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ABSTRACT

Flash flood is the most hazardous type of flooding, mainly caused by 
extensive rainfall. It also can cause significant harm to a community’s 
economy, ecology, and society without warning at an irrational pace. 
Therefore, this study was conducted to detect the time series element 
within the rainfall data, select the optimal model, and make predictions 
about the volume of rainfall in Selangor. A variety of univariate time 
series models were utilized, including the naïve model, decomposition 
model, Autoregressive Integrated Moving Average (ARIMA) model, 
exponential models, and combined models. Historical monthly rainfall 
data collected from Petaling station and Subang station from 2018 to 
2022 were used to estimate the parameters of the models, and the 
model was evaluated for the smallest error of measurements. Previous 
research mostly focused on complex methodologies for forecasting 
rainfall. However, this research aimed to identify a simple tool for 
fast prediction of rainfall. The results showed that the combination 
of the ARIMA (2,0,3) model from Petaling Station and the ARIMA 
(4,0,4) model from Subang station were able to capture the trends 
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and seasons in the time series with the lowest error of measurement 
on short-term predictions of rainfall volume. Furthermore, the study 
delves into the concept of combined time series models, which are 
blended using weighted performance measures to enhance prediction 
accuracy further. The research acknowledges certain limitations of 
univariate time series models, notably their inability to account for 
intricate interactions among environmental variables and potential 
long-term trends, such as those stemming from climate change. 
Overall, the study explores the potential of combining models to 
refine predictions for forecasting rainfall volume in Klang Valley.

Keywords: ARIMA, Combined Models, Forecasting, Rainfall 
Volume, Time Series Model.

INTRODUCTION

In recent decades, global climate change has significantly impacted 
the Earth’s ecological system, causing long-term shifts in temperature 
and variable weather patterns. According to the World Meteorological 
Organization (WMO) in World Bank Group (2021), high-impact 
events such as flooding have been recorded across the world. Severe 
flooding occurred in Africa, Sudan, Kenya, India, and Southeast 
Asia due to heavy monsoon rainfall, resulting in considerable losses 
to these nations. The impact of climate change has been substantial, 
and it had devastating consequences on the affected countries’ 
infrastructure, society, and economy. Moreover, rapid urbanization 
and land development have resulted in significant changes to the 
land structure, potentially leading to ecological and environmental 
problems (Reza, 2016). When the ecological system is disrupted, the 
outflow of water cannot be dispersed, causing more severe flooding 
in the country.

The effects of climate change and rapid land development had 
significant consequences on Malaysia, a developing nation located 
in a hot and humid tropical climate with heavy tropical rainfall. 
Additionally, the country is highly reliant on the monsoon seasons 
for its livelihood. Malaysia experiences two periods of monsoons, 
namely the Northeast Monsoon (NEM) season from early November 
to March and the Southwest Monsoon (SWM) season from late May 
to September (World Bank Group, 2021). During these monsoon 
seasons, Malaysia experiences long-haul rainfall of approximately 
200 mm in June and July and 350 mm in November and December. 
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The precipitation in Malaysia has increased year by year during the 
monsoon season, from 3053.99 mm in 2020 to 3297.34 mm in 2021, 
resulting in frequent flooding and flash floods (World Bank Group, 
2021). The Department of Statistics of Malaysia reported that the 
recent flood that occurred in December 2021 resulted in 50 fatalities, 
the evacuation of about 400,000 people, and an estimated financial 
loss of RM6.1 billion (Department of Statistics Malaysia, 2022).

Extreme rainfall leading to severe flood events can significantly 
impact a nation’s society and economy. Vehicle owners may incur 
significant repair expenses, while infrastructure such as roads and 
buildings can suffer damages. Schools may also have to be utilized 
as evacuation centers, disturbing the usual schedules of students and 
teachers. The residents in flood-prone regions can experience ongoing 
anxiety and trauma, while businesses may face losses of products and 
disturbances to their services due to power and water supply outages. 
The cost of compensating for damages and repairing infrastructure 
is typically high, leading to losses for the country. Due to the vast 
increase in flood frequency, this study aims to forecast the rainfall 
volume in Selangor to mitigate the occurrence of flash floods. The 
paper proposes to identify the time series components of the rainfall 
volume, later to determine the most suitable time series forecasting 
model for the rainfall volume. Last but not least, the paper forecasts 
the rainfall volume in the coming year with the identified model.

