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ABSTRACT

A method for addressing the multiplicity problem is proposed in 
the setting where the hypotheses test sites may be arranged in some 
order based on a notion of proximity, such as SNPs of a chromosome 
in genetic association studies. It is shown that this method is able 
to control family-wise error rate in the weak sense and numerical 
evidence shows that this method controls false discovery rate in the 
strong sense under sparsity. The method is applied to some genome-
wide association studies data with asthma and it is argued that this 
Power Boosting method may be combined with existing error-
rate controlling methods in order to improve true positive rates at 
controllable and possibly negligible cost to the nominal level of error-
rate control.

Keywords: Multiple Testing, False Discovery Rate, Family-Wise 
Error Rate.
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INTRODUCTION

In multiple testing, maintaining a practicable balance between type 
1 error rate control and statistical power is a common issue (Aslam 
& Albassam, 2020; Verhoeven et al., 2005; Yang et al., 2005). 
An individual test that is calibrated to have sufficient power for 
detecting a minimum effect size cannot be relied upon to maintain 
that same power if the common corrections for multiplicity, such 
as the Bonferroni correction for family-wise error rate (FWER) or 
the Benjamini-Hochberg procedure for false discovery rate (FDR)
(Benjamini & Hochberg, 1995), are to be applied to the results of 
several, individually powerful enough tests. This is because these 
methods maintain control over their respective type 1 error rates by 
imposing penalties on the individual significance levels based on the 
nominal significance level. For example, if there are N hypotheses 
and it is desired to maintain level α control over type 1 error, then 
application of the Bonferroni correction would mean that an individual 
null hypothesis can only be rejected if its corresponding p-value is 
less than α/N. For large N, it can become practically impossible to 
reject any hypothesis despite there being clearly strong evidence for 
rejection when considering a single hypothesis.

However, when some prior assumptions can be made about the 
context in which the multiplicity problem exists, this can be used in 
order to develop customized methods that may offer better power. For 
example, if it can be assumed that there is no negative dependency 
among the test statistics, then Sidak’s procedure (Sidak, 1967) offers 
a more powerful alternative to Bonferroni. This study is interested 
in the setting where the test sites are arranged in some meaningful 
way, such as proximity. Furthermore, the setting of interest is such 
that there is no dependence among the test statistics of adjacent test 
sites coming from the null distribution, but positive dependence exists 
among test statistics of adjacent test sites coming from the alternative 
distribution. As example of this is the study of single nucleotide 
polymorphisms (SNPs), where it is of interest to determine which of 
typically thousands of variants in each chromosome is associated with 
some variable of interest. The chromosomes do not have a meaningful 
ordering, but the variants within each chromosome do, and it is 
known that association detected in a variant in one position makes it 
more likely that a similar association can be detected in neighboring 
positions. Figure 1, which was taken from a study on the association 
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between SNPs and microcirculation (Ikram, Xueling, Jensen, Cotch, 
& Hewitt, 2010), illustrates this situation. In this study, multiplicity 
correction was done using Bonferroni adjustment for 1 million tests, 
although the study itself conducted 2.2 million tests, thus resulting in 
a significance level of 0.11 instead of 0.05. This study considers if this 
or similar situations can be improved by considering that significant 
test sites tend to be in close proximity with one another.

Figure 1

Association between SNPs in each chromosome and microcirculation. 
SNPs of each chromosome are arranged in a meaningful order. The 
Y-axis are log-transformed p-values between SNPs in each position 
and microcirculation. Statistically significant associations tend to 
come from adjacent positions. The figure is taken from Ikram et al. 
(2010)

OVERVIEW OF MULTIPLICITY 
CORRECTION APPROACHES

The multiplicity problem refers to the issue that arises when a statistical 
test is simultaneously applied to numerous test sites (Miller, 1981). 
Basing inference on the outcomes of these individual tests inflates the 
probability of type 1 error, making the resulting detections unreliable. 
In order two address this, concepts of type 1 error for multiple 
hypotheses were developed. The most prominent among these are the 
family-wise error rate and the false discovery rate(Dmitrienko et al., 
2010). These are briefly reviewed as follows.
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For N total hypotheses such that there are a total of R rejections and V 
false positives, the family-wise error rate is defined as

(1)
	
On the other hand, the false discovery rate is defined in Benjamini and 
Hochberg (1995) as

(2)

A method that controls FWER likewise controls FDR. In addition, 
suppose there are two methods, Method 1 and Method 2 with 
corresponding false discovery rates FDR1 and FDR2, then combining 
the two methods such that a hypothesis is rejected if it can be rejected 
in either method will have a false discovery rate that is less than or 
equal to the sum of the individual methods’ FDRs. That is,

(3)

The same relationship exists for FWER.

