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ABSTRACT  

This paper examined the purchasing power parity (PPP) theory for 
a group of sixteen developed countries using powerful statistical 
panel data methods that account for cross-sectional dependence. The 
paper utilized the Pesaran panel unit root test, the cointegration test 
of Westerlund, the Augmented Mean Group (AMG) estimator, the 
Common Correlated Effect Mean Group (CCEMG) estimator, and 
the panel data Granger non-causality test of Dumitricus and Hurlin to 
analyze the causal relationships among the variables involved in the 
study. The tests showed that the PPP theory occurs in this group of 
countries. Furthermore, outcomes of the long-run estimation revealed 
both depreciation and appreciation of the nominal exchange rates. 
Apart from providing important policy implications on the results 
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obtained, this paper made another significant contribution by extending 
the linear AMG and CCEMG estimators into nonlinear estimators and 
further used them in examining the long-run PPP theory.

Keywords: Augmented mean group, common correlated effect mean 
group, pesaran, purchasing power parity, westerlund.  

INTRODUCTION

Panel data have become increasingly useful in all areas of empirical 
research. A set of panel data is seen as data containing observations 
on cross-sectional units over several periods. Because of their 
usefulness, panel data methods are applied in almost all spheres of 
human endeavor. Here, we are concerned with applying panel data in 
econometrics, particularly PPP theory. The theory of PPP tells us that 
between two currencies (of different countries), the nominal exchange 
rate should be equivalent to the ratio of total levels of price. The unit 
of currency in one nation will have equal potential to buy products and 
services in another nation or the other country (Choji & Sek, 2017). 
In other words, PPPs are price relatives showing the ratio of prices in 
national currencies of the same good or service in various countries 
(Taylor & Taylor, 2004).

Several works on the PPP theory have been carried out for over a 
decade because of how critical this theory is in international trade and 
finance. Other than that, the PPP theory is vital because it can help us 
ascertain the general economic circumstances of a nation. Numerous 
research has been done concerning the PPP theory in developed 
countries, yet, more needs to be done due to the evolution of more 
powerful statistical methods.

Among the numerous works done on PPP in developed countries, it 
includes the work of Carnovale (2001). The author re-evaluated the 
PPP theory by utilizing the Christiano and Fitzgerald filter to a long 
span of data for ten developed countries. They had strong confirmation 
for the PPP, while more conventional methods are unable to find 
support for the theory. However, Hegwood and Papell (2002) did 
not find proof for the occurrence of the PPP in six developed nations 
(U.S., U.K., Sweden, Belgium, France, and Germany) with a time 
span varying by country. They concluded that standard tests of the unit 
root are not adequate in examining the real exchange rate behavior, 
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not due to low power but due to the restrictive nature of the tests 
that do not show the true behavior of the data. The behavior includes 
permanent and temporary diversions from equilibrium in the long run. 
On the other hand, Jenkins and Snaith (2008) employed the Pedroni 
test of cointegration. It considers each panel member’s heterogeneous 
slope coefficients and short-run dynamic differences to examine the 
PPP on monthly data from 1918:01 to 1995:06 of eleven developed 
countries. They discovered proof to back the PPP when they utilized 
tradable products in their price levels. Their finding indicates that the 
failure to support the PPP in past research could be due to the addition 
of products that are not tradable in the general price list. 

Furthermore, Gengenbach et al. (2008) applied several panel tests 
of unit root that consider dependence on cross-sections of monthly 
data from 1986-2000 for 14 developed nations. Results of the various 
tests provide evidence for the PPP in some countries. Jiang et al. 
(2015) discovered that the theory of PPP occurred in thirty-four the 
Organisation for Economic Co-operation and Development (OECD) 
nations from Jan. 1994 – Aug. 2013. It was done by employing a 
recent panel test of stationarity with a combination of smooth shifts 
and sharp breaks, a unique way to test for a unit root in a panel by 
Bahmani-Oskooee et al. (2014). Nevertheless, Al-Zyoud (2015) did 
not find support for PPP when he used monthly data from the period 
of 1995:01-2008:08 to examine the movement in long-run between 
Canadian and the U.S. dollar rates of exchange by utilizing the 
cointegration test of Engle-Granger. The analysis showed that absolute 
PPP occurs, implying no long-run association between Canadian and 
U.S. dollar exchange rates. 

