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ABSTRACT

In this paper, a procedure to establish the different performance 
measures in terms of crisp value is proposed for two classes of arrivals 
and multiple channel queueing models, where both arrival and service 
rate are fuzzy numbers. The main idea is to convert the arrival rates 
and service rates under fuzzy queues into crisp queues by using graded 
mean integration approach, which can be represented as median rule 
number. Hence, we apply the crisp values obtained to establish the 
performance measure of conventional multiple queueing models. 
This procedure has shown its effectiveness when incorporated with 
many types of membership functions in solving queuing problems. 
Two numerical illustrations are presented to determine the validity 
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of the procedure in this queueing model, which involved using 
trapezoidal and hexagonal fuzzy numbers. It can be concluded that 
graded mean integration approach is efficient with fuzzy queueing 
models to convert fuzzy queues into crisp queues. This finding has 
contributed to the body of knowledge by suggesting a new procedure 
of defuzzification as another efficient alternative.

Keywords: Multiple Channel Queueing Model, Two Class of Arrivals, 
Graded Mean Integration, Fuzzy Numbers, Performance Measures.

INTRODUCTION

Queueing problems are regularly expected in various areas of 
application such as manufacturing, industry, transportation, production 
systems and telecommunication. Queueing models play a significant 
role in decision making and design typically comprising a combination 
of decisions (Gross & Harris, 1985). This combination may involve 
various entities such as human and machine while operating certain 
processes e.g., the number of service counters at a facility, the 
effectiveness of arrival procedure especially in cases concerning 
priorities and the efficiency level of the machine. Many studies have 
been published in this research area where both rates, arrival and 
service are known (Derbala, 2005). However, there are cases where 
these parameters are unknown precisely. Study by van Vianen (2015) 
highlighted that the main obstacle in implementing evaluation of such 
queueing models is that it may be challenging to exactly estimate 
the real average waiting time of customers in the queue, particularly 
when it involves human factor. This factor has greater impacts to the 
scenario as humans are normally inconsistent. In some applications, 
the statistical information may be obtained subjectively; that is, 
the arrival and service pattern are more appropriately described by 
linguistic terms such as fast, moderate, or slow, rather than by 
probability distributions (Taha, 2003). The total time spent by a 
customer in the facility and on the queue can be described as having 
fuzzy elements due to some uncontrollable factors. Fuzzy input 
information of this kind will lessen the effectiveness of the quality of 
decisions if analyzed using conventional queueing decision models. 
Accordingly, fuzzy queueing decision problems deserve further 
investigation to find their appropriateness in measuring performance. 
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Many researchers such as Zadeh (1965) and Buckley (1990) proposed 
methods and techniques to merge between probability theory 
and possibilities, while other researchers proposed mathematical 
procedures; nonparametric linear programming technique with single 
priority queueing systems (Devaraj & Jayalakshmi, 2012a; Devaraj 
& Jayalakshmi, 2012b). On the other hand, some other studies 
used Yager’s ranking method (Palpandi & Geetharamani, 2013) to 
convert fuzzy queues into crisp queues with the help of alpha cut 
while some others used graded mean approach (Ritha & Menon, 
2012a; Robert & Ritha, 2010b; Mueen et al., 2017a). Most previous 
research focused on trapezoidal and triangular membership functions, 
where only a few studies adopted other types of linear membership 
functions, such as hexagonal fuzzy numbers (Mueen et al., 2017b). 
The usability of hexagonal membership function is seen in its vast 
application areas such as its recent application in transportation 
problems (Rajarajeshwari et al., 2013). In this paper, a new procedure 
is proposed to obtain the expected waiting time of customer in the 
queue for both classes using graded mean integration method with 
trapezoidal and hexagonal membership function for multiple channel 
models under two classes of queueing model. Then, the validity of this 
approach leads to the evaluation of the whole queueing system. The 
organization of this paper is as follows; the first section introduces the 
preliminaries of fuzzy set theory and membership functions regarding 
graded mean approach, while the next section explains the multiple 
channels under two classes of arrivals. The final sections demonstrate 
the numerical examples of the model proposed followed by discussion 
and conclusion.

CONCEPTS OF FUZZY SET THEORY

This section discusses some basic definitions and mathematical 
operations of fuzzy numbers are summarized which are quite vital for 
this article:

Definition 1: Fuzzy Sets

A fuzzy set is specified by membership function containing the 
components of a domain space or universe X in the interval [0, 1],  
that is Ã=                                      Here                        is an interval called 
the degree of membership function of the fuzzy set,      represents 
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Ã={{(𝑥𝑥,  𝜇𝜇Ã(𝑥𝑥))|𝑥𝑥𝑥𝑥𝑥𝑥|}}. Here  𝜇𝜇Ã: 𝑍𝑍 → [0,1]  

 𝜇𝜇Ã(𝑧𝑧)   

 𝜇𝜇Ã = 1.  

 𝜇𝜇Ã(𝜆𝜆𝑥𝑥1 + (1 − 𝜆𝜆)𝑥𝑥2) ≥ min(𝜇𝜇Ã(𝑥𝑥1), 𝜇𝜇Ã(𝑥𝑥2)), where 0≤λ≤1.  

 

µÃ(𝑥𝑥) =

{
 
 

 
 
𝑥𝑥 − 𝑎𝑎
𝑏𝑏 − 𝑎𝑎 , 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏
1,                 𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐 
𝑑𝑑 − 𝑥𝑥
𝑑𝑑 − 𝑐𝑐 , 𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑
0,              𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

 

(1) 

 

Definition 4: Operations of Trapezoidal Fuzzy Number   

Let Ã = (𝑎𝑎1,  𝑏𝑏1,  𝑐𝑐1,  𝑑𝑑1) and �̃�𝐵 =  (𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2)  
 
  �̃�𝐴 =  (𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1, 𝑑𝑑1), �̃�𝐵 =  (𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2) 
 

 Addition: �̃�𝐴 + �̃�𝐵 = [𝑎𝑎1 + 𝑎𝑎2, 𝑏𝑏1 + 𝑏𝑏2,  𝑐𝑐1 +  𝑐𝑐2, 𝑑𝑑1 + 𝑑𝑑2] 
 Subtraction: �̃�𝐴 − �̃�𝐵  =  [𝑎𝑎1 − 𝑎𝑎2, 𝑏𝑏1 − 𝑏𝑏2, 𝑐𝑐1 −  𝑐𝑐2, 𝑑𝑑1 − 𝑑𝑑2] 
 Multiplication: �̃�𝐴 ∗ �̃�𝐵  =  [𝑎𝑎1. 𝑎𝑎2, 𝑏𝑏1. 𝑏𝑏2,  𝑐𝑐1. 𝑐𝑐2, 𝑑𝑑1. 𝑑𝑑2] 
 Division: 

�̃�𝐴
�̃�𝐵 = [

𝑎𝑎1
𝑎𝑎2
, 𝑏𝑏1𝑏𝑏2 ,

 𝑐𝑐1
 𝑐𝑐2
, 𝑑𝑑1𝑑𝑑2] 

Hexagonal Fuzzy Number  

�̃�𝐴𝐻𝐻   

�̃�𝐴𝐻𝐻 = (𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑, 𝑒𝑒, 𝑓𝑓; 1),  
𝜇𝜇�̃�𝐴𝐻𝐻(𝑥𝑥) is given by: 
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the membership value of        in the fuzzy set Ã and the degree of 
membership is defined by R → [0,1].

Definition 2:  Fuzzy Number

A fuzzy set Ã of a universe of discourse X is called a normal fuzzy set 
if there exists at least           such that                  A fuzzy set Ã is convex if  
and only if for any      ,the membership function of Ã satisfies the  
condition of                                                                              where                                                                        
0≤λ≤1. 

Definition 3: Trapezoidal Fuzzy Number

A trapezoidal fuzzy number Ã can be represented by Ã= (a, b, c, 
d; 1). Study by Banerjee and Roy (2012) adopted the most linear 
membership function defined as:

(1)

where a,b,c and d represent the points inside closed interval.

Figure 1

Graphical Representation of Trapezoidal Fuzzy Number
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Definition 4: Operations of Trapezoidal Fuzzy Number  

Let                                    and                                  be two trapezoidal 
fuzzy numbers. The arithmetic operations are defined as:

 
• Addition: 
• Subtraction: 
• Multiplication: 
• Division: 

Hexagonal Fuzzy Number 

A fuzzy number       is a hexagonal fuzzy number denoted by 
                                         where a, b, c, d, f are real numbers (Rajarajeswari 
and Sangeetha, 2015). Its continuous membership function            is 
given by:

(2)

where a,b,c,d,e and f represent the points inside the interval.

Figure 2

Graphical Representation of Hexagonal Fuzzy Numbers
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𝜇𝜇�̃�𝐴𝐻𝐻(𝑥𝑥) is given by: 

 
 
 
 

CONCEPTS OF FUZZY SET THEORY 
 

Ã={{(𝑥𝑥,  𝜇𝜇Ã(𝑥𝑥))|𝑥𝑥𝑥𝑥𝑥𝑥|}}. Here  𝜇𝜇Ã: 𝑍𝑍 → [0,1]  

 𝜇𝜇Ã(𝑧𝑧)   

 𝜇𝜇Ã = 1.  

 𝜇𝜇Ã(𝜆𝜆𝑥𝑥1 + (1 − 𝜆𝜆)𝑥𝑥2) ≥ min(𝜇𝜇Ã(𝑥𝑥1), 𝜇𝜇Ã(𝑥𝑥2)), where 0≤λ≤1.  

 

µÃ(𝑥𝑥) =

{
 
 

 
 
𝑥𝑥 − 𝑎𝑎
𝑏𝑏 − 𝑎𝑎 , 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏
1,                 𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐 
𝑑𝑑 − 𝑥𝑥
𝑑𝑑 − 𝑐𝑐 , 𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑
0,              𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  
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Definition 4: Operations of Trapezoidal Fuzzy Number   

Let Ã = (𝑎𝑎1,  𝑏𝑏1,  𝑐𝑐1,  𝑑𝑑1) and �̃�𝐵 =  (𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2)  
 
  �̃�𝐴 =  (𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1, 𝑑𝑑1), �̃�𝐵 =  (𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2) 
 

 Addition: �̃�𝐴 + �̃�𝐵 = [𝑎𝑎1 + 𝑎𝑎2, 𝑏𝑏1 + 𝑏𝑏2,  𝑐𝑐1 +  𝑐𝑐2, 𝑑𝑑1 + 𝑑𝑑2] 
 Subtraction: �̃�𝐴 − �̃�𝐵  =  [𝑎𝑎1 − 𝑎𝑎2, 𝑏𝑏1 − 𝑏𝑏2, 𝑐𝑐1 −  𝑐𝑐2, 𝑑𝑑1 − 𝑑𝑑2] 
 Multiplication: �̃�𝐴 ∗ �̃�𝐵  =  [𝑎𝑎1. 𝑎𝑎2, 𝑏𝑏1. 𝑏𝑏2,  𝑐𝑐1. 𝑐𝑐2, 𝑑𝑑1. 𝑑𝑑2] 
 Division: 

�̃�𝐴
�̃�𝐵 = [

𝑎𝑎1
𝑎𝑎2
, 𝑏𝑏1𝑏𝑏2 ,

 𝑐𝑐1
 𝑐𝑐2
, 𝑑𝑑1𝑑𝑑2] 
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�̃�𝐴𝐻𝐻   

�̃�𝐴𝐻𝐻 = (𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑, 𝑒𝑒, 𝑓𝑓; 1),  
𝜇𝜇�̃�𝐴𝐻𝐻(𝑥𝑥) is given by: 
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Ã={{(𝑥𝑥,  𝜇𝜇Ã(𝑥𝑥))|𝑥𝑥𝑥𝑥𝑥𝑥|}}. Here  𝜇𝜇Ã: 𝑍𝑍 → [0,1]  

 𝜇𝜇Ã(𝑧𝑧)   

 𝜇𝜇Ã = 1.  

 𝜇𝜇Ã(𝜆𝜆𝑥𝑥1 + (1 − 𝜆𝜆)𝑥𝑥2) ≥ min(𝜇𝜇Ã(𝑥𝑥1), 𝜇𝜇Ã(𝑥𝑥2)), where 0≤λ≤1.  

