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ABSTRACT 
 
Multi-objective swarm intelligence (MOSI) metaheuristics were 
proposed to solve multi-objective optimization problems (MOPs) 
that consist of two or more conflict objectives, in which improving an 
objective leads to the degradation of the other. The MOSI algorithms 
were based on the integration of single objective algorithms and  
multi-objective optimization (MOO) approaches. The MOO 
approaches included scalarization, Pareto dominance, decomposition, 
and indicator-based. In this paper, the status of MOO research and  
state-of-the-art MOSI algorithms, namely multi-objective particle 
swarm, artificial bee colony, firefly algorithm, bat algorithm, gravitational 
search algorithm, grey wolf optimizer, bacterial foraging, and  
moth-flame optimization algorithms, were reviewed. These reviewed 
algorithms were mainly developed to solve continuous MOPs. The 
review was based on how the algorithms dealt with objective functions 
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using MOO approaches, the benchmark MOPs used in the evaluation 
and performance metrics. Furthermore, it described the advantages 
and disadvantages of each MOO approach and provides some 
possible future research directions in this area. The results showed that 
several MOO approaches were used in most of the proposed MOSI 
algorithms. Integrating other different MOO approaches might help 
in developing more effective optimization algorithms, especially in 
solving complex MOPs. Furthermore, most of the MOSI algorithms 
were evaluated using MOPs with two objectives, which clarified open 
issues in this research area. 

Keywords: Optimization, metaheuristic, nature-inspired, Pareto 
front, population-based.

Introduction

A real-world optimization problem usually consists of conflicting 
objectives that should be taken into consideration when making 
decisions. A problem associated with multiple objectives is commonly 
called a multi-objective optimization problem (MOP). The process of 
solving a MOP is known as multi-objective optimization (MOO). The 
solution of a MOP comprises a set of non-dominated solutions. The 
set of non-dominated solutions is called Pareto front. The MOP is a 
complex optimization problem and this complexity increases with the 
increasing number of objectives. Thus, the process of solving a MOP 
is non-trivial.

Metaheuristics are general optimization methods applicable to solve 
different optimization problems (Sörensen et al., 2018; Stojanović 
et al., 2017). In contrast to traditional methods, such as goal  
(Li, 2019), mixed-integer (Singh & Goh, 2019) linear programming, 
and weighted summation (Marler & Arora, 2010), metaheuristics 
apply a stochastic approach to find a feasible solution among 
randomly generated solutions. Metaheuristics are simple to implement 
practically and have proven their efficiency in different fields, such as 
operations research (Li et al., 2020), engineering (Dede et al., 2020; 
Sayed et al., 2018), and healthcare (Tsai et al., 2016). The strong point 
of metaheuristics is that they do not require detailed knowledge of the 
problem. One can represent metaheuristics by a black box carrying 
inputs (the variables) and outputs according to the objective functions 
(Talbi, 2009; Tamura & Gallagher, 2019). 
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The focus of this paper is on swarm intelligence (Beni & Wang, 
1993) algorithms that have gained great attention as compared 
to evolutionary algorithms (Del Ser et al., 2019). Many swarm 
intelligence algorithms have been proposed and used to solve various 
optimization problems (Karaboga & Basturk, 2007; Kennedy & 
Eberhart, 1995; Mirjalili, 2015; Mirjalili et al., 2014; Rashedi et al., 
2009; Yang, 2009, 2010). This due to their simple structure and high 
solution accuracy. However, these algorithms were mainly proposed 
to deal with single objective optimization problems (SOPs), where 
the goal is to minimize or maximize a single criterion (objective). 
To solve MOPs, several multi-objective swarm intelligence (MOSI) 
algorithms have been proposed (Coello et al., 2004; Hassanzadeh 
& Rouhani, 2010; Mirjalili et al., 2016; Niu et al., 2013; Savsani & 
Tawhid, 2017; Yang, 2012, 2013). In practice, a MOSI algorithm 
consists of combining a single objective swarm intelligence algorithm 
with a MOO approach to handle MOPs. 

Figure 1

Year-Wise Distribution of Publications.

 
 
Figure 1. Year-wise distribution of publications. 
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However, the number of published papers related to MOSI algorithms 
is relatively low as compared to multi-objective evolutionary 
algorithms. Most real-world problems are multi-objective in nature. 
Thus, the current trend is to either develop new algorithms and validate 
them with some of the metrics of MOPs or to develop interesting 
applications of existing algorithms. 

In this paper, the MOSI algorithms are reviewed based on the MOO 
approaches. Despite the numerous MOSI optimization algorithms 
currently available, there is no review based on the MOO approaches 
that has been published so far to the best of the authors’ knowledge. 
The MOSI algorithm papers that have been reviewed cover the 
benchmark MOPs and performance metrics used in the evaluation 
process. Figure 1 shows the year-wise distribution of the publications 
that have been reviewed. 

A total of 100 publications related to swarm intelligence algorithms, 
MOO approaches, MOSI algorithms, benchmark MOPs, and 
performance metrics obtained from journals, conference proceedings, 
book chapters, and reports have been reviewed. Among these 
publications, 62 papers were published in journals, 28 papers appeared 
in conference proceedings, 6 papers were from book chapters, 3 books, 
and a technical report. The types and title of publications are shown 
in Table 1. The publications are listed in different databases, namely 
the Web of Science, Scopus, Association for Computing Machinery, 
Springer, Institute of Electrical and Electronics Engineers (IEEE) 
Xplore, ScienceDirect, and Google Scholar. Title, abstract, and index 
terms were used to conduct the search for publication.
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Table 1
 
Types and Publication Titles

No. Type Title No. Type Title
1. Journal IEEE Transactions 

on Evolutionary 
Computation.

40. Journal International Journal of 
Production Research.

2. Journal Evolutionary 
Computation.

41. Journal Phylogenetics and 
Evolution.

3. Journal IEEE Control 
Systems Magazine.

42. Journal Mathematical 
Problems in 
Engineering.

4. Journal Genetic 
Programming 
and Evolvable 

Machines, 
Springer.

43. Journal Journal of 
Experimental & 

Theoretical Artificial 
Intelligence.

