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Abstract 

 
We consider portfolio credit risk modeling with a focus on two approaches, the factor model, and 

the copula model. While other models have received greater scrutiny, both factor and cupola 

models have received little attention although these are appropriate for rating-based portfolio risk 

analysis. We review the two models with emphasis on the joint default probability. The copula 

function describes the dependence structure of a multivariate random variable. In this paper, it is 

used as a practical to simulation of generate portfolio with different copula, we only use 

Gaussian and t–copula case. And we generate portfolio default distributions and study the 

sensitivity of commonly used risk measures with respect to the approach in modeling the 

dependence structure of the portfolio. 
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1. Introduction 

There is a need to understand components of portfolio risk and their interaction. The Basel 

Committee for Banking Supervision in its Basel proposed (BIS, 2001) to develop an appropriate 

framework for a global financial regulation system. Several portfolio credit risk models 

developed in the industry have been made public since then. Examples are: CreditMetrics 

(Gupton et al., 1997), CreditRisk+ (Credit Suisse Financial Products, 1997) and Credit Portfolio 

View (Wilson 1997a; 1997b). Others systems remain proprietary, such as KMV’s Portfolio 

Manager (Kealhofer, 1996). Although the models appear quite different on the surface, recent 
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theoretical work has shown an underlying mathematical equivalence among them (Gordy, 2000; 

and Koyluoglu and Hickman, 1998).  

The credit portfolio models to obtain portfolio loss distributions, which are statistical 

models, can be classified as based on credit rating systems; See Crouhy et al. (2001) for exact 

description and discussion of the various models. Frey and McNeil (2001) study the 

mathematical properties of the models and consider the modeling of dependent defaults in large 

credit portfolios using latent variable models and mixture models. Crouhy et al. (2000) compared 

and reviewed models on benchmark portfolio using credit migration approach, the structural 

approach, the actuarial approach, and McKinsey approach. However, few studies have attempted 

to investigate aspects of portfolio risk based on rating-based credit risk models. Gordy (2000) 

offered a comparative anatomy of two especially influential benchmarks for credit risk models, 

the Risk Metrics Group's Credit Metrics and Credit Suisse Financial Product’s . 

Kiesel et al. (1999) employ a mark-to-market model and stress the importance of stochastic 

changes in credit spreads associated with market values, an aspect also highlighted in Hirtle et al. 

(2001). 

The aim of this paper is to contribute to the understanding of the performance of rating-

based credit portfolio models, long ignored in the field. We apply a default-mode model to assess 

the effect of changing dependence structure within the portfolio. First, in the ensuing section, we 

discuss about the copula model as one of the  dependency approaches within the portfolio. 

Second, we describe a factor model by focusing on the effects of default dependence model 

within the portfolio. Finally, in the penultimate section, we simulated types of copula model with 

different degree of freedom within the portfolio.  

 

2. Copula Modelling 

An overview of basic copula uses in structural systems and models is provided in this section. 

Copulas provide a natural way to study and measure dependence between random variables. 

Suppose we have specified a portfolio of  obligors, with default times . The variable 
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of default of obligor , at time t, is donated as . The probability space 

is . This space has filtration : 

       (1) 
 
        For the joint default probability at time t, evaluated at time 0, as  

    (2) 

The survival property as  

    (3) 

        We take for granted the copula definition as a joint distribution function with uniform 

margins, which implies that and take for granted the fundamental Sklar’s theorem, in terms of 

a copula  and the marginal distribution functions : 

      (4) 
 
        The joint survival probability with survival copula,  and the marginal survival 

functions : 

       (5) 

Factor copula  is, 
 
       (6) 
 
        In the credit risk case, since the variables  are default time, the copula represents default 

dependence. It is donated as , 

      (7) 

       (8) 
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       According to Merton model (1974) if default of firm  occurs, the values of asset or values 

of shares cross from barrier line of outstanding debt at debt maturity. Default is occurred when 

the firm’s asset value  falls to the liability one, , the time of default is: 

      (9) 

The default probability at time  is, 
  
        (10) 
 
        The marginal default probability can be easily computed to be 
 

        (11) 
 
Then, 

       (12) 

And  is the instantaneous return on assets, which equates the riskless rate  under the risk 

neutral measure. The joint default probability of assets is 

 (13) 
 
Where,  is the distribution function of a standard normal vector with correlation matrix R. the 

marginal default probabilities is follows 

 )     (14) 
 
        To study the effect of different copula on default correlation, we use the following examples 

of copula (further details on these copula can be found in Embrechts et al., 2001). 

(i) Gaussian copula: 
 

    (15)    
 
Where,  denotes the joint distribution function of the - variety normal with linear correlation 

matrix  ,and the inverse of the distribution function of the univariate standard normal. 
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(ii) A student  copula: 
 

     (16) 
 
Where is the standardized multivariate Student’s  distribution, with correlation matrix 

and  degrees of freedom, While  is the inverse of the corresponding margin. 
Gumbel copula: 
 

  (17) 
 
Where . This class of copula is a sub-class of the class of Archimedean copula. 