 

µÃ(𝑥𝑥) =

{
 
 

 
 
𝑥𝑥 − 𝑎𝑎
𝑏𝑏 − 𝑎𝑎 , 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏
1,                 𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐 
𝑑𝑑 − 𝑥𝑥
𝑑𝑑 − 𝑐𝑐 , 𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑
0,              𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  
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Definition 4: Operations of Trapezoidal Fuzzy Number   

Let Ã = (𝑎𝑎1,  𝑏𝑏1,  𝑐𝑐1,  𝑑𝑑1) and �̃�𝐵 =  (𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2)  
 
  �̃�𝐴 =  (𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1, 𝑑𝑑1), �̃�𝐵 =  (𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2) 
 

 Addition: �̃�𝐴 + �̃�𝐵 = [𝑎𝑎1 + 𝑎𝑎2, 𝑏𝑏1 + 𝑏𝑏2,  𝑐𝑐1 +  𝑐𝑐2, 𝑑𝑑1 + 𝑑𝑑2] 
 Subtraction: �̃�𝐴 − �̃�𝐵  =  [𝑎𝑎1 − 𝑎𝑎2, 𝑏𝑏1 − 𝑏𝑏2, 𝑐𝑐1 −  𝑐𝑐2, 𝑑𝑑1 − 𝑑𝑑2] 
 Multiplication: �̃�𝐴 ∗ �̃�𝐵  =  [𝑎𝑎1. 𝑎𝑎2, 𝑏𝑏1. 𝑏𝑏2,  𝑐𝑐1. 𝑐𝑐2, 𝑑𝑑1. 𝑑𝑑2] 
 Division: 

�̃�𝐴
�̃�𝐵 = [

𝑎𝑎1
𝑎𝑎2
, 𝑏𝑏1𝑏𝑏2 ,

 𝑐𝑐1
 𝑐𝑐2
, 𝑑𝑑1𝑑𝑑2] 

Hexagonal Fuzzy Number  

�̃�𝐴𝐻𝐻   

�̃�𝐴𝐻𝐻 = (𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑, 𝑒𝑒, 𝑓𝑓; 1),  
𝜇𝜇�̃�𝐴𝐻𝐻(𝑥𝑥) is given by: 
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Ã={{(𝑥𝑥,  𝜇𝜇Ã(𝑥𝑥))|𝑥𝑥𝑥𝑥𝑥𝑥|}}. Here  𝜇𝜇Ã: 𝑍𝑍 → [0,1]  

 𝜇𝜇Ã(𝑧𝑧)   

 𝜇𝜇Ã = 1.  

 𝜇𝜇Ã(𝜆𝜆𝑥𝑥1 + (1 − 𝜆𝜆)𝑥𝑥2) ≥ min(𝜇𝜇Ã(𝑥𝑥1), 𝜇𝜇Ã(𝑥𝑥2)), where 0≤λ≤1.  

 

µÃ(𝑥𝑥) =

{
 
 

 
 
𝑥𝑥 − 𝑎𝑎
𝑏𝑏 − 𝑎𝑎 , 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏
1,                 𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐 
𝑑𝑑 − 𝑥𝑥
𝑑𝑑 − 𝑐𝑐 , 𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑
0,              𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  
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Definition 4: Operations of Trapezoidal Fuzzy Number   

Let Ã = (𝑎𝑎1,  𝑏𝑏1,  𝑐𝑐1,  𝑑𝑑1) and �̃�𝐵 =  (𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2)  
 
  �̃�𝐴 =  (𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1, 𝑑𝑑1), �̃�𝐵 =  (𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2) 
 

 Addition: �̃�𝐴 + �̃�𝐵 = [𝑎𝑎1 + 𝑎𝑎2, 𝑏𝑏1 + 𝑏𝑏2,  𝑐𝑐1 +  𝑐𝑐2, 𝑑𝑑1 + 𝑑𝑑2] 
 Subtraction: �̃�𝐴 − �̃�𝐵  =  [𝑎𝑎1 − 𝑎𝑎2, 𝑏𝑏1 − 𝑏𝑏2, 𝑐𝑐1 −  𝑐𝑐2, 𝑑𝑑1 − 𝑑𝑑2] 
 Multiplication: �̃�𝐴 ∗ �̃�𝐵  =  [𝑎𝑎1. 𝑎𝑎2, 𝑏𝑏1. 𝑏𝑏2,  𝑐𝑐1. 𝑐𝑐2, 𝑑𝑑1. 𝑑𝑑2] 
 Division: 

�̃�𝐴
�̃�𝐵 = [

𝑎𝑎1
𝑎𝑎2
, 𝑏𝑏1𝑏𝑏2 ,

 𝑐𝑐1
 𝑐𝑐2
, 𝑑𝑑1𝑑𝑑2] 
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�̃�𝐴𝐻𝐻   

�̃�𝐴𝐻𝐻 = (𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑, 𝑒𝑒, 𝑓𝑓; 1),  
𝜇𝜇�̃�𝐴𝐻𝐻(𝑥𝑥) is given by: 
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Ã={{(𝑥𝑥,  𝜇𝜇Ã(𝑥𝑥))|𝑥𝑥𝑥𝑥𝑥𝑥|}}. Here  𝜇𝜇Ã: 𝑍𝑍 → [0,1]  

 𝜇𝜇Ã(𝑧𝑧)   

 𝜇𝜇Ã = 1.  

 𝜇𝜇Ã(𝜆𝜆𝑥𝑥1 + (1 − 𝜆𝜆)𝑥𝑥2) ≥ min(𝜇𝜇Ã(𝑥𝑥1), 𝜇𝜇Ã(𝑥𝑥2)), where 0≤λ≤1.  

 

µÃ(𝑥𝑥) =

{
 
 

 
 
𝑥𝑥 − 𝑎𝑎
𝑏𝑏 − 𝑎𝑎 , 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏
1,                 𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐 
𝑑𝑑 − 𝑥𝑥
𝑑𝑑 − 𝑐𝑐 , 𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑
0,              𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  
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Definition 4: Operations of Trapezoidal Fuzzy Number   

Let Ã = (𝑎𝑎1,  𝑏𝑏1,  𝑐𝑐1,  𝑑𝑑1) and �̃�𝐵 =  (𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2)  
 
  �̃�𝐴 =  (𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1, 𝑑𝑑1), �̃�𝐵 =  (𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2) 
 

 Addition: �̃�𝐴 + �̃�𝐵 = [𝑎𝑎1 + 𝑎𝑎2, 𝑏𝑏1 + 𝑏𝑏2,  𝑐𝑐1 +  𝑐𝑐2, 𝑑𝑑1 + 𝑑𝑑2] 
 Subtraction: �̃�𝐴 − �̃�𝐵  =  [𝑎𝑎1 − 𝑎𝑎2, 𝑏𝑏1 − 𝑏𝑏2, 𝑐𝑐1 −  𝑐𝑐2, 𝑑𝑑1 − 𝑑𝑑2] 
 Multiplication: �̃�𝐴 ∗ �̃�𝐵  =  [𝑎𝑎1. 𝑎𝑎2, 𝑏𝑏1. 𝑏𝑏2,  𝑐𝑐1. 𝑐𝑐2, 𝑑𝑑1. 𝑑𝑑2] 
 Division: 

�̃�𝐴
�̃�𝐵 = [

𝑎𝑎1
𝑎𝑎2
, 𝑏𝑏1𝑏𝑏2 ,

 𝑐𝑐1
 𝑐𝑐2
, 𝑑𝑑1𝑑𝑑2] 
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�̃�𝐴𝐻𝐻   

�̃�𝐴𝐻𝐻 = (𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑, 𝑒𝑒, 𝑓𝑓; 1),  
𝜇𝜇�̃�𝐴𝐻𝐻(𝑥𝑥) is given by: 
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Ã={{(𝑥𝑥,  𝜇𝜇Ã(𝑥𝑥))|𝑥𝑥𝑥𝑥𝑥𝑥|}}. Here  𝜇𝜇Ã: 𝑍𝑍 → [0,1]  

 𝜇𝜇Ã(𝑧𝑧)   

 𝜇𝜇Ã = 1.  

 𝜇𝜇Ã(𝜆𝜆𝑥𝑥1 + (1 − 𝜆𝜆)𝑥𝑥2) ≥ min(𝜇𝜇Ã(𝑥𝑥1), 𝜇𝜇Ã(𝑥𝑥2)), where 0≤λ≤1.  

 

µÃ(𝑥𝑥) =

{
 
 

 
 
𝑥𝑥 − 𝑎𝑎
𝑏𝑏 − 𝑎𝑎 , 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏
1,                 𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐 
𝑑𝑑 − 𝑥𝑥
𝑑𝑑 − 𝑐𝑐 , 𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑
0,              𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  
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Definition 4: Operations of Trapezoidal Fuzzy Number   

Let Ã = (𝑎𝑎1,  𝑏𝑏1,  𝑐𝑐1,  𝑑𝑑1) and �̃�𝐵 =  (𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2)  
 
  �̃�𝐴 =  (𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1, 𝑑𝑑1), �̃�𝐵 =  (𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2) 
 

 Addition: �̃�𝐴 + �̃�𝐵 = [𝑎𝑎1 + 𝑎𝑎2, 𝑏𝑏1 + 𝑏𝑏2,  𝑐𝑐1 +  𝑐𝑐2, 𝑑𝑑1 + 𝑑𝑑2] 
 Subtraction: �̃�𝐴 − �̃�𝐵  =  [𝑎𝑎1 − 𝑎𝑎2, 𝑏𝑏1 − 𝑏𝑏2, 𝑐𝑐1 −  𝑐𝑐2, 𝑑𝑑1 − 𝑑𝑑2] 
 Multiplication: �̃�𝐴 ∗ �̃�𝐵  =  [𝑎𝑎1. 𝑎𝑎2, 𝑏𝑏1. 𝑏𝑏2,  𝑐𝑐1. 𝑐𝑐2, 𝑑𝑑1. 𝑑𝑑2] 
 Division: 

�̃�𝐴
�̃�𝐵 = [

𝑎𝑎1
𝑎𝑎2
, 𝑏𝑏1𝑏𝑏2 ,

 𝑐𝑐1
 𝑐𝑐2
, 𝑑𝑑1𝑑𝑑2] 
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�̃�𝐴𝐻𝐻   

�̃�𝐴𝐻𝐻 = (𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑, 𝑒𝑒, 𝑓𝑓; 1),  
𝜇𝜇�̃�𝐴𝐻𝐻(𝑥𝑥) is given by: 
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Ã={{(𝑥𝑥,  𝜇𝜇Ã(𝑥𝑥))|𝑥𝑥𝑥𝑥𝑥𝑥|}}. Here  𝜇𝜇Ã: 𝑍𝑍 → [0,1]  

 𝜇𝜇Ã(𝑧𝑧)   

 𝜇𝜇Ã = 1.  

 𝜇𝜇Ã(𝜆𝜆𝑥𝑥1 + (1 − 𝜆𝜆)𝑥𝑥2) ≥ min(𝜇𝜇Ã(𝑥𝑥1), 𝜇𝜇Ã(𝑥𝑥2)), where 0≤λ≤1.  

 

µÃ(𝑥𝑥) =

{
 
 

 
 
𝑥𝑥 − 𝑎𝑎
𝑏𝑏 − 𝑎𝑎 , 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏
1,                 𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐 
𝑑𝑑 − 𝑥𝑥
𝑑𝑑 − 𝑐𝑐 , 𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑
0,              𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  
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Definition 4: Operations of Trapezoidal Fuzzy Number   

Let Ã = (𝑎𝑎1,  𝑏𝑏1,  𝑐𝑐1,  𝑑𝑑1) and �̃�𝐵 =  (𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2)  
 
  �̃�𝐴 =  (𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1, 𝑑𝑑1), �̃�𝐵 =  (𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2) 
 

 Addition: �̃�𝐴 + �̃�𝐵 = [𝑎𝑎1 + 𝑎𝑎2, 𝑏𝑏1 + 𝑏𝑏2,  𝑐𝑐1 +  𝑐𝑐2, 𝑑𝑑1 + 𝑑𝑑2] 
 Subtraction: �̃�𝐴 − �̃�𝐵  =  [𝑎𝑎1 − 𝑎𝑎2, 𝑏𝑏1 − 𝑏𝑏2, 𝑐𝑐1 −  𝑐𝑐2, 𝑑𝑑1 − 𝑑𝑑2] 
 Multiplication: �̃�𝐴 ∗ �̃�𝐵  =  [𝑎𝑎1. 𝑎𝑎2, 𝑏𝑏1. 𝑏𝑏2,  𝑐𝑐1. 𝑐𝑐2, 𝑑𝑑1. 𝑑𝑑2] 
 Division: 

�̃�𝐴
�̃�𝐵 = [

𝑎𝑎1
𝑎𝑎2
, 𝑏𝑏1𝑏𝑏2 ,

 𝑐𝑐1
 𝑐𝑐2
, 𝑑𝑑1𝑑𝑑2] 

Hexagonal Fuzzy Number  

�̃�𝐴𝐻𝐻   

�̃�𝐴𝐻𝐻 = (𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑, 𝑒𝑒, 𝑓𝑓; 1),  
𝜇𝜇�̃�𝐴𝐻𝐻(𝑥𝑥) is given by: 

 
 
 
 

CONCEPTS OF FUZZY SET THEORY 
 

Ã={{(𝑥𝑥,  𝜇𝜇Ã(𝑥𝑥))|𝑥𝑥𝑥𝑥𝑥𝑥|}}. Here  𝜇𝜇Ã: 𝑍𝑍 → [0,1]  

 𝜇𝜇Ã(𝑧𝑧)   

 𝜇𝜇Ã = 1.  

 𝜇𝜇Ã(𝜆𝜆𝑥𝑥1 + (1 − 𝜆𝜆)𝑥𝑥2) ≥ min(𝜇𝜇Ã(𝑥𝑥1), 𝜇𝜇Ã(𝑥𝑥2)), where 0≤λ≤1.  