5. Journal International 
Journal of 
Intelligent 
Systems.

44. Journal Springer Nature: 
Computer Science.

6. Journal Engineering 
Optimization.

45. Journal Journal of Cleaner 
Production.

7. Journal Information 
Sciences.

46. Journal Natural Computing.

8. Journal Structural and 
multidisciplinary 

Optimization, 
Springer.

47. Journal Transportation 
Research Part 
C: Emerging 
Technologies.

9. Journal SIAM Journal on 
Optimization.

48. Proceeding International 
Conference 

on Computer 
Communication and 

Informatics.

10. Journal Swarm and 
Evolutionary 
Computation.

49. Proceeding International 
Conference on 

Multimedia 
and Ubiquitous 

Engineering.

11. Journal International 
Journal of 

Bio-Inspired 
Computation.

50. Proceeding IEEE International 
Conference on 

Granular Computing.

(continued)
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No. Type Title No. Type Title
12. Journal Engineering with 

Computers.
51. Proceeding Stochastic Algorithms: 

Foundations and 
Applications, Springer.

13. Journal Neurocomputing. 52. Proceeding International 
Conference on 
Computational 
Intelligence, 

Communication 
Systems and Networks, 

IEEE.

14. Journal Advances in 
Engineering 

Software.

53. Proceeding Annual Conference 
on Genetic and 
Evolutionary 
Computation, 

Association for 
Computing Machinery.

15. Journal Algorithms. 54. Proceeding IEEE Innovative Smart 
Grid Technologies-

Asia.

16. Journal Knowledge-Based 
Systems.

55. Proceeding Latin American 
Computing 
Conference.

17. Journal European Journal 
of Operational 

Research.

56. Proceeding International 
Conference on Parallel 
Problem Solving from 

Nature, Springer.

18. Journal International 
Journal of 

Electrical Power & 
Energy Systems.

57. Proceeding International Fuzzy 
Systems Association 

World Congress, 
Springer.

19. Journal International 
Journal of System 

Assurance 
Engineering and 

Management.

58. Proceeding International 
Conference on Neural 

Networks, IEEE.

20. Journal Expert Systems 
with Applications.

59. Proceeding International 
Conference on 

Evolutionary Multi-
Criterion Optimization, 

Springer.

21. Journal Neural Computing 
and Applications.

60. Proceeding International Energy 
and Sustainability 

Conference.

(continued)
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No. Type Title No. Type Title

22. Journal Advanced 
Engineering 
Optimization 

Through Intelligent 
Techniques.

61. Proceeding IEEE Region 10 
Conference.

23. Journal Computational 
Intelligence and 
Neuroscience.

62. Proceeding Congress on 
Evolutionary 

Computation, IEEE.

24. Journal Applied 
Intelligence.

63. Proceeding Genetic and 
Evolutionary 
Computation 

Conference, Springer.

25. Journal Engineering 
Review.

64. Proceeding Chinese Control 
Conference, IEEE.

26. Journal Engineering 
Applications 
of Artificial 
Intelligence.

65. Proceeding IEEE Congress 
on Evolutionary 
Computation.

27. Journal Applied Soft 
Computing.

66. Proceeding Power Systems 
Conference.

28. Journal Optimization 
Online.

67. Proceeding International 
Conference on 

Pattern Recognition 
Applications and 

Methods.

29. Journal IEEE Access. 68. Book Multiobjective 
Optimization.

30. Journal Mathematics. 69. Book Predator-Prey 
Interactions: Co-

Evolution Between 
Bats and Their Prey.

31. Journal Journal of Risk and 
Reliability.

70. Book Metaheuristics: 
From design to 
implementation.

32. Journal IETE Journal of 
Research.

71. Book Multi-objective 
Evolutionary 

Optimisation for 
Product Design and 

Manufacturing.
33. Journal International 

Journal of Systems 
Science.

72. Book 
chapter

Swarm Intelligence 
in Cellular Robotic 

Systems.

(continued)
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No. Type Title No. Type Title
34. Journal IAENG 

International 
Journal of 

Computer Science.

73 Book chapter Nature Inspired 
Cooperative 

Strategies for 
Optimization, 

Springer.

35. Journal Wireless Networks. 74. Book chapter Classical and Recent 
Aspects of Power 

System Optimization.

36. Journal Computers 
& Electrical 
Engineering.

75. Book chapter Handbook of 
Heuristics.

37. Journal Complex & 
Intelligent 
Systems.

76. Book chapter Multiobjective 
Optimization: 
Interactive and 
Evolutionary 
Approaches.

38. Journal Engineering 
Optimization.

77. Technical 
Report

University of 
Essex and Nanyang 

Technological 
University.39. Journal Open Mathematics.

The sections in this paper are organized as follows. A brief definition 
of swarm intelligence and description of the most popular swarm 
intelligence optimization algorithms are presented in the next 
section. This is followed by describing the MOO approaches, in 
terms of the ways in dealing with objective functions and limitations. 
Next, the reviewed MOSI optimization algorithms based on the 
MOO approaches, benchmark MOPs, and performance metrics are 
presented. Lastly, the conclusion and future work of developing 
MOSI algorithms are highlighted.

SWARM INTELLIGENCE OPTIMIZATION ALGORITHMS

Swarm intelligence is an artificial intelligence technique that refers to 
the local interactions between agents or the environment by following 
some simple rules (Beni & Wang, 1993). Figure 2 shows the timeline 
of swarm intelligence algorithms that have been proposed from 1992 
until 2020. 
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Figure 2

Chronology of Swarm Intelligence Metaheuristics.

Most swarm intelligence metaheuristics were developed according to 
the collective behavior of groups in biological systems, such as bird 
flocking, fish schooling, and animal herding. However, not all swarm 
intelligence metaheuristics are developed this way. Other algorithms 
have been developed using the inspiration of physical systems such as 
gravitational search algorithm (GSA) (Rashedi et al., 2009).