Similarly, Emirmahmutoglu and Omay (2014) reexamined the PPP 
hypothesis in 15 EU countries using a nonlinear heterogeneous 
panel test of a unit root. The null hypothesis allows for symmetric 
or asymmetric exponential smooth transition autoregressive, which 
they proposed. While the results of the linear and symmetric nonlinear 
heterogeneous panel unit root tests are against the PPP hypothesis, 
the asymmetric nonlinear heterogeneous panel test they proposed 
supported the PPP hypothesis. Recently, Papell and Prodan (2020) 
discovered support for the PPP when they used data with low-
frequency averages in measuring long-run covariability and variability 
for 16 developed countries from 1870 to 2013. Finally, Doganlar et 
al. (2020) utilized the Fourier Quantile test of unit root for Turkey 
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together with its main partners of the trade from 1993:1-2018:8, 
supporting the long-run PPP validity.

Most of the literature above approved the theory of PPP in developed 
countries, especially the studies that applied panel data methods. The 
studies considered the above-used tests of unit root or/and cointegration 
tests to check if the PPP theory occurs. However, none of these 
studies went a step further to examine the long-run relationships and 
what that means for the groups of countries involved. In examining 
the long-run relationship, this work utilizes the AMG estimator by 
Eberhardt and Teal (2010) and the CCEMG estimator by Pesaran 
(2006). This is because these powerful methods that considered 
dependence on cross-sections in panel data have not been used in this 
area of research. In addition, the study extends the linear panel AMG 
and CCEMG estimators to nonlinear AMG and CCEMG based on 
a nonlinear model of Shin et al. (2014) since the real exchange rate 
is believed to follow an asymmetric adjustment process (Bahmani-
Oskooee et al., 2015).

Furthermore, since most studies on PPP did not provide policy 
implications on the results found, this work offers policy implications 
on the results found. It is not only in regards to whether PPP is valid 
but also based on the impact of the aggregate prices on the nominal 
exchange rates, as advised by Carnovale (2001). This is because PPP 
encompasses the key variables involved in monetary policy (exchange 
rates and price levels). Moreover, in past studies concerning the PPP 
theory, no study has examined the causal relationships between the 
variables. Thus, we examine the causal relationships of the variables 
involved by utilizing the panel test of Granger non-causality of 
Dumitrescu and Hurlin (2012), which accounts for cross-sectional 
dependence in panel data. Finally, it is worth noting that all the methods 
employed in this study account for dependence in cross-sections since 
that is the main issue affecting panel data studies. The study results 
supported the theory of PPP in the 16 developed countries considered.

METHODOLOGY AND DATA

Data Description

The data were obtained from the Thomson Reuters DataStream, a 
group of 16 developed countries from January 2003 to August 2016. 
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The data set is monthly and consists of the nominal exchange rates 
(EXRATE), consumer price indices (CPI) for the domestic countries, 
and the consumer price indices (CPIUS) for the U.S. since the dollar 
was used as the base currency. All the variables were transformed 
into their log forms and denoted by LEXRATE, LCPI, and LCPIUS. 
Moreover, the 16 developed countries involved are Norway, Australia, 
New Zealand, Belgium, Switzerland, Canada, Finland, the United 
Kingdom, France, Sweden, Germany, Greece, Ireland, Iceland, Spain, 
and Denmark.