 

µÃ(𝑥𝑥) =

{
 
 

 
 
𝑥𝑥 − 𝑎𝑎
𝑏𝑏 − 𝑎𝑎 , 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏
1,                 𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐 
𝑑𝑑 − 𝑥𝑥
𝑑𝑑 − 𝑐𝑐 , 𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑
0,              𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

 

(1) 

 

Definition 4: Operations of Trapezoidal Fuzzy Number   

Let Ã = (𝑎𝑎1,  𝑏𝑏1,  𝑐𝑐1,  𝑑𝑑1) and �̃�𝐵 =  (𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2)  
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 Addition: �̃�𝐴 + �̃�𝐵 = [𝑎𝑎1 + 𝑎𝑎2, 𝑏𝑏1 + 𝑏𝑏2,  𝑐𝑐1 +  𝑐𝑐2, 𝑑𝑑1 + 𝑑𝑑2] 
 Subtraction: �̃�𝐴 − �̃�𝐵  =  [𝑎𝑎1 − 𝑎𝑎2, 𝑏𝑏1 − 𝑏𝑏2, 𝑐𝑐1 −  𝑐𝑐2, 𝑑𝑑1 − 𝑑𝑑2] 
 Multiplication: �̃�𝐴 ∗ �̃�𝐵  =  [𝑎𝑎1. 𝑎𝑎2, 𝑏𝑏1. 𝑏𝑏2,  𝑐𝑐1. 𝑐𝑐2, 𝑑𝑑1. 𝑑𝑑2] 
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�̃�𝐴
�̃�𝐵 = [

𝑎𝑎1
𝑎𝑎2
, 𝑏𝑏1𝑏𝑏2 ,

 𝑐𝑐1
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𝑑𝑑 − 𝑥𝑥
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 Addition: �̃�𝐴 + �̃�𝐵 = [𝑎𝑎1 + 𝑎𝑎2, 𝑏𝑏1 + 𝑏𝑏2,  𝑐𝑐1 +  𝑐𝑐2, 𝑑𝑑1 + 𝑑𝑑2] 
 Subtraction: �̃�𝐴 − �̃�𝐵  =  [𝑎𝑎1 − 𝑎𝑎2, 𝑏𝑏1 − 𝑏𝑏2, 𝑐𝑐1 −  𝑐𝑐2, 𝑑𝑑1 − 𝑑𝑑2] 
 Multiplication: �̃�𝐴 ∗ �̃�𝐵  =  [𝑎𝑎1. 𝑎𝑎2, 𝑏𝑏1. 𝑏𝑏2,  𝑐𝑐1. 𝑐𝑐2, 𝑑𝑑1. 𝑑𝑑2] 
 Division: 

�̃�𝐴
�̃�𝐵 = [

𝑎𝑎1
𝑎𝑎2
, 𝑏𝑏1𝑏𝑏2 ,

 𝑐𝑐1
 𝑐𝑐2
, 𝑑𝑑1𝑑𝑑2] 

Hexagonal Fuzzy Number  

�̃�𝐴𝐻𝐻   

�̃�𝐴𝐻𝐻 = (𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑, 𝑒𝑒, 𝑓𝑓; 1),  
𝜇𝜇�̃�𝐴𝐻𝐻(𝑥𝑥) is given by: 

𝜇𝜇�̃�𝐴𝐻𝐻(𝑥𝑥) =

{
 
 
 
 
 
 

 
 
 
 
 
 

        0,                          𝑥𝑥 < 𝑎𝑎
    12 (

𝑥𝑥 − 𝑎𝑎
𝑏𝑏 − 𝑎𝑎)  ,        𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏

1
2 +

1
2 (

𝑥𝑥 − 𝑏𝑏
𝑐𝑐 − 𝑏𝑏) ,     𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐

         1,                       𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑  
1 − 12 (

𝑥𝑥 − 𝑑𝑑
𝑒𝑒 − 𝑑𝑑) , 𝑑𝑑 ≤ 𝑥𝑥 ≤ 𝑒𝑒

       12 (
𝑓𝑓 − 𝑥𝑥
𝑓𝑓 − 𝑒𝑒) , 𝑒𝑒 ≤ 𝑥𝑥 ≤ 𝑓𝑓

           0,                           𝑥𝑥 > 𝑓𝑓
     

       

 

(2) 

 
Operations of Hexagonal Fuzzy Numbers 

�̃�𝐴𝐻𝐻 =  (𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1, 𝑑𝑑1, 𝑒𝑒1, 𝑓𝑓1), �̃�𝐵𝐻𝐻 =  (𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2, 𝑒𝑒2, 𝑓𝑓2)  

 Addition:  �̃�𝐴𝐻𝐻 + �̃�𝐵𝐻𝐻 = [𝑎𝑎1 + 𝑎𝑎2, 𝑏𝑏1 + 𝑏𝑏2,  𝑐𝑐1 +  𝑐𝑐2, 𝑑𝑑1 + 𝑑𝑑2, 𝑒𝑒1 + 𝑒𝑒2, 𝑓𝑓1 + 𝑓𝑓2] 

 Subtraction:�̃�𝐴𝐻𝐻 − �̃�𝐵𝐻𝐻 =  [𝑎𝑎1 − 𝑎𝑎2, 𝑏𝑏1 − 𝑏𝑏2,  𝑐𝑐1 −  𝑐𝑐2, 𝑑𝑑1 − 𝑑𝑑2, 𝑒𝑒1 − 𝑒𝑒2, 𝑓𝑓1 − 𝑓𝑓2] 

 Multiplication: �̃�𝐴𝐻𝐻 ∗ �̃�𝐵𝐻𝐻  = [𝑎𝑎1. 𝑎𝑎2, 𝑏𝑏1. 𝑏𝑏2,  𝑐𝑐1. 𝑐𝑐2, 𝑑𝑑1. 𝑑𝑑2, 𝑒𝑒1. 𝑒𝑒2, 𝑓𝑓1. 𝑓𝑓2] 

 Division: �̃�𝐴𝐻𝐻�̃�𝐵𝐻𝐻 = [
𝑎𝑎1
𝑎𝑎2
, 𝑏𝑏1𝑏𝑏2 ,

 𝑐𝑐1
 𝑐𝑐2
, 𝑑𝑑1𝑑𝑑2 ,

𝑒𝑒1
𝑒𝑒2
, 𝑓𝑓1𝑓𝑓2]  

Generalized Fuzzy Numbers 

 𝜇𝜇�̃�𝐴: 𝑅𝑅 → [0,𝑤𝑤]  

 𝜇𝜇�̃�𝐴(𝑧𝑧) = 0 for all 𝑧𝑧 ∈ (−∞, 𝑎𝑎] ∪ [𝑑𝑑,∞); 

 𝜇𝜇�̃�𝐴(𝑧𝑧)  

 𝜇𝜇�̃�𝐴(𝑧𝑧) = 𝑤𝑤 for all 𝑧𝑧 ∈ [𝑏𝑏, 𝑐𝑐]; where 0<w≤1. 

 
Graded Mean Integration Method 

𝐿𝐿−1  and 𝑅𝑅−1  

 

𝑃𝑃(�̃�𝐴) = ∫ ℎ (𝐿𝐿
−1(𝑥𝑥) + 𝑅𝑅−1(𝑥𝑥)

2 )𝑑𝑑ℎ/∫ ℎ 𝑑𝑑ℎ,
𝑤𝑤

0
                                  

𝑤𝑤

0
 

(3) 

 

𝜇𝜇�̃�𝐴𝐻𝐻(𝑥𝑥) =

{
 
 
 
 
 
 

 
 
 
 
 
 

        0,                          𝑥𝑥 < 𝑎𝑎
    12 (

𝑥𝑥 − 𝑎𝑎
𝑏𝑏 − 𝑎𝑎)  ,        𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏

1
2 +

1
2 (

𝑥𝑥 − 𝑏𝑏
𝑐𝑐 − 𝑏𝑏) ,     𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐

         1,                       𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑  
1 − 12 (

𝑥𝑥 − 𝑑𝑑
𝑒𝑒 − 𝑑𝑑) , 𝑑𝑑 ≤ 𝑥𝑥 ≤ 𝑒𝑒

       12 (
𝑓𝑓 − 𝑥𝑥
𝑓𝑓 − 𝑒𝑒) , 𝑒𝑒 ≤ 𝑥𝑥 ≤ 𝑓𝑓

           0,                           𝑥𝑥 > 𝑓𝑓
     

       

 

(2) 

 
where, a,b,c,d,e and f represent the points inside the interval. 

Figure 2 
 
Graphical Representation of Hexagonal Fuzzy Numbers 
 

 

 

Operations of Hexagonal Fuzzy Numbers 

Let �̃�𝐴𝐻𝐻 =  (𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1, 𝑑𝑑1, 𝑒𝑒1, 𝑓𝑓1), �̃�𝐵𝐻𝐻 =  (𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2, 𝑒𝑒2, 𝑓𝑓2)  be two Hexagonal fuzzy numbers. The 
arithmetic operations are defined as: 

 Addition:  �̃�𝐴𝐻𝐻 + �̃�𝐵𝐻𝐻 = [𝑎𝑎1 + 𝑎𝑎2, 𝑏𝑏1 + 𝑏𝑏2,  𝑐𝑐1 +  𝑐𝑐2, 𝑑𝑑1 + 𝑑𝑑2, 𝑒𝑒1 + 𝑒𝑒2, 𝑓𝑓1 + 𝑓𝑓2] 

 Subtraction:�̃�𝐴𝐻𝐻 − �̃�𝐵𝐻𝐻 =  [𝑎𝑎1 − 𝑎𝑎2, 𝑏𝑏1 − 𝑏𝑏2,  𝑐𝑐1 −  𝑐𝑐2, 𝑑𝑑1 − 𝑑𝑑2, 𝑒𝑒1 − 𝑒𝑒2, 𝑓𝑓1 − 𝑓𝑓2] 
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Operations of Hexagonal Fuzzy Numbers

Let                                                                                           be two 
Hexagonal fuzzy numbers. The arithmetic operations are defined as:

• Addition:  
• Subtraction:
• Multiplication: 
• Division:  

Generalized Fuzzy Numbers

A generalized fuzzy number is a fuzzy set    described in the universal 
set of real numbers represented R with membership function 
characteristics defined as follows:

       is a continuous mapping from R to the closed interval [0,1].
  for all ;
        is strictly increasing on [a,b]; also, strictly decreasing on [b,d];
  for all             where

Graded Mean Integration Method

Chen and Hsieh (1998) proposed graded mean integration approach 
for generalized fuzzy number. To describe this graded mean  
integration approach, suppose         are        inverse function left and 
right respectively and the graded mean h-level value of generalized 
fuzzy number of trapezoidal defined by:

(3)

where h between 0 and w, 0<w≤1.

(4)

(5)

By equation (3), the graded mean integration representation of A is:

(6)
 

𝜇𝜇�̃�𝐴𝐻𝐻(𝑥𝑥) =
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    12 (

𝑥𝑥 − 𝑎𝑎
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2 +
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2 (

𝑥𝑥 − 𝑏𝑏
𝑐𝑐 − 𝑏𝑏) ,     𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐

         1,                       𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑  
1 − 12 (

𝑥𝑥 − 𝑑𝑑
𝑒𝑒 − 𝑑𝑑) , 𝑑𝑑 ≤ 𝑥𝑥 ≤ 𝑒𝑒

       12 (
𝑓𝑓 − 𝑥𝑥
𝑓𝑓 − 𝑒𝑒) , 𝑒𝑒 ≤ 𝑥𝑥 ≤ 𝑓𝑓

           0,                           𝑥𝑥 > 𝑓𝑓
     

       

 

(2) 
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, 𝑑𝑑1𝑑𝑑2 ,

𝑒𝑒1
𝑒𝑒2
, 𝑓𝑓1𝑓𝑓2]  
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 𝜇𝜇�̃�𝐴: 𝑅𝑅 → [0,𝑤𝑤]  

 𝜇𝜇�̃�𝐴(𝑧𝑧) = 0 for all 𝑧𝑧 ∈ (−∞, 𝑎𝑎] ∪ [𝑑𝑑,∞); 

 𝜇𝜇�̃�𝐴(𝑧𝑧)  

 𝜇𝜇�̃�𝐴(𝑧𝑧) = 𝑤𝑤 for all 𝑧𝑧 ∈ [𝑏𝑏, 𝑐𝑐]; where 0<w≤1. 

