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ABSTRACT

The standard way to measure the air temperature (Ta) as the key 
variable in climate change studies is at 2m height above the surface at 
a fixed location (weather station). In contrast, the surface temperature 
(Ts) can be measured by satellites over large areas. Estimation of Ta 
from Ts is one potential way of overcoming shortages due to uneven 
or irregular distributions of weather stations. However, whether this 
is successful has not been assessed in high-elevation regions. This 
is particularly important in high-elevation regions. In this study, we 
estimate Ta in the high-elevation desert zone of Kilimanjaro (>4500m) 
using four models (five models including the benchmark model) with 
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unique sets of inputs using five machine learning (ML) algorithms. 
Note that different combinations of Ta and Ts were tested as inputs to 
evaluate the potential of Ts as a proxy for Ta. The Root Mean Square 
Error (RMSE) for each model was compared with a benchmark 
model and ranked according to their RMSE. Similarly, models 
and algorithms were ranked in terms of reliability and consistency. 
Correspondingly, results were compared with the benchmark model. 
Three models out of four outperformed the benchmark model in the 
consistency ranking, while two out of four models outperformed the 
benchmark model in the reliability ranking. Therefore, ML algorithms 
are efficient tools for estimating Ta from Ts in this high-elevation 
desert environment. However, models using Ts only as inputs were 
not as accurate as models that used Ta from an earlier time period as 
one of the inputs. This highlights the amount of de-coupling between 
Ta and TS at high elevations, which provides a challenge for using Ts 
alone as a proxy for Ta in this zone. 

Keywords: Air temperature, desert, Kilimanjaro, machine learning, 
surface temperature.  

INTRODUCTION

Ta is a key variable in climate change measurements (Pepin et al., 
2019; Benali et al., 2012; Vancutsem et al., 2010), and much research 
has suggested that mountain regions may be warming faster than lower 
elevations. This phenomenon is called Elevation Dependent Warming 
(EDW) (Pepin et al., 2019; Palazzi et al., 2019). However, there are 
limitations associated with Ta measurements made at weather stations. 
The fixed locations of available measurements limit validity to the 
precise location, contrasting with climate change studies that need 
information representative of large areas. Many mountain regions are 
not easily accessible. Hence, weather stations cannot be maintained 
everywhere, leading to an uneven distribution of stations in mountains 
and an underrepresentation of stations at high elevations (Pepin et al., 
2019; Palazzi et al., 2019). Changes in instrument exposure, the lack 
of long time series, and gaps in records at all stations are some of 
the other problems with weather station data, which is not always 
available and has limited temporal and spatial coverage. Contrarily, 
satellites can measure the Earth’s Ts globally, and data is nearly 
always available and has extensive spatial coverage. Thus, Ts can be 
used to estimate Ta (Pepin et al., 2016; Urban et al., 2013; Hachem et 
al., 2012; Shen & Leptoukh, 2011). 
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In this study, we utilize the example of Kilimanjaro as a test bed for 
examining the extent to which Ts can be used to estimate Ta. There are 
several weather stations installed in a transect across the mountain. 
Kilimanjaro is the largest and highest free-standing mountain in the 
world. It is located near the equator. Its base lies below 1000m above 
sea level, and its peak rises to 5895m. The mountain is divided into 
several vegetation/elevation zones. The approximate elevations of the 
zones include urban and agricultural (1000 – 1800m), forest (1800 
– 3000m), heather (3100 – 3900m), moorland (3900 – 4500m), high 
elevation desert (4500 – 5800m) and a small ice cap (>5500m). The 
desert zone starts around 4500m, extends to the ice cap, and is one of 
the highest-elevation deserts in the world. It has very little vegetation, 
is dry, and the temperature regime is dominated by solar radiation 
since there is little cloud cover (Pepin et al., 2016).

Some of the ecosystems on Kilimanjaro have been the subject of 
research because of their high impact on regional and local climate 
change. This is the case for the rainforest, a critical water resource for 
the lower slopes (Hemp, 2009; Hemp, 2005). The summit ice cap has 
also been of intense interest because it is experiencing a rapid decline 
(Mote & Kaser, 2007; Mölg et al., 2003; Thompson et al., 2002). In 
general, the Kilimanjaro desert zone has been much less studied, and 
the perceived lack of impact on climate change has led to a gap in 
the literature about this high-elevation desert. In the context of Ts 
measurements, it can provide a unique baseline to be compared with 
other surface types as it is the only surface not covered by vegetation 
(or ice), and it reflects the true impact of intense solar radiation 
coupled with low air pressure (500-700 mb) at high elevation.