This paper briefly describes the popularly used swarm intelligence 
algorithms (Lones, 2020), namely particle swarm optimization (PSO) 
(Kennedy & Eberhart, 1995), bacterial foraging optimization (BFO) 
(Passino, 2002), artificial bee colony (ABC) (Karaboga & Basturk, 
2007), bat algorithm (BA) (Yang, 2010), grey wolf optimizer (GWO) 
(Mirjalili et al., 2014), firefly algorithm (FA) (Yang, 2009), GSA, and 
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Most swarm intelligence metaheuristics were developed according to the collective behavior of groups 
in biological systems, such as bird flocking, fish schooling, and animal herding. However, not all swarm 
intelligence metaheuristics are developed this way. Other algorithms have been developed using the 
inspiration of physical systems such as gravitational search algorithm (GSA) (Rashedi et al., 2009). 
 
This paper briefly describes the popularly used swarm intelligence algorithms (Lones, 2020), namely 
particle swarm optimization (PSO) (Kennedy & Eberhart, 1995), bacterial foraging optimization (BFO) 
(Passino, 2002), artificial bee colony (ABC) (Karaboga & Basturk, 2007), bat algorithm (BA) (Yang, 
2010), grey wolf optimizer (GWO) (Mirjalili et al., 2014), firefly algorithm (FA) (Yang, 2009), GSA, 
and moth-flame optimization (MFO) (Mirjalili, 2015). Additionally, it reviews the MOSI algorithms 
based on MOO integrated with each algorithm.  
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moth-flame optimization (MFO) (Mirjalili, 2015). Additionally, it 
reviews the MOSI algorithms based on MOO integrated with each 
algorithm. 

The PSO algorithm mimics the swarm behavior of animals such as 
flocks of birds and schools of fish. The BFO algorithm proposed by 
Passino (2002) was developed according to the foraging behavior 
of Escherichia coli bacteria. The ABC algorithm was developed based 
on the foraging behavior of honeybees. The FA algorithm mimics the 
light-emitting behavior of fireflies. These insects use special organs 
to produce light inside their bodies. This light production is a form 
of chemical reaction called bioluminescence (Stanger-Hall et al., 
2007). The attractiveness between fireflies is proportional to light 
intensity. For any two shining fireflies, the one of lesser intensity will 
move toward the greater one. If there is no brightness difference, the 
movement occurs at random. The BA mimics the echolocation behavior 
of microbats, which allows them to efficiently locate and hunt their 
prey even in complete darkness (Jacobs & Bastian, 2017). The GSA 
was developed according to the Newton’s laws of gravity and motion. 
In the GSA, the collection of masses represents the searcher agents. 
The GWO was developed according to the leadership hierarchy and 
hunting mechanism of grey wolves. the algorithm is guided by the 
first three best solutions in the search space that are known as alpha, α, 
beta, β, and delta, δ. The remaining candidate solutions are omegas, ω. 
Searching for prey is an exploration or global search, while attacking 
the prey is exploitation or local search. The MFO algorithm (Mirjalili, 
2015) was developed according to the navigation behavior of moths in 
nature. In the MFO algorithm, a moth spirally flies around lights and 
utilizes the transverse orientation technique to fly long distances in a 
straight path. This can be achieved by maintaining a constant angle 
relative to a distant point source of the moon. In MFO, the moths are 
modeled as candidate solutions for an optimization problem, while 
flames represent the best position found so far. 

MULTI-OBJECTIVE OPTIMIZATION

The MOO problem can be defined as the search for a vector X = (x1, 
..., xn) that optimizes M objectives, fM (X) and satisfies constraints as 
shown in Equation 1 (Deb, 2011).
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(1)

where h(X) and g(X) are the equality and inequality constraints, 
respectively.  represent the ranges of the decision variables, X. D is 
the dimension of decision space.

The MOO approaches, based on the way of dealing with objective 
functions, can be divided into four main categories, namely 
scalarization, Pareto dominance, decomposition, and indicator-based 
(Emmerich & Deutz, 2018). Scalarization is a traditional approach to 
solve MOPs. This approach transforms a MOP problem into a SOP. 
A common scalarization method is the weighted sum. This method 
consists of adding all the objectives by assigning a weight for each 
objective (Emmerich & Deutz, 2018). The Pareto dominance approach 
uses Pareto dominance relation to select non-dominated solutions. 
According to the Pareto dominance relation, a solution p is said to 
dominate q, if a solution p is better than q in at least one objective, and 
p is better than or equal to q in all fM (X) (Emmerich & Deutz, 2018). 
The Pareto dominance is the most popular approach in the field of 
MOO. A decomposition-based approach transforms the MOP into a 
set of SOPs that are solved by using a single objective optimization 
algorithm. A scalarization method is used to calculate the fitness 
value of each sub-problem. Each sub-problem is associated with a 
weight vector (Tan et al., 2019). The indicator-based approach was 
first proposed as a general framework by Zitzler and Künzli (2004). 
This approach uses performance indicators, such as the hypervolume 
(Zitzler & Thiele, 1999), to score solutions. The goal is to maximize 
(in the case of hypervolume) the value of the indicator associated with 
the approximation (Emmerich & Deutz, 2018). 

The scalarization-based approaches are strongly dependent on the 
aggregation function. In the weighted sum method, the weights may 
not reflect the relative importance of the objectives. Thus, the problem 
with new weights need to be resolved (Brück et al., 2018; Jakob & 

MULTI-OBJECTIVE OPTIMIZATION 
 
X = (x1, ..., xn)  
M objectives, fM (X)  
 

 
 
h(X) and g(X) 
 
 𝑥𝑥𝑖𝑖

𝑙𝑙𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑖𝑖
𝑢𝑢𝑙𝑙,  

 
fM (X)  
 
 

Minimize 𝑓𝑓𝑚𝑚(�⃗�𝑋)     𝑚𝑚 = 1,2, … , 𝑀𝑀; 
subject to: 

𝑔𝑔𝑘𝑘(�⃗�𝑋) ≤ 0    𝑘𝑘 = 1,2,3, … , 𝐾𝐾 
ℎ𝑗𝑗(�⃗�𝑋) = 0    𝑗𝑗 = 1,2,3, … , 𝐽𝐽 

𝑥𝑥𝑖𝑖
𝑙𝑙𝑙𝑙 ≤ 𝑥𝑥i𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖

𝑢𝑢𝑙𝑙 𝑖𝑖 = 1, 2, … , 𝐷𝐷 

(1) 
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Blume, 2014). The Pareto dominance approach has become the main 
approach in solving MOPs. However, the Pareto dominance-based 
algorithms may face the loss of a selection pressure (Li et al., 2018; 
Ochoa et al., 2000), which leads to poor convergence toward the Pareto 
front (Coello et al., 2019; Liu et al., 2019). Obtaining a uniformly 
distributed solution set for many decomposition-based algorithms 
still remains a challenge (Coello et al., 2019). The decomposition-
based approaches are strongly affected by the method used to generate 
weights and scalarization function. Improper weight vector leads to 
poor convergence toward the true Pareto front (Weiszer et al., 2018). 
Furthermore, the number of weights grows exponentially with the 
number of objectives (Emmerich & Deutz, 2018). The indicator-based 
approach has been recently used by several studies as an alternative to 
deal with MOP. However, the advantages of this approach are still not 
as clear as compared to other MOO approaches (Coello et al., 2019). 