RELATED WORK

The study highlighted the importance of understanding the rainfall 
patterns in Malaysia, which are the trends of rainfall and seasonal 
monsoons during a year. The NEM and SWM are the two primary 
seasons for rainfall in Malaysia, which lasts from November to March 
and May to September, respectively. The rainfall volume typically 
ranges between 2000 mm to 3000 mm annually, with the northwestern 
areas having the highest mean rainfall during the SWM season. 
Recent studies suggest that Malaysia has observed a rise in both the 
frequency and severity of heavy rainfall occurrences, increasing the 
prevalence of flash floods in densely populated regions like Petaling 
Jaya and Subang (Diya et al., 2014; Suparta et al., 2015; Syafrina 
et al., 2015). The Titiwangsa Range is one potential factor that 
affects rainfall patterns in Malaysia by blocking northeasterly winds. 
However, recent rainfall trend analysis shows a rise in the number 
of days having rainfall and extremely heavy rainfall in Klang Valley, 
which requires attention as it is a heavily populated area.
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In time series analysis and forecasting, several research were reviewed 
on predicting rainfall volumes to mitigate flood occurrence. In Adnan 
et al.’s (2012) research, this paper proposed an Artificial Neural 
Network (ANN) model to predict the flood water level. In Hong 
and Hong (2016) ‘s study, it has evaluated the use of Multi-Layer 
Perceptron (MLP) neural network models to forecast water levels of 
a gauging station located at the Kuala Lumpur city center in Malaysia 
using records of upstream multiple stations. Moreover, Mishra et al. 
(2018), the research had also proposed an Artificial Neural Network 
(ANN) technique to develop one to two- months ahead forecasting 
of rainfall in Northern India. Besides, in Mustapha and Ismail’s 
(2021) research, they compared the use of two models of univariate 
time-series analysis, the Autoregressive Integrated Moving Average 
(ARIMA) and SARIMA models, which were applied to model and 
forecast the monthly time series rainfall in Kelantan, Malaysia. It was 
proven that the SARIMA model was a good model for forecasting 
monthly rainfall time series, resulting in a lower measurement error.

Understanding the complexity of multivariate analysis and selecting 
the most appropriate univariate time series model is crucial to ensure 
accurate predictions. However, with a small or moderate number of 
observations, models that are close to each other can be challenging 
to distinguish, and the model selection criterion values can be similar. 
Therefore, choosing the model with the lowest criterion value may 
not always be reliable, and small shifts in the data can influence the 
choice of a different model. This instability in model selection can 
lead to high variability in the forecast using the selected algorithm. To 
overcome this issue, this paper studied the use of univariate models 
and proposed alternative methods to combine forecasting models, 
including model averaging, ensemble methods, and combination of 
residuals.

Research has shown that combined models can improve the 
accuracy and stability of forecasts. For example, the ARIMA-
AR model combines two ARIMA models with different orders to 
improve forecast accuracy, with the forecasts from the two models 
being combined using a weighted average determined by a genetic 
algorithm (Zhang et al., 2019). Similarly, the combined ARIMA time 
series model with the ARIMA-ARIMA model proposed by Tunc et 
al. (2016) combines two ARIMA models to capture both long-term 
trends and short-term fluctuations, with the forecasts from both 
models being combined using a weighted average approach. This 
paper considers the methodology of combining models by assigning 
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weights to the selected models, which can effectively overcome the 
instability of model choosing in time series analysis and forecasting.

METHODOLOGY

Two rainfall stations, Subang station (ID 48647) and Petaling station 
(ID 48648), located in the Klang Valley of Peninsular Malaysia, 
were chosen as the research area based on the completeness of the 
data and the length of records. The study consulted the Department 
of Irrigation and Drainage for secondary data and collected monthly 
rainfall data for five years from 2018 to 2022. They are partitioned for 
the modeling and evaluation process using the 80:20 rule. Therefore, 
the first 54 months (Jan 2018 – Jun 2022) were used for modeling, 
and 6 months (Jul 2022 – Dec 2022) were used for testing the error of 
measurements.