 
Graded Mean Integration Method 
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𝑃𝑃(�̃�𝐴) = ∫ ℎ (𝐿𝐿
−1(𝑥𝑥) + 𝑅𝑅−1(𝑥𝑥)

2 )𝑑𝑑ℎ/∫ ℎ 𝑑𝑑ℎ,
𝑤𝑤
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𝑤𝑤
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(3) 

 

𝜇𝜇�̃�𝐴𝐻𝐻(𝑥𝑥) =

{
 
 
 
 
 
 

 
 
 
 
 
 

        0,                          𝑥𝑥 < 𝑎𝑎
    12 (

𝑥𝑥 − 𝑎𝑎
𝑏𝑏 − 𝑎𝑎)  ,        𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏

1
2 +

1
2 (

𝑥𝑥 − 𝑏𝑏
𝑐𝑐 − 𝑏𝑏) ,     𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐

         1,                       𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑  
1 − 12 (

𝑥𝑥 − 𝑑𝑑
𝑒𝑒 − 𝑑𝑑) , 𝑑𝑑 ≤ 𝑥𝑥 ≤ 𝑒𝑒

       12 (
𝑓𝑓 − 𝑥𝑥
𝑓𝑓 − 𝑒𝑒) , 𝑒𝑒 ≤ 𝑥𝑥 ≤ 𝑓𝑓

           0,                           𝑥𝑥 > 𝑓𝑓
     

       

 

(2) 

 
Operations of Hexagonal Fuzzy Numbers 

�̃�𝐴𝐻𝐻 =  (𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1, 𝑑𝑑1, 𝑒𝑒1, 𝑓𝑓1), �̃�𝐵𝐻𝐻 =  (𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2, 𝑒𝑒2, 𝑓𝑓2)  

 Addition:  �̃�𝐴𝐻𝐻 + �̃�𝐵𝐻𝐻 = [𝑎𝑎1 + 𝑎𝑎2, 𝑏𝑏1 + 𝑏𝑏2,  𝑐𝑐1 +  𝑐𝑐2, 𝑑𝑑1 + 𝑑𝑑2, 𝑒𝑒1 + 𝑒𝑒2, 𝑓𝑓1 + 𝑓𝑓2] 

 Subtraction:�̃�𝐴𝐻𝐻 − �̃�𝐵𝐻𝐻 =  [𝑎𝑎1 − 𝑎𝑎2, 𝑏𝑏1 − 𝑏𝑏2,  𝑐𝑐1 −  𝑐𝑐2, 𝑑𝑑1 − 𝑑𝑑2, 𝑒𝑒1 − 𝑒𝑒2, 𝑓𝑓1 − 𝑓𝑓2] 

 Multiplication: �̃�𝐴𝐻𝐻 ∗ �̃�𝐵𝐻𝐻  = [𝑎𝑎1. 𝑎𝑎2, 𝑏𝑏1. 𝑏𝑏2,  𝑐𝑐1. 𝑐𝑐2, 𝑑𝑑1. 𝑑𝑑2, 𝑒𝑒1. 𝑒𝑒2, 𝑓𝑓1. 𝑓𝑓2] 

 Division: �̃�𝐴𝐻𝐻�̃�𝐵𝐻𝐻 = [
𝑎𝑎1
𝑎𝑎2
, 𝑏𝑏1𝑏𝑏2 ,

 𝑐𝑐1
 𝑐𝑐2
, 𝑑𝑑1𝑑𝑑2 ,

𝑒𝑒1
𝑒𝑒2
, 𝑓𝑓1𝑓𝑓2]  

Generalized Fuzzy Numbers 

 𝜇𝜇�̃�𝐴: 𝑅𝑅 → [0,𝑤𝑤]  

 𝜇𝜇�̃�𝐴(𝑧𝑧) = 0 for all 𝑧𝑧 ∈ (−∞, 𝑎𝑎] ∪ [𝑑𝑑,∞); 

 𝜇𝜇�̃�𝐴(𝑧𝑧)  

 𝜇𝜇�̃�𝐴(𝑧𝑧) = 𝑤𝑤 for all 𝑧𝑧 ∈ [𝑏𝑏, 𝑐𝑐]; where 0<w≤1. 

 
Graded Mean Integration Method 

𝐿𝐿−1  and 𝑅𝑅−1  

 

𝑃𝑃(�̃�𝐴) = ∫ ℎ (𝐿𝐿
−1(𝑥𝑥) + 𝑅𝑅−1(𝑥𝑥)

2 )𝑑𝑑ℎ/∫ ℎ 𝑑𝑑ℎ,
𝑤𝑤

0
                                  

𝑤𝑤

0
 

(3) 

 

𝜇𝜇�̃�𝐴𝐻𝐻(𝑥𝑥) =

{
 
 
 
 
 
 

 
 
 
 
 
 

        0,                          𝑥𝑥 < 𝑎𝑎
    12 (

𝑥𝑥 − 𝑎𝑎
𝑏𝑏 − 𝑎𝑎)  ,        𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏

1
2 +

1
2 (

𝑥𝑥 − 𝑏𝑏
𝑐𝑐 − 𝑏𝑏) ,     𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐

         1,                       𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑  
1 − 12 (

𝑥𝑥 − 𝑑𝑑
𝑒𝑒 − 𝑑𝑑) , 𝑑𝑑 ≤ 𝑥𝑥 ≤ 𝑒𝑒

       12 (
𝑓𝑓 − 𝑥𝑥
𝑓𝑓 − 𝑒𝑒) , 𝑒𝑒 ≤ 𝑥𝑥 ≤ 𝑓𝑓

           0,                           𝑥𝑥 > 𝑓𝑓
     

       

 

(2) 

 
Operations of Hexagonal Fuzzy Numbers 

�̃�𝐴𝐻𝐻 =  (𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1, 𝑑𝑑1, 𝑒𝑒1, 𝑓𝑓1), �̃�𝐵𝐻𝐻 =  (𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2, 𝑒𝑒2, 𝑓𝑓2)  

 Addition:  �̃�𝐴𝐻𝐻 + �̃�𝐵𝐻𝐻 = [𝑎𝑎1 + 𝑎𝑎2, 𝑏𝑏1 + 𝑏𝑏2,  𝑐𝑐1 +  𝑐𝑐2, 𝑑𝑑1 + 𝑑𝑑2, 𝑒𝑒1 + 𝑒𝑒2, 𝑓𝑓1 + 𝑓𝑓2] 

 Subtraction:�̃�𝐴𝐻𝐻 − �̃�𝐵𝐻𝐻 =  [𝑎𝑎1 − 𝑎𝑎2, 𝑏𝑏1 − 𝑏𝑏2,  𝑐𝑐1 −  𝑐𝑐2, 𝑑𝑑1 − 𝑑𝑑2, 𝑒𝑒1 − 𝑒𝑒2, 𝑓𝑓1 − 𝑓𝑓2] 

 Multiplication: �̃�𝐴𝐻𝐻 ∗ �̃�𝐵𝐻𝐻  = [𝑎𝑎1. 𝑎𝑎2, 𝑏𝑏1. 𝑏𝑏2,  𝑐𝑐1. 𝑐𝑐2, 𝑑𝑑1. 𝑑𝑑2, 𝑒𝑒1. 𝑒𝑒2, 𝑓𝑓1. 𝑓𝑓2] 

 Division: �̃�𝐴𝐻𝐻�̃�𝐵𝐻𝐻 = [
𝑎𝑎1
𝑎𝑎2
, 𝑏𝑏1𝑏𝑏2 ,

 𝑐𝑐1
 𝑐𝑐2
, 𝑑𝑑1𝑑𝑑2 ,

𝑒𝑒1
𝑒𝑒2
, 𝑓𝑓1𝑓𝑓2]  

Generalized Fuzzy Numbers 

 𝜇𝜇�̃�𝐴: 𝑅𝑅 → [0,𝑤𝑤]  

 𝜇𝜇�̃�𝐴(𝑧𝑧) = 0 for all 𝑧𝑧 ∈ (−∞, 𝑎𝑎] ∪ [𝑑𝑑,∞); 

 𝜇𝜇�̃�𝐴(𝑧𝑧)  

 𝜇𝜇�̃�𝐴(𝑧𝑧) = 𝑤𝑤 for all 𝑧𝑧 ∈ [𝑏𝑏, 𝑐𝑐]; where 0<w≤1. 

 
Graded Mean Integration Method 

𝐿𝐿−1  and 𝑅𝑅−1  

 

𝑃𝑃(�̃�𝐴) = ∫ ℎ (𝐿𝐿
−1(𝑥𝑥) + 𝑅𝑅−1(𝑥𝑥)

2 )𝑑𝑑ℎ/∫ ℎ 𝑑𝑑ℎ,
𝑤𝑤

0
                                  

𝑤𝑤

0
 

(3) 

 

𝜇𝜇�̃�𝐴𝐻𝐻(𝑥𝑥) =

{
 
 
 
 
 
 

 
 
 
 
 
 

        0,                          𝑥𝑥 < 𝑎𝑎
    12 (

𝑥𝑥 − 𝑎𝑎
𝑏𝑏 − 𝑎𝑎)  ,        𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏

1
2 +

1
2 (

𝑥𝑥 − 𝑏𝑏
𝑐𝑐 − 𝑏𝑏) ,     𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐

         1,                       𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑  
1 − 12 (

𝑥𝑥 − 𝑑𝑑
𝑒𝑒 − 𝑑𝑑) , 𝑑𝑑 ≤ 𝑥𝑥 ≤ 𝑒𝑒

       12 (
𝑓𝑓 − 𝑥𝑥
𝑓𝑓 − 𝑒𝑒) , 𝑒𝑒 ≤ 𝑥𝑥 ≤ 𝑓𝑓

           0,                           𝑥𝑥 > 𝑓𝑓
     

       

 

(2) 

 
Operations of Hexagonal Fuzzy Numbers 

�̃�𝐴𝐻𝐻 =  (𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1, 𝑑𝑑1, 𝑒𝑒1, 𝑓𝑓1), �̃�𝐵𝐻𝐻 =  (𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2, 𝑒𝑒2, 𝑓𝑓2)  

 Addition:  �̃�𝐴𝐻𝐻 + �̃�𝐵𝐻𝐻 = [𝑎𝑎1 + 𝑎𝑎2, 𝑏𝑏1 + 𝑏𝑏2,  𝑐𝑐1 +  𝑐𝑐2, 𝑑𝑑1 + 𝑑𝑑2, 𝑒𝑒1 + 𝑒𝑒2, 𝑓𝑓1 + 𝑓𝑓2] 

 Subtraction:�̃�𝐴𝐻𝐻 − �̃�𝐵𝐻𝐻 =  [𝑎𝑎1 − 𝑎𝑎2, 𝑏𝑏1 − 𝑏𝑏2,  𝑐𝑐1 −  𝑐𝑐2, 𝑑𝑑1 − 𝑑𝑑2, 𝑒𝑒1 − 𝑒𝑒2, 𝑓𝑓1 − 𝑓𝑓2] 

 Multiplication: �̃�𝐴𝐻𝐻 ∗ �̃�𝐵𝐻𝐻  = [𝑎𝑎1. 𝑎𝑎2, 𝑏𝑏1. 𝑏𝑏2,  𝑐𝑐1. 𝑐𝑐2, 𝑑𝑑1. 𝑑𝑑2, 𝑒𝑒1. 𝑒𝑒2, 𝑓𝑓1. 𝑓𝑓2] 

 Division: �̃�𝐴𝐻𝐻�̃�𝐵𝐻𝐻 = [
𝑎𝑎1
𝑎𝑎2
, 𝑏𝑏1𝑏𝑏2 ,

 𝑐𝑐1
 𝑐𝑐2
, 𝑑𝑑1𝑑𝑑2 ,

𝑒𝑒1
𝑒𝑒2
, 𝑓𝑓1𝑓𝑓2]  

Generalized Fuzzy Numbers 

 𝜇𝜇�̃�𝐴: 𝑅𝑅 → [0,𝑤𝑤]  

 𝜇𝜇�̃�𝐴(𝑧𝑧) = 0 for all 𝑧𝑧 ∈ (−∞, 𝑎𝑎] ∪ [𝑑𝑑,∞); 

 𝜇𝜇�̃�𝐴(𝑧𝑧)  

 𝜇𝜇�̃�𝐴(𝑧𝑧) = 𝑤𝑤 for all 𝑧𝑧 ∈ [𝑏𝑏, 𝑐𝑐]; where 0<w≤1. 