Both classical and modern procedures that control either error rate 
typically impose some penalty on the individual level test sites (Qu 
et al., 2010; Kirsch et al., 2012; Noble, 2009; Efron et al., 2001). 
However, not all multiplicity correction procedures are designed this 
way. Other procedures are designed to avoid imposing penalties on 
the nominal significance level and instead rely upon some predefined 
structure of the hypotheses in order to maintain type 1 error rate 
control. One example of this is the fixed sequence procedure, in which 
the hypotheses are pre-ordered in some fashion and tested sequentially 
at the nominal level α until the first null hypothesis that is retained 
(Dmitrienko et al., 2010). It can be shown that this procedure is able 
to preserve all of the significance levels for the first test, but comes 
with the drawback of having zero power for the next hypotheses once 
one of them is retained. Nonetheless, this example shows that type 1 
error rate control can be achieved not just by decreasing the individual 
test level α. This is the primary idea on which this proposed method 
is hinged.

As shown in Equation 3, it is possible to combine two FDR controlling 
approaches. However, if both are controlling FDR by adjusting the 

FWER = Pr(V > 0)

FDRcombined ≤ FDR1 + FDR2
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individual level α, it is not meaningful to combine them since the 
combined procedure will just reduce to the more conservative method 
between the two. Furthermore, combining two methods, in general, 
presents the challenge of dividing the nominal level α between them. 
Since the nominal level α must remain conserved between the two 
methods, a major drawback of combining two methods is that splitting 
the α level between the two tests would result in weakening the power 
of both tests. This issue is addressed by making the partition in such 
a way that one test will receive most of the nominal α level while the 
other will receive a much smaller, practically negligible portion. For 
example, the main test can have an alpha level of α1 = 0.04999, while 
the power-boost method combined with it will have α2 = 0.0001. In 
this way, the resulting test will still have a nominal level of α = 0.05 
at negligible cost to the power of the main test.

PROPOSED METHOD

Let H1, H2, ... HN be ordered hypotheses based on some idea of 
nearness. Such that Hi is nearest to Hi+1 and Hi−1. Define a block of 
k hypotheses as Hj, Hj+1, … Hj+k−1. For some pre-determined k that 
depends only on N, reject each block of k or more hypotheses when 
each of the hypotheses in the block can be rejected at the nominal 
level α. This means that each hypothesis is tested at the nominal level 
α instead of a multiplicity corrected significance level such as α/N for 
Bonferroni correction. Instead, the multiplicity problem is addressed 
by imposing the restriction that the hypotheses with p values less than 
α must be together in a sufficiently sized block in order for them to 
be rejected.

The rationale for this method is grounded on the reality that in many 
multiple testing scenarios where the test sites can be so ordered, 
observation of individually significant hypotheses that are clustered 
together is typically considered as stronger practical evidence than if 
the same number of individually significant hypotheses are scattered 
apart. This is the basis of cluster inference (Lee & Steigerwald, 2020), 
but this method differs from cluster inference approaches in that only 
k, the minimum number of hypotheses that should be significant at 
the nominal level, needs to be pre-determined, and this is done based 
only on the number of test sites N. That is, for any N, it is desired to 
either compute or estimate the error rate for each k in order to select 
the minimum k that is suitable for the nominal level α.
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CONTROL OVER FWER IN THE WEAK SENSE 

Control over FWER in the weak sense means that FWER is controlled 
in the setting where all of the hypotheses are true negatives.

Proposition 1: For any N > 3 and any nominal level α < 0.5, there 
exists a k, 1 < k < N such that FWER is controlled in the weak sense.

Proof of Proposition 1

Consider the more relaxed method that rejects k or more hypotheses 
if each of them can be rejected at the nominal level α. This method is 
actually one of the earliest FWER controlling methods (Wilkinson, 
1951). Clearly, it is enough to show that FWER is controlled in the 
weak sense for this more relaxed method to prove that FWER is also 
controlled for the proposed method in the weak sense. The binomial 
expansion of [α+(1−α)]N shows the sum of the probability mass 
function for the number of false positives among N hypotheses in the 
weak condition.