Figure 1

Research Framework of this Study on Modeling, Evaluating, and 
Forecasting Rainfall Data

7 
 

 
 
Phase 1: Partitioning the Data 
 
In this phase, the data is partitioned into two sets, with one set used 
for modeling and the other for evaluating the forecasting models. The 
data is also preprocessed to remove any outliers and ensure data 
continuity. One of the types of data with missing values, Missing 
Completely at Random (MCAR), is normally applied in realistic 
situations (Little and Rubin, 2002). Since the data in a specific area 
have no bearing on the occurrence of missing rainfall datasets in an 
area, hydrological data, particularly in the case of missing rainfall 
datasets, is classified as MCAR (Shaharudin et al., 2020). When 
dealing with a continuous value under MCAR conditions, the Last 
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This study continued a time series analysis to comprehend how rainfall 
patterns evolve over time and evaluated various time series statistical-
based modeling theories, such as the naïve model, decomposition 
model, moving average, and exponential smoothing. It followed 
five phases of the study: preprocessing and partitioning the data, 
identifying the components of the data, listing down potential time-
series techniques, modeling and evaluating the data, and forecasting 
using the best possible model. The framework of this study and the 
summary of the sequence are shown in Figure 1.

Phase 1: Partitioning the Data

In this phase, the data is partitioned into two sets, with one set used for 
modeling and the other for evaluating the forecasting models. The data 
is also preprocessed to remove any outliers and ensure data continuity. 
One of the types of data with missing values, Missing Completely at 
Random (MCAR), is normally applied in realistic situations (Little 
and Rubin, 2002). Since the data in a specific area have no bearing 
on the occurrence of missing rainfall datasets in an area, hydrological 
data, particularly in the case of missing rainfall datasets, is classified 
as MCAR (Shaharudin et al., 2020). When dealing with a continuous 
value under MCAR conditions, the Last Observation Carried Forward 
(LOCF) method is frequently used (Houck et al., 2004). After 
preprocessing the data, data partitioning follows the 80/20 rule, where 
80% of the data is used for modeling and 20% for evaluation.

Phase 2: Identifying the Components of Data

This phase involves identifying the four components of time series 
data, namely the seasonal component (S), trend component (T), 
cyclical component (C), and irregular component (I). The seasonal 
component is affected by the monsoon season, while the cyclical 
component is influenced by fluctuations without a fixed period. The 
trend component is captured over long periods, and the irregular 
component is a variable that cannot be explained seasonally or 
cyclically. The components are identified using different techniques, 
such as Sequence Chart, Autocorrelation Function, and Kruskal Wallis 
test for seasonality.

Phase 3: Listing Potential Time-series Techniques

Several time-series techniques can be used based on the components 
identified in Phase 2. The Naïve model, Decomposition model, 
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ARIMA model, and Exponential Smoothing model are the techniques 
that will be modeled in this research. 

Naïve Model

This method represents a simple forecasting model that requires 
the least work effort and data manipulation. The value of the naive 
forecast is set based on the value of the last observation. However, in 
this project study, we were forecasting using a naïve model but using 
the strategy of adding a variance value depending on the components 
of the data, as shown in Equation (1).

 (1)

Decomposition Model

This method compromises a sophisticated forecasting technique that 
integrates the historical data into different components to perform 
forecast value. All-time series components of trend, seasonal, cycle, 
and irregular were considered in the model. First, the trend component 
and seasonal indices must be calculated before irregular and cyclic 
components. Both later components have to be isolated to better 
forecast the value.

Autoregressive Model and Moving Average Model

This model connects the time series’ present value to random errors in 
previous periods. It consisted of a combination of the Autoregressive 
(AR) and Moving Average (MA) models. AR uses data from previous 
time steps as input to a regression equation to forecast the value at 
the next stage. The AR model takes in the number of previous time 
steps by looking at the Partial Autocorrelation Function (PACF) as 
p. Meanwhile, the MA model is expressed as a function of the error 
term. The Autocorrelation Function (ACF) plot of the time series is 
used to estimate q. By abstraction with integrated (I), which expressed 
the differencing raw data of the time series from nonstationary to 
stationary, combining both AR and MA, it designed the autoregressive 
integrated moving average ARIMA (p, d, q) model. If the series is 
nonstationary, the process of identifying differencing degree, d, is 
repeated until the data is stationary (Osarumwense, 2014; Singh et al., 
2019). Therefore, the ARIMA model’s General Equation is presented 
in Equation (2).
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   is the AR parameter,   is the MA parameter, and    is the series of 
random unknown errors.

