy, and the number of the 
members used for constructing an ensemble. The description of the 
conceptual and theoretical analyses on these factors, and the possible 
relationships between them were presented. Experiments have been 
conducted by using some benchmark datasets and some typical results 
were presented (Wang, 2008). 

This study tends to explore the dynamics of existing ensemble 
malaria models and their drawbacks. Existing models focused on the 
morphological (asymptomatic) factors of malaria incidence cases, 
modeling of binary cases of malaria incidences, overfitting problems, 
and proneness to local minimum error. Consequently, in this study, 
considerations will be given to the effects of symptomatic factors and 
climatic variations factors on malaria incidence cases, and modeling 
of multiclass cases of malaria incidence, which is a vital context. A 
feature selection method incorporated with an algorithm under unique 
kernels to produce optimal features for prediction will be introduced.

METHODOLOGY

Demands for intelligence and knowledge-based systems beyond 
intuition to medical practitioners is very vital (Djam et al., 2011; 
Oguntimilehin & Abiola, 2015). Prediction applies mathematical, 
statistical, and machine learning models (Zinszer et al., 2015). 
This study aimed at multiclass symptomatic and climatic-based 
malaria infection prediction. Sampled malaria patient laboratory test 
results with Giemsa staining observed under microscope and the 
corresponding monthly climatic readings served as input variables to 
the model. The observed features were preprocessed with Min_Max, 
Divide by Maximum, and Standardization approaches. The Divide by 
Maximum approach outperformed the other preprocessing methods. 
The choice of machine learning algorithm to solve a problem always 
depends on the size, quality, and nature of the data (Djam et al., 
2011). After a critical review and consideration of the strengths and 
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weaknesses of most commonly adopted machine learning techniques 
for ensemble learning, the choice of SVM and ANN were made as 
depicted in Figure 1 (Abisoye & Jimoh, 2017).

Initially, ANN was adopted to train the malaria features and a global 
search was conducted to search for the optimum threshold that 
produced good results. Nevertheless, after several testing, it produced 
inaccurate results. Then, SVM, which was appropriately dependent 
on appropriate kernel functions, was employed. The preprocessed 
data was then analyzed in Microsoft Excel Worksheet and simulated 
with libSVM in MATLAB 2015a. Given a large number of features, 
SVM with One_Versus_All (OvA) algorithm was employed to handle 
multiclass problems and extract instances that exerted the highest 
predictive weight and maintained its class unique values. These 
optimum features instances lied on the hyperplane and served as 
the support vectors; however, SVM also did not give accurate and 
expected results. Then, ANN classifier stacked with SVM optimal 
features was proposed to classify relatively well the features into their 
respective groups in the feature space.

Figure 1

Data Mining Methods and Techniques (Ali & Wasimi, 2007).

Population Sample and Sampling Procedure

Some non-negative variables were introduced to solve non-linear 
problems. ξi ≥0 is a non-negative variable introduced to the constraints 
in Equation 1:

well the features into their respective groups in the feature space. 
 
Figure 1 
 
Data Mining Methods and Techniques (Ali & Wasimi, 2007). 
 

 
 
Population Sample and Sampling Procedure 
 
Some non-negative variables were introduced to solve non-linear problems. ξi ≥0 is a non-negative 
variable introduced to the constraints in Equation 1: 
 

 yi[(w, xi)] + b ≥ 1, i = 1, … , 𝑛𝑛       (1) 
 and modified to:         yi(w, xi) + b ≥ 1 + ξi, ξi ≥ 0, i = 1, … , 𝑛𝑛                                 (2) 

 
where y is the target variable, w is the exerted weights on the network, xi is the input feature in the input 
space X, and b is the bias variable. The Lagrangian theory is employed and the Lagrangian will be 
minimized with respect to w, b, and ξ, and maximized with respect to α and β. 
  