The differences between Ta and Ts are particularly stark in the desert 
zone. Ts are highly dependent on the surface type and change rapidly 
in space and time as the surface heats and cools in response to solar 
radiation. Other than that, the Ta demonstrates more stability in time 
and space and, although measured at a fixed point, could be argued to 
be more representative of the temperature over a slightly wider area. 
The relationship between the two variables is non-linear and complex. 
The application of ML algorithms, with their power in modeling non-
linear and complex systems, is a promising option compared to other 
statistical methods. We apply this approach in this study. The next 
sections will cover past studies, methodology, data collection, data 
analysis, results, and conclusions.
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The research problems and solutions can be summarized as follows:

•	 Weather stations data (Ta): The fixed locations of weather 
stations limit the validity of Ta measurements to the precise 
location, uneven distribution of stations in mountains, under-
representation of stations at high elevations, Changes in 
instrument exposure times, the lack of long time series, gaps in 
records at all stations,

•	 Satellite data (Ts): is nearly always available and has extensive 
spatial and temporal coverage.

•	 Climate change: needs information representative of large areas 
over long periods of time.

•	 The relationship between Ta and Ts: is non-linear and complex.
•	 ML algorithms are powerful tools for modeling non-linear and 

complex systems.

PAST STUDIES

Modeling Ts from Ta

There have been many attempts to derive Ta from the Ts in different 
environments. These include Urban et al. (2013) in the Arctic, Hachem 
et al. (2012) in Canada and Alaska, Shen & Leptoukh (2011) in Russia 
and China, Pepin et al. (2019) and Xu et al. (2018) on the Tibetan 
Plateau in western China, Benali et al. (2012) in Portugal, while Pepin 
et al. (2016) and Vancutsem et al. (2010) in Africa. Note that Potter 
& Coppernoll-Houston (2019), Colombi et al. (2007), and Zhou & 
Wang (2016) provide the most recent studies on the land Ts in deserts.

Not all of these have specifically focused on high mountain 
environments where the difference between Ta and Ts can become 
instantaneously large due to intense radiation and low air pressure at 
high elevations. They also cover a wide range of different vegetation 
zones.

In all cases, it is common to build regression models to estimate 
Ta from Ts. Although regression models are a solid framework for 
modeling and have been widely applied in the references above, 
the introduction of new ML algorithms to the research environment 
in recent years presents an alternative approach that needs to be 
evaluated.
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Machine Learning

The application of ML algorithms in climate science and weather 
forecasting goes back to the works of Moninger et al. (1987) and 
McCann (1992), who investigated the application of Expert Systems 
(ES) and Artificial Neural Networks (ANN), respectively.

ML has also been applied to the prediction of Ta from Ts but in a 
limited way. The research papers (Kumari et al., 2012; Zhao et al., 
2007; Hayati & Mohebi, 2007; Jang et al., 2004; Schizas et al., 1991) 
all utilize ANN for this purpose. However, other ML algorithms, 
including Adaptive Neuro-Fuzzy Inference Systems (ANFIS), have 
been restricted to weather forecasting applications and have not been 
used to estimate Ta from the Ts in a climate context. Furthermore, 
these past research examples commonly employed variable types 
other than Ta and Ts to estimate Ta. Therefore, for the first time, our 
work uses a combination of a wide variety of ML algorithms with the 
core Ta and Ts variables to present a simple but efficient approach to 
estimating Ta from the Ts in a high-elevation desert environment.

Past research on the application of ML algorithms in the estimation 
of Ta is limited to a few algorithms. Moreover, it has not been applied 
in a high-elevation context. Hence, this research will evaluate the 
application of several ML algorithms using only the two core variables, 
namely Ts and Ta, to present a novel and simple but efficient approach 
to estimating Ta from Ts.

RESEARCH METHODOLOGY

Modeling large-scale, complex, non-linear, ill-defined, and uncertain 
systems such as climate change systems have been a prime concern for 
a long time. The application of ML algorithms, such as fuzzy systems 
and neural networks, has opened a path for more ML algorithms to be 
tested and used in this field. Five main algorithms were employed in 
this study (described below).

ANFIS (Adaptive Neuro Fuzzy System)

ANFIS is an implementation of a Fuzzy Inference System (FIS) on top 
of the architecture of an ANN, combining the power of a fuzzy rule 
base with the learning capability of neural networks. For a discussion, 
see (Jang, 1993).
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Figure 1

ANFIS Architecture (Bonissone, n.d.)

Linear Regression

Linear regression is the modeling of the relationship between one or 
more linear independent variables to predict a dependent variable. 
The basic regression model for one independent variable is in the 
form of Equation 1 (Neter et al., 1996).