        According to the table[1], joint default probabilities of two obligors are represented through 

three types of obligors with individual default probabilities corresponding to rating classes.as 

you will see that   and Gumbel copula have higher joint default probabilities than the Gaussian 

copula. 

The joint default probabilities of two Obligors are represented through three types of 

obligors with individual default probabilities corresponding to rating classes. 

  

Table 1: Copula and default probability 

 

      copula                                         Default probability 

 Class A  Class B  Class C  

              6.89              3.38              52.45 

              46.55              7.88              71.03 

              134.80              15.35               97.96 

Gumbel                57.20              14.84               144.56 

Gumbel                270.60              41.84               283.67 
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3. Factor Modelling 

Another popular approach to default modeling allows us to switch to the so called product 

copula. The reduction technique, which is widely adopted for the evaluation of losses in high-

dimensional portfolios, with hundreds of obligors (see for instance Laurent and Gregory (2003)), 

is the standard approach of (linear) factorization, or transformation into a Bernoulli factor model. 

In the typical portfolio analysis the vector is embedded in a factor model, which allows for 

easy analysis of correlation, the typical measure of dependence. We assume that the underlying 

variables are driven by a vector of common factors. 

     (18)           
 
Where is dimensional normal vector, and is independent normally distributed random 

variables. Here is obligor  to factor , i.e. the so-called factor loading and is volatility of 

the risk contribution. The default indicators of the  obligor are independent Bernoulli 

variables, with probability: 

       (19) 

 
Where is cut-off point for default obligor . The individual default probabilities are, 
  

      (20) 
 

And the joint default probability is, 
 

    (21) 
 
If we denote by  the correlation of the underlying latent variables and 

by  the default correlation of obligors and , then we obtain the default 

correlation formula 

       (22) 
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Under assumption above, we obtain the joint default probability, 
 

      (23) 
 
Where is bivariate normal density with correlation coefficient . 
 
 

4. Simulation Results of Copula Model 

Here, we want to generate portfolios with given marginal and the above copula. we only use 

Gauss and  copula case . We looking for random sample generation for this mean we obtain 

the generation of an   -variety normal with liner correlation matrix ,to 

take realizations from a Gaussian copula we simply have to transform the marginal: 

• Set  
•  

 
To generate random varieties from the –copula  we assume the random vector X act 

the stochastic process   

      (24) 

 
 
With 
 
        
 
Where Z and Y are independent, and then X is  distributed with mean and covariance 

matrix  we assume , while the stochastic process is still valid the parameters has to 

change for . We will have algorithm (this is algorithm in Embrechts et al. (2001)): 

• Set  

• Set  
• . 
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We can replace the  with   in order to have multivariate distribution with –copula 

and normal marginal, to obtain the –copula . 

Figure 1 shows three simulation results with 1000, 500, and 50 observations from a 

multivariate normal distribution. As you see the represents tree types of observations from a 

multivariate normal distribution with mean vector mu and covariance matrix. The figure 2 shows 

to computes a scatterplot of a normal sample and in a second plot the contour ellipses for mu =# 

(3, 2) and sigma = # (1,-1.5) ~# (-1.5, 4) with different observations. 

Figure1: Simulation results from samples of 1,000, 500 and 50 observations 

 
                 A=1000                                                       B=500                                                C=50 

 
Figure 2: Scatter plots of normal sample and second plot of the contour ellipses 

 

 
                                  A=1000                                         B=500                                                C=50 
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Further analyses of the same data are plotted in Figure 2. These are scatterplots of a normal 

sample. In an adjacent plot next to each sample, we present a second plot as the contour ellipses 

for mu =# (3, 2) and sigma = # (1,-1.5) ~# (-1.5, 4) with different size.                             

4.1 Portfolio  

For our first simulation exercise, we assume that the underlying variables are normally 

distributed within a single factor framework, i.e.  and  in formula as follow: 

                                         (25) 

They are constant and are chosen so that the correlation for the underlying latent variables  is 

 (Kiesel et al., 1999. Note that we use three rating classes, named A, B, and C with 

default probabilities 0.005, 0.05, and 0.15 roughly corresponding to default probabilities from 

standard rating classes (Ong, 1999). To generate different degrees of tail correlation, we link the 

individual assets together using a Gaussian, a and a -copula. 

The information in table 2, 3 and 4 represent the effect tail-dependence has on the high 

quintiles of highly-rated portfolios at different quintiles: Table 2 is for 99 percentile.  