Thus, the dual problem is: 

 
    𝑚𝑚𝑚𝑚𝑚𝑚αMal(α)  = 𝑚𝑚𝑚𝑚𝑚𝑚α[(min M(w, b, α, ξ, 𝜷𝜷)]   (3) 

 
Given α as the Lagrange multiplier: 

The Lagrangian, M with respect to w, b, and ξ minimum is given by: 
 

   
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕  = 0  ⇒ ∑ α𝑖𝑖 𝑦𝑦𝑖𝑖 = 0 𝑛𝑛

𝑖𝑖=1        (4) 
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space X,                  is the kernel mapping function of features  

Conclusively, Equation 8 produces:

			  (10)

with constraints:

(11)

Data Description
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The documented laboratory test results known as malaria parasite 
count (MPcount) with symptoms from January 2012 to December 
2015 served as input variables. A total of 1,200 malaria cases were 
documented and analyzed for training, testing, and validation phases.

Normalization and Multiclass Encoding 

To normalize the malaria features, unitary method and scaling in 
Equations 12 and 13 were adopted for standardization of data feature 
ranges. Missing data features like no rainfall due to seasonal changes 
were assigned zero. Table 2 represents the binary encoding threat 
classes of malaria features. OPT 1 is the encoded qualitative measure 
for target Y, with class 0 depicting insignificant malaria parasite count 
cases, class 1 depicting significant and low malaria parasite count 
cases, and class 2 depicting significant and high malaria parasite 
count cases. 
	
a. 	 Unitary Method

(12)

Where     is the normalized value and     is the original value

b. 	Feature Scaling

(13) 

Table 2

Multiclass Encoding Threat Severity.

Malaria  Parasite Count 
Multiclass Output

Malaria  Parasite Count 
Binary-Class Output

Output for Qualitative
Computation (OPTI)

Insignificant (0) {} Insignificant (0) {} 0
Significant (1) + Significant 

(1 and above) ≥ +
1

Highly Significant (2) ++ 2
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and bias values. In this study, an 8-10-1 network structure topology 
worked best for prediction of malaria infection. The network topology 
is shown in Figure 2.

Figure 2 

8-10-1 SVM_ANN Network Topology.

Figure 3 depicts the self-organizing map (SOM) training visualization 
of the weights that connected each input to each of the neuron. SOM 
training identified each neuron associated with the weight vector and 
moved them to become the center of cluster of input vector. Darker 
colors revealed larger weights. The inputs were highly correlated if 
connections of two inputs were very similar.

Figure 3

SOM Training Weight Vector.
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SVM_ANN Network Topology 
 
To avoid saturation during training, weights were initialized and randomized to small random values. 
A network training function, scaled conjugate gradient ‘traingscg’, was employed to update weight and 
bias values. In this study, an 8-10-1 network structure topology worked best for prediction of malaria 
infection. The network topology is shown in Figure 2. 
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Figure 3 depicts the self-organizing map (SOM) training visualization of the weights that connected 
each input to each of the neuron. SOM training identified each neuron associated with the weight vector 
and moved them to become the center of cluster of input vector. Darker colors revealed larger weights. 
The inputs were highly correlated if connections of two inputs were very similar. 
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 SOM Training Weight Vector. 
 
 

 
 
 

Optimal Feature Extraction 
 

Optimal features in the feature space were handled by the wrapper method and SVM. The extracted 
features portrayed the highest predictive power and still maintained their group’s distinguished 
characteristics. Therefore, three significant climatic variation factors and five predominant malaria 
symptomatic features were tuned. The model was the threshold to obtain the exact range of accurate 
specification of results that would be produced. The SVM algorithm incorporated with OvA was the 
threshold as shown in Algorithm 1. 
 
Given a set of malaria infection cases X = {x ∈  Rn}, a set of targets Y = {y ∈  Bn}, and a training set  
T = {(xi , yi )} as the input, from the supervised classification algorithm procedure, the SVM model 
would learn based on the training set T = {(xi , yi )}. 

 
Algorithm 1: SVM Algorithm. 