 
Graded Mean Integration Method 

𝐿𝐿−1  and 𝑅𝑅−1  

 

𝑃𝑃(�̃�𝐴) = ∫ ℎ (𝐿𝐿
−1(𝑥𝑥) + 𝑅𝑅−1(𝑥𝑥)

2 )𝑑𝑑ℎ/∫ ℎ 𝑑𝑑ℎ,
𝑤𝑤

0
                                  

𝑤𝑤

0
 

(3) 

 

𝜇𝜇�̃�𝐴𝐻𝐻(𝑥𝑥) =

{
 
 
 
 
 
 

 
 
 
 
 
 

        0,                          𝑥𝑥 < 𝑎𝑎
    12 (

𝑥𝑥 − 𝑎𝑎
𝑏𝑏 − 𝑎𝑎)  ,        𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏

1
2 +

1
2 (

𝑥𝑥 − 𝑏𝑏
𝑐𝑐 − 𝑏𝑏) ,     𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐

         1,                       𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑  
1 − 12 (

𝑥𝑥 − 𝑑𝑑
𝑒𝑒 − 𝑑𝑑) , 𝑑𝑑 ≤ 𝑥𝑥 ≤ 𝑒𝑒

       12 (
𝑓𝑓 − 𝑥𝑥
𝑓𝑓 − 𝑒𝑒) , 𝑒𝑒 ≤ 𝑥𝑥 ≤ 𝑓𝑓

           0,                           𝑥𝑥 > 𝑓𝑓
     

       

 

(2) 

 
Operations of Hexagonal Fuzzy Numbers 

�̃�𝐴𝐻𝐻 =  (𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1, 𝑑𝑑1, 𝑒𝑒1, 𝑓𝑓1), �̃�𝐵𝐻𝐻 =  (𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2, 𝑒𝑒2, 𝑓𝑓2)  

 Addition:  �̃�𝐴𝐻𝐻 + �̃�𝐵𝐻𝐻 = [𝑎𝑎1 + 𝑎𝑎2, 𝑏𝑏1 + 𝑏𝑏2,  𝑐𝑐1 +  𝑐𝑐2, 𝑑𝑑1 + 𝑑𝑑2, 𝑒𝑒1 + 𝑒𝑒2, 𝑓𝑓1 + 𝑓𝑓2] 

 Subtraction:�̃�𝐴𝐻𝐻 − �̃�𝐵𝐻𝐻 =  [𝑎𝑎1 − 𝑎𝑎2, 𝑏𝑏1 − 𝑏𝑏2,  𝑐𝑐1 −  𝑐𝑐2, 𝑑𝑑1 − 𝑑𝑑2, 𝑒𝑒1 − 𝑒𝑒2, 𝑓𝑓1 − 𝑓𝑓2] 

 Multiplication: �̃�𝐴𝐻𝐻 ∗ �̃�𝐵𝐻𝐻  = [𝑎𝑎1. 𝑎𝑎2, 𝑏𝑏1. 𝑏𝑏2,  𝑐𝑐1. 𝑐𝑐2, 𝑑𝑑1. 𝑑𝑑2, 𝑒𝑒1. 𝑒𝑒2, 𝑓𝑓1. 𝑓𝑓2] 

 Division: �̃�𝐴𝐻𝐻�̃�𝐵𝐻𝐻 = [
𝑎𝑎1
𝑎𝑎2
, 𝑏𝑏1𝑏𝑏2 ,

 𝑐𝑐1
 𝑐𝑐2
, 𝑑𝑑1𝑑𝑑2 ,

𝑒𝑒1
𝑒𝑒2
, 𝑓𝑓1𝑓𝑓2]  

Generalized Fuzzy Numbers 

 𝜇𝜇�̃�𝐴: 𝑅𝑅 → [0,𝑤𝑤]  

 𝜇𝜇�̃�𝐴(𝑧𝑧) = 0 for all 𝑧𝑧 ∈ (−∞, 𝑎𝑎] ∪ [𝑑𝑑,∞); 

 𝜇𝜇�̃�𝐴(𝑧𝑧)  

 𝜇𝜇�̃�𝐴(𝑧𝑧) = 𝑤𝑤 for all 𝑧𝑧 ∈ [𝑏𝑏, 𝑐𝑐]; where 0<w≤1. 

 
Graded Mean Integration Method 

𝐿𝐿−1  and 𝑅𝑅−1  

 

𝑃𝑃(�̃�𝐴) = ∫ ℎ (𝐿𝐿
−1(𝑥𝑥) + 𝑅𝑅−1(𝑥𝑥)

2 )𝑑𝑑ℎ/∫ ℎ 𝑑𝑑ℎ,
𝑤𝑤

0
                                  

𝑤𝑤

0
 

(3) 

 

𝜇𝜇�̃�𝐴𝐻𝐻(𝑥𝑥) =

{
 
 
 
 
 
 

 
 
 
 
 
 

        0,                          𝑥𝑥 < 𝑎𝑎
    12 (

𝑥𝑥 − 𝑎𝑎
𝑏𝑏 − 𝑎𝑎)  ,        𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏

1
2 +

1
2 (

𝑥𝑥 − 𝑏𝑏
𝑐𝑐 − 𝑏𝑏) ,     𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐

         1,                       𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑  
1 − 12 (

𝑥𝑥 − 𝑑𝑑
𝑒𝑒 − 𝑑𝑑) , 𝑑𝑑 ≤ 𝑥𝑥 ≤ 𝑒𝑒

       12 (
𝑓𝑓 − 𝑥𝑥
𝑓𝑓 − 𝑒𝑒) , 𝑒𝑒 ≤ 𝑥𝑥 ≤ 𝑓𝑓

           0,                           𝑥𝑥 > 𝑓𝑓
     

       

 

(2) 

 
Operations of Hexagonal Fuzzy Numbers 

�̃�𝐴𝐻𝐻 =  (𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1, 𝑑𝑑1, 𝑒𝑒1, 𝑓𝑓1), �̃�𝐵𝐻𝐻 =  (𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2, 𝑒𝑒2, 𝑓𝑓2)  

 Addition:  �̃�𝐴𝐻𝐻 + �̃�𝐵𝐻𝐻 = [𝑎𝑎1 + 𝑎𝑎2, 𝑏𝑏1 + 𝑏𝑏2,  𝑐𝑐1 +  𝑐𝑐2, 𝑑𝑑1 + 𝑑𝑑2, 𝑒𝑒1 + 𝑒𝑒2, 𝑓𝑓1 + 𝑓𝑓2] 

 Subtraction:�̃�𝐴𝐻𝐻 − �̃�𝐵𝐻𝐻 =  [𝑎𝑎1 − 𝑎𝑎2, 𝑏𝑏1 − 𝑏𝑏2,  𝑐𝑐1 −  𝑐𝑐2, 𝑑𝑑1 − 𝑑𝑑2, 𝑒𝑒1 − 𝑒𝑒2, 𝑓𝑓1 − 𝑓𝑓2] 

 Multiplication: �̃�𝐴𝐻𝐻 ∗ �̃�𝐵𝐻𝐻  = [𝑎𝑎1. 𝑎𝑎2, 𝑏𝑏1. 𝑏𝑏2,  𝑐𝑐1. 𝑐𝑐2, 𝑑𝑑1. 𝑑𝑑2, 𝑒𝑒1. 𝑒𝑒2, 𝑓𝑓1. 𝑓𝑓2] 

 Division: �̃�𝐴𝐻𝐻�̃�𝐵𝐻𝐻 = [
𝑎𝑎1
𝑎𝑎2
, 𝑏𝑏1𝑏𝑏2 ,

 𝑐𝑐1
 𝑐𝑐2
, 𝑑𝑑1𝑑𝑑2 ,

𝑒𝑒1
𝑒𝑒2
, 𝑓𝑓1𝑓𝑓2]  

Generalized Fuzzy Numbers 

 𝜇𝜇�̃�𝐴: 𝑅𝑅 → [0,𝑤𝑤]  

 𝜇𝜇�̃�𝐴(𝑧𝑧) = 0 for all 𝑧𝑧 ∈ (−∞, 𝑎𝑎] ∪ [𝑑𝑑,∞); 

 𝜇𝜇�̃�𝐴(𝑧𝑧)  

 𝜇𝜇�̃�𝐴(𝑧𝑧) = 𝑤𝑤 for all 𝑧𝑧 ∈ [𝑏𝑏, 𝑐𝑐]; where 0<w≤1. 

 
Graded Mean Integration Method 

𝐿𝐿−1  and 𝑅𝑅−1  

 

𝑃𝑃(�̃�𝐴) = ∫ ℎ (𝐿𝐿
−1(𝑥𝑥) + 𝑅𝑅−1(𝑥𝑥)

2 )𝑑𝑑ℎ/∫ ℎ 𝑑𝑑ℎ,
𝑤𝑤

0
                                  

𝑤𝑤

0
 

(3) 

 

𝜇𝜇�̃�𝐴𝐻𝐻(𝑥𝑥) =

{
 
 
 
 
 
 

 
 
 
 
 
 

        0,                          𝑥𝑥 < 𝑎𝑎
    12 (

𝑥𝑥 − 𝑎𝑎
𝑏𝑏 − 𝑎𝑎)  ,        𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏

1
2 +

1
2 (

𝑥𝑥 − 𝑏𝑏
𝑐𝑐 − 𝑏𝑏) ,     𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐

         1,                       𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑  
1 − 12 (

𝑥𝑥 − 𝑑𝑑
𝑒𝑒 − 𝑑𝑑) , 𝑑𝑑 ≤ 𝑥𝑥 ≤ 𝑒𝑒

       12 (
𝑓𝑓 − 𝑥𝑥
𝑓𝑓 − 𝑒𝑒) , 𝑒𝑒 ≤ 𝑥𝑥 ≤ 𝑓𝑓

           0,                           𝑥𝑥 > 𝑓𝑓
     

       

 

(2) 

 
Operations of Hexagonal Fuzzy Numbers 

�̃�𝐴𝐻𝐻 =  (𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1, 𝑑𝑑1, 𝑒𝑒1, 𝑓𝑓1), �̃�𝐵𝐻𝐻 =  (𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2, 𝑒𝑒2, 𝑓𝑓2)  

 Addition:  �̃�𝐴𝐻𝐻 + �̃�𝐵𝐻𝐻 = [𝑎𝑎1 + 𝑎𝑎2, 𝑏𝑏1 + 𝑏𝑏2,  𝑐𝑐1 +  𝑐𝑐2, 𝑑𝑑1 + 𝑑𝑑2, 𝑒𝑒1 + 𝑒𝑒2, 𝑓𝑓1 + 𝑓𝑓2] 

 Subtraction:�̃�𝐴𝐻𝐻 − �̃�𝐵𝐻𝐻 =  [𝑎𝑎1 − 𝑎𝑎2, 𝑏𝑏1 − 𝑏𝑏2,  𝑐𝑐1 −  𝑐𝑐2, 𝑑𝑑1 − 𝑑𝑑2, 𝑒𝑒1 − 𝑒𝑒2, 𝑓𝑓1 − 𝑓𝑓2] 

 Multiplication: �̃�𝐴𝐻𝐻 ∗ �̃�𝐵𝐻𝐻  = [𝑎𝑎1. 𝑎𝑎2, 𝑏𝑏1. 𝑏𝑏2,  𝑐𝑐1. 𝑐𝑐2, 𝑑𝑑1. 𝑑𝑑2, 𝑒𝑒1. 𝑒𝑒2, 𝑓𝑓1. 𝑓𝑓2] 

 Division: �̃�𝐴𝐻𝐻�̃�𝐵𝐻𝐻 = [
𝑎𝑎1
𝑎𝑎2
, 𝑏𝑏1𝑏𝑏2 ,

 𝑐𝑐1
 𝑐𝑐2
, 𝑑𝑑1𝑑𝑑2 ,

𝑒𝑒1
𝑒𝑒2
, 𝑓𝑓1𝑓𝑓2]  

Generalized Fuzzy Numbers 

 𝜇𝜇�̃�𝐴: 𝑅𝑅 → [0,𝑤𝑤]  

 𝜇𝜇�̃�𝐴(𝑧𝑧) = 0 for all 𝑧𝑧 ∈ (−∞, 𝑎𝑎] ∪ [𝑑𝑑,∞); 

 𝜇𝜇�̃�𝐴(𝑧𝑧)  

 𝜇𝜇�̃�𝐴(𝑧𝑧) = 𝑤𝑤 for all 𝑧𝑧 ∈ [𝑏𝑏, 𝑐𝑐]; where 0<w≤1. 

 
Graded Mean Integration Method 

𝐿𝐿−1  and 𝑅𝑅−1  

 

𝑃𝑃(�̃�𝐴) = ∫ ℎ (𝐿𝐿
−1(𝑥𝑥) + 𝑅𝑅−1(𝑥𝑥)

2 )𝑑𝑑ℎ/∫ ℎ 𝑑𝑑ℎ,
𝑤𝑤

0
                                  

𝑤𝑤

0
 

(3) 

 

𝜇𝜇�̃�𝐴𝐻𝐻(𝑥𝑥) =

{
 
 
 
 
 
 

 
 
 
 
 
 

        0,                          𝑥𝑥 < 𝑎𝑎
    12 (

𝑥𝑥 − 𝑎𝑎
𝑏𝑏 − 𝑎𝑎)  ,        𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏

1
2 +

1
2 (

𝑥𝑥 − 𝑏𝑏
𝑐𝑐 − 𝑏𝑏) ,     𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐

         1,                       𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑  
1 − 12 (

𝑥𝑥 − 𝑑𝑑
𝑒𝑒 − 𝑑𝑑) , 𝑑𝑑 ≤ 𝑥𝑥 ≤ 𝑒𝑒

       12 (
𝑓𝑓 − 𝑥𝑥
𝑓𝑓 − 𝑒𝑒) , 𝑒𝑒 ≤ 𝑥𝑥 ≤ 𝑓𝑓

           0,                           𝑥𝑥 > 𝑓𝑓
     

       

 

(2) 

 
Operations of Hexagonal Fuzzy Numbers 

�̃�𝐴𝐻𝐻 =  (𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1, 𝑑𝑑1, 𝑒𝑒1, 𝑓𝑓1), �̃�𝐵𝐻𝐻 =  (𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2, 𝑒𝑒2, 𝑓𝑓2)  

 Addition:  �̃�𝐴𝐻𝐻 + �̃�𝐵𝐻𝐻 = [𝑎𝑎1 + 𝑎𝑎2, 𝑏𝑏1 + 𝑏𝑏2,  𝑐𝑐1 +  𝑐𝑐2, 𝑑𝑑1 + 𝑑𝑑2, 𝑒𝑒1 + 𝑒𝑒2, 𝑓𝑓1 + 𝑓𝑓2] 