Exponential Smoothing Method

This model is explicitly a forecasting model with an exponentially 
weighted average of prior observations. In this method, the weights 
were inversely related to the data collection time. The range for the 
weight of alpha (α) is between 0 and 1. Each weight corresponding 
to an observation exhibits a declining trend. More weightage will be 
given to past observations if the value of α is close to zero. Vice versa, 
more weightage will be given to immediate observations if the value 
of α is close to 1 (Jain & Mallick, 2017). It also can be computed using 
double parameters with α and β smoothing factors, which control the 
rate of influences on the past observations.
The General Equation is given as Equation (3).
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stacking. This involves more complex machine learning methods 
that can help to improve the accuracy and stability of the forecasts 
by leveraging the strengths of multiple models and reducing the 
impact of any weaknesses in a single model. Last but not least, 
combining the residuals method involves combining the residuals (the 
difference between the observed and predicted values) generated by 
the two ARIMA Models and using them to fit a third ARIMA model 
(combined model). The third model can help capture any patterns or 
relationships not captured by the original models and improve the 
accuracy of the forecasts. Therefore, the general combined model in 
this study is represented by Equation (4).

     (4)

Phase 4: Modeling and Evaluation of the Data

The chosen time-series technique is modeled in this phase, and the 
error measurements are calculated. The error measurements are used 
to compare the performance of the different techniques. The technique 
with the least error measurement is chosen as the best method for 
predicting rainfall trends. The techniques are evaluated using four 
error measurements, which are Mean Absolute Deviation (MAD), 
Mean Square Error (MSE), Root Mean Square Error (RMSE), and 
Mean Absolute Percentage Error (MAPE).

MSE is the average of the squared differences between the observed 
and predicted values. It penalizes larger errors more heavily than 
smaller errors, making it a more sensitive measure of prediction 
accuracy. On the other hand, MAD is a statistical measure of the 
average distance between each data point and the mean of the dataset. 
It is a measure of the variability or spread of the data. MAD is useful 
in evaluating the accuracy of a forecasting model, such as an ARIMA 
model, by measuring the deviation between the actual and forecasted 
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values. The smaller the MAD, the better the accuracy of the model. 
One limitation of MAD is that it gives equal weight to each data 
point, regardless of its magnitude or importance. In cases where 
some data points are more important than others, weighted MAD 
can be used, where each data point is assigned a weight based on its 
importance. Other measures of error include MAPE, which measures 
the percentage difference between the observed and predicted values. 
Meanwhile, MPE is the mean percentage error (or deviation), which 
essentially scales mean error to be in percentage units instead of the 
variable’s units. Table 1 presents the formula of MSE, MAD, MAPE, 
and MPE.

Moreover, advanced time series analysis on ARIMA models was also 
tested and evaluated using Ljung-Box Q-test, Bayesian Information 
Criterion (BIC), and R-squared. The Ljung-Box Q-test was a 
diagnostic tool used to assess the presence of autocorrelation in the 
residuals of an ARIMA model. A significant Q-statistic suggests 
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not accounted for, indicating the need for further model refinement. 
Consequently, BIC is a statistical criterion used for model selection, 
particularly when comparing different ARIMA models with varying 
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BIC value indicates a better-fitting model, making it a valuable tool for 
choosing the most appropriate ARIMA configuration. R-squared, also 
known as the coefficient of determination, measures the proportion of 
variance in the dependent variable (i.e., the time series data) explained 
by the ARIMA model. A higher R-squared value indicates a better fit, 
suggesting that the ARIMA model effectively explains the observed 
variations in the time series.