Panel Unit Roots Tests Allow for Cross-sectional Dependence

Pesaran (2007) recommends a way of accounting for cross-sectional 
dependence in unit root tests. The method depends on augmenting 
the Augmented Dickey-Fuller (ADF) regression using lagged cross-
sectional mean and its first difference to account for cross-sectional 
dependence, which may arise through a single-factor model. This is 
known as the Cross-sectional Augmented Dickey-Fuller (CADF) test, 
with the CADF regression as:

(1)

where   is the average at time t of all N observations. If a serial 
correlation exists in the error term, the regression should be augmented 
as in the univariate case. However, lagged first differences of     and  
    must be included to get:

(2)

After this CADF regression has been run for each unit i in the panel, 
Pesaran’s method averages the t-statistics on the lagged value (called 
CADFi) to get the CIPS statistic (Baltagi, 2005):

(3)

This test which assumes cross-sectional dependence has the null 
hypothesis of unit root against the alternative hypothesis of stationarity. 
If the null is rejected, PPP exists.

Westerlund Tests of Cointegration

Following Mehmet et al. (2014), the panel test of cointegration 
proposed by Westerlund (2007) comprises four tests in error 
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last, the two group statistics are obtained; thus: 
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In the same way, there are three stages of panel statistics. Stage one is 
similar to stage one of group statistics.

(8)

(9)

Stage two is the estimation of standard error. The panel statistics are 
obtained in the final stage; thus:

(10)

Westerlund’s (2007) test comprises 2 Panel and 2 Group statistics. We 
perform tests for the null of no cointegration versus the alternative that 
cointegration exists. Suppose that the null of no cointegration is not 
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Stage two is the estimation of standard error. The panel statistics are 
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perform tests for the null of no cointegration versus the alternative that 
cointegration exists. Suppose that the null of no cointegration is not 
accepted for most tests. At that point, there is a long-run relationship 
between the variables suggesting the occurrence of long-run PPP. In 
any case, suppose we do not reject the null of no cointegration for most 
tests. There does not exist any long-run relationship among variables 
showing that the theory of PPP does not occur in the long run. 
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where,

(12)

(13)

for  

Here,    (LCPI and LCPIUS, respectively) and    (nominal exchange 
rates, LEXRATE) are observables,   is the observable coefficient for 
each country on the regressors,    consists of unobservables, and    is 
the error term. The unobservables in Equation (12) contains     the 
group fixed effects that capture time-invariant heterogeneity over 
groups. It also contains a common factor that is unobserved    with 
factor loading that is heterogeneous    demonstrating heterogeneity 
that is time-variant and dependent on cross-section. The factors     and  
    are unlimited over time to linear evolution. They can be nonstationary 
and nonlinear, with clear indications for cointegration. Additional 
issues arise since the regressors are driven by the same common 
factors as the observables: the existence of    in Equations (12) and 
(13) brings about endogeneity in the estimation equation. Note that   
     and     are assumed as white noise.

Pesaran’s (2006) CCEMG estimator permits actual setup as in 
Equations (11), (12), and (13). The empirical framework allows 
dependence on the cross-section, time-variant unobservables with 
heterogeneous impact over panel members, and issues of identification  
(      is not identified if the regressor consists of      ). The CCEMG estimator  
takes care of this issue using an easy but robust augmentation of the 
group-specific regression equation. Aside from the regressors      and an 
intercept, the Equation puts the average of the cross-section from the  
dependent and independent variables,     and      as additional regressors. 
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Here, itx  (LCPI and LCPIUS, respectively) and ity  (nominal 

exchange rates, LEXRATE) are observables, iβ is the observable 

coefficient for each country on the regressors, itω  consists of 

unobservables, and itε  is the error term. The unobservables in 

Equation (12) contains 1iα , the group fixed effects that capture time-
invariant heterogeneity over groups. It also contains a common factor 

that is unobserved tf  with factor loading that is heterogeneous iλ , 
demonstrating heterogeneity that is time-variant and dependent on 

cross-section. The factors tg  and tf are unlimited over time to linear 
evolution. They can be nonstationary and nonlinear, with clear 
indications for cointegration. Additional issues arise since the 
regressors are driven by the same common factors as the observables: 

the existence of tf  in Equations (12) and (13) brings about 

endogeneity in the estimation equation. Note that itε  and ite are 
assumed as white noise. 
 