Input: Malaria Training Features 
Output: Support Vectors 
1. Begin 
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Optimal Feature Extraction

Optimal features in the feature space were handled by the wrapper 
method and SVM. The extracted features portrayed the highest 
predictive power and still maintained their group’s distinguished 
characteristics. Therefore, three significant climatic variation factors 
and five predominant malaria symptomatic features were tuned. 
The model was the threshold to obtain the exact range of accurate 
specification of results that would be produced. The SVM algorithm 
incorporated with OvA was the threshold as shown in Algorithm 1.

Given a set of malaria infection cases                            a set of targets
                          and a training set                         as the input, from the 
supervised classification algorithm procedure, the SVM model would 
learn based on the training set 
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SVM is primarily built to solve binary class problems, but it can be 
embedded to solve multiclass problems by introducing the One_
Versus_All (OvA) algorithm that can single-handedly capture each 
class of the target and compare it with the other classes. 

Ensemble Methods 

Ensemble machine learning model involves three methods: bagging, 
boosting, and stacking. In bagging, multiple classifiers of the same 
kind are aggregated by the voting technique. Boosting resembles 
gagging but the new model is affected by the previous model’s result. 
Stacking also involves aggregation of multiple base learning models 
to produce a meta model. The base models are trained based on the 
complete training set, while the meta model is trained on the output 
of the base models. Stacking employs stacking generalization, a more 
sophisticated version of cross validation. The difference in stacking 
and boosting is that tuning of the parameters takes place at both base 
level and meta level in stacking, while tuning of the parameters only 
takes place at base level in boosting. In this study, an heterogenous 
ensemble stacking of SVM with ANN was proposed as shown in 
Algorithm 2.

Ensemble Stacked SVM_ANN Stacking Algorithm and Adaptive 
Thresholding 

With the Adaptive Thresholding algorithm in Algorithm 2, the malaria 
ensemble model was the threshold to ascertain for the best threshold 
value of the vector density that would produce the best result and 
produce a robust and reliable model. To search for the optimal 
threshold in the training phase, a threshold frequency ranging from 0.1 
to 1.5 was experimented. In the testing phase, the tradeoff search of 
the threshold optimal parameters of false positive rates, false negative 
rates, specificity, sensitivity, and accuracy was also conducted.

Given a set of malaria infection cases                            a set of targets  
                           and a training set                             as the input, from the 
ensemble stack algorithm procedure, the ANN model would learn 
based on the SVM                        result.

When the classifiers were tuned independently, there was no good 
result. Therefore, this study resulted to the ensemble stack approaches. 
The SVM algorithm in Algorithm 2 was adopted.
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Algorithm 2: Ensemble Stacked SVM_ANN Stacking Algorithm and    

Adaptive Thresholding
Input: SVM Malaria Output Features
Output: Best Threshold_Value, Threat Rate, and Accuracy 
  1.  Begin
  2.  Get SVM Malaria Output Features
  3.  If Threshold Ranges> =0.100 Step 0.005, then
  4.  While Accuracy_Ranges<= Number of Runs

                          i.   Perform ANN Training
                          ii.  Get Thresholded Simulation Results 
                          iii. Get best Threshold_Value
                          iv.  Compute parasite counts 
                          v.   Recall Simulated network
                          vi.  Get Simulation Results 
                          vii. Compute Threat rate 
                          viii.Compute Accuracy 

  5.  EndWhile
  6.  EndWhile Threshold_Value = 1.500
  7.  End

The result of the SVM algorithm stacked with ANN is as shown in 
Ensemble Stacked SVM_ANN Stacking Algorithm and Adaptive 
Thresholding (Algorithm 2). In the training phase, an Adaptive 
Thresholding algorithm was embedded with classification to obtain 
the actual configurations that were accurate, robust, and reliable. 
When subjected to several testing, at threshold frequencies between 
0.2800 and 0.7350 with a step size of 0.005, the Ensemble Stacked 
SVM_ANN Model produced a good result.

ANALYSIS AND RESULT

The complexity of multiclass symptomatic and climatic-based malaria 
features was handled by the One_Versus_All (OvA) algorithm. In 
this study, SVM employed linear, Gaussian, and polynomial kernel 
functions to ascertain their functionality. A total of 1,200 malaria 
cases were trained, tested, and validated according to stratified 
sampling. This corresponded to the total number of 840:180:180 for 
training, testing, and Validation. The model was evaluated with these 
performance metrics:
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a.	 Accuracy: Accuracy is the performance metrics to calculate the  
	 correct predictions that are correctly identified.