(4)

	
Since the method either rejects k or more null hypotheses together or 
none at all, then FWER = Pr(V > 0) = Pr(V ≥ k) and the family-wise 
error rate for a specific k = k’ is given by

(5)

		
Thus, for any α < 0.5, the smallest k can always be chosen such that
	

(6)
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(8)
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Growth of k relative to N 

Having established that there is a k that controls FWER for any N 
in the weak sense, it is next demonstrated that the k needed for any 
given N is reasonably small relative to N. This is done numerically. 
An algorithm was constructed to compute the exact value of FWER at 
given N, k, and α by extracting the entire sample space. For example, 
at N = 2, k = 2, the sample space is {WW, RR, WR, RW}, where R 
means the hypothesis for the test site is rejected, and W means that it 
is retained. In this example, FWER is Pr(RR) = α2, since this is the 
only situation where a false rejection will be made using the power 
boosting method. This also illustrates that in the power boosting 
method, the probability of making at least one false rejection (FWER) 
is the same as the probability of making at least k false rejections.
However, finding the exact FWER is computationally intensive at 
large N, so another algorithm was constructed to simulate multiple 
test outcomes under the weak setting and use this to estimate FWER. 
The steps taken to for this estimation is provided as follows.

1.	 Generate N test sites. The value of each test site is either 
1 (rejection) with probability α or 0 (failure to reject) with 
probability 1 − α.

2.	 Check if there are k or more adjacent test sites that each have 
a value of 1. If this is true, then at least one false rejection has 
occurred. If so, add this to a counter variable R.

3.	 Repeat Steps 1 and 2 10000 times. The estimate of FWER is 
R/10000

Table 1 shows the computational results for selected N, k, and α. Some 
exact computations are also shown to demonstrate that the estimated 
FWER does not differ much from the exact computation. As seen in 
Table 1, k does grow at a much slower rate than N. When testing 
100,000 hypotheses simultaneously, the number of adjacent tests that 
need to be significant at α = 0.05 is only 5. For a million hypotheses, k 
= 6 is sufficient. Also, for smaller values of α, the difference between 

[α+(1−α)]N shows the sum of the probability mass function for the number of false positives among N 
hypotheses in the weak condition. 
 

  
 

1 = [α + (1 − α)]𝑁𝑁 = ∑ 𝐶𝐶𝑛𝑛 𝑢𝑢

𝑁𝑁

𝑢𝑢=0
α𝑢𝑢(1 − α)𝑁𝑁−𝑢𝑢 

(4) 

 

Since the method either rejects k or more null hypotheses together or none at all, then FWER = Pr(V > 0) 
= Pr(V ≥ k) and the family-wise error rate for a specific k = k’ is given by 
   
 

𝐹𝐹𝐹𝐹𝐹𝐹𝑅𝑅𝑘𝑘′ = ∑ 𝐶𝐶𝑁𝑁 𝑢𝑢𝛼𝛼𝑢𝑢(1 − 𝛼𝛼)𝑁𝑁−𝑢𝑢
𝑁𝑁

𝑢𝑢=𝑘𝑘′
 

(5) 

 
Thus, for any α < 0.5, the smallest k can always be chosen such that 
   
 

∑ 𝐶𝐶𝑘𝑘′−1 𝑟𝑟𝛼𝛼𝑟𝑟(1 − 𝛼𝛼)𝑘𝑘′−1−𝑟𝑟
𝑘𝑘′−1

𝑟𝑟=0
 > 1 − α 

(6) 

 
And so, 
  

1 = ∑ 𝐶𝐶𝑁𝑁 𝑢𝑢𝛼𝛼𝑢𝑢(1 − 𝛼𝛼)𝑁𝑁−𝑢𝑢 +
𝑁𝑁

𝑢𝑢=𝑘𝑘′
∑ 𝐶𝐶𝑘𝑘′−1 𝑟𝑟𝛼𝛼𝑟𝑟(1 − 𝛼𝛼)𝑘𝑘′−1−𝑟𝑟

𝑘𝑘′−1

𝑟𝑟=0
 

(7) 