REVIEW OF THE MOSI OPTIMIZATION ALGORITHMS

The section provides a review for the multi-objective PSO (MOPSO), 
multi-objective ABC (MOABC), multi-objective FA (MOFA), multi-
objective BA (MOBA), multi-objective GSA (MOGSA), multi-
objective GWO (MOGWO), multi-objective BFO (MOBFO), and 
multi-objective MFO (MOMFO) algorithms. These algorithms can 
be considered as extensions to the single objective optimization 
algorithms, which are integrated with MOO to solve MOPs.

Scalarization-Based Approach

Several MOSI algorithms have been proposed based on the 
scalarization approach (Mellal & Zio, 2019; Yang, 2012; 2013). Yang 
(2012) proposed MOBA, which extends the BA algorithm, to solve a 
MOP. This algorithm was developed according to the weighted sum 
method. The proposed algorithm was evaluated by using different 
MOPs with two objectives. However, the performance of MOBA 
was not compared to the performance of other MOSI algorithms. In 
Yang (2013), the same author of MOBA proposed MOFA, which was 
also developed based on the weighted sum approach and used Lévy 
flights to maintain population diversity. MOFA was used to solve a 
set of MOPs and engineering problems. According to Yang (2013), 
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the MOFA outperformed other MOO algorithms. Following the same 
approach, Mellal and Zio (2019) proposed a MOPSO algorithm based 
on the weighted sum method, where Lévy flight was used to maintain 
the population diversity. The authors showed that the results of the 
proposed algorithm were superior to the standard PSO. In solving 
MOPs with non-convex Pareto front, some solutions may not be 
accessible using the weighted sum method (Brück et al., 2018; Jakob 
& Blume, 2014). Therefore, there is no guarantee that the Pareto curve 
will be well distributed.

Pareto Dominance-Based Approach
 
Many MOSI algorithms have been proposed according to the Pareto 
dominance approach (Akbari et al., 2012; Bhowmik & Chakraborty, 
2015; Chen et al., 2019; Coello et al., 2004; Hassanzadeh & Rouhani, 
2010; Huang et al., 2006; Janga Reddy & Nagesh Kumar, 2007; 
Kumawat et al., 2017; Li, 2003; Man-Im et al., 2015; Mirjalili et al., 
2016; Niu et al., 2013; Prakash et al., 2016; Savsani & Tawhid, 2017; 
Sierra & Coello, 2005; Sun & Gao, 2019; Yang & Ji, 2016). These 
algorithms employed different strategies to maintain the population 
diversity. Some of these algorithms used the crowding distance to 
maintain the diversity of population (Bhowmik & Chakraborty, 2015; 
Chen et al., 2019; Huang et al., 2006; Janga Reddy & Nagesh Kumar, 
2007; Li, 2003; Man-Im et al., 2015; Niu et al., 2013; Prakash et al., 
2016; Sierra & Coello, 2005; Sun & Gao, 2019; Yang & Ji, 2016). 
However, in some cases, the crowding distance approach cannot be 
used to select appropriate solutions, which may affect the diversity of 
solutions (Savsani & Tawhid, 2017; Vachhani et al., 2016). 

The grid mechanism proposed by Knowles and Corne (2000) has 
been used in algorithms proposed by Coello et al. (2004), Mirjalili 
et al. (2016), Akbari et al. (2012), Hassanzadeh and Rouhani (2010), 
and Kumawat et al. (2017) to maintain the diversity of non-dominated 
solutions stored in an external archive. However, the grid mechanism 
depends heavily on the number of cells and has a high computational 
complexity. 

Although Pareto dominance-based algorithms (Bhowmik & 
Chakraborty, 2015; Hassanzadeh & Rouhani, 2010; Huang et al., 
2006; Kumawat et al., 2017; Li, 2003; Man-Im et al., 2015; Niu et 
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al., 2013; Sierra & Coello, 2005; Yang & Ji, 2016) showed good 
performance in terms of convergence and diversity in solving different 
MOPs, they have not been tested in solving MOPs with more than 
two objectives. Therefore, further testing needs to be conducted to 
determine the performance in solving more complex MOPs. In Akbari 
et al. (2012) and Mirjalili et al. (2016), the algorithms were evaluated 
by solving MOPs with two and three objectives. Based on the results, 
the algorithms showed superior performance as compared to other 
state-of-the-art algorithms such as multi-objective evolutionary 
algorithm based on decomposition (MOEA/D) (Zhang & Li, 2007) 
and MOPSO (Coello et al., 2004). 

The proposed Pareto dominance-based algorithms have been 
mainly developed to solve particular MOPs (Mahmoodabadi & 
Shahangian, 2019; Mohamed et al., 2016). The MOGWO proposed 
by Mohamed et al. (2016) was used to solve the optimal power 
flow of MOPs and it showed superior performance as compared to 
other MOO algorithms. However, according to the no-free-lunch 
theorem, there is no optimization algorithm that works well on all 
optimization problems. An optimization algorithm may achieve very 
good results on a set of optimization problems; nevertheless, it is not 
suitable for others. Therefore, further testing needs to be conducted 
to evaluate the performance of this algorithm in solving different 
MOPs. Mahmoodabadi and Shahangian (2019) proposed a MOABC 
algorithm to solve MOPs where the diversity of solutions in the archive 
was maintained using a pruning technique. The proposed algorithm 
was used to design an adaptive controller for the ball-beam system. 
Furthermore, the MOABC was used to solve a set of MOPs with two 
objectives. However, the results were not compared with other MOO 
algorithms, which was required to validate the performance of the 
algorithm.
 