Pesaran's (2006) CCEMG estimator permits actual setup as in 
Equations (11), (12), and (13). The empirical framework allows 
dependence on the cross-section, time-variant unobservables with 
heterogeneous impact over panel members, and issues of identification 

( iβ  is not identified if the regressor consists of tf ). The CCEMG 
estimator takes care of this issue using an easy but robust augmentation 
of the group-specific regression equation. Aside from the regressors 

itx  and an intercept, the Equation puts the average of the cross-section 

from the dependent and independent variables, ty  and tx , as 
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The addition of     and     can make justifications for the unobserved 
common factor    We estimate the relationship for individual members 
of the panel separately, in which the heterogeneous impact     is 
given by the construction. Thus, in practice, averages of cross- 
sections    and    in the model that were observed are computed and then  
added as explanatory variables in individual    regression equations.  
Consequently, the coefficients estimated    are averaged over individuals 
of the panel, where varying weights could be used. Following the 
presentation of the CCEMG estimator as given  in Durusu-Ciftci et al. 
(2016), Equation (11) can be written as:

(14)

Here,   and   give the elasticity estimates of   with respect to the  
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Here, itx  (LCPI and LCPIUS, respectively) and ity  (nominal 

exchange rates, LEXRATE) are observables, iβ is the observable 

coefficient for each country on the regressors, itω  consists of 

unobservables, and itε  is the error term. The unobservables in 

Equation (12) contains 1iα , the group fixed effects that capture time-
invariant heterogeneity over groups. It also contains a common factor 

that is unobserved tf  with factor loading that is heterogeneous iλ , 
demonstrating heterogeneity that is time-variant and dependent on 

cross-section. The factors tg  and tf are unlimited over time to linear 
evolution. They can be nonstationary and nonlinear, with clear 
indications for cointegration. Additional issues arise since the 
regressors are driven by the same common factors as the observables: 

the existence of tf  in Equations (12) and (13) brings about 

endogeneity in the estimation equation. Note that itε  and ite are 
assumed as white noise. 
 
Pesaran's (2006) CCEMG estimator permits actual setup as in 
Equations (11), (12), and (13). The empirical framework allows 
dependence on the cross-section, time-variant unobservables with 
heterogeneous impact over panel members, and issues of identification 

( iβ  is not identified if the regressor consists of tf ). The CCEMG 
estimator takes care of this issue using an easy but robust augmentation 
of the group-specific regression equation. Aside from the regressors 

itx  and an intercept, the Equation puts the average of the cross-section 

from the dependent and independent variables, ty  and tx , as 

additional regressors. The addition of ty  and tx  can make 

justifications for the unobserved common factor tf . We estimate the 
relationship for individual members of the panel separately, in which 
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the heterogeneous impact ( iλ ) is given by the construction. Thus, in 

practice, averages of cross-sections ty  and tx  in the model that were 
observed are computed and then added as explanatory variables in 
individual N  regression equations. Consequently, the coefficients 

estimated ˆ
iβ are averaged over individuals of the panel, where varying 

weights could be used. Following the presentation of the CCEMG 
estimator as given  in Durusu-Ciftci et al. (2016), Equation (11) can be 
written as: 
 

1 2it i it t t ity β x δ y δ x ω    ,  

 
1,..., ;     1,...,i N t T  . 

 

Here, 1δ  and 2δ  give the elasticity estimates of ity  with respect to the 
averages of the cross-section of the dependent variable and the 
regressors observed appropriately. Subsequently, LCPI and LCPIUS 

are incorporated in x  for the linear CCEMG while itω  is the error term. 
In extending this to a nonlinear framework, we introduce nonlinear 
variables into the model by decomposing independent variables into 
their positive and negative parts, as done by Shin et al. (2014). Three 
cases are considered. Case 1 is where the domestic price is 
decomposed into its positive and negative parts. Here, LCPI_POS, 
LCPI_NEG, and LCPIUS are contained in x . Subsequently, Case 2 
is where the domestic price is decomposed, in which LCPI, 
LCPIUS_POS, and LCPIUS_NEG are contained in x . Case 3 is 
where domestic and foreign prices are decomposed into positive and 
negative parts, respectively. Here, LCPI_POS, LCPI_NEG, 
LCPIUS_POS and LCPIUS_NEG are contained in x . In this way, 