                                                                                                                                                      (14)             

b.	 Sensitivity: Sensitivity is the performance metrics to identify the 
 	 infected cases.

 
	              (15)

c.	 Specificity: Specificity is the performance metrics to distinguish 
 	 the infected cases from non-infected cases. 
                                                                                                                                                     

   (16)               

d.	 False Positive Rate (FPR):   
           

 						         	              (17)

e.	 False Negative Rate (FNR): 
 

        			                             (18)

f.	 Mean Square Error (MSE): MSE is the statistical performance 
	 metric to obtain efficient estimators. It is widely adopted by  
	 researchers.
  						                      

  (19)

g.	 Number of Support Vectors: Closest features on the hyperplane  
	 are called support vectors and they exert the greatest forces on  
	 the hyperplane. A good model often has large support vectors. The  
	 optimal separating hyperplane is given by:

		   
				         (20)

		   
									       
		       (21)

 
 

 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = Correct Classifed Patterns
Total Patterns   =  TP + TN

TP + TN + FP + FN ∗ 100             
                                                                                                                                                      (14)              
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Where                are the support vectors from each class satisfying these 
constraints , yc = -1, ys = 1. αs, αc> 0 and αs, αc          and targets 

SVM Result

SVM training, testing, and validation phases were conducted on 
1,200 malaria cases in the range of 840:180:180 respectively. The 
corresponding results are shown in the graphs of SVM_0, SVM_1, and 
SVM_2 malaria cases as depicted in Figures 4, 5, and 6, respectively. 

Figure 4	 Figure 5

SVM_0 Malaria Cases.   	 SVM_1 Malaria Cases.

 
       

Figure 6

 SVM_2 Malaria Cases.
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                                               (19) 
 

g. Number of Support Vectors: Closest features on the hyperplane are called support vectors 
and they exert the greatest forces on the hyperplane. A good model often has large support 
vectors. The optimal separating hyperplane is given by: 
 

  𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 =  ∑ α𝑖𝑖𝑦𝑦𝑖𝑖 = 0 𝑛𝑛
 𝑖𝑖=1

                (20) 
  𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = 1

2 (𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚, x𝑠𝑠 +  x𝑐𝑐 )
                (21) 

 
Where (x𝑠𝑠 +  x𝑐𝑐 ) are the support vectors from each class satisfying these constraints , yc = -1, ys = 1. 
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a.	 Support Vectors: The SVM model with RBF of Class 0, Class 
1, and Class 2 produced the highest support vectors as compared 
to linear and polynomial kernel functions as depicted in Figures 
4, 5, and 6. Consequently, the SVM model with RBF of Class 1 
produced the highest number of support vectors [435x8].

b.	 Accuracy: Polynomial kernel function produced the highest 
accuracy of 88.89 percent but had high bias, lowest alpha, and lowest 
support vectors as depicted in Figures 4, 5, and 6. Consequently, 
Class_2 with RBF of 85.60 percent accuracy and 308x8 double 
support vectors was close to the expected result. The observations 
on the results implied that the model’s performance should not 
absolutely depend on accuracy but on other performance metrics 
as well. 

ANN Result

After a continuous tuning of the proposed ANN malaria model, at a 
threshold value of 0.55, an optimum accuracy of 52.31 and standard 
deviation of 1.4076 were attained. Figure 7 depicts the best threshold 
values and performance for the ANN malaria training model.

Figure 7 

Optimal ANN Malaria Training Model. 
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Figure 8(a)	 Figure 8(b)
 
ANN Malaria Validation (1).   	 ANN Malaria Validation (2).
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Ensemble Stacked SVM_ANN Malaria Model

From the study, it was discovered that the ability to separate the non-
infected cases of malaria infection was higher than infected cases. 
Therefore, there is a need for an enhanced model that can accurately 
separate the cases. This study resolved to Ensemble Stacked SVM_
ANN Malaria Model.
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Table 4

Performance of Ensemble Stacked SVM_ANN Malaria Model.