Decomposition-Based Approach

Some of the decomposition-based MOSI algorithms followed the 
same concept used in Zhang and Li (2007) and replaced the genetic 
algorithm with a swarm intelligence algorithm (Peng & Zhang, 2008; 
Sapre & Mini, 2020). However, in these algorithms, the old solutions 
were replaced by new solutions with respect to the aggregation 
function values. This replacement did not take into consideration 
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the diversity of new solutions in the objective space, which might 
lead to poor population diversity (Dai et al., 2015). To overcome this 
limitation, Dai et al. (2015) proposed a MOPSO algorithm based on 
the decomposition approach where the Pareto optimal solution was 
generated for each sub-region in the objective space. In the proposed 
algorithm, different strategies were used to preserve the diversity 
of population. The crossover operations with selection strategy and 
neighborhood correction were used to perform the search process. 
Furthermore, the selection operation of the best solutions was 
performed based on the crowding distance, which was used as a 
fitness value for each solution. According to the results, the proposed 
algorithms could significantly outperform other MOO algorithms 
such as non-dominated sorting genetic algorithm (NSGA-II) (Deb, 
Pratap et al., 2002) and MOEA/D in solving a set of MOPs. However, 
the usage of crowding distance might lead to a loss of population 
diversity in some situations. 

Others studies proposed a decomposition-based MOSI algorithm by 
utilizing a penalty boundary intersection (PBI) method, which is used 
as a scalarization function (Bai & Liu, 2016; Zapotecas Martínez & 
Coello Coello, 2011). According to Bai and Liu (2016), the proposed 
algorithm showed superior performance as compared to other state-of-
the-art algorithms such as Pareto archive evolution strategy (Knowles 
& Corne, 2000), MOEA/D, NSGA-II, and optimal multi-objective 
optimization based on PSO (Niu & Shen, 2007). The performance 
of the algorithm proposed by Zapotecas Martínez and Coello Coello 
(2011) was evaluated by solving different MOPs with two and three 
objectives. Based on the results, the proposed algorithm outperformed 
smart multi-objective particle swarm optimizer using decomposition 
(Al Moubayed et al., 2010) and MOEA/D algorithms in solving 
most MOPs. Although the PBI method produced more uniform 
solutions than other scalarization functions, such as Tchebycheff, 
its performance depended on penalty parameter (Mohammadi et al., 
2015).

Indicator-Based MOMH

The indicator-based approach is relatively new as compared to the 
Pareto dominance and decomposition-based approaches. Therefore, it 
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has received little attention in the area of MOSI algorithms. García et 
al. (2014) proposed a MOPSO algorithm based on the hypervolume 
(Zitzler & Thiele, 1999) indicator. The proposed algorithm used the 
hypervolume contribution value to select the leaders from an external 
archive and as a mechanism for updating the external archive during 
the optimization process. Although the proposed hypervolume-based 
algorithm showed competitive performance as compared to other 
Pareto dominance-based and hypervolume-based algorithms, the main 
disadvantage of this approach was the computational complexity of 
the hypervolume, which increased by raising the number of objectives 
(Riquelme et al., 2015). 

Other studies followed the same concept by using the R2 indicator 
instead of the hypervolume (Díaz-Manríquez et al., 2016; Wei et al., 
2018). Díaz-Manríquez et al. (2016) proposed an R2-based MOPSO 
algorithm where the leaders of the swarm were selected based on the 
R2 indicator contribution value. 

Furthermore, the usage of a Pareto dominance approach has been 
eliminated from the evolution process and applied only on the external 
archive. This leads to a reduction in the computational cost of the 
algorithm. Results were compared to other well-known algorithms 
such as MOEA/D and NSGA-II, which showed a competitive 
performance in solving MOPs with two and three objectives. Wei 
et al. (2018) proposed a MOPSO algorithm based on R2 indicator. 
The R2 indicator contribution value was used to select individuals 
from the external archive instead of the crowding distance. The 
swarm diversity in the archive was maintained through polynomial 
mutation (Deb, Pratap et al., 2002). Wei et al. (2018) highlighted that 
the performance, in terms of convergence and diversity achieved by 
R2-based MOPSO, was competitive as compared to those obtained 
by four state-of-the-art MOO algorithms. However, the performance 
of the proposed algorithm depended on the value of parameters, 
namely maximum age of particle, probability of crossover, and 
probability of mutation. In general, the R2-based algorithm requires 
a weight vector associated with the specific objective function. The 
number of weights increases with the number of objectives (Zitzler 
et al., 2008). Furthermore, the convergence toward the Pareto front 
depends strongly on the weight vector. 

Other MOSI algorithms combined two or more MOO approaches to 
handle the multiple objectives (Al Moubayed et al., 2014; Li et al., 
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2015; Lin et al., 2015; Liu et al., 2019; Luo et al., 2017; Wei et al., 
2017). The combination of Pareto dominance and decomposition-
based approaches was first proposed by Al Moubayed et al. (2014). 
These approaches were integrated with MOPSO and the PBI method 
was used as a scalarization function in the decomposition approach. 
The proposed algorithm used the Pareto dominance relation to 
select and store non-dominated solutions in an external archive. The 
crowding distance was calculated for both objective and decision 
spaces to maintain the diversity of population. The particle leaders 
were selected based on the crowding distance values. The performance 
of the proposed algorithm was evaluated by solving a set of MOPs. 
Results showed that the proposed algorithm outperformed other MOO 
algorithms such as MOEA/D and OMOPSO. 

Lin et al. (2015) followed the same concept and proposed a MOPSO 
algorithm by combining the Pareto dominance and decomposition 
approaches. In the proposed algorithm, two search strategies were 
utilized to preserve the search process. The leaders of particles were 
selected based on the best values of each sub-problem and all SOPs. 
The non-dominated solutions in the archive were updated based on the 
Pareto dominance approach and crowding distance. Results showed 
that the performance of the proposed algorithm outperformed other 
MOO algorithms in solving most MOPs. 