each coefficient iβ  in a framework of the panel was estimated, and the 
CCEMG estimator is simply the average of computed individual CCE 
estimators given: 
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incorporated in x  for the linear AMG. In extending this into the 
nonlinear framework, we consider three cases. Case 1 is where the 
domestic price is decomposed into its positive and negative parts. 
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year dummy is collected and labeled as     in stage (i). In stage (ii),  
this variable is added in each of the      country regression. Therefore, 
the estimates of the AMG are obtained by means of each country’s 
estimates.

(16)

where   is a constant,   and   are error terms of stages (i) and (ii) 
of Equation (16) sequentially. In the same way, LCPI and LCPIUS 
are incorporated in   for the linear AMG. In extending this into the 
nonlinear framework, we consider three cases. Case 1 is where the 
domestic price is decomposed into its positive and negative parts.  
Here, LCPI_POS, LCPI_NEG, and LCPIUS are contained in     . Case 2 
is where the domestic price is decomposed, and LCPI, LCPIUS_POS,  
and LCPIUS_NEG are contained in      . Meanwhile, Case 3 decomposes 
both the domestic and foreign prices into their positive and negative 
parts, respectively. Here, LCPI_POS, LCPI_NEG, LCPIUS_POS, and  
LCPIUS_NEG are contained in      .The group-specific cross-sectional 
AMG that averages over the panel could be given as follows:

(17)

Dumitrescu and Hurlin Panel Granger Non-causality Test

Following Furuoka (2015), the heterogeneous panel Granger non-
causality test of Dumitrescu and Hurlin (2012) is based on two 
variables model. The general presentation of the model is thus;

(18)

where    and   are the two variables observed for   individuals on   
    periods (the pair of variables involved in our case are LEXRATE 
and LCPI, LEXRATE and LCPIUS, and finally, LCPI and LCPIUS). 
Moreover,   is the lag length, and   is the intercept. Meanwhile,   and   are 
the slope coefficients, which are allowed to differ across individuals. 
There are sources of heterogeneity that could be derived from 
the intercept and the slope coefficients in the panel. Therefore, the 
panel non-causality test of Dumitrescu–Hurlin is based on the 
heterogeneous panel assumption. The approach of the heterogeneous 
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Dumitrescu and Hurlin Panel Granger Non-causality Test 
Following Furuoka (2015), the heterogeneous panel Granger non-
causality test of Dumitrescu and Hurlin (2012) is based on two 
variables model. The general presentation of the model is thus; 
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where y  and  x  are the two variables observed for N  individuals on 
T  periods (the pair of variables involved in our case are LEXRATE 
and LCPI, LEXRATE and LCPIUS, and finally, LCPI and LCPIUS). 
Moreover, k  is the lag length, and α  is the intercept. Meanwhile, β  
and γ  are the slope coefficients, which are allowed to differ across 
individuals. There are sources of heterogeneity that could be derived 
from the intercept and the slope coefficients in the panel. Therefore, 
the panel non-causality test of Dumitrescu–Hurlin is based on the 
heterogeneous panel assumption. The approach of the heterogeneous 
non-causality in the panel is based on the average of cross-sectional 
individual Wald statistics. Under the assumption that Wald statistics, 

iW  are independently and identically distributed across individuals, 
the standardized statistic Zbar-statistic follows a standard normal 
distribution. Suppose we have enough evidence to reject the null 
hypothesis of homogeneous non-causality. In that case, we can accept 
the heterogeneous causality alternative for some (not necessarily all) 
individuals in the panel. 
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non-causality in the panel is based on the average of cross-sectional 
individual Wald statistics. Under the assumption that Wald statistics, 

iW  are independently and identically distributed across individuals, 
the standardized statistic Zbar-statistic follows a standard normal 
distribution. Suppose we have enough evidence to reject the null 
hypothesis of homogeneous non-causality. In that case, we can accept 
the heterogeneous causality alternative for some (not necessarily all) 
individuals in the panel.