 Subtraction:�̃�𝐴𝐻𝐻 − �̃�𝐵𝐻𝐻 =  [𝑎𝑎1 − 𝑎𝑎2, 𝑏𝑏1 − 𝑏𝑏2,  𝑐𝑐1 −  𝑐𝑐2, 𝑑𝑑1 − 𝑑𝑑2, 𝑒𝑒1 − 𝑒𝑒2, 𝑓𝑓1 − 𝑓𝑓2] 

 Multiplication: �̃�𝐴𝐻𝐻 ∗ �̃�𝐵𝐻𝐻  = [𝑎𝑎1. 𝑎𝑎2, 𝑏𝑏1. 𝑏𝑏2,  𝑐𝑐1. 𝑐𝑐2, 𝑑𝑑1. 𝑑𝑑2, 𝑒𝑒1. 𝑒𝑒2, 𝑓𝑓1. 𝑓𝑓2] 

 Division: �̃�𝐴𝐻𝐻�̃�𝐵𝐻𝐻 = [
𝑎𝑎1
𝑎𝑎2
, 𝑏𝑏1𝑏𝑏2 ,

 𝑐𝑐1
 𝑐𝑐2
, 𝑑𝑑1𝑑𝑑2 ,

𝑒𝑒1
𝑒𝑒2
, 𝑓𝑓1𝑓𝑓2]  

Generalized Fuzzy Numbers 

 𝜇𝜇�̃�𝐴: 𝑅𝑅 → [0,𝑤𝑤]  

 𝜇𝜇�̃�𝐴(𝑧𝑧) = 0 for all 𝑧𝑧 ∈ (−∞, 𝑎𝑎] ∪ [𝑑𝑑,∞); 

 𝜇𝜇�̃�𝐴(𝑧𝑧)  

 𝜇𝜇�̃�𝐴(𝑧𝑧) = 𝑤𝑤 for all 𝑧𝑧 ∈ [𝑏𝑏, 𝑐𝑐]; where 0<w≤1. 

 
Graded Mean Integration Method 

𝐿𝐿−1  and 𝑅𝑅−1  

 

𝑃𝑃(�̃�𝐴) = ∫ ℎ (𝐿𝐿
−1(𝑥𝑥) + 𝑅𝑅−1(𝑥𝑥)

2 )𝑑𝑑ℎ/∫ ℎ 𝑑𝑑ℎ,
𝑤𝑤

0
                                  

𝑤𝑤

0
 

(3) 

 

𝜇𝜇�̃�𝐴𝐻𝐻(𝑥𝑥) =

{
 
 
 
 
 
 

 
 
 
 
 
 

        0,                          𝑥𝑥 < 𝑎𝑎
    12 (

𝑥𝑥 − 𝑎𝑎
𝑏𝑏 − 𝑎𝑎)  ,        𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏

1
2 +

1
2 (

𝑥𝑥 − 𝑏𝑏
𝑐𝑐 − 𝑏𝑏) ,     𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐

         1,                       𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑  
1 − 12 (

𝑥𝑥 − 𝑑𝑑
𝑒𝑒 − 𝑑𝑑) , 𝑑𝑑 ≤ 𝑥𝑥 ≤ 𝑒𝑒

       12 (
𝑓𝑓 − 𝑥𝑥
𝑓𝑓 − 𝑒𝑒) , 𝑒𝑒 ≤ 𝑥𝑥 ≤ 𝑓𝑓

           0,                           𝑥𝑥 > 𝑓𝑓
     

       

 

(2) 

 
Operations of Hexagonal Fuzzy Numbers 

�̃�𝐴𝐻𝐻 =  (𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1, 𝑑𝑑1, 𝑒𝑒1, 𝑓𝑓1), �̃�𝐵𝐻𝐻 =  (𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2, 𝑒𝑒2, 𝑓𝑓2)  

 Addition:  �̃�𝐴𝐻𝐻 + �̃�𝐵𝐻𝐻 = [𝑎𝑎1 + 𝑎𝑎2, 𝑏𝑏1 + 𝑏𝑏2,  𝑐𝑐1 +  𝑐𝑐2, 𝑑𝑑1 + 𝑑𝑑2, 𝑒𝑒1 + 𝑒𝑒2, 𝑓𝑓1 + 𝑓𝑓2] 

 Subtraction:�̃�𝐴𝐻𝐻 − �̃�𝐵𝐻𝐻 =  [𝑎𝑎1 − 𝑎𝑎2, 𝑏𝑏1 − 𝑏𝑏2,  𝑐𝑐1 −  𝑐𝑐2, 𝑑𝑑1 − 𝑑𝑑2, 𝑒𝑒1 − 𝑒𝑒2, 𝑓𝑓1 − 𝑓𝑓2] 

 Multiplication: �̃�𝐴𝐻𝐻 ∗ �̃�𝐵𝐻𝐻  = [𝑎𝑎1. 𝑎𝑎2, 𝑏𝑏1. 𝑏𝑏2,  𝑐𝑐1. 𝑐𝑐2, 𝑑𝑑1. 𝑑𝑑2, 𝑒𝑒1. 𝑒𝑒2, 𝑓𝑓1. 𝑓𝑓2] 

 Division: �̃�𝐴𝐻𝐻�̃�𝐵𝐻𝐻 = [
𝑎𝑎1
𝑎𝑎2
, 𝑏𝑏1𝑏𝑏2 ,

 𝑐𝑐1
 𝑐𝑐2
, 𝑑𝑑1𝑑𝑑2 ,

𝑒𝑒1
𝑒𝑒2
, 𝑓𝑓1𝑓𝑓2]  

Generalized Fuzzy Numbers 

 𝜇𝜇�̃�𝐴: 𝑅𝑅 → [0,𝑤𝑤]  

 𝜇𝜇�̃�𝐴(𝑧𝑧) = 0 for all 𝑧𝑧 ∈ (−∞, 𝑎𝑎] ∪ [𝑑𝑑,∞); 

 𝜇𝜇�̃�𝐴(𝑧𝑧)  

 𝜇𝜇�̃�𝐴(𝑧𝑧) = 𝑤𝑤 for all 𝑧𝑧 ∈ [𝑏𝑏, 𝑐𝑐]; where 0<w≤1. 

 
Graded Mean Integration Method 

𝐿𝐿−1  and 𝑅𝑅−1  

 

𝑃𝑃(�̃�𝐴) = ∫ ℎ (𝐿𝐿
−1(𝑥𝑥) + 𝑅𝑅−1(𝑥𝑥)

2 )𝑑𝑑ℎ/∫ ℎ 𝑑𝑑ℎ,
𝑤𝑤

0
                                  

𝑤𝑤

0
 

(3) 

 

𝜇𝜇�̃�𝐴𝐻𝐻(𝑥𝑥) =

{
 
 
 
 
 
 

 
 
 
 
 
 

        0,                          𝑥𝑥 < 𝑎𝑎
    12 (

𝑥𝑥 − 𝑎𝑎
𝑏𝑏 − 𝑎𝑎)  ,        𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏

1
2 +

1
2 (

𝑥𝑥 − 𝑏𝑏
𝑐𝑐 − 𝑏𝑏) ,     𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐

         1,                       𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑  
1 − 12 (

𝑥𝑥 − 𝑑𝑑
𝑒𝑒 − 𝑑𝑑) , 𝑑𝑑 ≤ 𝑥𝑥 ≤ 𝑒𝑒

       12 (
𝑓𝑓 − 𝑥𝑥
𝑓𝑓 − 𝑒𝑒) , 𝑒𝑒 ≤ 𝑥𝑥 ≤ 𝑓𝑓

           0,                           𝑥𝑥 > 𝑓𝑓
     

       

 

(2) 

 
Operations of Hexagonal Fuzzy Numbers 

�̃�𝐴𝐻𝐻 =  (𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1, 𝑑𝑑1, 𝑒𝑒1, 𝑓𝑓1), �̃�𝐵𝐻𝐻 =  (𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2, 𝑒𝑒2, 𝑓𝑓2)  

 Addition:  �̃�𝐴𝐻𝐻 + �̃�𝐵𝐻𝐻 = [𝑎𝑎1 + 𝑎𝑎2, 𝑏𝑏1 + 𝑏𝑏2,  𝑐𝑐1 +  𝑐𝑐2, 𝑑𝑑1 + 𝑑𝑑2, 𝑒𝑒1 + 𝑒𝑒2, 𝑓𝑓1 + 𝑓𝑓2] 

 Subtraction:�̃�𝐴𝐻𝐻 − �̃�𝐵𝐻𝐻 =  [𝑎𝑎1 − 𝑎𝑎2, 𝑏𝑏1 − 𝑏𝑏2,  𝑐𝑐1 −  𝑐𝑐2, 𝑑𝑑1 − 𝑑𝑑2, 𝑒𝑒1 − 𝑒𝑒2, 𝑓𝑓1 − 𝑓𝑓2] 

 Multiplication: �̃�𝐴𝐻𝐻 ∗ �̃�𝐵𝐻𝐻  = [𝑎𝑎1. 𝑎𝑎2, 𝑏𝑏1. 𝑏𝑏2,  𝑐𝑐1. 𝑐𝑐2, 𝑑𝑑1. 𝑑𝑑2, 𝑒𝑒1. 𝑒𝑒2, 𝑓𝑓1. 𝑓𝑓2] 

 Division: �̃�𝐴𝐻𝐻�̃�𝐵𝐻𝐻 = [
𝑎𝑎1
𝑎𝑎2
, 𝑏𝑏1𝑏𝑏2 ,

 𝑐𝑐1
 𝑐𝑐2
, 𝑑𝑑1𝑑𝑑2 ,

𝑒𝑒1
𝑒𝑒2
, 𝑓𝑓1𝑓𝑓2]  

Generalized Fuzzy Numbers 

 𝜇𝜇�̃�𝐴: 𝑅𝑅 → [0,𝑤𝑤]  

 𝜇𝜇�̃�𝐴(𝑧𝑧) = 0 for all 𝑧𝑧 ∈ (−∞, 𝑎𝑎] ∪ [𝑑𝑑,∞); 

 𝜇𝜇�̃�𝐴(𝑧𝑧)  

 𝜇𝜇�̃�𝐴(𝑧𝑧) = 𝑤𝑤 for all 𝑧𝑧 ∈ [𝑏𝑏, 𝑐𝑐]; where 0<w≤1. 

 
Graded Mean Integration Method 

𝐿𝐿−1  and 𝑅𝑅−1  

 

𝑃𝑃(�̃�𝐴) = ∫ ℎ (𝐿𝐿
−1(𝑥𝑥) + 𝑅𝑅−1(𝑥𝑥)

2 )𝑑𝑑ℎ/∫ ℎ 𝑑𝑑ℎ,
𝑤𝑤

0
                                  

𝑤𝑤

0
 

(3) 

 

𝜇𝜇�̃�𝐴𝐻𝐻(𝑥𝑥) =

{
 
 
 
 
 
 

 
 
 
 
 
 

        0,                          𝑥𝑥 < 𝑎𝑎
    12 (

𝑥𝑥 − 𝑎𝑎
𝑏𝑏 − 𝑎𝑎)  ,        𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏

1
2 +

1
2 (

𝑥𝑥 − 𝑏𝑏
𝑐𝑐 − 𝑏𝑏) ,     𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐

         1,                       𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑  
1 − 12 (

𝑥𝑥 − 𝑑𝑑
𝑒𝑒 − 𝑑𝑑) , 𝑑𝑑 ≤ 𝑥𝑥 ≤ 𝑒𝑒

       12 (
𝑓𝑓 − 𝑥𝑥
𝑓𝑓 − 𝑒𝑒) , 𝑒𝑒 ≤ 𝑥𝑥 ≤ 𝑓𝑓

           0,                           𝑥𝑥 > 𝑓𝑓
     

       

 

(2) 

 
Operations of Hexagonal Fuzzy Numbers 

�̃�𝐴𝐻𝐻 =  (𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1, 𝑑𝑑1, 𝑒𝑒1, 𝑓𝑓1), �̃�𝐵𝐻𝐻 =  (𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2, 𝑒𝑒2, 𝑓𝑓2)  

 Addition:  �̃�𝐴𝐻𝐻 + �̃�𝐵𝐻𝐻 = [𝑎𝑎1 + 𝑎𝑎2, 𝑏𝑏1 + 𝑏𝑏2,  𝑐𝑐1 +  𝑐𝑐2, 𝑑𝑑1 + 𝑑𝑑2, 𝑒𝑒1 + 𝑒𝑒2, 𝑓𝑓1 + 𝑓𝑓2] 

 Subtraction:�̃�𝐴𝐻𝐻 − �̃�𝐵𝐻𝐻 =  [𝑎𝑎1 − 𝑎𝑎2, 𝑏𝑏1 − 𝑏𝑏2,  𝑐𝑐1 −  𝑐𝑐2, 𝑑𝑑1 − 𝑑𝑑2, 𝑒𝑒1 − 𝑒𝑒2, 𝑓𝑓1 − 𝑓𝑓2] 

 Multiplication: �̃�𝐴𝐻𝐻 ∗ �̃�𝐵𝐻𝐻  = [𝑎𝑎1. 𝑎𝑎2, 𝑏𝑏1. 𝑏𝑏2,  𝑐𝑐1. 𝑐𝑐2, 𝑑𝑑1. 𝑑𝑑2, 𝑒𝑒1. 𝑒𝑒2, 𝑓𝑓1. 𝑓𝑓2] 

 Division: �̃�𝐴𝐻𝐻�̃�𝐵𝐻𝐻 = [
𝑎𝑎1
𝑎𝑎2
, 𝑏𝑏1𝑏𝑏2 ,

 𝑐𝑐1
 𝑐𝑐2
, 𝑑𝑑1𝑑𝑑2 ,

𝑒𝑒1
𝑒𝑒2
, 𝑓𝑓1𝑓𝑓2]  

Generalized Fuzzy Numbers 

 𝜇𝜇�̃�𝐴: 𝑅𝑅 → [0,𝑤𝑤]  

 𝜇𝜇�̃�𝐴(𝑧𝑧) = 0 for all 𝑧𝑧 ∈ (−∞, 𝑎𝑎] ∪ [𝑑𝑑,∞); 

 𝜇𝜇�̃�𝐴(𝑧𝑧)  

 𝜇𝜇�̃�𝐴(𝑧𝑧) = 𝑤𝑤 for all 𝑧𝑧 ∈ [𝑏𝑏, 𝑐𝑐]; where 0<w≤1. 