Wei et al. (2017) proposed a MOPSO algorithm based on the 
decomposition and Pareto dominance approaches. The comprehensive 
learning strategy and mutation operator were applied in the algorithm 
to control the exploration and exploitation and avoid falling into local 
optima. To maintain the diversity of the external archive, the crowding 
distance was used. The performance of the proposed algorithm was 
evaluated by using a set of MOPs. The results were compared with 
other MOO algorithms, which showed that the proposed algorithm 
was competitive in solving most MOPs. In the proposed algorithm, 
the Tchebycheff method was used as a scalarization function. 
However, the main drawback of this method was the computational 
complexity as it minimized each objective when using the reference 
point (Ramirez et al., 2018). In general, the algorithms that have 
been developed based on the Pareto dominance and decomposition 
approaches and employed crowding-distance and PBI method inherit 
their drawbacks as described earlier.
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Luo et al. (2017) and Luo et al. (2019) combined the indicator-based 
approach with Pareto dominance approach, while Li et al. (2015) 
combined the indicator approach with the decomposition approach. 
Luo et al. (2017) and Luo et al. (2019) proposed MOABC and 
MOPSO by integrating the epsilon indicator and Pareto dominance 
approach with the ABC and PSO algorithms. The epsilon indicator 
was used to evaluate the solutions and the Pareto dominance approach 
was applied to compare the solutions. An external archive was 
utilized to store the obtained non-dominated solutions. Based on the 
results, the proposed algorithms outperformed other state-of-the-art 
algorithms in solving MOPs with two and three objectives. However, 
the performance of an algorithm highly depends on the value of 
the epsilon indicator, which is determined by the decision maker. 
Improper value leads to poor approximation to the true Pareto front 
(Hernández-Díaz et al., 2007). Li et al. (2015) proposed a MOPSO 
algorithm based on the decomposition and R2-indicator approaches. 
The personal best position is updated by using the decomposition 
approach with different scalarization functions. The external archive 
based on the R2-indicator contribution value is used to select the 
global best solution. The performance of the proposed algorithm was 
evaluated by using MOPs with two and three objectives. However, 
according to Li et al. (2015), this algorithm was not suitable to solve 
high-dimensional MOPs with more than three objectives. Inspired by 
R2-MOPSO that was earlier proposed in Li et al. (2015), Liu et al. 
(2019) proposed a MOPSO algorithm to deal with high-dimensional 
MOPs. In the proposed algorithm, a bi-level archiving strategy based 
on the R2-indicator and decomposition approach was introduced to 
guide the search process. In the proposed algorithm, the personal best 
position was selected according to Pareto dominance relation, while 
the global-best position was selected based on the R2 contribution 
value. The performance of the algorithm was evaluated by solving 
high-dimensional MOPs and the results showed that it was superior 
than several MOO algorithms. Table 2 summarizes the MOO 
approaches applied in some of the well-known swarm intelligence 
metaheuristics. 
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Table 2
 
Summary of MOSI Optimization Algorithms with Respect to the MOO 
Approach 

No. Algorithm
Reference

MOO Approach Archive
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D
ec
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n
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to

r-b
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ed

1 MOBA
Yang (2012)

 - - - -

2 MOFA
Yang (2013)

 - - - -

3 MOPSO 
Mellal and Zio (2019)

 - - - -

4 MOPSO
Coello and Lechuga (2002)

-  - - 

5 MOPSO
Coello et al. (2004)

-  - - 

6 MOPSO
Janga Reddy and Nagesh Kumar 

(2007)

-  - - 

7 MOGSA
Hassanzadeh and Rouhani (2010)

-  - - 

8 MOABC 
Akbari et al. (2012)

-  - - 

9 MOBFO 
Niu et al. (2013)

-  - - -

10 MOPSO
Man-Im et al. (2015)

-  - - -

11 MOGSA
Bhowmik and Chakraborty (2015)

-  - - 

12 MOBFO
Yang and Ji (2016)

-  - - 

(continued)
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No. Algorithm
Reference

MOO Approach Archive
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n
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14 MOGWO
Mirjalili et al. (2016)

-  - - 

15 MOGWO
Mohamed et al. (2016)

-  - - 

16 MOABC
Kishor et al. (2016)

-  - - 

17 MOMFO
Savsani and Tawhid (2017)

-


- - -

18 MOGSA 
Zellagui et al. (2017)

-  - -


19 MOGWO
Jangir and Jangir (2018)

-  - - 

20 MOPSO
Sun and Gao (2019)

-


- - 

21 MOBA
Chen et al. (2019)

-  - -


22 MOABC
Mahmoodabadi and Shahangian 

(2019)

-  - - 

23 MOPSO
Peng and Zhang (2008)

- -


- 

24 MOPSO
Zapotecas Martínez and Coello 

Coello (2011)

- -  - -

25 MOPSO
Dai et al. (2015)

- -  - -

26 MOABC 
Bai and Liu (2016)

- -  - -

(continued)
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No. Algorithm
Reference

MOO Approach Archive
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28 MOPSO
García et al. (2014)

- - -  

29 MOPSO
Díaz-Manríquez et al. (2016)

- - -  

30 MOPSO
Wei et al. (2018)

- - -  

31 MOPSO
Sierra and Coello (2005)

-
 

-


32 MOPSO
Al Moubayed et al. (2014)

-   - 

33 MOPSO
Lin et al. (2015)

-   - 

34 MOPSO
Wei et al. (2017)

-
  -



35 MOABC
Luo et al. (2017)

-  -
 

36 MOPSO
Luo et al. (2019)

-  -  

37 MOPSO
Li et al. (2015)

 -   -

38 MOPSO
Liu et al. (2019)

-    

Total number of usage for each approach 4/38 26/38 11/38 7/38 28/38

It can be concluded that most of the previous MOSI algorithms (19 
out of 38) have been developed according to the Pareto dominance 
approach. This is due to its ability to find a potentially effective set of 
non-dominated solutions. The non-dominated sorting approach and 
crowding distance (Sierra & Coello, 2005) have been used with the 
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Pareto dominance approach in numerous algorithms in maintaining 
the population diversity and selecting the non-dominated solutions. On 
the other hand, five out of 40 MOSI algorithms have been developed 
according to the decomposition approach. This small number of 
studies is due to the difficulties in determining the weight vector and 
limitations of the aggregation functions.