These diagnostic tests collectively assist in evaluating the goodness-
of-fit, adequacy, and predictive power of ARIMA models, aiding 
researchers in making informed decisions regarding the suitability 
and performance of their time series forecasting models.
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Phase 5: Forecast the Rainfall Volume

In the last phase of the study, when the best-fit model is chosen based 
on the smallest of measurements, alternate methods of combining 
models are considered to result in a lower measurement of errors for 
predicting the values. Once the methods of combining models are 
chosen, the future rainfall data is forecasted in a simple way using the 
most minimum error measurements methodology for the year 2023. 

ANALYSIS AND RESULTS

Understanding Rainfall Patterns

The study analyzed the time series component of rainfall volume data 
in Petaling and Subang stations in Malaysia. Figures 2 and 3 illustrate 
the data, which was found to have a slight upward trend but was 
assumed to be stationary. Based on Figures 4 and 5, autocorrelations 
and partial autocorrelation analyses were performed to identify the 
optimal parameters for ARIMA models used for forecasting. The 
results showed that both data had seasonal peaks across the months, 
and the mean distribution of the rainfall volume was not the same, 
indicating the presence of seasonality. A non-parametric test of 
Kruskal Wallis was used to validate the seasonality. The p-values 
were discovered at 0.019 and 0.014, respectively, to be less than 0.05 
significance level, which led to the rejection of the null hypothesis and 
concluded that all the mean distribution of the rainfall volume were 
not the same and contained seasonality as shown in Figure 6.
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Performance Comparison Between Listed Models 
 
This data was tabulated according to the listed models, and all of the 
listed models had been evaluated on the last 6 months of the data. A 
summary of the performance evaluation on measurement of errors 
(MAD, MSE, MAPE & MPE) was presented in Tables 2 and 3 of 
both stations, respectively. The data showed huge mean square errors 
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summary of the performance evaluation on measurement of errors 
(MAD, MSE, MAPE & MPE) was presented in Tables 2 and 3 of 
both stations, respectively. The data showed huge mean square errors 
for all the models. The MAPE value also takes an extreme value if 
this value is exceedingly tiny or huge. It works better with data free 
of zeros and extreme values because of the in-denominator. Note that 
MSE is the average of the squared differences between the observed 
and predicted values in this scenario. It penalizes larger errors more 
heavily than smaller errors, making it a more sensitive measure of 
prediction accuracy. 

Table 2

Measurement Errors of Petaling Stations from the Evaluation Part of 
the Data

Petaling Station  MSE MAD MAPE MPE
Naïve  23,326.36  130.09 46.4427% -17.4518%
Addictive  7,497.28  82.20 26.8388% -3.2488%
Multiplicative  7,634.29  83.91 26.7658% -1.0533%

ARIMA (1,0,1)  9,196.99  86.73 23.6507% 12.7799%
ARIMA (2,0,2)  9,115.73  86.15 23.4329% 12.8535%
ARIMA (2,0,3)  6,581.61  67.22 16.8901% 16.3738%
ARIMA (3,0,2)  7,821.09  74.82 19.4625% 16.5957%
ARIMA (3,0,3)  8,850.30  83.18 22.1177% 14.2369%
ARIMA (4,0,4)  9,041.48  83.97 22.2436% 14.4869%
Holt  7,666.67  83.62 26.9972% -2.2020%
Brown  7,607.58  83.16 26.9417% -2.5284%

Table 3

Measurement of Errors of Subang Station from Evaluation Part of Data

Subang Station MSE MAD MAPE MPE
Naïve  11,070.17  89.39 43.3463% -8.1774%
Addictive  12,855.42  100.12 55.7371% -47.6658%
Multiplicative  8,968.49  87.30 44.8023% -29.5605%
ARIMA (1,0,1)  9,386.79  89.41 46.4870% -32.2003%

(continued)
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Subang Station MSE MAD MAPE MPE
ARIMA (2,0,2)  9,545.57  89.90 46.9172% -32.6616%
ARIMA (2,0,3)  10,273.31  87.27 47.1982% -33.0993%
ARIMA (3,0,2)  9,473.68  89.42 46.6840% -32.4282%
ARIMA (3,0,3)  9,465.32  89.44 46.6695% -32.4121%
ARIMA (4,0,4)  8,481.22  81.34 44.1147% -33.3135%
Holt  9,492.53  89.93 46.6984% -32.1500%
Brown  9,001.72  87.46 44.7058% -29.0403%