(1)
•where      is the response variable in the      trial
•      and     are parameters
•    is a known constant (the value of the independent variable  
  in the     trial)
•    is a random error
•     and     are called regression coefficients.
•    is the slope of the regression line.
•     is the Y-intercept of the regression line.

Polynomial Regression

Polynomial multiple regression models are special cases of general 
linear regression models with more than one independent variable, 
and variables can take various powers. The general form for one 
independent variable in second order is in Equation 2 (Neter et al., 
1996).

(2)

Support Vector Machine (SVM)

Support vector machine (SVM) is one of the most popular ML 
algorithms, developed by (Cortes & Vapnik, 1995). It was packaged 
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It has been applied before by Pepin et al. (2016) in a preliminary 
comparison of Ta and Ts across the mountain. In this study, five stations 
within the desert zone were selected. Two stations are located on the 
east, two on the southwest, and one on the mountain’s northwest side. 
The range of elevations of the chosen stations is from 4966 to 5794m.

The Ta at each site is recorded using automatic data loggers (Hobo 
U23-001) installed in a radiation shield at 2m above ground level. 
Observations were recorded as an instantaneous value every 30 
minutes. The Ts are retrieved from the Terra satellite and consist of 
the MODIS product MOD11A2, which provides an 8-day mean Ts at 
1km by 1km resolution. The mean time of the satellite overpasses is 
1030 local solar time (day) and 2230 local solar time (night).

For a direct comparison with Ts, the mean Ta taken at 1030 and 2230 
East African Time (EAT) were averaged over the same 8-day periods 
as the Ts. All 8 days were utilized for comparison.

Variables Used in Machine Learning Models

Five variables were defined, four of which represented day (1030) 
and night (2230) Ta and Ts. The novel variable ∆Ts was defined as 
the difference between day and night Ts (and is a proxy for solar 
radiation). Four variables were used as input, and one variable was 
used as output (TaD).

Table 1 

List of Five Variables

Variable Input/output Description
TaD Output Air temperature of the day
TaN

Inputs

Air temperature of the night
TsD Surface temperature of the day
TsN Surface temperature of the night

∆Ts Solar Radiation
(TsD - TsN)

Models

Using a benchmark model in ML is a standard way of evaluating/
comparing the performance of novel models with an accepted 
standard. The benchmark model is applied to our research data, and 
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results are compared with the results from the novel models. Other 
than that, the benchmark model simulation was based on research 
presented by Kumar (2012), in which ANFIS was employed to predict 
Ta as input and output. The benchmark simulation used TaN as input 
and TaD as output.

The scope of this research is limited to the estimation of Ta from Ts. 
This approach’s power is based on the application of ML algorithms 
to keep inputs at a minimum. Using ∆Ts as a proxy for solar radiation 
is one way of avoiding using extra variables. Other variables such as 
solar radiation, TVX, humidity, elevation, and pressure are used by 
other researchers widely.

Four different sets of inputs as four novel models were evaluated to 
estimate daytime, Ta. Different combinations of these variables each 
have a meaning in the context of climate change studies (see Tables 
1 and 2).

Table 2 

Models

Model Acronym Inputs Output
Model-1 m1 TsN, TaN, TsD TaD
Model-2 m2 TsN, TsD TaD
Model-3 m3 TaN, ∆Ts TaD
Model-4 m4 ∆Ts TaD
Benchmark model bm TaN TaD

K-fold Cross Validation

The selection of 4-fold cross-validation as a performance metric was 
based on the minimum of data rows available for one-fold.

Data Sets

To avoid the confusion caused by different naming conventions for 
data sets applied by authors, the following naming conventions and 
descriptions were adopted from MATLAB software:

•	 The testing data set contained 20% of the main data set, and 
its objective was to test the generalizability of the trained 
and cross-validated model with unseen data.
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•	 The learning data set contained 80% of the main data set 
from which the training (75%) and checking (25%) data 
sets were selected for 4-fold cross-validation to prevent 
overfitting of the model. The average RMSE was calculated 
and used as the main performance metric for each model.

Data Pre-processing

Requirements that determined the data per-processing include:
•	 Two software platforms were used for data pre-processing, 

MATLAB (ANFIS GUI) version R2020a (2020) and 
KNIME Analytics Platform Version 4.3.4 (2020). Note 
that MATLAB needed a special data preparation process, 
whereas KNIME used the same data files prepared for 
MATLAB.

•	 The ML analysis stages of training, checking, and testing 
needed different data sets prepared for each stage.