RESULTS

Firstly, the test for dependence on cross-section was carried out 
on each of the variables (LCPIUS, LCPI, and LEXRATE). Table 1 
presents the outcomes of tests for cross-sectional dependence. The 
tests considered are the Breush-Pagan Lagrange Multiplier test, the 
Pesaran-Scaled Lagrange Multiplier test, the Bias-corrected Scaled 
Lagrange Multiplier test, and the Pesaran cross-sectional dependence 
test. For all the variables, LEXRATE, LCPI, and LCPIUS, the null 
hypotheses of no cross-sectional dependence are rejected. Therefore, 
the data exhibit dependence on cross-sections.

Table 1

Cross-sectional Dependence Tests  

Test LEXRATE LCPI LCPIUS
Breush-Pagan LM 9886.14*** 17560.48*** 19680.00***
Pesaran Scaled LM 630.40*** 1125.78*** 1262.59***
Bias-corrected Scaled 
LM

630.35*** 1125.73*** 1262.54***

Pesaran CD 84.83*** 132.15*** 140.29***
where *** indicates significance at a 1 percent level.

Furthermore, Table 2 demonstrates the result of a second-generation 
(Pesaran) panel test of unit root that accounts for dependence on 
the cross-section for every one of the variables at first difference 
and levels (∆LEXRATE, LEXRATE, ∆LCPI, LCPI, ∆LCPIUS, 
and LCPIUS). Generally, results show that all the variables are not 
stationary at levels, but at the first difference, all the variables are 
integrated in order 1. This is because there is proof of cross-sectional 
dependence in the data. The cointegration test of Westerlund (2007) 
was conducted since it considers cross-sectional dependence with the 
bootstrap. 
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Table 2

Panel Unit Root Tests   

Variables/Tests Pesaran Remark
LEXRATE
∆LEXRATE

-0.56
-19.43***

I(1)

LCPI
∆LCPI

-1.45
-17.33***

I(1)

LCPIUS
∆LCPIUS

-0.66
-19.56***

I(1)

where *** indicates significance at a 1 percent level.

Moreover, Table 3 provides the outcome of Westerlund (2007) for the 
null hypothesis of no cointegration. Outcomes of the test clearly show 
that all four statistics (Gt, Ga, Pt, and Pa) reject the null hypothesis at 
a 5 percent significance level for the p-value. Therefore, we say there 
is a long-run association between the nominal exchange rate and the 
aggregate price levels. In a similar way, under the Robust p-value, 
where a bootstrap was considered, all three statistics (majority) reject 
the null of no cointegration. Therefore, it further confirms the existence 
of cointegration. Hence, long-run PPP in these 16 developed nations. 
Some of the numerous studies that also found support for the PPP in 
developed countries just like this study include the work of Carnovale 
(2001), Jenkins and Snaith (2008), Gengenbach et al. (2008), Jiang et 
al. (2015) and Doganlar et al. (2020).

Table 3

Westerlund Test of Cointegration   

Statistic Value Z-value p-value Robust p-value

Gt -2.62 -4.74 0.00 0.00
Ga -9.79 -2.90 0.00 0.06
Pt -10.29 -4.92 0.00 0.00
Pa -10.09 -6.20 0.00 0.00

We further estimate the long-run relationship with linear and nonlinear 
(our extension of the linear to nonlinear) AMG and CCEMG to 
account for cross-sectional dependence. Starting with AMG, Table 4 
displays the results of AMG. The table presents the coefficient of the 
linear AMG and nonlinear AMG (Case 1, Case 2, and Case 3). The 
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outcome of the linear AMG indicates that the coefficient of the local 
price (LCPI) is not significant. It indicates that the local price does not 
have any significant effect on the nominal exchange rate. However, 
the foreign price coefficient is significantly positive at 10 percent, 
showing that the foreign price significantly impacts the nominal 
exchange rates. It is seen that a 1 percent increase in the oversea price 
brings about a 0.73 percent rate of nominal exchange appreciation. 