From this review, very few studies (3 out of 38) have been developed 
based on the scalarization and indicator approaches. This is because 
the weighted sum method that has been used in the scalarization-based 
algorithms cannot provide efficient performance in solving complex 
and non-convex problems (Brück et al., 2018; Jakob & Blume, 2014). 
Furthermore, the indicator approach is relatively new as compared 
to scalarization, Pareto dominance, and decomposition approaches. 
Except for PSO and ABC algorithms, none of the present MOSI 
algorithms is developed according to the indicator-based approach. 
Most of the indicator-based MOPSO algorithms are developed based 
on the R2 indicator. This is due to the high computational complexity 
of hypervolume and the other indicators, such as generational distance 
and inverted generational distance (Coello & Cortés, 2005); their 
performance depends on the reference set (Ishibuchi et al., 2017). 

Studies are moving toward the usage of Pareto dominance and 
combined approaches. Furthermore, most of the reviewed MOSI 
algorithms (28 out of 38) use an external archive to save the obtained 
non-dominated solutions. During the optimization process, the 
solutions in the archive are updated at each iteration. This is achieved 
by generating new solutions and comparing them, one by one, with 
solutions in the archive. The new solution that dominates solutions in 
the archive will join the archive and the dominated solutions will be 
eliminated. The external archive technique has a limitation of high cost 
in terms of computation especially for large archives. Furthermore, 
the population of archives are often filled with many similar solutions 
(Coello et al., 2009).

Most of the proposed MOSI algorithms have been developed 
without incorporating the decision-maker’s (user) preferences into 
the algorithms. However, in a real situation, the decision-maker is 
interested in one solution, and not the whole Pareto front set. Thus, 
such incorporation helps in improving optimization efficiency, in 
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terms of effectively finding the most satisfactory solutions and 
reducing computational cost.

Benchmark MOPs with different features have been widely used in 
the literature to evaluate the performance of MOO algorithms. These 
benchmark MOPs include test functions and real-world problems. 
Test functions are normally used in the literature to validate the 
performance of a MOO algorithm or to compare two or more 
algorithms. In comparison to real-world problems, test functions 
have advantages whereby if their true Pareto front is known, their 
difficulty degree can be controlled, and in most problems, the number 
of objectives and decision variables can also be controlled (Tanabe 
& Ishibuchi, 2020). Several test problems have been used in the 
literature over the years (Deb, Thiele et al., 2002; Huband et al., 
2006; Zhang et al., 2008; Zitzler et al., 2000). Real-world problems 
have been used by many researchers to evaluate the performance of 
optimization algorithms. Most real-world problems in the continuous 
domain are the engineering problems (Stewart et al., 2008; Tanabe & 
Ishibuchi, 2020). 

In the area of MOO, several metrics have been proposed to evaluate 
the performance of MOO algorithms. In general, these performance 
metrics are used to measure two criteria, namely the convergence 
and diversity of non-dominated solutions (Mohammadi et al., 
2013). These metrics include but are not restricted to generational 
distance, epsilon (Zitzler et al., 2003), inverted generational distance, 
hypervolume, spread (Custódio et al., 2011), maximum spread, and 
spacing (Mirjalili et al., 2016). Table 3 shows the benchmark MOPs 
used in the reviewed publications, the number of objectives of the 
problems, and the performance metrics that were used to evaluate the 
performance of the proposed MOSI algorithms. 
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Table 3 
 

Benchmark Mops, Number of Objectives, and Performance Metrics 
Used in Mops 

No. Algorithm
Reference

Test 
Problem

Real-World 
MOP

Number of 
Objectives

Performance 
Metrics Used

1 MOPSO
Coello and 

Lechuga (2002)

 - 2 Maximum 
spread

2 MOPSO
Coello et al. 

(2004)

 - 2 Spacing, 
generational 

distance, error 
ratio

3 MOPSO
Sierra and Coello 

(2005)

 - 2, 3 Success 
counting
inverted 

generational 
distance, two 
Set coverage, 
hypervolume

4 MOPSO
Janga Reddy and 
Nagesh Kumar 

(2007)

  2 Set coverage 
metric, 

generational 
distance, spread

5 MOPSO
Peng and Zhang 

(2008)

 - 2 Inverted 
generational 

distance

6 MOGSA
Hassanzadeh and 
Rouhani (2010)

 - 2 Spacing, 
generational 

distance

7 MOPSO
Zapotecas 

Martínez and 
Coello Coello 

(2011)

 - 2, 3 Hypervolume, 
spacing, two set 

coverage

8 MOBA
Yang (2012)

  2 Distance

9 MOABC 
Akbari et al. 

(2012)

 2, 3 Inverted 
generational 

distance

10 MOBFO 
Niu et al. (2013)

 - 2 Diversity, 
generational 

distance
(continued)
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No. Algorithm
Reference

Test 
Problem

Real-World 
MOP

Number of 
Objectives

Performance 
Metrics Used

11 MOFA
Yang (2013)

  2 Distance

12 MOPSO
García et al. (2014)

 - 2, 3 Spread, inverted 
generational 

distance, 
hypervolume

13 MOPSO
Al Moubayed et al. 

(2014)

 - 2, 3 inverted 
generational 

distance, 
hypervolume, 

epsilon

14 MOPSO 
(Li et al., 2015)

 - 2, 3 generational 
distance, inverted 

generational 
distance

15 MOPSO
Lin et al. (2015)

 - 2, 3 Inverted 
generational 

distance

16 MOPSO
Dai et al. (2015)

 - 2, 3 Generational 
distance, inverted 

generational 
distance, 

hypervolume

17 MOPSO
Man-Im et al. 

(2015)

-  2 -

18 MOGSA
Bhowmik and 

Chakraborty (2015)

-  2 -

19 MOBFO
Yang and Ji (2016)

 - 2 Spacing, 
generational 

distance
20 MOBA

Prakash et al. 
(2016)

  2, 3 Generational 
distance, 

hypervolume, 
spacing

21 MOGWO
Mirjalili et al. 

(2016)