•	 K-fold cross-validation: 4-fold cross-validation selected 
regarding the minimum number of data rows needed for each 
fold. Data needed to be prepared for each fold individually.

•	 Variables need to be extracted from the main data files.
•	 Novel models with different inputs needed separate data 

sets.

SIMULATION RESULTS

The Models RMSE

Table 3 contains the RMSE (between observed and predicted Ta) 
for the four novel models (m1-m4) and the benchmark model (bm) 
using each of the five algorithms. Figures are the average RMSE of 
the 4-fold cross-validation. The RMSE unit is Celsius degrees and 
should be interpreted in the context of the climate change studies in 
which ‘’ errors generally fall in the 2–3°C range while the level of 
precision generally considered as accurate is 1–2°C (Benali et al., 
2012). Therefore, these accuracy ranges were regarded in interpreting 
the results.

Models m1, m3, and bm (benchmark) model’s RMSE fall between 
2-3°C, which is in the accepted accuracy range. Meanwhile, models 
m2 and m4 fall well out of the accuracy range. Both models include 
Ts as their input, meaning the Ts as the sole input cannot be used to 
estimate Ta well in the desert zone. Models m1 and m3 tend to be 
fairly similar, and RMSE is usually between 2 and 3°C (greyed).
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Table 3

Models RMSE

Models Inputs ANFIS Polynomial 
regression

Linear 
regression LIBSVM

Simple 
regression 

tree

Average 
RMSE

m1 TsN, 
TaN, TsD 2.152625 2.138 2.156 2.424 2.342 2.242525

m2 TsN, TsD 8.0931 7.67 7.667 9.82 10.283 8.70662
m3 TaN, ∆Ts 2.029875 2.112 2.157 2.204 2.621 2.224775
m4 ∆Ts 8.231325 8.183 8.299 9.153 11.21 9.015265
bm TaN 2.08415 2.195 2.278 2.349 2.533 2.28783

Average 
RMSE 4.518215 4.4596 4.5114 5.19 5.7978 -

The Best Model

The best model in Table 3 is m3 combined with the ANFIS algorithm. 
This model gained the average (4-folds) RMSE = 2.029875, an 
acceptable accuracy range. However, the 3-fold of this model came 
up with the RMSE= 2.0076, which is on the edge of the ideal accuracy 
range (1 – 2°C). Note that testing data in Figure 3 is presented with 
blue dots, whereas the FIS output is presented with red asterisks.

Figure 3

The Best Model Test Results

The correlation between m3 inputs (TaN, ∆Ts) and the output (TaD) in 
the best model is illustrated in Figure 4. The smooth surface suggests 
a strong correlation between inputs and outputs.
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Figure 4

The Best Model Surface Plot

Models Ranking

To compare the various model and algorithm combinations in more 
detail, they were ranked from best performing (R1) to worst (R25) in 
Table 4. The following point can be concluded:

•	 Model-3 was the best-performing model combined with 
ANFIS.

Table 4

Models Ranking

Models Inputs ANFIS Polynomial 
regression

Linear 
regression LIBSVM

Simple 
regression 

tree
m1 TsN, TaN, TsD R5 R4 R6 R13 R11
m2 TsN, TsD R18 R17 R16 R23 R24
m3 TaN, ∆Ts R1 R3 R7 R9 R15
m4 ∆Ts R20 R19 R21 R22 R25
bm TaN R2 R8 R10 R12 R14

	
Model Reliability and Consistency Ranking

Table 5 summarizes the reliability and consistency rankings for each 
model. To determine model reliability, the mean ranking was utilized. 
Other than that, the range in the ranking (difference between best and 
worst ranks) was used to determine model consistency. A lower mean 
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ranking presents higher reliability, and a lower variation in rankings 
means higher consistency.

Here, m3 is the best in reliability ranking, followed by m1. The basic 
assumption of m3 is that taking TaN as the baseline and adding ΔTs 
(a proxy for solar radiation) to predict TaD can be accepted as a valid 
assumption in the desert zone. The presence of TaN in both good 
models highlights its importance as a baseline for predicting TaD. In 
contrast, the presence of TsN, TsD, and ΔTs in bad models highlights 
the insufficiency of Ts alone as a baseline for TaD estimation. Hence, 
the differences in consistency ranking reflect the differences between 
different input variables.

•	 Model-2 and Model-4 did not perform well in the desert 
zone. However, their consistency and reliability should be 
seen in the context of RMSE results in Table 3.

•	 The benchmark model with an average RMSE across all 
algorithms of 2.28783 performed well, proving the point 
that this one input and one output model works well in the 
desert zone and highlights the strong relationship between 
TaN and TaD.