 
Graded Mean Integration Method 

𝐿𝐿−1  and 𝑅𝑅−1  

 

𝑃𝑃(�̃�𝐴) = ∫ ℎ (𝐿𝐿
−1(𝑥𝑥) + 𝑅𝑅−1(𝑥𝑥)

2 )𝑑𝑑ℎ/∫ ℎ 𝑑𝑑ℎ,
𝑤𝑤

0
                                  

𝑤𝑤

0
 

(3) 

 

𝜇𝜇�̃�𝐴𝐻𝐻(𝑥𝑥) =

{
 
 
 
 
 
 

 
 
 
 
 
 

        0,                          𝑥𝑥 < 𝑎𝑎
    12 (

𝑥𝑥 − 𝑎𝑎
𝑏𝑏 − 𝑎𝑎)  ,        𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏

1
2 +

1
2 (

𝑥𝑥 − 𝑏𝑏
𝑐𝑐 − 𝑏𝑏) ,     𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐

         1,                       𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑  
1 − 12 (

𝑥𝑥 − 𝑑𝑑
𝑒𝑒 − 𝑑𝑑) , 𝑑𝑑 ≤ 𝑥𝑥 ≤ 𝑒𝑒

       12 (
𝑓𝑓 − 𝑥𝑥
𝑓𝑓 − 𝑒𝑒) , 𝑒𝑒 ≤ 𝑥𝑥 ≤ 𝑓𝑓

           0,                           𝑥𝑥 > 𝑓𝑓
     

       

 

(2) 

 
Operations of Hexagonal Fuzzy Numbers 

�̃�𝐴𝐻𝐻 =  (𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1, 𝑑𝑑1, 𝑒𝑒1, 𝑓𝑓1), �̃�𝐵𝐻𝐻 =  (𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2, 𝑒𝑒2, 𝑓𝑓2)  

 Addition:  �̃�𝐴𝐻𝐻 + �̃�𝐵𝐻𝐻 = [𝑎𝑎1 + 𝑎𝑎2, 𝑏𝑏1 + 𝑏𝑏2,  𝑐𝑐1 +  𝑐𝑐2, 𝑑𝑑1 + 𝑑𝑑2, 𝑒𝑒1 + 𝑒𝑒2, 𝑓𝑓1 + 𝑓𝑓2] 

 Subtraction:�̃�𝐴𝐻𝐻 − �̃�𝐵𝐻𝐻 =  [𝑎𝑎1 − 𝑎𝑎2, 𝑏𝑏1 − 𝑏𝑏2,  𝑐𝑐1 −  𝑐𝑐2, 𝑑𝑑1 − 𝑑𝑑2, 𝑒𝑒1 − 𝑒𝑒2, 𝑓𝑓1 − 𝑓𝑓2] 

 Multiplication: �̃�𝐴𝐻𝐻 ∗ �̃�𝐵𝐻𝐻  = [𝑎𝑎1. 𝑎𝑎2, 𝑏𝑏1. 𝑏𝑏2,  𝑐𝑐1. 𝑐𝑐2, 𝑑𝑑1. 𝑑𝑑2, 𝑒𝑒1. 𝑒𝑒2, 𝑓𝑓1. 𝑓𝑓2] 

 Division: �̃�𝐴𝐻𝐻�̃�𝐵𝐻𝐻 = [
𝑎𝑎1
𝑎𝑎2
, 𝑏𝑏1𝑏𝑏2 ,

 𝑐𝑐1
 𝑐𝑐2
, 𝑑𝑑1𝑑𝑑2 ,

𝑒𝑒1
𝑒𝑒2
, 𝑓𝑓1𝑓𝑓2]  

Generalized Fuzzy Numbers 

 𝜇𝜇�̃�𝐴: 𝑅𝑅 → [0,𝑤𝑤]  

 𝜇𝜇�̃�𝐴(𝑧𝑧) = 0 for all 𝑧𝑧 ∈ (−∞, 𝑎𝑎] ∪ [𝑑𝑑,∞); 

 𝜇𝜇�̃�𝐴(𝑧𝑧)  

 𝜇𝜇�̃�𝐴(𝑧𝑧) = 𝑤𝑤 for all 𝑧𝑧 ∈ [𝑏𝑏, 𝑐𝑐]; where 0<w≤1. 

 
Graded Mean Integration Method 

𝐿𝐿−1  and 𝑅𝑅−1  

 

𝑃𝑃(�̃�𝐴) = ∫ ℎ (𝐿𝐿
−1(𝑥𝑥) + 𝑅𝑅−1(𝑥𝑥)

2 )𝑑𝑑ℎ/∫ ℎ 𝑑𝑑ℎ,
𝑤𝑤

0
                                  

𝑤𝑤

0
 

(3) 

 

𝜇𝜇�̃�𝐴𝐻𝐻(𝑥𝑥) =

{
 
 
 
 
 
 

 
 
 
 
 
 

        0,                          𝑥𝑥 < 𝑎𝑎
    12 (

𝑥𝑥 − 𝑎𝑎
𝑏𝑏 − 𝑎𝑎)  ,        𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏

1
2 +

1
2 (

𝑥𝑥 − 𝑏𝑏
𝑐𝑐 − 𝑏𝑏) ,     𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐

         1,                       𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑  
1 − 12 (

𝑥𝑥 − 𝑑𝑑
𝑒𝑒 − 𝑑𝑑) , 𝑑𝑑 ≤ 𝑥𝑥 ≤ 𝑒𝑒

       12 (
𝑓𝑓 − 𝑥𝑥
𝑓𝑓 − 𝑒𝑒) , 𝑒𝑒 ≤ 𝑥𝑥 ≤ 𝑓𝑓

           0,                           𝑥𝑥 > 𝑓𝑓
     

       

 

(2) 

 
Operations of Hexagonal Fuzzy Numbers 

�̃�𝐴𝐻𝐻 =  (𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1, 𝑑𝑑1, 𝑒𝑒1, 𝑓𝑓1), �̃�𝐵𝐻𝐻 =  (𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2, 𝑒𝑒2, 𝑓𝑓2)  

 Addition:  �̃�𝐴𝐻𝐻 + �̃�𝐵𝐻𝐻 = [𝑎𝑎1 + 𝑎𝑎2, 𝑏𝑏1 + 𝑏𝑏2,  𝑐𝑐1 +  𝑐𝑐2, 𝑑𝑑1 + 𝑑𝑑2, 𝑒𝑒1 + 𝑒𝑒2, 𝑓𝑓1 + 𝑓𝑓2] 

 Subtraction:�̃�𝐴𝐻𝐻 − �̃�𝐵𝐻𝐻 =  [𝑎𝑎1 − 𝑎𝑎2, 𝑏𝑏1 − 𝑏𝑏2,  𝑐𝑐1 −  𝑐𝑐2, 𝑑𝑑1 − 𝑑𝑑2, 𝑒𝑒1 − 𝑒𝑒2, 𝑓𝑓1 − 𝑓𝑓2] 

 Multiplication: �̃�𝐴𝐻𝐻 ∗ �̃�𝐵𝐻𝐻  = [𝑎𝑎1. 𝑎𝑎2, 𝑏𝑏1. 𝑏𝑏2,  𝑐𝑐1. 𝑐𝑐2, 𝑑𝑑1. 𝑑𝑑2, 𝑒𝑒1. 𝑒𝑒2, 𝑓𝑓1. 𝑓𝑓2] 

 Division: �̃�𝐴𝐻𝐻�̃�𝐵𝐻𝐻 = [
𝑎𝑎1
𝑎𝑎2
, 𝑏𝑏1𝑏𝑏2 ,

 𝑐𝑐1
 𝑐𝑐2
, 𝑑𝑑1𝑑𝑑2 ,

𝑒𝑒1
𝑒𝑒2
, 𝑓𝑓1𝑓𝑓2]  

Generalized Fuzzy Numbers 

 𝜇𝜇�̃�𝐴: 𝑅𝑅 → [0,𝑤𝑤]  

 𝜇𝜇�̃�𝐴(𝑧𝑧) = 0 for all 𝑧𝑧 ∈ (−∞, 𝑎𝑎] ∪ [𝑑𝑑,∞); 

 𝜇𝜇�̃�𝐴(𝑧𝑧)  

 𝜇𝜇�̃�𝐴(𝑧𝑧) = 𝑤𝑤 for all 𝑧𝑧 ∈ [𝑏𝑏, 𝑐𝑐]; where 0<w≤1. 

 
Graded Mean Integration Method 

𝐿𝐿−1  and 𝑅𝑅−1  

 

𝑃𝑃(�̃�𝐴) = ∫ ℎ (𝐿𝐿
−1(𝑥𝑥) + 𝑅𝑅−1(𝑥𝑥)

2 )𝑑𝑑ℎ/∫ ℎ 𝑑𝑑ℎ,
𝑤𝑤

0
                                  

𝑤𝑤

0
 

(3) 

 

𝜇𝜇�̃�𝐴𝐻𝐻(𝑥𝑥) =

{
 
 
 
 
 
 

 
 
 
 
 
 

        0,                          𝑥𝑥 < 𝑎𝑎
    12 (

𝑥𝑥 − 𝑎𝑎
𝑏𝑏 − 𝑎𝑎)  ,        𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏

1
2 +

1
2 (

𝑥𝑥 − 𝑏𝑏
𝑐𝑐 − 𝑏𝑏) ,     𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐

         1,                       𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑  
1 − 12 (

𝑥𝑥 − 𝑑𝑑
𝑒𝑒 − 𝑑𝑑) , 𝑑𝑑 ≤ 𝑥𝑥 ≤ 𝑒𝑒

       12 (
𝑓𝑓 − 𝑥𝑥
𝑓𝑓 − 𝑒𝑒) , 𝑒𝑒 ≤ 𝑥𝑥 ≤ 𝑓𝑓

           0,                           𝑥𝑥 > 𝑓𝑓
     

       

 

(2) 

 
Operations of Hexagonal Fuzzy Numbers 

�̃�𝐴𝐻𝐻 =  (𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1, 𝑑𝑑1, 𝑒𝑒1, 𝑓𝑓1), �̃�𝐵𝐻𝐻 =  (𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2, 𝑒𝑒2, 𝑓𝑓2)  

 Addition:  �̃�𝐴𝐻𝐻 + �̃�𝐵𝐻𝐻 = [𝑎𝑎1 + 𝑎𝑎2, 𝑏𝑏1 + 𝑏𝑏2,  𝑐𝑐1 +  𝑐𝑐2, 𝑑𝑑1 + 𝑑𝑑2, 𝑒𝑒1 + 𝑒𝑒2, 𝑓𝑓1 + 𝑓𝑓2] 

 Subtraction:�̃�𝐴𝐻𝐻 − �̃�𝐵𝐻𝐻 =  [𝑎𝑎1 − 𝑎𝑎2, 𝑏𝑏1 − 𝑏𝑏2,  𝑐𝑐1 −  𝑐𝑐2, 𝑑𝑑1 − 𝑑𝑑2, 𝑒𝑒1 − 𝑒𝑒2, 𝑓𝑓1 − 𝑓𝑓2] 

 Multiplication: �̃�𝐴𝐻𝐻 ∗ �̃�𝐵𝐻𝐻  = [𝑎𝑎1. 𝑎𝑎2, 𝑏𝑏1. 𝑏𝑏2,  𝑐𝑐1. 𝑐𝑐2, 𝑑𝑑1. 𝑑𝑑2, 𝑒𝑒1. 𝑒𝑒2, 𝑓𝑓1. 𝑓𝑓2] 

 Division: �̃�𝐴𝐻𝐻�̃�𝐵𝐻𝐻 = [
𝑎𝑎1
𝑎𝑎2
, 𝑏𝑏1𝑏𝑏2 ,

 𝑐𝑐1
 𝑐𝑐2
, 𝑑𝑑1𝑑𝑑2 ,

𝑒𝑒1
𝑒𝑒2
, 𝑓𝑓1𝑓𝑓2]  

Generalized Fuzzy Numbers 

 𝜇𝜇�̃�𝐴: 𝑅𝑅 → [0,𝑤𝑤]  

 𝜇𝜇�̃�𝐴(𝑧𝑧) = 0 for all 𝑧𝑧 ∈ (−∞, 𝑎𝑎] ∪ [𝑑𝑑,∞); 

 𝜇𝜇�̃�𝐴(𝑧𝑧)  

 𝜇𝜇�̃�𝐴(𝑧𝑧) = 𝑤𝑤 for all 𝑧𝑧 ∈ [𝑏𝑏, 𝑐𝑐]; where 0<w≤1. 