Performance Evaluation Parameter Value (%)

Sensitivity 100

Specificity 98.68

Correct Rate 99.86

Error Rate 0.14

Last Correct Rate 99.86

Last Error Rate 0.14

Classified Rate 100

Positive Predictive Value 98.68

Negative Predictive Value 100

From Table 4 at the threshold value of 0.60, the SVM_ANN Malaria 
Model produced a good result with True Positive Rate of 100 percent 
and True Negative Rate of 99.60 percent. The overall accuracy of the 
ensemble model was 99.86 percent and 0.14 percent error rate. The 
ensemble multiclass symptomatic and climatic-based model produced 
good results in comparison to the existing models.

Comparison of ANN, SVM, and Ensemble Stacked SVM_ANN

Initially, ANN and SVM models were differently tuned but they 
generated low performance of 48.33 percent, 85.60 percent Acc, 
60.61 percent, 84.06 percent Ss, and 45.58 percent, 86.49 percent 
Sp, respectively. Then, the SVM result was stacked with ANN to 
produce an Ensemble Stacked SVM_ANN Model. Linear, Gaussian, 
and polynomial kernel functions were employed in the model as 
depicted in Figures 4, 5, and 6. Nevertheless, Gaussian function gave 
the optimum result for the model. Figure 9 shows the results of the 
Ensemble Stacked SVM_ANN Model from SVM_2 with 308x8 
double support vectors with Gaussian function in comparison to ANN 
and SVM.
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Figure 9

Comparison of ANN, SVM, and Ensemble Stacked SVM_ANN.

The Ensemble Stacked SVM_ANN Model was evaluated with 
threshold metrics and probability metrics. Consequent to the results 
produced, the Ensemble Stacked SVM_ANN Model gave higher 
prediction values, which is a determinant to greater robustness and 
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In this study, SVM incorporated with OvA was highly effective in 
reducing big data complexity by selecting the best feature subset 
instances needed for prediction. The model was tuned with large and 
small datasets and it handled them well regardless of their sizes, but it 
used predefined function to optimize well. When SVM was subjected 
to different kernel functions, SVM_2 with radial basis or Gaussian 
function produced the optimal result with the highest support vectors 
308 X 8 of 85.60 percent Acc, 84.06 percent Ss, and 86.49 percent 
Sp. Therefore, the support vectors were serially ensembled into ANN. 
The Ensemble Stacked SVM_ANN Model then generated optimum 
results of 1.35 percent FPR, 100 percent TPR, 0 percent FNR, and 98.65 
percent TNR, as depicted in Figure 9.

CONCLUSION

From the proposed Ensemble Stacked SVM_ANN Malaria Model, the 
0.600 threshold value indicated that 60 percent of female Anopheles 
mosquitos that were responsible for malaria transmission in the 
stipulated time survived under the influences of temperature, rainfall, 
and relative humidity. The model was able to handle symptomatic and 
climatic-based multiclass malaria infection with feed forward accurate 
measurement of 98.91 percent, 1.38 variation rate among the data, 
and 0.14 back propagation error rate of the vector population. From 
the study, ANN could handle multiclass problem and thresholding but 
not appropriately well, which resulted to overfitting. Furthermore, it 
had a slow rate of convergence as well as a drawback of finding a 
reliable testing output. SVM strengthened the weaknesses of ANN 
by reducing the model complexity and generalization error. The 
Ensemble Stacked SVM_ANN Model experimental results generated 
the best result of 98.91 percent (Acc), 100 percent, (Ss) 98.68 percent 
(Sp), 0.14 (MSE), and 99.86 (CR) at an optimum threshold of 0.60. 
This ensemble stacked multiclass symptomatic and climatic-based 
model showed a better performance as compared to the other existing 
models. The proposed future research can focus on using other 
ensemble learning approaches with the appropriate normalization 
method to improve the model performance.
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