Table 5

Models Reliability and Consistency Ranking

Model Ranking 
average

Reliability 
ranking

Ranking 
variation

Consistency 
ranking

m1 7.8 2 9 3

m2 19.6 4 8 2

m3 7 1 14 5

m4 21.4 5 6 1

bm 9.2 3 12 4

Algorithm reliability and consistency ranking

The same concepts were applied to analyze each algorithm’s 
reliability and consistency rankings in Table 6. ANFIS came up as 
the best algorithm in reliability ranking across all models, followed 
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by polynomial regression and Linear regression algorithms. Note that 
SVM is the most consistent but with poor results. The differences 
in consistency ranking should be referred to as differences between 
algorithms and models. Thus, the most reliable algorithms are not the 
most consistent in performance.

Table 6

Algorithms Reliability and Consistency Ranking

Algorithm Ranking 
average

Reliability 
ranking

Ranking 
variation

Consistency 
ranking

ANFIS 9.2 1 19 5
Polynomial regression 10.2 2 16 4
Linear regression 12 3 15 3
SVM 15.8 4 13 1
Simple regression tree 17.8 5 14 2

Performance Evaluation

The performance of novel models was compared with the benchmark 
model. Overall, the novel models outperformed the benchmark model:

•	 75% (three out of four models) are better in the consistency 
comparison

•	 50% (two out of four models) are better in the reliability 
comparison

DISCUSSION

The desert zone surface consists of bare rock and sand with minimal 
protective vegetation. The intense solar radiation at high elevations 
during the day heats the surface, eventually influencing the Ta above 
the surface, creating some coupling between the two variables. The 
same strong coupling can be observed during the night, during which 
the absence of solar radiation cools the surface and, eventually, the 
air above. However, there is a big difference between the rock and 
air in terms of heat conductivity, leading to differential responses 
regarding heating/cooling. The surface is much more responsive than 
the air since the low atmospheric pressure (~500mb) at the top of 
the mountain: 5800m) makes conduction and convection relatively 
inefficient. Thus, Ta at 2m has a much-dampened response to energy 



    15      

Journal of Computational Innovation and Analytics, Vol. 2, Number 1 (January) 2023, pp: 1–19

balance in comparison to the surface. This leads to different coupling 
patterns between Ta and Ts in the desert. Naturally, the Ta lags 
somewhat behind the Ts.

Three coupling areas can be identified on the surface plot (Figure 4). 
The flat blue surface at the bottom, the flat yellow surface at the top, 
and the mixed color surface at the middle. These surfaces are possibly 
related to night (blue), day (yellow), and the short transition periods of 
dawn and dusk (mixed). The blue and yellow surfaces represent areas 
of high coupling, whereas the middle surface represents an unstable 
regime between Ta and Ts.

In Figure 3, two groups of data points can clearly be identified, one 
with high temperatures (well above freezing) and one with much 
lower temperatures (below or around freezing). It is unusual for 
temperatures to be in between these two groups. This binary result is 
intriguing, but the exact cause requires further research since many 
factors could cause this. For example, the presence or absence of solar 
radiation is a critical control in the high-elevation desert environment, 
and any binary effect will likely result from this. This could, in turn, 
be related to conditions of cloud/no cloud, shade/no shade, station 
location (north-east slope aspect vs. southwest slope aspect), day/
night, snow cover/no snow cover on the surface (which influences 
whether it can heat up or not) or some combination of all these.

There are five stations in the desert zone that receive a contrasting 
amount of solar radiation based on their location. Further research 
should focus on individual stations to investigate the impact of the 
location on model performance. Other than that, additional work 
will be required to transfer our findings to other environments on the 
mountain and elsewhere.

Our analysis has used the commonly used RMSE to evaluate model 
performance, and this approach is widely accepted. However, there 
are additional metrics that could be investigated, including the Akaike 
Information Criterion (AIC) and Bayesian Information Criterion 
(BIC).

CONCLUSION

Although the research confirms the reliability of ML algorithms 
(especially ANFIS) to estimate Ta from the satellite-measured Ts in 
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a high-elevation desert environment (>4500m) with few measured 
climate variables, the lack of enough coupling between Ta and 
Ts in this zone prevents the sole use of Ts as the only input. As a 
consequence, the Ta of the night still plays an important role. It should 
be utilized as input to get higher accuracy models, highlighting the 
need for increased weather station measurements in this zone. The 
results could apply to other desert areas, but further research is 
required to apply this approach to other areas and land-cover types on 
the mountain and further afield.
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