However, for the nonlinear Case 1, none of the coefficients is significant. 
On the other hand, for nonlinear Case 2, the coefficient of the local 
price is significant and causes depreciation in the rate of the nominal 
exchange. To be more specific, a 1 percent increment in the price of the 
domestic nation results in a 0.94 percent depreciation of the nominal 
exchange rate. In addition, the positive part of the oversea country 
price is significant. However, the negative part is not. Therefore, a 1 
percent increase in the positive part of the foreign price results in an 
appreciation of 0.88 percent of the nominal exchange rates. Moreover, 
considering the nonlinear Case 3, only the negative parts of the local 
and oversea prices are significant. Note that a 1 percent increase in 
the negative part of the local price results in 0.0003 percent (0.00 
percent from the table due to approximation to two decimal places) 
appreciation of the nominal exchange rates. Meanwhile, a 1 percent 
increase in the negative part of the foreign price causes 0.003 percent 
(0.00 percent from the table due to approximation to two decimal 
places) depreciation in the nominal exchange rates.

Table 4

Cross-sectional Dependence Tests  

Variable Linear Nonlinear Case 1 Nonlinear Case 2 Nonlinear Case 3
LCPI
LCPI_POS
LCPI_NEG
LCPIUS
LCPI_POS
LCPI_NEG

0.44
-
-

-0.73*
-
-

-
-0.00
-0.00
0.24

-
-

0.94**
-
-
-

-0.88**
0.00

-
0.00

-0.00**
-

-0.05
0.00**

where ** and * give significance levels at 5 percent and 1 percent correspondingly.

Furthermore, Table 5 displays the results of both the linear and the 
three cases of the nonlinear CCEMG. For the linear CCEMG, the 
coefficient of the domestic price is significant, showing that the 
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domestic price has a significant effect on the rate of nominal exchange. 
Here, it is seen that a 1 percent increment in the local price results 
in a depreciation of 1.53 percent in the rate of nominal exchange. 
Next is the nonlinear CCEMG Case 1, where none of the coefficients 
is significant. Further, for nonlinear Case 2, only the coefficient of 
the local price is significant. Nevertheless, none of the decomposed 
parts is significant. Here, a 1 percent increment in the local price 
makes the rate of nominal exchange depreciate by 1.54 percent. 
Finally, for the nonlinear Case 3, only the negative part of the local 
price is significant at 10 percent, making the nominal exchange rate 
appreciate. Specifically, a 1 percent increase in the negative part of 
the domestic price results in an appreciation of 0.0003 percent (0.00 
percent from the table due to approximation to two decimal places) in 
the nominal exchange rates.

Table 5

Long-Run Estimates: Linear and Nonlinear CCEMG

Variable Linear Nonlinear Case 1 Nonlinear Case 2 Nonlinear Case 3
LCPI
LCPI_POS
LCPI_
NEG
LCPIUS
LCPI_POS
LCPI_
NEG

1.53***
-
-

0.19
-
-

-
-0.00
-0.00
-0.48

-
-

1.54***
-
-
-

0.44
-0.00

-
0.00

-0.00*
-

-0.39
0.00

where *** and * give significance levels at 1 percent and 10 percent levels.

From these results, it is obvious that the AMG estimator performed 
better than the CCEMG estimator. Therefore, we focus on the results 
of the AMG estimator. Since we introduced asymmetry into the 
AMG, we tested to see if there was actually a presence of asymmetry 
using the Wald test. The test results rejected the null hypothesis of 
symmetry at a 5 percent significance level (with     =5.66 and prob>     =  
0.0174), revealing the presence of asymmetry.  