The study compared the error of measurements of different models 
for forecasting rainfall from both stations. Naïve and decomposition 
models were not suitable for modeling continuous trend and seasonal 
data, and ARIMA models had relatively smaller errors. The naïve 
model is not able to consider the time series data with more complex 
patterns or dynamics. Meanwhile, the decomposition model assumes 
that the trend and seasonality components are constant over time, 
which may not be true for all-time series data (Chatfield & Xing, 2019; 
Hyndman & Athanasopoulos, 2018). The best ARIMA models were 
ARIMA (2,0,3) for Petaling Station and ARIMA (4,0,4) for Subang 
station, which passed the L-jung Box-Q test and had moderate fitness 
of data shown in Tables 4 and 5. Exponential smoothing models did 
not perform well in capturing trend and seasonality patterns in the 
data. This is because it assumed that the time series data have no trend 
or seasonality components and rely solely on past observations to 
forecast future values. If the time series data exhibits a clear trend 
or seasonality pattern, exponential smoothing models may not be 
able to capture these patterns effectively and may produce inaccurate 
forecasts (Hyndman & Athanasopoulos, 2018).

Table 4

ARIMA Model Test of Petaling Stations

ARIMA L-jung Box-Q BIC R-squared
(1,0,1) 0.0010 9.9240 0.1590
(2,0,2) 0.0000 10.0900 0.1770
(2,0,3) 0.0650 10.1040 0.2400
(3,0,2) 0.0520 10.1020 0.2420
(3,0,3) 0.1040 10.0700 0.3320
(4,0,4) 0.0280 10.2470 0.3420
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Table 5

ARIMA Model Test of Subang Station

ARIMA L-jung Box-Q BIC R-squared
(1,0,1) 0.5400 9.9490 0.228
(2,0,2) 0.0230 10.135 0.229
(2,0,3) 0.2070 10.118 0.310
(3,0,2) 0.1560 10.151 0.288
(3,0,3) 0.1080 10.245 0.288
(4,0,4) 0.0980 10.436 0.295

Combining ARIMA Models

After evaluating the error of measurements for both stations, it was 
found that the errors were still relatively high for the models to be used 
for prediction. Therefore, combining both stations’ selected models 
based on performance was considered to generate a single algorithm 
for forecasting. The aim was to reduce the variability of the combined 
forecast through a suitable weighting scheme to increase accuracy 
(Zou & Yang, 2004). The weightage assigned to each ARIMA model 
depended on its performance and contribution to the accuracy of the 
combined forecast. Different methods were available for determining 
the weightage, and the choice depended on the specific situation 
and objectives of the analysis. The paper considered performance 
weightage based on three error measurements and the effectiveness of 
the model in reducing the ratio of errors between the two models. The 
weightage tabulation was provided as Equation (5).

  (5)

Table 6

Weightage of the Error of Measurement on the Selected Models

MSE MAD MAPE MPE

Petaling (2, 0, 3) 43.69% 45.25% 27.69% -96.66%

Subang (4, 0, 4) 56.31% 54.75% 72.31% 196.66%
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Table 7

Evaluation of the Last 6 Months on Combined ARIMA Models

Weightage of 
performance

MSE MAD MAPE MPE

Weightage % MSE 
Performance

3916.03 55.70 19.6265% -1199.7369%

Weightage % MAD 
Performance

3921.15 55.40 19.7950% -1228.3665%

Weightage % MAPE 
Performance

4262.73 58.76 18.0125% -1081.9640%

Table 6 presents the model performance ratio based on the generated 
errors, which revealed notable differences in MAPE and MPE readings. 
The evaluation of error measurements on the weightage applied to the 
combined models is provided in Table 7. The calculations showed that 
the weightage using the ratio of MSEs resulted in the lowest MSE for 
the combined model, which reduced the errors compared to ARIMA 
(2,0,3) and (4,0,4) models. Consequently, the combined models were 
selected with a weightage of 56.31% for the ARIMA (2,0,3) model 
at Petaling Station and 43.69% for the ARIMA (4,0,4) model using 
Equation (5). 