 - 2, 3 Maximum 
spread, spacing, 

inverted 
generational 

distance

(continued)
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No. Algorithm
Reference

Test 
Problem

Real-World 
MOP

Number of 
Objectives

Performance 
Metrics Used

22 MOGWO
Mohamed et al. 

(2016)

-  2 -

23 MOABC
Kishor et al. 

(2016)

  2 Inverted 
generational 

distance

24 MOPSO
Díaz-Manríquez 

et al. (2016)

 - 2, 3 Hypervolume

25 MOABC 
Bai and Liu 

(2016)

 - 2, 3 Inverted 
generational 

distance, 
hypervolume, 
spread, epsilon

26 MOMFO
Savsani and 

Tawhid (2017)

  2 Generational 
distance, 

spacing, spread

27 MOGSA 
Zellagui et al. 

(2017)

-  2 -

28 MOPSO
Wei et al. (2017)

 - 2, 3 Inverted 
generational 

distance

29 MOABC
Luo et al. (2017)

 - 2, 3, 5, 8 Hypervolume, 
inverted 

generational 
distance

30 MOGWO
Jangir and Jangir 

(2018)

  2 Generational 
distance, 
diversity

31 MOPSO
Wei et al. (2018)

 - 2, 3 Inverted 
generational 

distance

(continued)
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No. Algorithm
Reference

Test 
Problem

Real-World 
MOP

Number of 
Objectives

Performance 
Metrics Used

32 MOPSO
Sun and Gao 

(2019)

 - 2 Generational 
distance, 
diversity, 
maximum 

spread

33 MOBA
Chen et al. (2019)

-  2, 3 -

34 MOPSO 
Mellal and Zio 

(2019)

-  4 -

35 MOABC
Mahmoodabadi 
and Shahangian 

(2019)

  2 -

36 MOPSO
Liu et al. (2019)

 - 3, 5, 8, 10, 
15

Inverted 
generational 

distance, 
hypervolume

37 MOPSO
Luo et al. (2019)

 - 3, 5, 8, 10, 
15

Inverted 
generational 

distance, 
hypervolume

38 MOMFO
Sapre and Mini 

(2020)

  2, 3 Inverted 
generational 

distance, 
spacing, 

maximum 
spread

Total number of usage for   32/38         15/38
benchmark MOPs

Most of the studies (23 out of 38) used only test functions in 
evaluating the performance of MOSI optimization algorithms, while 
six out of 38 studies used only real-world problems. On the other 
hand, nine out of 38 MOSI algorithms were evaluated by using both 
test functions and real-world problems. Most of the MOSI algorithms 
(18 out of 38) were evaluated by solving low-dimensional MOPs 
(with two objectives). Figure 3 shows the number of objectives for 
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the benchmark MOPs that were used in evaluating the performance 
of the reviewed MOSI algorithms.

Figure 3

The Number of Objectives for Benchmark MOPs used in the 
Reviewed Publications.

Most of the studies used test functions and real-world problems with 
two objectives to evaluate the performance of MOSI algorithms. 
However, in a real situation, an optimization problem may consist 
of more than two objectives. In this case, these algorithms need to 
be extended to deal with this type of problem. Several studies (17 
out of 39) used MOPs with two and three objectives to evaluate the 
performance of algorithms. Several MOSI algorithms (4 out of 39) 
were evaluated by using high-dimensional MOPs (with more than 
three objectives). 

Several performance metrics were applied to evaluate the MOSI 
algorithms. The most widely used were generational distance, 
inverted generational distance, hypervolume, spread, spacing, and 
epsilon metrics. The generational distance metric was used to measure 
the convergence toward the true Pareto front. However, this metric 
could not effectively measure the diversity of solutions. The inverted 
generational distance was utilized to measure both convergence and 
diversity (Riquelme et al., 2015). On the other hand, the spread and 
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spacing metrics were used to measure the diversity of solutions. The 
hypervolume and epsilon metrics were employed to measure both 
convergence and diversity. Figure 4 shows the usage frequency of 
each performance metric. 

Figure 4

Usage of the Performance Metrics.

The most used performance metric in measuring the performance 
of MOSI algorithms was inverted generational distance (17 out of 
38 studies), followed by generational distance and hypervolume 
metrics (11 out of 38 studies). Compared to the inverted generational 
distance and generational distance metrics, the epsilon metric does 
not require a reference set, and it has been widely used in the area 
of MOO. Furthermore, the epsilon metric has a low computational 
complexity as compared to hypervolume, especially when dealing 
with high-dimension MOPs (Riquelme et al., 2015; Zitzler et al., 
2003) However, in evaluating the performance of MOSI algorithms, 
it was used in several studies (2 out of 38). Thus, the usage of epsilon 
metric needs to be taken into consideration when evaluating the 
performance of MOSI algorithms. Both spread and spacing metrics 
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were used in several studies (4 and 8 out of 38, respectively). The small 
number was because of the limitations of these metrics to measure 
the diversity of solutions and not the convergence. Furthermore, the 
spread metric was only useful when the Pareto front was composed of 
several solutions (Audet et al., 2018).

CONCLUSION

The MOSI metaheuristics have become popular MOO methods. 
Several approaches have been proposed to handle MOPs, namely 
scalarization-, Pareto-, decomposition-, and indicator-based. This 
paper provided a review for MOSI algorithms according to the MOO 
approaches. Most of the researchers focused on the Pareto dominance 
or decomposition approach in developing MOSI algorithms and 
they used an external archive to collect the obtained non-dominated 
solutions. The non-dominated sorting and crowding distance 
are widely used by many algorithms in selecting non-dominated 
solutions and maintaining the population diversity. For future work, 
it is possible to propose other MOSI algorithms by integrating an 
algorithm with other indicators such as inverted generational distance 
and generational distance, proposing different approaches to handle 
MOO, and using another method to preserve the population diversity. 
More MOSI algorithms need to be proposed to solve high-dimensional 
MOPs. In real-world applications, the user only needs one Pareto 
optimal solution and not the whole set as normally assumed by MOSI 
researchers. Thus, incorporating the preferences of a user into MOSI 
algorithms is very important to narrow the search and reduce the 
computational cost.
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