  
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑘𝑘′ = ∑ 𝐶𝐶𝑁𝑁 𝑢𝑢𝛼𝛼𝑢𝑢(1 − 𝛼𝛼)𝑁𝑁−𝑢𝑢
𝑁𝑁

𝑢𝑢=𝑘𝑘′
= 1 − ∑ 𝐶𝐶𝑘𝑘′−1 𝑟𝑟𝛼𝛼𝑟𝑟(1 − 𝛼𝛼)𝑘𝑘′−1−𝑟𝑟

𝑘𝑘′−1

𝑟𝑟=0
< 𝛼𝛼 

(8) 

 

Thus, FWER is also controlled for the proposed method. 
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the orders of N and k is increased such that for a million hypotheses 
and α = 0.01, k = 4 becomes sufficient. This shows how the method 
may be combined with another FWER controlling method. For 
example, with 5000 hypotheses, k can be set to 4, having an FWER of 
0.0001. Then, the other method can be calibrated to have an FWER 
of 0.0099, such that overall FWER is still controlled at a 0.01 level, 
and the penalty for using the power boosting method as part of the 
combination is practically negligible. However, this application 
depends on the ability of the method to control FWER in the strong 
sense as well as the weak sense. If FWER is not controlled in the 
strong sense, then a less stringent error rate such as the FDR may be 
considered, where it must then be shown that the method controls this 
error rate in the strong sense.

Table 1

Estimation of FWER under the weak sense

N k Estimated FWER Exact FWER
3 2 0.0047 0.0049
20 2 0.0446 0.0445
400 3 0.0487
5000 4 0.0290
100000 5 0.0300
1000000 6 0.0100

N k Estimated FWER Exact FWER
3 2 0.0002 0.0002
20 2 0.0020 0.0019
400 3 0.0009
5000 4 0.0001
100000 4 0.0000
1000000 4 0.0070

Failure to control FWER in the strong sense 
 
Control over FWER in the strong sense means that FWER is 
controlled in every possible configuration of true positives and true 
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are powerful enough to detect the true positives without any multiplicity correction, then the first k 
hypotheses will always be rejected. However, since the method rejects for any block of k or more 
hypotheses that can be rejected at the nominal α, then Hk+1 will be falsely rejected at a rate of α, which 
means that the FWER in this situation will at least be α. 
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negatives. Unfortunately, the power boosting method fails to control 
FWER in the strong sense. To see this, one just needs to consider the 
setting where the first k hypotheses are true positives, and the rest of 
the hypotheses from Hk+1 to HN are true negatives. In this case, if it is 
assumed that the tests are powerful enough to detect the true positives 
without any multiplicity correction, then the first k hypotheses will 
always be rejected. However, since the method rejects for any block 
of k or more hypotheses that can be rejected at the nominal α, then 
Hk+1 will be falsely rejected at a rate of α, which means that the FWER 
in this situation will at least be α.

A consequence of this is that the power boosting method is not suitable 
to combine with other FWER controlling approaches to control 
FWER. Nonetheless, since the method controls FWER in the weak 
sense, then FDR is also controlled in the weak sense. Furthermore, 
the FWER for a specific k at a given N is the same as the FDR under 
the weak sense, and so Table 1 would be identical for FDR. Thus, 
what remains to be determined is whether or not there exists a k for 
every N that controls FDR in the strong sense.

CONTROL OVER FDR IN THE STRONG SENSE 

The practicability of using the power boosting method to augment 
existing FDR controlling approaches depends on the extent to which 
it can control FDR in the strong sense.

 
Maximum FDR 

A direct way of assessing control over FDR in the strong sense is 
to identify the configuration of true positives and true negatives for 
which FDR is the largest. Obviously, if FDR is controlled (less than 
the preset α) at the configuration where it is largest, then it is controlled 
in every other possible configuration. For any configuration of true 
positives and true negatives among N hypotheses, the FDR may be 
calculated directly. For example, suppose N = 2 and let k = 2. Let 
X be a true negative and let Y be a true positive. Then the possible 
configurations are listed as {XX, YY, XY, YX}. At a nominal level α and 
assuming that the individual-level hypothesis test has sufficient power 
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to always detect a true positive, the FDR at k = 2 for configuration 
XX is α2 and the FDR for configuration . Since α is 
always selected to be small, then the maximum FDR is obtained at 
configuration XY (or Y X). Thus in this example, it is shown that FDR 
is controlled in the strong sense. This illustrates that for any N and any 
k, it is theoretically possible to find the maximum FDR by calculating 
the FDR for each configuration of true positives and true negatives. 
However, this approach will quickly become intractable for larger N. 
Also, in many situations, configurations, where the majority of the 
test sites are true positives, are unrealistic. Thus, it is reasonable to 
have some assumption of sparsity, where most of the test sites are 
true negatives, and only a small proportion are true positives. This 
assumption is commonly used in the development of procedures for 
multiple testing across various contexts (Ghosh & Chakraborty, 2017; 
Bogdan et al., 2011; Frommlet & Bogdan, 2013).