Forecast Rainfall Volume

During the final stage of the study, Phase 5, the forecast of rainfall 
volume was conducted for the next 12 months of 2023 based on 
the weightage assigned to the combined model as identified. The 
first step was to generate separate forecast values for the year 2023 
using ARIMA (2,0,3) for Petaling Station and ARIMA (4,0,4) for 
Subang Station. The results were then re-tabulated with the assigned 
weightage using the provided equations. Finally, the forecasted values 
for the rainfall of 2023 were obtained by applying the weightage to 
both stations, as shown in Table 8.
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Figure 7

Forecasting Value of the ARIMA Models and Combined Models

The graphical representation in Figure 7 depicts the combined 
model’s forecast value, which was well-fitted between both models 
at both stations. This approach was aimed to minimize the errors of 
the measurements, making them more appropriate and nearer to the 
actual rainfall readings between the stations. The upward trend of 
rainfall volume commences in March 2023, while a stable rainfall 
volume is evident from May 2023 to December 2023.

CONCLUSION

In conclusion, the study explored the use of univariate time series 
models to forecast rainfall volume in Selangor, using data from two 
stations. The study discovered that ARIMA (2,0,3) was the best 
model for the Petaling station, and ARIMA (4,0,4) was the best for 
the Subang station. To improve the accuracy of the forecast, the study 
combined the two models using a weighted approach and obtained 
a smaller error in measurements. The forecasted rainfall volume 
indicated a peak in May, June, and July 2023 and consistent rainfall 
until the end of 2023. Univariate time series models can be useful 
tools for understanding rainfall patterns in Selangor and supporting 
decision-making in agriculture, water resource management, and 
flood prevention. This study could enhance disaster preparedness, 
infrastructure planning, economic resilience, agricultural management, 
urban planning, environmental conservation, community safety, and 
scientific understanding. Accurate predictions empower authorities, 22 
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The graphical representation in Figure 7 depicts the combined 
model's forecast value, which was well-fitted between both models at 
both stations. This approach was aimed to minimize the errors of the 
measurements, making them more appropriate and nearer to the 
actual rainfall readings between the stations. The upward trend of 
rainfall volume commences in March 2023, while a stable rainfall 
volume is evident from May 2023 to December 2023. 
 
 

CONCLUSION 
 

In conclusion, the study explored the use of univariate time series 
models to forecast rainfall volume in Selangor, using data from two 
stations. The study discovered that ARIMA (2,0,3) was the best 
model for the Petaling station, and ARIMA (4,0,4) was the best for 
the Subang station. To improve the accuracy of the forecast, the study 
combined the two models using a weighted approach and obtained a 
smaller error in measurements. The forecasted rainfall volume 
indicated a peak in May, June, and July 2023 and consistent rainfall 
until the end of 2023. Univariate time series models can be useful 
tools for understanding rainfall patterns in Selangor and supporting 



    101      

Journal of Computational Innovation and Analytics, Vol. 3, Number 1 (January) 2024, pp:  83-103

businesses, and communities to make informed decisions, mitigate 
the impact of flash floods, optimize resource allocation, ensure 
sustainable development, and safeguard lives and property.

However, the paper acknowledges its limitations, including the limited 
and incomplete data on rainfall volume in Klang region, Selangor, 
the need to reorganize the area of the collection to achieve data 
completeness, and the failure to capture the complex and dynamic 
interactions between different environmental factors that influence 
rainfall patterns in Selangor, such as deforestation. Furthermore, the 
study may not account for the impacts of climate change or other 
long-term trends that may affect rainfall volume over time, affecting 
the reliability and generalizability of research findings. 

In future studies, the researcher suggests more precise data collection 
for longer periods of time to improve rainfall volume forecasting. 
The model should also be re-evaluated periodically, such as every 
five years, to account for climate change and other long-term trends. 
Additionally, the researcher suggests considering more complex 
and flexible models incorporating external variables contributing to 
heavy rainfall, such as multiple regression integration. To confirm 
the accuracy and effectiveness of the proposed model, it is also 
recommended that its predictions be validated using additional datasets 
from other stations. This cross-validation process will help assess 
the model’s performance in different scenarios and environments, 
ultimately contributing to its reliability and potential adoption for 
practical applications.
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