To examine the direction of causality, we employed the Granger non-
causality tests of Dumitrescu and Hurlin, which accounts for cross-
sectional dependence in panel data. Table 6 displays the W-statistic and 
Zbar-statistic of the Granger non-causality test. The results reveal that 
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that the variables are indeed associated.  
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LCPI Granger causes LEXRATE at a 10 percent level of significance, 
and LEXRATE Granger causes LCPI at a 1 percent significance level. 
A bidirectional relationship exists between LCPIUS and LEXRATE 
at a 1 percent significance level. Nonetheless, LCPIUS Granger 
causes LCPI but not the other way around. This has confirmed that 
the variables are indeed associated. 

Table 6

Dumitrescu and Hurlin Granger Non-Causality Tests

Null hypothesis W-statistic Zbar-statistic
LCPI does not homogeneously cause LEXRATE
LEXRATE does not homogeneously cause LCPI
LCPIUS does not homogeneously cause LEXRATE
LEXRATE does not homogeneously cause LCPIUS
LCPIUS does not homogeneously cause LCPI
LCPI does not homogeneously cause LCPIUS

2.94*

4.35***

4.23***

14.00***

12.99***

2.86

1.78*

4.53***

4.30***

23.35***

21.37***

1.62
where *** and * give significance levels at 1 percent and 10 percent, respectively.

CONCLUSION

This study examined the PPP theory for 16 developed countries by 
utilizing the panel unit root test of Pesaran (2007), the cointegration 
test of Westerlund (2007), and both linear and nonlinear (AMG and 
CCEMG) estimators. Apart from using the existing linear AMG and 
CCEMG to examine the long-run relationships, the paper also extended 
these linear estimators (AMG and CCEMG) to nonlinear estimators 
in examining the PPP theory. The test results for unit root revealed 
that all the variables are integrated into order one, which allowed us to 
run cointegration tests. The results of the cointegration tests revealed 
evidence of a long-run relationship between the nominal exchange 
rates and levels of price, indicating the occurrence of the PPP theory. 
When investigating the linear and the nonlinear long-run estimates, 
the long-run estimates showed both appreciation and depreciation 
of the nominal exchange rates. Consequently, appreciation of the 
nominal exchange rates will cause the export to be more expensive 
and imports to be cheaper, reducing inflation. Depreciation, on the 



    103      

Journal of Computational Innovation and Analytics, Vol. 2, Number 1 (January) 2023, pp:  89–106

other hand, makes exports cheaper and imports more expensive. 
Thereby, it will cause inflation to increase in this group of countries. 
In addition, it is impossible for the 16 developed countries to make so 
many profits in traded goods from arbitrage since the prices of goods 
are supposed to be the same. 

Furthermore, this paper has made some contributions to the PPP 
theory literature by applying the AMG estimator by Eberhardt and 
Teal (2010) and the CCEMG estimator of Pesaran (2006) to analyze 
the long-run estimates. This work applied both the AMG and the 
CCEMG in examining the long-run estimates since these estimators 
account for cross-sectional dependence in the panel data. In addition, 
the study extended the linear AMG and CCEMG to nonlinear AMG 
and CCEMG for three different nonlinear cases (Case 1, Case 2, 
and Case 3 are as explained earlier). Here, the extended nonlinear 
estimates performed better than the linear estimates with evidence 
of asymmetry. The nonlinear tests showed explicitly how each part 
(positive or negative) of the domestic or foreign prices affected the 
nominal exchange rates and the magnitudes of the effects. However, 
the linear models cannot show such effects. Therefore, the nonlinear 
models demonstrated more information that the linear models could 
not capture.  

Secondly, this study applied Dumitrescu and Hurlin’s (2012). 
Granger non-causality test to assess the causal relationships among 
the variables. In past studies concerning the PPP theory, no study has 
examined the causal relationships between the variables involved 
in the PPP theory. However, in this study, we examine the causal 
relationships of the variables involved using the panel Granger non-
causality test by Dumitrescu and Hurlin (2012), which considers the 
dependence on cross-sections in panel data. This has confirmed that 
there are indeed several forms of relationships among the variable. 

Lastly, this study has made another contribution in providing policy 
implications for the result obtained, especially on the impact of the 
domestic and foreign prices on the nominal exchange rates, which has 
not been done in most studies investigating the PPP theory.
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