Assumption on the Maximum number of True Positives 

Consider the assumption that at most only a certain proportion of the 
test sites can be true positives. Let M be the maximum number of 
test sites that are true positives such that M << N.
Proposition 2: Let M << N. If there exists a k1 ≤ M for which FDR 
is controlled in the weak sense then there exists another k2 such that  
k1 ≤ k2 ≤ M for which FDR is also controlled in the strong sense.
Evidence for Proposition 2 is presented numerically as follows.

1.	 Generate N test sites with M sites from the alternative distribution 
and N − M sites from the null distribution. For those from the 
null distribution, the value of each test site is either 1(rejection) 
with probability α or 0(failure to reject) with probability 1 − α. 
For members of the alternative distribution, the value is 1. That 
is, it is assumed that the test is always individually powerful 
enough to identify a true alternative without multiplicity 
correction.

2.	 Check if there are blocks of k or more adjacent test sites 
that each have a value of 1. If this is true, count the number 
of test sites across all such blocks from the null distribution 
(#False Positives) and the number of test sites in all the blocks 
(#Positives). The false discovery proportion is computed as

	 FDP=(#False Positives)/(#Positives)
3.	 Repeat Steps 1 and 2 10000 times. The estimate of FDR is the 

average of the FDPs.
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Setting N = 100 and M ≤ 5, simulations were conducted to estimate 
FDR for different patterns of true positives and true negatives. Even in 
this relatively small-scale setting, in terms of the total number of test 
sites, the total number of possible configurations exceed 79 million. 
However, most of these configurations are essentially duplicates of 
one another for purposes of computing FDR. As such, only a select 
few configurations were considered. For example, the configuration 
0XXXXX0 represents the configuration that all five true positives are 
together. The 0’s in each end represent blocks of null test sites. There 
are many configurations like this, such as when there are 50 null sites, 
and then five true positives, and then 50 null sites. However, such 
a configuration is redundant to the configuration that just changes 
the division of test sites to the left and right, such as a configuration 
where there are 20 null sites, followed by the five true positive sites, 
and then 80 null sites. As such, only one set of FDR estimations for 
this configuration and all configurations similar to it as described, is 
needed.

Results are shown in Table 2. As shown here, FDR is controlled 
at the nominal level (α = 0.05) for k = 5 in all the configurations 
considered. The same is true for k = 4, but is no longer true for k = 
3 or k = 2. More importantly, Table 2 shows that the maximum FDR 
estimate for k = 5 is 0.02063 while for k = 4 is 0.03027. While in 
both cases, some conservation of the nominal level α is observed, 
the conservation is not small enough to justify adding the power-
boosting method to another FDR controlling approach. Nonetheless, 
the amount of α conserved scales well with the number of hypotheses 
with the maximum proportion of true positives held constant. This is 
illustrated in Table 3, where N = 1000 and M = 50. In this setting, FDR 
seemed negligible for k = 50 in any setting. As such, it was possible to 
decrease k. Table 3 shows that for k = 20, the maximum FDR is less 
than 0.01, indicating that there is sufficient conservation to append 
the power boost to another FDR controlling method for this setting. 
Doing so will enable the combined test to reject a subset of 20 or more 
adjacent test sites if each is found to have a p-value less than 0.05 prior 
to any controlling adjustment, and the combined method will still be 
able to control FDR at a nominal level of 0.059, only slightly higher 
than the level if only one FDR procedure is used. In exchange for this, 
the combined test can detect as significant, a group of test sites that 
may seem obviously interesting to the practitioner, but would have 
failed detection otherwise because their individual signals are not 
strong enough to be detected by the α adjusting method.
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APPLICATION TO GWAS DATA 

Genome-wide association studies (GWAS) attempt to associate 
specific genetic variations with particular diseases. This typically 
involves the conduct of millions of hypothesis tests. Data from was 
sourced from the UK Biobank (GWASBot, n.d.). The dataset associates 
genetic variants in the human genome with asthma. The genetic 
correlation was estimated using LD-score regression, and p-values 
were computed based on a Normal distribution (UKBB, n.d.).