 
Graded Mean Integration Method 

𝐿𝐿−1  and 𝑅𝑅−1  

 

𝑃𝑃(�̃�𝐴) = ∫ ℎ (𝐿𝐿
−1(𝑥𝑥) + 𝑅𝑅−1(𝑥𝑥)

2 )𝑑𝑑ℎ/∫ ℎ 𝑑𝑑ℎ,
𝑤𝑤

0
                                  

𝑤𝑤

0
 

(3) 

 

𝜇𝜇�̃�𝐴𝐻𝐻(𝑥𝑥) =

{
 
 
 
 
 
 

 
 
 
 
 
 

        0,                          𝑥𝑥 < 𝑎𝑎
    12 (

𝑥𝑥 − 𝑎𝑎
𝑏𝑏 − 𝑎𝑎)  ,        𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏

1
2 +

1
2 (

𝑥𝑥 − 𝑏𝑏
𝑐𝑐 − 𝑏𝑏) ,     𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐

         1,                       𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑  
1 − 12 (

𝑥𝑥 − 𝑑𝑑
𝑒𝑒 − 𝑑𝑑) , 𝑑𝑑 ≤ 𝑥𝑥 ≤ 𝑒𝑒

       12 (
𝑓𝑓 − 𝑥𝑥
𝑓𝑓 − 𝑒𝑒) , 𝑒𝑒 ≤ 𝑥𝑥 ≤ 𝑓𝑓

           0,                           𝑥𝑥 > 𝑓𝑓
     

       

 

(2) 

 
Operations of Hexagonal Fuzzy Numbers 

�̃�𝐴𝐻𝐻 =  (𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1, 𝑑𝑑1, 𝑒𝑒1, 𝑓𝑓1), �̃�𝐵𝐻𝐻 =  (𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2, 𝑒𝑒2, 𝑓𝑓2)  

 Addition:  �̃�𝐴𝐻𝐻 + �̃�𝐵𝐻𝐻 = [𝑎𝑎1 + 𝑎𝑎2, 𝑏𝑏1 + 𝑏𝑏2,  𝑐𝑐1 +  𝑐𝑐2, 𝑑𝑑1 + 𝑑𝑑2, 𝑒𝑒1 + 𝑒𝑒2, 𝑓𝑓1 + 𝑓𝑓2] 

 Subtraction:�̃�𝐴𝐻𝐻 − �̃�𝐵𝐻𝐻 =  [𝑎𝑎1 − 𝑎𝑎2, 𝑏𝑏1 − 𝑏𝑏2,  𝑐𝑐1 −  𝑐𝑐2, 𝑑𝑑1 − 𝑑𝑑2, 𝑒𝑒1 − 𝑒𝑒2, 𝑓𝑓1 − 𝑓𝑓2] 

 Multiplication: �̃�𝐴𝐻𝐻 ∗ �̃�𝐵𝐻𝐻  = [𝑎𝑎1. 𝑎𝑎2, 𝑏𝑏1. 𝑏𝑏2,  𝑐𝑐1. 𝑐𝑐2, 𝑑𝑑1. 𝑑𝑑2, 𝑒𝑒1. 𝑒𝑒2, 𝑓𝑓1. 𝑓𝑓2] 

 Division: �̃�𝐴𝐻𝐻�̃�𝐵𝐻𝐻 = [
𝑎𝑎1
𝑎𝑎2
, 𝑏𝑏1𝑏𝑏2 ,

 𝑐𝑐1
 𝑐𝑐2
, 𝑑𝑑1𝑑𝑑2 ,

𝑒𝑒1
𝑒𝑒2
, 𝑓𝑓1𝑓𝑓2]  

Generalized Fuzzy Numbers 

 𝜇𝜇�̃�𝐴: 𝑅𝑅 → [0,𝑤𝑤]  

 𝜇𝜇�̃�𝐴(𝑧𝑧) = 0 for all 𝑧𝑧 ∈ (−∞, 𝑎𝑎] ∪ [𝑑𝑑,∞); 

 𝜇𝜇�̃�𝐴(𝑧𝑧)  

 𝜇𝜇�̃�𝐴(𝑧𝑧) = 𝑤𝑤 for all 𝑧𝑧 ∈ [𝑏𝑏, 𝑐𝑐]; where 0<w≤1. 

 
Graded Mean Integration Method 

𝐿𝐿−1  and 𝑅𝑅−1  

 

𝑃𝑃(�̃�𝐴) = ∫ ℎ (𝐿𝐿
−1(𝑥𝑥) + 𝑅𝑅−1(𝑥𝑥)

2 )𝑑𝑑ℎ/∫ ℎ 𝑑𝑑ℎ,
𝑤𝑤

0
                                  

𝑤𝑤

0
 

(3) 

 

𝜇𝜇�̃�𝐴𝐻𝐻(𝑥𝑥) =

{
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Similarly, the hexagonal fuzzy numbers 

(7)

(8)

By equation (3), the graded mean integration of hexagonal fuzzy 
numbers is:

(9)

Fuzzy Multiple Channel with Two Class of Arrivals

Consider a multiple channel queueing model with two types of arrival 
class. In more detail, this is a queueing system in which arrivals 
take place in multiple channels with two classes of non-preemptive 
priorities according to Poisson streams. The arrival rate of the first 
class is denoted by     and     is the denotation for the second class 
with the fuzzy service rates of all customers following an exponential 
distribution having same service time with fuzzy rate denoted by   
       Customers are served as two classes of priority and the corresponding 
model is denoted by (FM1,FM2)/FM/C/PR/∞/∞, where PR represents 
priority with size of system and population being infinity. In this 
model, the arrival rates and service rates will be represented as fuzzy 
sets defined:

(10)

(11)

(12)

where W, X and Y are crisp universal sets of the corresponding arrival 
and service rates. Setting p(w,x,y) to denote the system characteristic 
of interest,                   is a fuzzy number since ,               and        are fuzzy 
numbers. From previous knowledge and results in Adan et al. (2001) 
and Chen and Chien-Chung (2006), we have the expected waiting 
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Fuzzy Multiple Channel with Two Class of Arrivals 

Consider a multiple channel queueing model with two types of arrival class. In more detail, this is a 
queueing system in which arrivals take place in multiple channels with two classes of non-preemptive 
priorities according to Poisson streams. The arrival rate of the first class is denoted by 𝜆𝜆1̃ and 𝜆𝜆2̃ is the 
denotation for the second class with the fuzzy service rates of all customers following an exponential 
distribution having same service time with fuzzy rate denoted by �̃�𝜇. Customers are served as two classes of 
priority and the corresponding model is denoted by (FM1,FM2)/FM/C/PR/∞/∞, where PR represents 
priority with size of system and population being infinity. In this model, the arrival rates and service rates 
will be represented as fuzzy sets defined: 

λ1̃ = {(w, µ λ1̃
(w))/w ∈ W}, (10) 

λ2̃ = {(x, µ λ2̃
(x))/x ∈ X}, (11) 

 µ̃ = {(y, µμ̃(y))/y ∈ Y}. (12) 

where W, X and Y are crisp universal sets of the corresponding arrival and service rates. Setting p(w,x,y) to 
denote the system characteristic of interest, 𝑝𝑝(𝜆𝜆1̃,𝜆𝜆2̃,�̃�𝑔)  is a fuzzy number since 𝜆𝜆1̃ , 𝜆𝜆2  and �̃�𝑔  are fuzzy 
numbers. From previous knowledge and results in Adan et al. (2001) and Chen and Chien-Chung (2006), 
we have the expected waiting time of customer in the crisp priority queuing model with two classes, 
(M1,M2)/M/C/PR and steady state 𝜌𝜌 =  𝜆𝜆1 + 𝜆𝜆2 𝑐𝑐µ < 1 ⁄ obtained as: 

𝑊𝑊𝑞𝑞
(1) = ∏𝑤𝑤

(1 − 𝜌𝜌1) . 𝐸𝐸[𝑅𝑅]
𝑐𝑐 ,   (13) 

and 

𝑊𝑊𝑞𝑞
(2) = ∏𝑤𝑤

(1 − 𝜌𝜌)(1 − 𝜌𝜌1) . 𝐸𝐸[𝑅𝑅]
𝑐𝑐 ,   (14) 

,

.

.

where

and



8        

Journal of Computational Innovation and Analytics, Vol. 1, Number 2 (July) 2022, pp: 1–13

time of customer in the crisp priority queuing model with two classes, 
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(16)
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(17)
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(19)

(20)
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corresponding model (FM1,FM2)/FM/2/PR/∞/∞. The management 
wants to compute the expected waiting time of customers in each class, 
hence evaluating the entire system. We start from the defuzzification 
stage to obtain crisp values for average arrival rates for class one and 
two together with the average service time in the queueing system 
from trapezoidal fuzzy number and hexagonal fuzzy number. Then 
the next stage is to compute the performance measures. 

The Trapezoidal Membership Function  

Assume that arrival rate and service rates for two classes are 
trapezoidal fuzzy numbers, and they are defined as:

and

From equation (4), the ranking of                 and          are obtained as follows:

(21)

(22)

(23)

The Hexagonal Membership Function

Assume that both arrival and service rates for two classes are 
hexagonal fuzzy numbers, and they are defined as:

and

According to equation (5), the ranking values of              and      are 
obtained as:
                                             and
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On the other hand, from observation, the service time of customer will be 
random variable. Hence, the mean residual processing time by the first 
two moments of the processing time is calculated as general distribution. 
Therefore, the mean residual time in this model is assumed to follow 
exponential distribution, given by                           
Then                             By substituting the value of E[R] into performance 
measurements represented by          and          respectively.

With reference to Equations (14)-(16) for calculating the performance 
measures which translates to evaluating the system, we obtain the 
results as seen in table 1. This displays the different performance 
measure values for each priority class when considering the two types 
of membership functions under consideration.

Table 1

Different Performance Measurements of Two Membership Functions

MF.

Tp.  0.034 0.062 0.085 0.403 0.134 0.162 0.335 1. 
053

Hex. 0.014 0.026 0.051 0.254 0.079 0.091 0.277 0.867

DISCUSSION AND ANALYSIS

The following observations can be drawn from table 1 as follows:

1. It is essential to ensure the establishment of the arrival rate or 
service rate are not vague so that the performance measures 
obtained are precise. By applying graded mean approach with 
two types of membership functions such as trapezoidal and 
hexagonal fuzzy numbers, we convert fuzzy queues into crisp 
queues and obtain real value.

2. Fuzzy set theory is a powerful tool in assisting the decision 
maker to convert and remove the ambiguity from data and 
become more realistic to solve complex problems in queueing 
system. 

3. Generally, we notice the values of performance measurements 
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membership functions such as trapezoidal and hexagonal fuzzy numbers, we convert fuzzy queues into 
crisp queues and obtain real value. 

2. Fuzzy set theory is a powerful tool in assisting the decision maker to convert and remove the 
ambiguity from data and become more realistic to solve complex problems in queueing system.  

3. Generally, we notice the values of performance measurements in hexagonal membership functions 
are less than the values of trapezoidal membership functions, this leads to extending the area of fuzzy 
numbers and the results becomes better. 

4. All values of performance measurements of class one is less than class two in this type of model. 

 

CONCLUSION 

In this paper we conclude that graded mean integration approach is efficient with fuzzy queueing models 
to convert fuzzy queues into crisp queues. The novel approach of using symmetrical hexagonal fuzzy 
numbers with this method give us superior results under performance measures. Hence, this leads to extend 
more area to the decision maker to obtain different values and more information. Therefore, it is convenient 
way to evaluate systems. For future work this approach can be used with other piecewise linear membership 
functions such as diagonal, octagonal membership functions to evaluate queueing systems. 
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trapezoidal membership functions, this leads to extending the 
area of fuzzy numbers and the results becomes better.

4. All values of performance measurements of class one is less 
than class two in this type of model.

CONCLUSION

In this paper we conclude that graded mean integration approach is 
efficient with fuzzy queueing models to convert fuzzy queues into crisp 
queues. The novel approach of using symmetrical hexagonal fuzzy 
numbers with this method give us superior results under performance 
measures. Hence, this leads to extend more area to the decision maker 
to obtain different values and more information. Therefore, it is 
convenient way to evaluate systems. For future work this approach 
can be used with other piecewise linear membership functions such 
as diagonal, octagonal membership functions to evaluate queueing 
systems.
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