Table2: Effect of normal copula with default probability set at 0.005 

 

Portfolio     Copula            Mean   variance   
A=1000 normal 0.115 0.13391 1 2 
A=500 normal 0.106 0.119 1 1 
A=50 normal 0.18 0.19143 1 2 
B=1000 normal 0.99 1.8277 4 6 
B=500 normal 1.038 1.8442 4 6 
B=50 normal 1.18 2.3955 4 6 
C=1000 normal 3.029 7.0953 8 11 
C=500 normal 2.998 6.9078 8 11 

C=
50 

normal 3.1 7.3163 9 10 
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The copula is more than three-times larger than the corresponding quintile for the Gaussian 

copula. The same effect can be observed for lower rated portfolios although not quite with a 

similar magnitude. 

Table3: effect of  with default probability 0.05 

Portfolio Copula Mean   variance   
A=1000  0.101 0.26907 1 2 
A=500  0.098 0.15671 1 2 
A=50  0.14 0.36776 1 4 
B=1000  0.963 2.38 4 6 
B=500  0.994 2.1984 4 6 
B=50  1.06 2.9147 4 9 
C=1000  3.008 7.9799 9 11 
C=500  3.05 7.9474 9 12 

C=50  3.42 8.9016 9 11 
 

We assume the second factor, i.e.  in (4), for a sub-portfolio of 100 obligors 

increasing the correlation of the latent variables within the sub-portfolio to 0.5  

Table4: effect of  with default probability 0.15 

Portfolio Copula Mean   variance   
A=1000  0.088 0.39665 0 2 
A=500  0.084 0.24543 0 2 
A=50  0.22 2.42 0 11 

B=1000  0.924 3.1454 5 9 
B=500  1 3.0261 7 5 
B=50  1.02 3.5302 4 11 
C=1000  2.997 9.5860 10 12 
C=500  3.028 9.0213 9 13 
C=50  3.34 9.2086 9 12 
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Table 5: the effect of correlation cluster with default probability 0.005 

portfolio copula First  
subportfolio 

Second 
subportfolio 

mean variance   

A=1000 normal 100 150 1.237 6.8447 5 13 

A=500 normal 50 75 0.6 1.6433 2 7 

A=50 normal 20 30 0.24 0.47184 1 4 

B=1000 normal 100 150 12.723 204.41 41 71 

B=500 normal 50 75 6.198 47.951 20 33 

B=50 normal 20 30 2.58 7.3506 10 11 

C=1000 normal 100 150 37.972 871.43 96 132 

C=500 normal 50 75 18.832 200.1 49 63 

C=50 normal 20 30 7.74 30.36 20 23 

 

Table 6: the effect of correlation cluster with default probability 0.05 

 

portfolio copula First  
subportfolio 

Second 
subportfolio 

mean variance   

A=1000                        100 150 1.451 27.335 7 28 

A=500  50 75 0.644 6.7668 3 11 

A=50  20 30 0.2 0.32653 1 3 

B=1000  100 150 11.76 299.29 52 83 

B=500  50 75 6.28 85.605 24 44 

B=50  20 30 2.32 11.365 10 17 

C=1000  100 150 38.24 1104.7 105 148 

C=500  50 75 18.638 263.7 52 75 

C=50  20 30 7.5 31.235 17 24 
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Table 7: the effect of correlation cluster with default probability 0.15 

 

portfolio copula First  
subportfolio 

Second 
subportfolio 

mean variance   

A=1000                        100 150 1.635 70.278 7 42 

A=500  50 75 0.682 14.554 3 21 

A=50  20 30 0.36 2.1943 1 10 

B=1000  100 150 13.385 592.25 65 128 

B=500  50 75 6.266 132.82 28 61 

B=50  20 30 2.26 16.074 13 18 

C=1000  100 150 38.465 1395 117 157 

C=500  50 75 18.676 331.96 56 80 

C=50  20 30 7.56 41.109 23 27 

 

for this reasaning we want to shows the effects of increased correlation within parts of the 

portfolio; we change the factor loading within parts of our portfolio. These results are shown in 

tables 7, 9 and 10. 

        As expected, the results in Tables 5, 6, 7 show increase in the quantiles due to the increased 

correlation within the portfolio. However, comparing the three tables we will see that the 

sensitivity of the portfolio loss quantiles is higher with regard to the underlying copula than to 

the correlation within the portfolio. 

 

5. Conclusions 

To investigate the riskiness of credit-risky portfolios is one of the big challenging in financial 

mathematics. An important thing for a model of credit-risky portfolios is the dependence 

structure of the underlying obligors. We studied two approaches, a factor structure, and the direct 

specification of a copula. We generated portfolio default distributions and studied the sensitivity 
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of commonly used risk measures with respect to the approaches in modeling the dependence 

structure of the portfolio using as a rating-based approach using cupola mathematics.  

        The simulation results indicate that the degree of tail dependence of the underlying copula 

plays a major role. That is identified as a credit risk. The copula modeling links the underlying 

variables together, which is of crucial importance especially for portfolios of highly-rated 

obligors. 
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