Table 2

FDR for selected configurations N=100 M=5. X represents a test 
site belonging to the alternative distribution, while a 0 represents a 
block of test sites belonging to the null distribution. k represents the 
different block sizes for which FDR is computed

k

Pattern Number of 
True Positives

5 4 3 2

0X0X0X0X0X0 5 0.00329 0.00686 0.07499 0.25865
0XXXXX0 5 0.01753 0.01752 0.02178 0.07451
0XXXX0X0 5 0.01783 0.01915 0.02419 0.09120
0XXXX00X0 5 0.02063 0.02007 0.02753 0.10216
0XXX00XX0 5 0.00330 0.02823 0.04664 0.08772
0XXX00XX0 5 0.00344 0.03027 0.04552 0.08956
0XX0XX0X0 5 0.01266 0.02623 0.04799 0.10170
0XXXX0 4 0.02014 0.02085 0.02476 0.08744
0XXX0 3 0.00380 0.02607 0.03102 0.10790
0XX0 2 0.00037 0.00499 0.04472 0.13304
0XX0XX0 4 0.01177 0.01332 0.05270 0.09726
0XX00XX0 4 0.00054 0.00866 0.07360 0.10436
0XXX00X0 4 0.00261 0.02673 0.03270 0.11532
0X00XX00X0 4 0.00041 0.00504 0.05185 0.16487
0X00XX0 3 0.00027 0.00469 0.04791 0.14973
0X00X0 2 0.00010 0.00130 0.02082 0.26076
NA 0 0.00000 0.00100 0.00940 0.21140
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Table 3

FDR for selected configurations N=1000 M=50. X represents a 
block of test sites belonging to the alternative distribution, while a 0 
represents a block of test sites belonging to the null distribution. In 
each setting, the size of X and 0 are varied

k
Pattern Number of True Positives 10 15 20
0XXX0 50 0.00209 0.00197 0.00208
0X0X0 50 0.00581 0.00939 0.00899
0X0X0 50 0.01692 0.01328 0.00096
0X0X0 50 0.01864 0.01400 0.00109
0X0X0 50 0.00578 0.00119 0.00000
0X0X0 50 0.00518 0.00215 0.00000
0X0X0 50 0.00339 0.00064 0.00000
0X0X0 50 0.00424 0.00425 0.00582
0X0X0 50 0.00423 0.00829 0.00506
0X0X0 50 0.00500 0.00862 0.00598
0X0X0 50 0.00830 0.00608 0.00008
0X0X0 50 0.00439 0.00359 0.00333
0X0X0 50 0.00398 0.00363 0.00548
0X0X0 50 0.00371 0.00469 0.00307
0X0X0 50 0.00613 0.00767 0.00165
0XXX0 20 0.00466 0.00549 0.00533
0X0X0 20 0.00524 0.00462 0.00534
0X0X0 20 0.00939 0.00023 0.00023

For simplicity, this demonstration is limited to Chromosome 2 and 
Chromosome 6. Each with about 2 million variants. For each variant, 
the null hypothesis is that the variant is not associated with asthma. 
The purpose is to identify all variants for which there is evidence of 
significant association with asthma. The variants in each chromosome 
are meaningfully ordered according to physical proximity, and it is 
known that strong association in one position increases the likelihood 
of strong associations in neighboring positions. These qualities make 
it suitable to use the method for this setting.

From numerical estimation, it is determined that k = 10 at nominal α 
= 0.05 is sufficient to control FWER at > 0.0001 in the weak sense 
when there are 2 million hypotheses. This means that when identifying 
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10 or more consecutive variants as significant, if each of them has a 
p-value less than 0.05, the probability of at least one false discovery is 
less than 0.0001. Furthermore, given the sheer sparsity of this setting, 
where it is expected that there are relatively very few variants that are 
truly associated with asthma, this is assumed to be a sufficient choice 
for k for controlling FDR at the same nominal level.

For Chromosome 2, the method identified 54 variants in 5 blocks that 
are significant at nominal α = 0.05. Results are illustrated in Figure 
2. The significant blocks were identified around the same positions 
where variants with the highest negative log-transformed p-values 
were found, yet all but the block in Figure 2 (F) are not likely to 
be identified as significant by a testing procedure that controlled for 
multiplicity by adjusting individual p-values. Most importantly, this 
Power Boosting method is not supposed to stand alone. It can be 
added onto another method that is calibrated at a nominal significance 
level of 0.05 with negligible impact to the error rate since the nominal 
significance level at k = 10 for the Power Boost is less than 0.0001. It 
is notable to observe that only the block in Figure 2(F) is located at a 
spike in the dataset, whereas there are three visible spikes in Figure 
2(A). That is, the correlation of p-values around the spikes where not 
strong enough to satisfy the requirement for k = 10 that is necessary 
for error rate control.

Figure 2

Results for Chromosome 2. Significant variants are colored red. (A) 
is the entire dataset while (B) to (F) show snapshots around locations 
where significant blocks were found
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In contrast to Chromosome 2, much stronger block relationships were found in Chromosome 6. Application 
of the method yielded 10131 significant variants spread across at least 10 blocks. Most importantly, many 
of those blocks contain hundreds of consecutive variants. This is illustrated in Figure 3. As shown in Figure 
3(A), most of the blocks are found in the exact same position as the highest spike, establishing that this 
spike is interesting not just because of the significant p-values found around it, but because these p-values 
are also so consistent that there are blocks of hundreds of consecutive test sites where each hypothesis in 
the block is significant at the nominal level. It is notable to compare this and the result in Chromosome 2, 
because while both have this high peak, the signal was not as strongly consistent across consecutive 
positions for Chromosome 2 as it is for Chromosome 6. Once again, it is emphasized that these discoveries 
for Chromosome 6 were achieved at a nominal level that is low enough that it can be appended onto any 
other FDR controlling method. 
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In contrast to Chromosome 2, much stronger block relationships were 
found in Chromosome 6. Application of the method yielded 10131 
significant variants spread across at least 10 blocks. Most importantly, 
many of those blocks contain hundreds of consecutive variants. This 
is illustrated in Figure 3. As shown in Figure 3(A), most of the blocks 
are found in the exact same position as the highest spike, establishing 
that this spike is interesting not just because of the significant p-values 
found around it, but because these p-values are also so consistent that 
there are blocks of hundreds of consecutive test sites where each 
hypothesis in the block is significant at the nominal level. It is notable 
to compare this and the result in Chromosome 2, because while both 
have this high peak, the signal was not as strongly consistent across 
consecutive positions for Chromosome 2 as it is for Chromosome 6. 
Once again, it is emphasized that these discoveries for Chromosome 
6 were achieved at a nominal level that is low enough that it can be 
appended onto any other FDR controlling method.

Figure 3

Results for Chromosome 6. Significant variants are colored red. (A) 
is the entire dataset while (B) to (C) show snapshots around locations 
where significant blocks were found
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CONCLUSION 

A power boosting method for type 1 error rate control was demonstrated. This method is applicable in 
settings where the hypotheses can be reasonably assumed to follow some practical ordering, such that it is 
possible to determine which test sites are nearest to each test site. It was shown that this method is able to 
control FWER in the weak sense. More importantly, numerical evidence is provided that under an 
assumption of sparsity, the method is able to control FDR in the strong sense and at an adjustable level of 
conservativeness, making it possible to append the method onto another FDR controlling procedure in order 
to provide extra power at a minimal cost. This extra power is demonstrated through the application of the 
method on a GWAS dataset. 
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CONCLUSION

A power boosting method for type 1 error rate control was demonstrated. 
This method is applicable in settings where the hypotheses can be 
reasonably assumed to follow some practical ordering, such that it 
is possible to determine which test sites are nearest to each test site. 
It was shown that this method is able to control FWER in the weak 
sense. More importantly, numerical evidence is provided that under 
an assumption of sparsity, the method is able to control FDR in the 
strong sense and at an adjustable level of conservativeness, making 
it possible to append the method onto another FDR controlling 
procedure in order to provide extra power at a minimal cost. This 
extra power is demonstrated through the application of the method on 
a GWAS dataset.
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